Properties

Label 845.2.t.g.657.5
Level $845$
Weight $2$
Character 845.657
Analytic conductor $6.747$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [845,2,Mod(188,845)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(845, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([9, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("845.188"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 845 = 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 845.t (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,6,-2,6,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.74735897080\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(5\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 26 x^{18} + 279 x^{16} + 1604 x^{14} + 5353 x^{12} + 10466 x^{10} + 11441 x^{8} + 6176 x^{6} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 657.5
Root \(2.64975i\) of defining polynomial
Character \(\chi\) \(=\) 845.657
Dual form 845.2.t.g.418.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.29475 + 1.32488i) q^{2} +(0.335680 + 1.25278i) q^{3} +(2.51060 + 4.34849i) q^{4} +(-1.81654 + 1.30391i) q^{5} +(-0.889471 + 3.31955i) q^{6} +(-0.0561740 - 0.0972962i) q^{7} +8.00544i q^{8} +(1.14131 - 0.658935i) q^{9} +(-5.89604 + 0.585458i) q^{10} +(-0.479564 - 1.78976i) q^{11} +(-4.60492 + 4.60492i) q^{12} -0.297695i q^{14} +(-2.24328 - 1.83802i) q^{15} +(-5.58502 + 9.67354i) q^{16} +(-2.63669 - 0.706500i) q^{17} +3.49203 q^{18} +(6.72284 + 1.80138i) q^{19} +(-10.2306 - 4.62561i) q^{20} +(0.103034 - 0.103034i) q^{21} +(1.27073 - 4.74241i) q^{22} +(-3.10327 + 0.831519i) q^{23} +(-10.0290 + 2.68727i) q^{24} +(1.59964 - 4.73721i) q^{25} +(3.95990 + 3.95990i) q^{27} +(0.282061 - 0.488544i) q^{28} +(-4.03134 - 2.32749i) q^{29} +(-2.71263 - 7.18989i) q^{30} +(0.624367 + 0.624367i) q^{31} +(-11.7667 + 6.79350i) q^{32} +(2.08118 - 1.20157i) q^{33} +(-5.11454 - 5.11454i) q^{34} +(0.228908 + 0.103497i) q^{35} +(5.73074 + 3.30864i) q^{36} +(0.737435 - 1.27728i) q^{37} +(13.0407 + 13.0407i) q^{38} +(-10.4384 - 14.5422i) q^{40} +(5.24069 - 1.40424i) q^{41} +(0.372945 - 0.0999302i) q^{42} +(1.00860 - 3.76415i) q^{43} +(6.57874 - 6.57874i) q^{44} +(-1.21404 + 2.68515i) q^{45} +(-8.22291 - 2.20332i) q^{46} +0.345095 q^{47} +(-13.9936 - 3.74956i) q^{48} +(3.49369 - 6.05125i) q^{49} +(9.94700 - 8.75140i) q^{50} -3.54034i q^{51} +(-3.59144 + 3.59144i) q^{53} +(3.84062 + 14.3334i) q^{54} +(3.20483 + 2.62586i) q^{55} +(0.778898 - 0.449697i) q^{56} +9.02691i q^{57} +(-6.16729 - 10.6821i) q^{58} +(-0.332494 + 1.24088i) q^{59} +(2.36063 - 14.3694i) q^{60} +(1.39151 + 2.41016i) q^{61} +(0.605559 + 2.25998i) q^{62} +(-0.128224 - 0.0740300i) q^{63} -13.6621 q^{64} +6.36774 q^{66} +(-0.124992 - 0.0721643i) q^{67} +(-3.54747 - 13.2394i) q^{68} +(-2.08342 - 3.60858i) q^{69} +(0.388167 + 0.540774i) q^{70} +(1.41668 - 5.28713i) q^{71} +(5.27506 + 9.13667i) q^{72} +9.06221i q^{73} +(3.38447 - 1.95402i) q^{74} +(6.47163 + 0.413804i) q^{75} +(9.04509 + 33.7567i) q^{76} +(-0.147197 + 0.147197i) q^{77} +15.1689i q^{79} +(-2.46800 - 24.8547i) q^{80} +(-1.65480 + 2.86620i) q^{81} +(13.8865 + 3.72089i) q^{82} -8.53853 q^{83} +(0.706718 + 0.189365i) q^{84} +(5.71087 - 2.15462i) q^{85} +(7.30152 - 7.30152i) q^{86} +(1.56259 - 5.83166i) q^{87} +(14.3278 - 3.83912i) q^{88} +(-0.549735 + 0.147301i) q^{89} +(-6.34342 + 4.55329i) q^{90} +(-11.4069 - 11.4069i) q^{92} +(-0.572604 + 0.991779i) q^{93} +(0.791908 + 0.457208i) q^{94} +(-14.5612 + 5.49370i) q^{95} +(-12.4606 - 12.4606i) q^{96} +(12.9596 - 7.48223i) q^{97} +(16.0343 - 9.25742i) q^{98} +(-1.72666 - 1.72666i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 6 q^{2} - 2 q^{3} + 6 q^{4} + 8 q^{6} + 2 q^{7} + 12 q^{9} - 2 q^{10} + 16 q^{11} - 24 q^{12} + 20 q^{15} - 2 q^{16} + 4 q^{17} + 20 q^{19} - 4 q^{21} + 16 q^{22} - 10 q^{23} - 32 q^{24} + 18 q^{25}+ \cdots - 60 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/845\mathbb{Z}\right)^\times\).

\(n\) \(171\) \(677\)
\(\chi(n)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.29475 + 1.32488i 1.62264 + 0.936830i 0.986211 + 0.165491i \(0.0529210\pi\)
0.636425 + 0.771338i \(0.280412\pi\)
\(3\) 0.335680 + 1.25278i 0.193805 + 0.723291i 0.992573 + 0.121651i \(0.0388189\pi\)
−0.798768 + 0.601640i \(0.794514\pi\)
\(4\) 2.51060 + 4.34849i 1.25530 + 2.17424i
\(5\) −1.81654 + 1.30391i −0.812382 + 0.583126i
\(6\) −0.889471 + 3.31955i −0.363125 + 1.35520i
\(7\) −0.0561740 0.0972962i −0.0212318 0.0367745i 0.855214 0.518275i \(-0.173425\pi\)
−0.876446 + 0.481500i \(0.840092\pi\)
\(8\) 8.00544i 2.83035i
\(9\) 1.14131 0.658935i 0.380436 0.219645i
\(10\) −5.89604 + 0.585458i −1.86449 + 0.185138i
\(11\) −0.479564 1.78976i −0.144594 0.539632i −0.999773 0.0212994i \(-0.993220\pi\)
0.855179 0.518332i \(-0.173447\pi\)
\(12\) −4.60492 + 4.60492i −1.32933 + 1.32933i
\(13\) 0 0
\(14\) 0.297695i 0.0795622i
\(15\) −2.24328 1.83802i −0.579213 0.474575i
\(16\) −5.58502 + 9.67354i −1.39626 + 2.41838i
\(17\) −2.63669 0.706500i −0.639492 0.171351i −0.0755186 0.997144i \(-0.524061\pi\)
−0.563973 + 0.825793i \(0.690728\pi\)
\(18\) 3.49203 0.823080
\(19\) 6.72284 + 1.80138i 1.54233 + 0.413265i 0.927016 0.375021i \(-0.122364\pi\)
0.615309 + 0.788286i \(0.289031\pi\)
\(20\) −10.2306 4.62561i −2.28764 1.03432i
\(21\) 0.103034 0.103034i 0.0224838 0.0224838i
\(22\) 1.27073 4.74241i 0.270920 1.01109i
\(23\) −3.10327 + 0.831519i −0.647077 + 0.173384i −0.567407 0.823438i \(-0.692053\pi\)
−0.0796701 + 0.996821i \(0.525387\pi\)
\(24\) −10.0290 + 2.68727i −2.04717 + 0.548536i
\(25\) 1.59964 4.73721i 0.319928 0.947442i
\(26\) 0 0
\(27\) 3.95990 + 3.95990i 0.762083 + 0.762083i
\(28\) 0.282061 0.488544i 0.0533045 0.0923261i
\(29\) −4.03134 2.32749i −0.748601 0.432205i 0.0765874 0.997063i \(-0.475598\pi\)
−0.825188 + 0.564858i \(0.808931\pi\)
\(30\) −2.71263 7.18989i −0.495257 1.31269i
\(31\) 0.624367 + 0.624367i 0.112140 + 0.112140i 0.760950 0.648810i \(-0.224733\pi\)
−0.648810 + 0.760950i \(0.724733\pi\)
\(32\) −11.7667 + 6.79350i −2.08008 + 1.20093i
\(33\) 2.08118 1.20157i 0.362288 0.209167i
\(34\) −5.11454 5.11454i −0.877136 0.877136i
\(35\) 0.228908 + 0.103497i 0.0386925 + 0.0174941i
\(36\) 5.73074 + 3.30864i 0.955123 + 0.551441i
\(37\) 0.737435 1.27728i 0.121234 0.209983i −0.799021 0.601303i \(-0.794648\pi\)
0.920254 + 0.391321i \(0.127982\pi\)
\(38\) 13.0407 + 13.0407i 2.11548 + 2.11548i
\(39\) 0 0
\(40\) −10.4384 14.5422i −1.65045 2.29932i
\(41\) 5.24069 1.40424i 0.818458 0.219305i 0.174786 0.984606i \(-0.444077\pi\)
0.643672 + 0.765301i \(0.277410\pi\)
\(42\) 0.372945 0.0999302i 0.0575466 0.0154196i
\(43\) 1.00860 3.76415i 0.153810 0.574027i −0.845394 0.534143i \(-0.820634\pi\)
0.999204 0.0398840i \(-0.0126989\pi\)
\(44\) 6.57874 6.57874i 0.991782 0.991782i
\(45\) −1.21404 + 2.68515i −0.180979 + 0.400278i
\(46\) −8.22291 2.20332i −1.21240 0.324862i
\(47\) 0.345095 0.0503372 0.0251686 0.999683i \(-0.491988\pi\)
0.0251686 + 0.999683i \(0.491988\pi\)
\(48\) −13.9936 3.74956i −2.01980 0.541203i
\(49\) 3.49369 6.05125i 0.499098 0.864464i
\(50\) 9.94700 8.75140i 1.40672 1.23764i
\(51\) 3.54034i 0.495747i
\(52\) 0 0
\(53\) −3.59144 + 3.59144i −0.493322 + 0.493322i −0.909351 0.416029i \(-0.863421\pi\)
0.416029 + 0.909351i \(0.363421\pi\)
\(54\) 3.84062 + 14.3334i 0.522642 + 1.95053i
\(55\) 3.20483 + 2.62586i 0.432139 + 0.354071i
\(56\) 0.778898 0.449697i 0.104085 0.0600933i
\(57\) 9.02691i 1.19564i
\(58\) −6.16729 10.6821i −0.809805 1.40262i
\(59\) −0.332494 + 1.24088i −0.0432870 + 0.161549i −0.984186 0.177138i \(-0.943316\pi\)
0.940899 + 0.338687i \(0.109983\pi\)
\(60\) 2.36063 14.3694i 0.304756 1.85508i
\(61\) 1.39151 + 2.41016i 0.178164 + 0.308589i 0.941252 0.337706i \(-0.109651\pi\)
−0.763088 + 0.646295i \(0.776318\pi\)
\(62\) 0.605559 + 2.25998i 0.0769061 + 0.287017i
\(63\) −0.128224 0.0740300i −0.0161547 0.00932691i
\(64\) −13.6621 −1.70776
\(65\) 0 0
\(66\) 6.36774 0.783815
\(67\) −0.124992 0.0721643i −0.0152702 0.00881627i 0.492345 0.870400i \(-0.336140\pi\)
−0.507616 + 0.861584i \(0.669473\pi\)
\(68\) −3.54747 13.2394i −0.430194 1.60551i
\(69\) −2.08342 3.60858i −0.250814 0.434422i
\(70\) 0.388167 + 0.540774i 0.0463948 + 0.0646349i
\(71\) 1.41668 5.28713i 0.168129 0.627467i −0.829491 0.558520i \(-0.811369\pi\)
0.997620 0.0689472i \(-0.0219640\pi\)
\(72\) 5.27506 + 9.13667i 0.621672 + 1.07677i
\(73\) 9.06221i 1.06065i 0.847794 + 0.530326i \(0.177930\pi\)
−0.847794 + 0.530326i \(0.822070\pi\)
\(74\) 3.38447 1.95402i 0.393436 0.227151i
\(75\) 6.47163 + 0.413804i 0.747280 + 0.0477820i
\(76\) 9.04509 + 33.7567i 1.03754 + 3.87216i
\(77\) −0.147197 + 0.147197i −0.0167747 + 0.0167747i
\(78\) 0 0
\(79\) 15.1689i 1.70664i 0.521388 + 0.853320i \(0.325414\pi\)
−0.521388 + 0.853320i \(0.674586\pi\)
\(80\) −2.46800 24.8547i −0.275931 2.77884i
\(81\) −1.65480 + 2.86620i −0.183867 + 0.318467i
\(82\) 13.8865 + 3.72089i 1.53351 + 0.410903i
\(83\) −8.53853 −0.937226 −0.468613 0.883404i \(-0.655246\pi\)
−0.468613 + 0.883404i \(0.655246\pi\)
\(84\) 0.706718 + 0.189365i 0.0771093 + 0.0206614i
\(85\) 5.71087 2.15462i 0.619431 0.233702i
\(86\) 7.30152 7.30152i 0.787343 0.787343i
\(87\) 1.56259 5.83166i 0.167527 0.625219i
\(88\) 14.3278 3.83912i 1.52735 0.409251i
\(89\) −0.549735 + 0.147301i −0.0582718 + 0.0156139i −0.287837 0.957679i \(-0.592936\pi\)
0.229565 + 0.973293i \(0.426270\pi\)
\(90\) −6.34342 + 4.55329i −0.668655 + 0.479959i
\(91\) 0 0
\(92\) −11.4069 11.4069i −1.18925 1.18925i
\(93\) −0.572604 + 0.991779i −0.0593763 + 0.102843i
\(94\) 0.791908 + 0.457208i 0.0816791 + 0.0471574i
\(95\) −14.5612 + 5.49370i −1.49394 + 0.563641i
\(96\) −12.4606 12.4606i −1.27175 1.27175i
\(97\) 12.9596 7.48223i 1.31585 0.759705i 0.332790 0.943001i \(-0.392010\pi\)
0.983058 + 0.183296i \(0.0586766\pi\)
\(98\) 16.0343 9.25742i 1.61971 0.935140i
\(99\) −1.72666 1.72666i −0.173536 0.173536i
\(100\) 24.6157 4.93722i 2.46157 0.493722i
\(101\) 7.19717 + 4.15529i 0.716146 + 0.413467i 0.813332 0.581799i \(-0.197651\pi\)
−0.0971867 + 0.995266i \(0.530984\pi\)
\(102\) 4.69052 8.12422i 0.464431 0.804418i
\(103\) −7.72940 7.72940i −0.761600 0.761600i 0.215011 0.976612i \(-0.431021\pi\)
−0.976612 + 0.215011i \(0.931021\pi\)
\(104\) 0 0
\(105\) −0.0528184 + 0.321512i −0.00515455 + 0.0313764i
\(106\) −12.9997 + 3.48325i −1.26264 + 0.338324i
\(107\) 7.15177 1.91631i 0.691388 0.185257i 0.104018 0.994575i \(-0.466830\pi\)
0.587370 + 0.809318i \(0.300163\pi\)
\(108\) −7.27785 + 27.1613i −0.700311 + 2.61360i
\(109\) −3.34544 + 3.34544i −0.320435 + 0.320435i −0.848934 0.528499i \(-0.822755\pi\)
0.528499 + 0.848934i \(0.322755\pi\)
\(110\) 3.87535 + 10.2717i 0.369500 + 0.979368i
\(111\) 1.84768 + 0.495085i 0.175374 + 0.0469914i
\(112\) 1.25493 0.118580
\(113\) −5.90688 1.58274i −0.555672 0.148892i −0.0299550 0.999551i \(-0.509536\pi\)
−0.525717 + 0.850659i \(0.676203\pi\)
\(114\) −11.9595 + 20.7145i −1.12011 + 1.94009i
\(115\) 4.55300 5.55688i 0.424569 0.518181i
\(116\) 23.3736i 2.17019i
\(117\) 0 0
\(118\) −2.40701 + 2.40701i −0.221583 + 0.221583i
\(119\) 0.0793738 + 0.296227i 0.00727618 + 0.0271551i
\(120\) 14.7142 17.9585i 1.34321 1.63938i
\(121\) 6.55303 3.78340i 0.595730 0.343945i
\(122\) 7.37430i 0.667638i
\(123\) 3.51839 + 6.09404i 0.317243 + 0.549481i
\(124\) −1.14751 + 4.28258i −0.103050 + 0.384587i
\(125\) 3.27108 + 10.6911i 0.292574 + 0.956243i
\(126\) −0.196161 0.339761i −0.0174754 0.0302684i
\(127\) −3.01994 11.2706i −0.267976 1.00010i −0.960403 0.278613i \(-0.910125\pi\)
0.692427 0.721488i \(-0.256541\pi\)
\(128\) −7.81784 4.51363i −0.691006 0.398953i
\(129\) 5.05420 0.444997
\(130\) 0 0
\(131\) 7.46380 0.652115 0.326058 0.945350i \(-0.394280\pi\)
0.326058 + 0.945350i \(0.394280\pi\)
\(132\) 10.4500 + 6.03333i 0.909559 + 0.525134i
\(133\) −0.202381 0.755298i −0.0175487 0.0654926i
\(134\) −0.191218 0.331199i −0.0165187 0.0286112i
\(135\) −12.3567 2.02997i −1.06349 0.174712i
\(136\) 5.65584 21.1079i 0.484984 1.80998i
\(137\) −9.24213 16.0078i −0.789608 1.36764i −0.926207 0.377015i \(-0.876950\pi\)
0.136599 0.990626i \(-0.456383\pi\)
\(138\) 11.0411i 0.939879i
\(139\) −9.44862 + 5.45516i −0.801421 + 0.462701i −0.843968 0.536394i \(-0.819786\pi\)
0.0425466 + 0.999094i \(0.486453\pi\)
\(140\) 0.124642 + 1.25524i 0.0105341 + 0.106087i
\(141\) 0.115842 + 0.432327i 0.00975562 + 0.0364085i
\(142\) 10.2557 10.2557i 0.860643 0.860643i
\(143\) 0 0
\(144\) 14.7207i 1.22672i
\(145\) 10.3579 1.02851i 0.860179 0.0854132i
\(146\) −12.0063 + 20.7955i −0.993650 + 1.72105i
\(147\) 8.75362 + 2.34553i 0.721987 + 0.193456i
\(148\) 7.40562 0.608738
\(149\) −13.4468 3.60307i −1.10161 0.295175i −0.338189 0.941078i \(-0.609814\pi\)
−0.763419 + 0.645903i \(0.776481\pi\)
\(150\) 14.3026 + 9.52370i 1.16780 + 0.777607i
\(151\) 8.49593 8.49593i 0.691389 0.691389i −0.271149 0.962537i \(-0.587404\pi\)
0.962537 + 0.271149i \(0.0874035\pi\)
\(152\) −14.4208 + 53.8193i −1.16968 + 4.36532i
\(153\) −3.47482 + 0.931075i −0.280922 + 0.0752729i
\(154\) −0.532801 + 0.142763i −0.0429343 + 0.0115042i
\(155\) −1.94830 0.320070i −0.156492 0.0257086i
\(156\) 0 0
\(157\) −5.14491 5.14491i −0.410609 0.410609i 0.471342 0.881951i \(-0.343770\pi\)
−0.881951 + 0.471342i \(0.843770\pi\)
\(158\) −20.0970 + 34.8090i −1.59883 + 2.76926i
\(159\) −5.70484 3.29369i −0.452423 0.261207i
\(160\) 12.5166 27.6833i 0.989520 2.18856i
\(161\) 0.255227 + 0.255227i 0.0201147 + 0.0201147i
\(162\) −7.59474 + 4.38482i −0.596699 + 0.344504i
\(163\) −17.7686 + 10.2587i −1.39175 + 0.803526i −0.993509 0.113756i \(-0.963712\pi\)
−0.398239 + 0.917282i \(0.630379\pi\)
\(164\) 19.2636 + 19.2636i 1.50423 + 1.50423i
\(165\) −2.21381 + 4.89638i −0.172345 + 0.381183i
\(166\) −19.5938 11.3125i −1.52078 0.878021i
\(167\) −1.27050 + 2.20058i −0.0983146 + 0.170286i −0.910987 0.412435i \(-0.864678\pi\)
0.812673 + 0.582721i \(0.198012\pi\)
\(168\) 0.824831 + 0.824831i 0.0636371 + 0.0636371i
\(169\) 0 0
\(170\) 15.9597 + 2.62187i 1.22405 + 0.201088i
\(171\) 8.85983 2.37398i 0.677528 0.181543i
\(172\) 18.9005 5.06438i 1.44115 0.386155i
\(173\) 0.0204199 0.0762079i 0.00155249 0.00579398i −0.965145 0.261715i \(-0.915712\pi\)
0.966698 + 0.255921i \(0.0823787\pi\)
\(174\) 11.3120 11.3120i 0.857560 0.857560i
\(175\) −0.550771 + 0.110469i −0.0416343 + 0.00835067i
\(176\) 19.9916 + 5.35675i 1.50693 + 0.403780i
\(177\) −1.66616 −0.125236
\(178\) −1.45666 0.390312i −0.109182 0.0292551i
\(179\) 10.6120 18.3806i 0.793181 1.37383i −0.130808 0.991408i \(-0.541757\pi\)
0.923988 0.382421i \(-0.124910\pi\)
\(180\) −14.7243 + 1.46208i −1.09748 + 0.108977i
\(181\) 22.5267i 1.67440i 0.546899 + 0.837198i \(0.315808\pi\)
−0.546899 + 0.837198i \(0.684192\pi\)
\(182\) 0 0
\(183\) −2.55229 + 2.55229i −0.188671 + 0.188671i
\(184\) −6.65667 24.8430i −0.490737 1.83145i
\(185\) 0.325870 + 3.28177i 0.0239584 + 0.241281i
\(186\) −2.62797 + 1.51726i −0.192692 + 0.111251i
\(187\) 5.05785i 0.369866i
\(188\) 0.866395 + 1.50064i 0.0631883 + 0.109445i
\(189\) 0.162840 0.607727i 0.0118449 0.0442056i
\(190\) −40.6927 6.68506i −2.95216 0.484985i
\(191\) −9.80326 16.9797i −0.709339 1.22861i −0.965103 0.261872i \(-0.915660\pi\)
0.255764 0.966739i \(-0.417673\pi\)
\(192\) −4.58610 17.1156i −0.330974 1.23521i
\(193\) −14.4730 8.35601i −1.04179 0.601479i −0.121451 0.992597i \(-0.538755\pi\)
−0.920340 + 0.391119i \(0.872088\pi\)
\(194\) 39.6521 2.84686
\(195\) 0 0
\(196\) 35.0850 2.50607
\(197\) −13.1517 7.59315i −0.937021 0.540990i −0.0479960 0.998848i \(-0.515283\pi\)
−0.889025 + 0.457858i \(0.848617\pi\)
\(198\) −1.67465 6.24989i −0.119012 0.444160i
\(199\) −6.97357 12.0786i −0.494343 0.856228i 0.505636 0.862747i \(-0.331258\pi\)
−0.999979 + 0.00651960i \(0.997925\pi\)
\(200\) 37.9234 + 12.8058i 2.68159 + 0.905508i
\(201\) 0.0484483 0.180811i 0.00341728 0.0127535i
\(202\) 11.0105 + 19.0707i 0.774696 + 1.34181i
\(203\) 0.522979i 0.0367059i
\(204\) 15.3951 8.88838i 1.07787 0.622311i
\(205\) −7.68893 + 9.38424i −0.537018 + 0.655424i
\(206\) −7.49657 27.9776i −0.522311 1.94929i
\(207\) −2.99388 + 2.99388i −0.208089 + 0.208089i
\(208\) 0 0
\(209\) 12.8961i 0.892044i
\(210\) −0.547169 + 0.667813i −0.0377583 + 0.0460835i
\(211\) 11.8091 20.4539i 0.812969 1.40810i −0.0978083 0.995205i \(-0.531183\pi\)
0.910777 0.412898i \(-0.135483\pi\)
\(212\) −24.6340 6.60065i −1.69187 0.453335i
\(213\) 7.09915 0.486426
\(214\) 18.9504 + 5.07776i 1.29543 + 0.347108i
\(215\) 3.07594 + 8.15285i 0.209777 + 0.556019i
\(216\) −31.7007 + 31.7007i −2.15696 + 2.15696i
\(217\) 0.0256753 0.0958217i 0.00174296 0.00650480i
\(218\) −12.1093 + 3.24467i −0.820143 + 0.219757i
\(219\) −11.3529 + 3.04201i −0.767159 + 0.205560i
\(220\) −3.37247 + 20.5286i −0.227372 + 1.38404i
\(221\) 0 0
\(222\) 3.58405 + 3.58405i 0.240546 + 0.240546i
\(223\) 4.86319 8.42330i 0.325664 0.564066i −0.655983 0.754776i \(-0.727746\pi\)
0.981646 + 0.190710i \(0.0610790\pi\)
\(224\) 1.32196 + 0.763236i 0.0883274 + 0.0509958i
\(225\) −1.29583 6.46068i −0.0863886 0.430712i
\(226\) −11.4579 11.4579i −0.762168 0.762168i
\(227\) −7.94647 + 4.58790i −0.527426 + 0.304510i −0.739968 0.672642i \(-0.765159\pi\)
0.212542 + 0.977152i \(0.431826\pi\)
\(228\) −39.2534 + 22.6629i −2.59962 + 1.50089i
\(229\) −12.5270 12.5270i −0.827811 0.827811i 0.159403 0.987214i \(-0.449043\pi\)
−0.987214 + 0.159403i \(0.949043\pi\)
\(230\) 17.8102 6.71950i 1.17437 0.443071i
\(231\) −0.233817 0.134994i −0.0153840 0.00888197i
\(232\) 18.6326 32.2726i 1.22329 2.11880i
\(233\) −11.8637 11.8637i −0.777214 0.777214i 0.202142 0.979356i \(-0.435210\pi\)
−0.979356 + 0.202142i \(0.935210\pi\)
\(234\) 0 0
\(235\) −0.626879 + 0.449972i −0.0408931 + 0.0293530i
\(236\) −6.23072 + 1.66952i −0.405585 + 0.108676i
\(237\) −19.0033 + 5.09192i −1.23440 + 0.330756i
\(238\) −0.210321 + 0.784929i −0.0136331 + 0.0508794i
\(239\) 18.2161 18.2161i 1.17830 1.17830i 0.198124 0.980177i \(-0.436515\pi\)
0.980177 0.198124i \(-0.0634848\pi\)
\(240\) 30.3090 11.4351i 1.95644 0.738133i
\(241\) 5.28403 + 1.41585i 0.340374 + 0.0912030i 0.424957 0.905213i \(-0.360289\pi\)
−0.0845830 + 0.996416i \(0.526956\pi\)
\(242\) 20.0501 1.28887
\(243\) 12.0818 + 3.23730i 0.775046 + 0.207673i
\(244\) −6.98703 + 12.1019i −0.447299 + 0.774744i
\(245\) 1.54385 + 15.5478i 0.0986329 + 0.993312i
\(246\) 18.6458i 1.18881i
\(247\) 0 0
\(248\) −4.99833 + 4.99833i −0.317394 + 0.317394i
\(249\) −2.86622 10.6969i −0.181639 0.677887i
\(250\) −6.65810 + 28.8673i −0.421095 + 1.82573i
\(251\) 11.3169 6.53384i 0.714319 0.412412i −0.0983394 0.995153i \(-0.531353\pi\)
0.812658 + 0.582741i \(0.198020\pi\)
\(252\) 0.743439i 0.0468322i
\(253\) 2.97643 + 5.15533i 0.187127 + 0.324113i
\(254\) 8.00209 29.8642i 0.502096 1.87385i
\(255\) 4.61629 + 6.43118i 0.289083 + 0.402736i
\(256\) 1.70209 + 2.94811i 0.106381 + 0.184257i
\(257\) 4.51603 + 16.8541i 0.281702 + 1.05133i 0.951215 + 0.308528i \(0.0998362\pi\)
−0.669513 + 0.742800i \(0.733497\pi\)
\(258\) 11.5981 + 6.69619i 0.722069 + 0.416887i
\(259\) −0.165699 −0.0102960
\(260\) 0 0
\(261\) −6.13467 −0.379727
\(262\) 17.1276 + 9.88862i 1.05815 + 0.610921i
\(263\) 5.39593 + 20.1379i 0.332727 + 1.24175i 0.906312 + 0.422608i \(0.138885\pi\)
−0.573585 + 0.819146i \(0.694448\pi\)
\(264\) 9.61911 + 16.6608i 0.592015 + 1.02540i
\(265\) 1.84108 11.2069i 0.113097 0.688434i
\(266\) 0.536261 2.00135i 0.0328803 0.122711i
\(267\) −0.369071 0.639249i −0.0225868 0.0391214i
\(268\) 0.724703i 0.0442683i
\(269\) −9.15088 + 5.28326i −0.557939 + 0.322126i −0.752318 0.658800i \(-0.771064\pi\)
0.194379 + 0.980927i \(0.437731\pi\)
\(270\) −25.6661 21.0294i −1.56199 1.27981i
\(271\) 2.04739 + 7.64095i 0.124370 + 0.464155i 0.999816 0.0191601i \(-0.00609923\pi\)
−0.875446 + 0.483315i \(0.839433\pi\)
\(272\) 21.5603 21.5603i 1.30729 1.30729i
\(273\) 0 0
\(274\) 48.9787i 2.95891i
\(275\) −9.24558 0.591174i −0.557529 0.0356491i
\(276\) 10.4612 18.1194i 0.629693 1.09066i
\(277\) 9.86609 + 2.64361i 0.592796 + 0.158839i 0.542731 0.839907i \(-0.317390\pi\)
0.0500653 + 0.998746i \(0.484057\pi\)
\(278\) −28.9097 −1.73389
\(279\) 1.12401 + 0.301178i 0.0672929 + 0.0180311i
\(280\) −0.828536 + 1.83251i −0.0495145 + 0.109513i
\(281\) −12.4763 + 12.4763i −0.744271 + 0.744271i −0.973397 0.229126i \(-0.926413\pi\)
0.229126 + 0.973397i \(0.426413\pi\)
\(282\) −0.306952 + 1.14556i −0.0182787 + 0.0682171i
\(283\) −7.98478 + 2.13952i −0.474646 + 0.127181i −0.488208 0.872727i \(-0.662349\pi\)
0.0135626 + 0.999908i \(0.495683\pi\)
\(284\) 26.5478 7.11345i 1.57532 0.422105i
\(285\) −11.7703 16.3977i −0.697210 0.971318i
\(286\) 0 0
\(287\) −0.431018 0.431018i −0.0254422 0.0254422i
\(288\) −8.95295 + 15.5070i −0.527557 + 0.913756i
\(289\) −8.26943 4.77436i −0.486437 0.280844i
\(290\) 25.1316 + 11.3628i 1.47578 + 0.667247i
\(291\) 13.7238 + 13.7238i 0.804506 + 0.804506i
\(292\) −39.4069 + 22.7516i −2.30611 + 1.33144i
\(293\) 5.52378 3.18916i 0.322703 0.186313i −0.329894 0.944018i \(-0.607013\pi\)
0.652597 + 0.757705i \(0.273680\pi\)
\(294\) 16.9799 + 16.9799i 0.990287 + 0.990287i
\(295\) −1.01401 2.68766i −0.0590380 0.156481i
\(296\) 10.2251 + 5.90349i 0.594325 + 0.343133i
\(297\) 5.18823 8.98628i 0.301052 0.521437i
\(298\) −26.0836 26.0836i −1.51098 1.51098i
\(299\) 0 0
\(300\) 14.4483 + 29.1807i 0.834170 + 1.68475i
\(301\) −0.422894 + 0.113314i −0.0243752 + 0.00653132i
\(302\) 30.7521 8.24001i 1.76959 0.474159i
\(303\) −2.78970 + 10.4113i −0.160264 + 0.598114i
\(304\) −54.9729 + 54.9729i −3.15291 + 3.15291i
\(305\) −5.67036 2.56376i −0.324684 0.146800i
\(306\) −9.20741 2.46712i −0.526353 0.141036i
\(307\) 26.5460 1.51506 0.757530 0.652801i \(-0.226406\pi\)
0.757530 + 0.652801i \(0.226406\pi\)
\(308\) −1.00964 0.270532i −0.0575296 0.0154150i
\(309\) 7.08860 12.2778i 0.403256 0.698460i
\(310\) −4.04683 3.31575i −0.229844 0.188322i
\(311\) 3.54417i 0.200972i 0.994938 + 0.100486i \(0.0320397\pi\)
−0.994938 + 0.100486i \(0.967960\pi\)
\(312\) 0 0
\(313\) −6.21088 + 6.21088i −0.351060 + 0.351060i −0.860504 0.509444i \(-0.829851\pi\)
0.509444 + 0.860504i \(0.329851\pi\)
\(314\) −4.98993 18.6227i −0.281598 1.05094i
\(315\) 0.329452 0.0327136i 0.0185625 0.00184320i
\(316\) −65.9619 + 38.0831i −3.71065 + 2.14234i
\(317\) 8.52812i 0.478987i 0.970898 + 0.239494i \(0.0769814\pi\)
−0.970898 + 0.239494i \(0.923019\pi\)
\(318\) −8.72748 15.1164i −0.489413 0.847688i
\(319\) −2.23236 + 8.33129i −0.124988 + 0.466463i
\(320\) 24.8178 17.8142i 1.38736 0.995842i
\(321\) 4.80142 + 8.31631i 0.267989 + 0.464171i
\(322\) 0.247539 + 0.923827i 0.0137948 + 0.0514829i
\(323\) −16.4534 9.49937i −0.915491 0.528559i
\(324\) −16.6182 −0.923233
\(325\) 0 0
\(326\) −54.3663 −3.01107
\(327\) −5.31409 3.06809i −0.293870 0.169666i
\(328\) 11.2415 + 41.9540i 0.620710 + 2.31652i
\(329\) −0.0193853 0.0335764i −0.00106875 0.00185113i
\(330\) −11.5673 + 8.30296i −0.636757 + 0.457063i
\(331\) −4.66054 + 17.3934i −0.256166 + 0.956026i 0.711271 + 0.702917i \(0.248120\pi\)
−0.967438 + 0.253109i \(0.918547\pi\)
\(332\) −21.4368 37.1297i −1.17650 2.03776i
\(333\) 1.94369i 0.106513i
\(334\) −5.83099 + 3.36652i −0.319058 + 0.184208i
\(335\) 0.321149 0.0318891i 0.0175463 0.00174229i
\(336\) 0.421256 + 1.57215i 0.0229814 + 0.0857677i
\(337\) −20.0865 + 20.0865i −1.09418 + 1.09418i −0.0991030 + 0.995077i \(0.531597\pi\)
−0.995077 + 0.0991030i \(0.968403\pi\)
\(338\) 0 0
\(339\) 7.93129i 0.430769i
\(340\) 23.7071 + 19.4242i 1.28570 + 1.05343i
\(341\) 0.818040 1.41689i 0.0442994 0.0767288i
\(342\) 23.4764 + 6.29048i 1.26946 + 0.340150i
\(343\) −1.57145 −0.0848505
\(344\) 30.1336 + 8.07428i 1.62470 + 0.435336i
\(345\) 8.48987 + 3.83855i 0.457079 + 0.206661i
\(346\) 0.147825 0.147825i 0.00794710 0.00794710i
\(347\) −1.85743 + 6.93201i −0.0997119 + 0.372130i −0.997692 0.0679068i \(-0.978368\pi\)
0.897980 + 0.440037i \(0.145035\pi\)
\(348\) 29.2819 7.84607i 1.56968 0.420593i
\(349\) −3.52885 + 0.945552i −0.188895 + 0.0506143i −0.352026 0.935990i \(-0.614507\pi\)
0.163131 + 0.986604i \(0.447841\pi\)
\(350\) −1.41024 0.476204i −0.0753806 0.0254542i
\(351\) 0 0
\(352\) 17.8016 + 17.8016i 0.948827 + 0.948827i
\(353\) 0.881628 1.52702i 0.0469243 0.0812753i −0.841609 0.540087i \(-0.818391\pi\)
0.888534 + 0.458812i \(0.151725\pi\)
\(354\) −3.82343 2.20746i −0.203213 0.117325i
\(355\) 4.32048 + 11.4515i 0.229307 + 0.607784i
\(356\) −2.02070 2.02070i −0.107097 0.107097i
\(357\) −0.344462 + 0.198875i −0.0182309 + 0.0105256i
\(358\) 48.7040 28.1193i 2.57409 1.48615i
\(359\) −8.58021 8.58021i −0.452846 0.452846i 0.443452 0.896298i \(-0.353754\pi\)
−0.896298 + 0.443452i \(0.853754\pi\)
\(360\) −21.4958 9.71894i −1.13293 0.512233i
\(361\) 25.4972 + 14.7208i 1.34196 + 0.774778i
\(362\) −29.8451 + 51.6933i −1.56862 + 2.71694i
\(363\) 6.93947 + 6.93947i 0.364228 + 0.364228i
\(364\) 0 0
\(365\) −11.8163 16.4619i −0.618493 0.861654i
\(366\) −9.23835 + 2.47541i −0.482896 + 0.129392i
\(367\) 13.5337 3.62635i 0.706454 0.189294i 0.112334 0.993670i \(-0.464167\pi\)
0.594120 + 0.804377i \(0.297501\pi\)
\(368\) 9.28811 34.6637i 0.484176 1.80697i
\(369\) 5.05594 5.05594i 0.263202 0.263202i
\(370\) −3.60015 + 7.96260i −0.187163 + 0.413956i
\(371\) 0.551179 + 0.147688i 0.0286158 + 0.00766757i
\(372\) −5.75032 −0.298140
\(373\) 27.9078 + 7.47789i 1.44501 + 0.387190i 0.894286 0.447495i \(-0.147684\pi\)
0.550727 + 0.834685i \(0.314350\pi\)
\(374\) −6.70103 + 11.6065i −0.346502 + 0.600159i
\(375\) −12.2955 + 7.68673i −0.634939 + 0.396941i
\(376\) 2.76263i 0.142472i
\(377\) 0 0
\(378\) 1.17884 1.17884i 0.0606330 0.0606330i
\(379\) −2.45278 9.15390i −0.125991 0.470204i 0.873882 0.486138i \(-0.161595\pi\)
−0.999873 + 0.0159336i \(0.994928\pi\)
\(380\) −60.4465 49.5265i −3.10084 2.54066i
\(381\) 13.1058 7.56661i 0.671428 0.387649i
\(382\) 51.9525i 2.65812i
\(383\) −10.5361 18.2490i −0.538369 0.932483i −0.998992 0.0448868i \(-0.985707\pi\)
0.460623 0.887596i \(-0.347626\pi\)
\(384\) 3.03028 11.3091i 0.154638 0.577118i
\(385\) 0.0754581 0.459322i 0.00384570 0.0234092i
\(386\) −22.1414 38.3500i −1.12697 1.95196i
\(387\) −1.32920 4.96065i −0.0675672 0.252164i
\(388\) 65.0727 + 37.5698i 3.30357 + 1.90732i
\(389\) 0.0604806 0.00306649 0.00153324 0.999999i \(-0.499512\pi\)
0.00153324 + 0.999999i \(0.499512\pi\)
\(390\) 0 0
\(391\) 8.76984 0.443510
\(392\) 48.4429 + 27.9685i 2.44673 + 1.41262i
\(393\) 2.50545 + 9.35047i 0.126383 + 0.471669i
\(394\) −20.1200 34.8488i −1.01363 1.75566i
\(395\) −19.7789 27.5550i −0.995186 1.38644i
\(396\) 3.17341 11.8433i 0.159470 0.595150i
\(397\) 4.10812 + 7.11548i 0.206181 + 0.357116i 0.950508 0.310699i \(-0.100563\pi\)
−0.744327 + 0.667815i \(0.767230\pi\)
\(398\) 36.9565i 1.85246i
\(399\) 0.878284 0.507077i 0.0439692 0.0253856i
\(400\) 36.8915 + 41.9316i 1.84458 + 2.09658i
\(401\) 2.32904 + 8.69210i 0.116307 + 0.434063i 0.999381 0.0351698i \(-0.0111972\pi\)
−0.883075 + 0.469233i \(0.844531\pi\)
\(402\) 0.350730 0.350730i 0.0174928 0.0174928i
\(403\) 0 0
\(404\) 41.7291i 2.07610i
\(405\) −0.731252 7.36429i −0.0363362 0.365935i
\(406\) −0.692882 + 1.20011i −0.0343872 + 0.0595603i
\(407\) −2.63966 0.707294i −0.130843 0.0350593i
\(408\) 28.3420 1.40314
\(409\) −34.6013 9.27138i −1.71092 0.458440i −0.735272 0.677772i \(-0.762946\pi\)
−0.975650 + 0.219332i \(0.929612\pi\)
\(410\) −30.0772 + 11.3476i −1.48541 + 0.560420i
\(411\) 16.9518 16.9518i 0.836173 0.836173i
\(412\) 14.2058 53.0166i 0.699867 2.61194i
\(413\) 0.139411 0.0373550i 0.00685995 0.00183812i
\(414\) −10.8367 + 2.90369i −0.532596 + 0.142709i
\(415\) 15.5106 11.1335i 0.761385 0.546521i
\(416\) 0 0
\(417\) −10.0058 10.0058i −0.489987 0.489987i
\(418\) 17.0858 29.5934i 0.835693 1.44746i
\(419\) −11.3282 6.54037i −0.553421 0.319518i 0.197080 0.980387i \(-0.436854\pi\)
−0.750501 + 0.660870i \(0.770188\pi\)
\(420\) −1.53070 + 0.577508i −0.0746903 + 0.0281795i
\(421\) 13.7924 + 13.7924i 0.672203 + 0.672203i 0.958223 0.286021i \(-0.0923326\pi\)
−0.286021 + 0.958223i \(0.592333\pi\)
\(422\) 54.1978 31.2911i 2.63831 1.52323i
\(423\) 0.393860 0.227395i 0.0191501 0.0110563i
\(424\) −28.7510 28.7510i −1.39627 1.39627i
\(425\) −7.56460 + 11.3604i −0.366937 + 0.551061i
\(426\) 16.2908 + 9.40550i 0.789292 + 0.455698i
\(427\) 0.156333 0.270777i 0.00756548 0.0131038i
\(428\) 26.2883 + 26.2883i 1.27069 + 1.27069i
\(429\) 0 0
\(430\) −3.74299 + 22.7840i −0.180503 + 1.09874i
\(431\) −21.4619 + 5.75070i −1.03378 + 0.277002i −0.735535 0.677487i \(-0.763069\pi\)
−0.298249 + 0.954488i \(0.596403\pi\)
\(432\) −60.4224 + 16.1901i −2.90707 + 0.778948i
\(433\) 0.0475058 0.177294i 0.00228298 0.00852021i −0.964775 0.263077i \(-0.915263\pi\)
0.967058 + 0.254556i \(0.0819295\pi\)
\(434\) 0.185871 0.185871i 0.00892207 0.00892207i
\(435\) 4.76545 + 12.6309i 0.228486 + 0.605606i
\(436\) −22.9467 6.14854i −1.09895 0.294462i
\(437\) −22.3607 −1.06966
\(438\) −30.0825 8.06057i −1.43740 0.385149i
\(439\) −8.64682 + 14.9767i −0.412690 + 0.714800i −0.995183 0.0980356i \(-0.968744\pi\)
0.582493 + 0.812836i \(0.302077\pi\)
\(440\) −21.0211 + 25.6560i −1.00214 + 1.22310i
\(441\) 9.20846i 0.438498i
\(442\) 0 0
\(443\) 24.4472 24.4472i 1.16152 1.16152i 0.177377 0.984143i \(-0.443239\pi\)
0.984143 0.177377i \(-0.0567611\pi\)
\(444\) 2.48592 + 9.27758i 0.117977 + 0.440295i
\(445\) 0.806549 0.984383i 0.0382341 0.0466643i
\(446\) 22.3197 12.8863i 1.05687 0.610183i
\(447\) 18.0554i 0.853989i
\(448\) 0.767456 + 1.32927i 0.0362589 + 0.0628022i
\(449\) −9.62407 + 35.9175i −0.454188 + 1.69505i 0.236277 + 0.971686i \(0.424073\pi\)
−0.690465 + 0.723366i \(0.742594\pi\)
\(450\) 5.58600 16.5425i 0.263326 0.779820i
\(451\) −5.02649 8.70613i −0.236688 0.409956i
\(452\) −7.94727 29.6596i −0.373808 1.39507i
\(453\) 13.4954 + 7.79158i 0.634070 + 0.366080i
\(454\) −24.3136 −1.14109
\(455\) 0 0
\(456\) −72.2643 −3.38409
\(457\) 8.16394 + 4.71345i 0.381893 + 0.220486i 0.678642 0.734470i \(-0.262569\pi\)
−0.296749 + 0.954956i \(0.595902\pi\)
\(458\) −12.1497 45.3433i −0.567718 2.11875i
\(459\) −7.64337 13.2387i −0.356762 0.617930i
\(460\) 35.5947 + 5.84755i 1.65961 + 0.272643i
\(461\) 8.51149 31.7653i 0.396419 1.47946i −0.422930 0.906162i \(-0.638998\pi\)
0.819349 0.573295i \(-0.194335\pi\)
\(462\) −0.357701 0.619557i −0.0166418 0.0288244i
\(463\) 18.6729i 0.867805i 0.900960 + 0.433903i \(0.142864\pi\)
−0.900960 + 0.433903i \(0.857136\pi\)
\(464\) 45.0302 25.9982i 2.09047 1.20694i
\(465\) −0.253032 2.54823i −0.0117341 0.118171i
\(466\) −11.5063 42.9421i −0.533019 1.98925i
\(467\) −12.1678 + 12.1678i −0.563057 + 0.563057i −0.930175 0.367118i \(-0.880345\pi\)
0.367118 + 0.930175i \(0.380345\pi\)
\(468\) 0 0
\(469\) 0.0162150i 0.000748740i
\(470\) −2.03469 + 0.202039i −0.0938533 + 0.00931935i
\(471\) 4.71838 8.17247i 0.217411 0.376568i
\(472\) −9.93381 2.66176i −0.457241 0.122517i
\(473\) −7.22059 −0.332003
\(474\) −50.3541 13.4923i −2.31284 0.619723i
\(475\) 19.2876 28.9659i 0.884978 1.32905i
\(476\) −1.08886 + 1.08886i −0.0499080 + 0.0499080i
\(477\) −1.73242 + 6.46546i −0.0793219 + 0.296033i
\(478\) 65.9355 17.6674i 3.01582 0.808087i
\(479\) 31.8403 8.53158i 1.45482 0.389818i 0.557123 0.830430i \(-0.311905\pi\)
0.897697 + 0.440612i \(0.145239\pi\)
\(480\) 38.8826 + 6.38768i 1.77474 + 0.291557i
\(481\) 0 0
\(482\) 10.2497 + 10.2497i 0.466862 + 0.466862i
\(483\) −0.234068 + 0.405417i −0.0106504 + 0.0184471i
\(484\) 32.9041 + 18.9972i 1.49564 + 0.863508i
\(485\) −13.7855 + 30.4899i −0.625967 + 1.38448i
\(486\) 23.4357 + 23.4357i 1.06306 + 1.06306i
\(487\) −28.5670 + 16.4931i −1.29449 + 0.747376i −0.979447 0.201701i \(-0.935353\pi\)
−0.315045 + 0.949077i \(0.602020\pi\)
\(488\) −19.2944 + 11.1396i −0.873415 + 0.504267i
\(489\) −18.8165 18.8165i −0.850911 0.850911i
\(490\) −17.0562 + 37.7238i −0.770519 + 1.70419i
\(491\) −18.4427 10.6479i −0.832307 0.480533i 0.0223350 0.999751i \(-0.492890\pi\)
−0.854642 + 0.519218i \(0.826223\pi\)
\(492\) −17.6666 + 30.5994i −0.796470 + 1.37953i
\(493\) 8.98502 + 8.98502i 0.404665 + 0.404665i
\(494\) 0 0
\(495\) 5.38797 + 0.885142i 0.242171 + 0.0397842i
\(496\) −9.52693 + 2.55273i −0.427772 + 0.114621i
\(497\) −0.593999 + 0.159161i −0.0266445 + 0.00713937i
\(498\) 7.59477 28.3441i 0.340330 1.27013i
\(499\) 14.9199 14.9199i 0.667904 0.667904i −0.289326 0.957231i \(-0.593431\pi\)
0.957231 + 0.289326i \(0.0934312\pi\)
\(500\) −38.2778 + 41.0654i −1.71184 + 1.83650i
\(501\) −3.18332 0.852967i −0.142220 0.0381077i
\(502\) 34.6261 1.54544
\(503\) −42.1943 11.3059i −1.88135 0.504106i −0.999467 0.0326345i \(-0.989610\pi\)
−0.881881 0.471471i \(-0.843723\pi\)
\(504\) 0.592643 1.02649i 0.0263984 0.0457234i
\(505\) −18.4921 + 1.83621i −0.822887 + 0.0817102i
\(506\) 15.7736i 0.701224i
\(507\) 0 0
\(508\) 41.4280 41.4280i 1.83807 1.83807i
\(509\) 9.67023 + 36.0898i 0.428626 + 1.59965i 0.755876 + 0.654715i \(0.227211\pi\)
−0.327250 + 0.944938i \(0.606122\pi\)
\(510\) 2.07272 + 20.8740i 0.0917818 + 0.924316i
\(511\) 0.881719 0.509060i 0.0390049 0.0225195i
\(512\) 27.0748i 1.19655i
\(513\) 19.4885 + 33.7551i 0.860438 + 1.49032i
\(514\) −11.9664 + 44.6591i −0.527814 + 1.96983i
\(515\) 24.1192 + 3.96233i 1.06282 + 0.174601i
\(516\) 12.6891 + 21.9781i 0.558605 + 0.967533i
\(517\) −0.165495 0.617635i −0.00727846 0.0271636i
\(518\) −0.380238 0.219530i −0.0167067 0.00964562i
\(519\) 0.102326 0.00449161
\(520\) 0 0
\(521\) −35.6853 −1.56340 −0.781701 0.623653i \(-0.785648\pi\)
−0.781701 + 0.623653i \(0.785648\pi\)
\(522\) −14.0776 8.12768i −0.616158 0.355739i
\(523\) −1.11694 4.16849i −0.0488406 0.182275i 0.937196 0.348802i \(-0.113411\pi\)
−0.986037 + 0.166527i \(0.946745\pi\)
\(524\) 18.7386 + 32.4562i 0.818600 + 1.41786i
\(525\) −0.323276 0.652910i −0.0141089 0.0284953i
\(526\) −14.2979 + 53.3604i −0.623417 + 2.32662i
\(527\) −1.20515 2.08738i −0.0524971 0.0909276i
\(528\) 26.8432i 1.16820i
\(529\) −10.9797 + 6.33914i −0.477379 + 0.275615i
\(530\) 19.0726 23.2779i 0.828461 1.01113i
\(531\) 0.438183 + 1.63532i 0.0190155 + 0.0709670i
\(532\) 2.77630 2.77630i 0.120368 0.120368i
\(533\) 0 0
\(534\) 1.95589i 0.0846398i
\(535\) −10.4928 + 12.8063i −0.453643 + 0.553666i
\(536\) 0.577707 1.00062i 0.0249531 0.0432201i
\(537\) 26.5890 + 7.12450i 1.14740 + 0.307445i
\(538\) −27.9987 −1.20711
\(539\) −12.5057 3.35089i −0.538659 0.144333i
\(540\) −22.1954 58.8293i −0.955136 2.53161i
\(541\) 5.42748 5.42748i 0.233345 0.233345i −0.580742 0.814088i \(-0.697238\pi\)
0.814088 + 0.580742i \(0.197238\pi\)
\(542\) −5.42507 + 20.2467i −0.233027 + 0.869668i
\(543\) −28.2209 + 7.56177i −1.21108 + 0.324507i
\(544\) 35.8247 9.59920i 1.53597 0.411563i
\(545\) 1.71498 10.4393i 0.0734616 0.447170i
\(546\) 0 0
\(547\) 11.6940 + 11.6940i 0.500000 + 0.500000i 0.911438 0.411438i \(-0.134973\pi\)
−0.411438 + 0.911438i \(0.634973\pi\)
\(548\) 46.4066 80.3785i 1.98239 3.43360i
\(549\) 3.17628 + 1.83382i 0.135560 + 0.0782657i
\(550\) −20.4331 13.6059i −0.871270 0.580156i
\(551\) −22.9093 22.9093i −0.975971 0.975971i
\(552\) 28.8883 16.6786i 1.22957 0.709890i
\(553\) 1.47588 0.852100i 0.0627608 0.0362350i
\(554\) 19.1378 + 19.1378i 0.813087 + 0.813087i
\(555\) −4.00194 + 1.50987i −0.169873 + 0.0640904i
\(556\) −47.4434 27.3915i −2.01205 1.16166i
\(557\) −2.43751 + 4.22190i −0.103281 + 0.178888i −0.913034 0.407882i \(-0.866267\pi\)
0.809754 + 0.586770i \(0.199601\pi\)
\(558\) 2.18031 + 2.18031i 0.0922998 + 0.0922998i
\(559\) 0 0
\(560\) −2.27963 + 1.63632i −0.0963321 + 0.0691470i
\(561\) −6.33635 + 1.69782i −0.267521 + 0.0716820i
\(562\) −45.1595 + 12.1004i −1.90494 + 0.510426i
\(563\) −10.0853 + 37.6390i −0.425047 + 1.58630i 0.338774 + 0.940868i \(0.389988\pi\)
−0.763821 + 0.645428i \(0.776679\pi\)
\(564\) −1.58913 + 1.58913i −0.0669146 + 0.0669146i
\(565\) 12.7938 4.82692i 0.538241 0.203070i
\(566\) −21.1577 5.66919i −0.889325 0.238294i
\(567\) 0.371828 0.0156153
\(568\) 42.3258 + 11.3412i 1.77595 + 0.475865i
\(569\) 1.84104 3.18877i 0.0771804 0.133680i −0.824852 0.565349i \(-0.808742\pi\)
0.902032 + 0.431668i \(0.142075\pi\)
\(570\) −5.28488 53.2230i −0.221359 2.22926i
\(571\) 2.96698i 0.124164i 0.998071 + 0.0620821i \(0.0197741\pi\)
−0.998071 + 0.0620821i \(0.980226\pi\)
\(572\) 0 0
\(573\) 17.9811 17.9811i 0.751170 0.751170i
\(574\) −0.418034 1.56012i −0.0174484 0.0651184i
\(575\) −1.02504 + 16.0310i −0.0427472 + 0.668538i
\(576\) −15.5927 + 9.00245i −0.649696 + 0.375102i
\(577\) 35.0533i 1.45929i 0.683827 + 0.729644i \(0.260314\pi\)
−0.683827 + 0.729644i \(0.739686\pi\)
\(578\) −12.6509 21.9120i −0.526207 0.911417i
\(579\) 5.60990 20.9364i 0.233139 0.870088i
\(580\) 30.4771 + 42.4591i 1.26549 + 1.76302i
\(581\) 0.479643 + 0.830767i 0.0198990 + 0.0344660i
\(582\) 13.3104 + 49.6753i 0.551736 + 2.05911i
\(583\) 8.15012 + 4.70547i 0.337543 + 0.194881i
\(584\) −72.5469 −3.00201
\(585\) 0 0
\(586\) 16.9010 0.698173
\(587\) 6.10926 + 3.52719i 0.252156 + 0.145583i 0.620751 0.784008i \(-0.286828\pi\)
−0.368595 + 0.929590i \(0.620161\pi\)
\(588\) 11.7774 + 43.9537i 0.485690 + 1.81262i
\(589\) 3.07280 + 5.32224i 0.126612 + 0.219299i
\(590\) 1.23391 7.51095i 0.0507992 0.309221i
\(591\) 5.09774 19.0250i 0.209693 0.782585i
\(592\) 8.23718 + 14.2672i 0.338546 + 0.586379i
\(593\) 40.0169i 1.64330i 0.569993 + 0.821649i \(0.306946\pi\)
−0.569993 + 0.821649i \(0.693054\pi\)
\(594\) 23.8114 13.7475i 0.976995 0.564068i
\(595\) −0.530439 0.434612i −0.0217459 0.0178174i
\(596\) −18.0917 67.5192i −0.741066 2.76570i
\(597\) 12.7909 12.7909i 0.523495 0.523495i
\(598\) 0 0
\(599\) 13.9207i 0.568784i 0.958708 + 0.284392i \(0.0917918\pi\)
−0.958708 + 0.284392i \(0.908208\pi\)
\(600\) −3.31268 + 51.8082i −0.135240 + 2.11506i
\(601\) 1.15689 2.00379i 0.0471906 0.0817365i −0.841465 0.540311i \(-0.818307\pi\)
0.888656 + 0.458575i \(0.151640\pi\)
\(602\) −1.12057 0.300255i −0.0456708 0.0122375i
\(603\) −0.190206 −0.00774580
\(604\) 58.2743 + 15.6145i 2.37115 + 0.635347i
\(605\) −6.97065 + 15.4173i −0.283397 + 0.626801i
\(606\) −20.1954 + 20.1954i −0.820381 + 0.820381i
\(607\) 6.10830 22.7965i 0.247928 0.925282i −0.723960 0.689842i \(-0.757680\pi\)
0.971889 0.235440i \(-0.0756531\pi\)
\(608\) −91.3432 + 24.4753i −3.70446 + 0.992606i
\(609\) −0.655175 + 0.175554i −0.0265490 + 0.00711379i
\(610\) −9.61542 13.3957i −0.389317 0.542377i
\(611\) 0 0
\(612\) −12.7726 12.7726i −0.516303 0.516303i
\(613\) −5.32964 + 9.23121i −0.215262 + 0.372845i −0.953354 0.301856i \(-0.902394\pi\)
0.738091 + 0.674701i \(0.235727\pi\)
\(614\) 60.9165 + 35.1702i 2.45839 + 1.41935i
\(615\) −14.3374 6.48240i −0.578139 0.261396i
\(616\) −1.17838 1.17838i −0.0474783 0.0474783i
\(617\) 11.8892 6.86421i 0.478639 0.276343i −0.241210 0.970473i \(-0.577544\pi\)
0.719849 + 0.694130i \(0.244211\pi\)
\(618\) 32.5332 18.7830i 1.30868 0.755565i
\(619\) −16.8604 16.8604i −0.677679 0.677679i 0.281796 0.959474i \(-0.409070\pi\)
−0.959474 + 0.281796i \(0.909070\pi\)
\(620\) −3.49959 9.27574i −0.140547 0.372523i
\(621\) −15.5814 8.99592i −0.625260 0.360994i
\(622\) −4.69560 + 8.13301i −0.188276 + 0.326104i
\(623\) 0.0452127 + 0.0452127i 0.00181141 + 0.00181141i
\(624\) 0 0
\(625\) −19.8823 15.1557i −0.795292 0.606227i
\(626\) −22.4811 + 6.02379i −0.898526 + 0.240759i
\(627\) 16.1560 4.32898i 0.645207 0.172883i
\(628\) 9.45576 35.2894i 0.377326 1.40820i
\(629\) −2.84678 + 2.84678i −0.113509 + 0.113509i
\(630\) 0.799353 + 0.361414i 0.0318470 + 0.0143991i
\(631\) −29.5533 7.91879i −1.17650 0.315242i −0.382962 0.923764i \(-0.625096\pi\)
−0.793537 + 0.608522i \(0.791763\pi\)
\(632\) −121.434 −4.83038
\(633\) 29.5882 + 7.92814i 1.17603 + 0.315115i
\(634\) −11.2987 + 19.5700i −0.448729 + 0.777222i
\(635\) 20.1816 + 16.5357i 0.800884 + 0.656200i
\(636\) 33.0766i 1.31157i
\(637\) 0 0
\(638\) −16.1607 + 16.1607i −0.639807 + 0.639807i
\(639\) −1.86700 6.96776i −0.0738576 0.275640i
\(640\) 20.0868 1.99456i 0.794001 0.0788418i
\(641\) −13.2495 + 7.64957i −0.523322 + 0.302140i −0.738293 0.674480i \(-0.764368\pi\)
0.214971 + 0.976620i \(0.431034\pi\)
\(642\) 25.4452i 1.00424i
\(643\) 11.1740 + 19.3539i 0.440660 + 0.763245i 0.997739 0.0672147i \(-0.0214113\pi\)
−0.557079 + 0.830460i \(0.688078\pi\)
\(644\) −0.469078 + 1.75062i −0.0184843 + 0.0689842i
\(645\) −9.18116 + 6.59022i −0.361508 + 0.259490i
\(646\) −25.1710 43.5974i −0.990340 1.71532i
\(647\) 1.21024 + 4.51668i 0.0475795 + 0.177569i 0.985627 0.168939i \(-0.0540340\pi\)
−0.938047 + 0.346508i \(0.887367\pi\)
\(648\) −22.9452 13.2474i −0.901373 0.520408i
\(649\) 2.38033 0.0934361
\(650\) 0 0
\(651\) 0.128662 0.00504265
\(652\) −89.2199 51.5111i −3.49412 2.01733i
\(653\) 6.34274 + 23.6714i 0.248211 + 0.926335i 0.971742 + 0.236044i \(0.0758509\pi\)
−0.723532 + 0.690291i \(0.757482\pi\)
\(654\) −8.12969 14.0810i −0.317896 0.550612i
\(655\) −13.5583 + 9.73212i −0.529766 + 0.380265i
\(656\) −15.6854 + 58.5387i −0.612412 + 2.28555i
\(657\) 5.97141 + 10.3428i 0.232967 + 0.403510i
\(658\) 0.102733i 0.00400494i
\(659\) 35.2803 20.3691i 1.37433 0.793467i 0.382856 0.923808i \(-0.374941\pi\)
0.991469 + 0.130341i \(0.0416072\pi\)
\(660\) −26.8498 + 2.66611i −1.04513 + 0.103778i
\(661\) −4.42523 16.5152i −0.172122 0.642367i −0.997024 0.0770916i \(-0.975437\pi\)
0.824902 0.565275i \(-0.191230\pi\)
\(662\) −33.7389 + 33.7389i −1.31130 + 1.31130i
\(663\) 0 0
\(664\) 68.3547i 2.65268i
\(665\) 1.35247 + 1.10814i 0.0524467 + 0.0429719i
\(666\) 2.57515 4.46029i 0.0997850 0.172833i
\(667\) 14.4457 + 3.87071i 0.559340 + 0.149875i
\(668\) −12.7589 −0.493657
\(669\) 12.1850 + 3.26496i 0.471099 + 0.126231i
\(670\) 0.779208 + 0.352306i 0.0301034 + 0.0136107i
\(671\) 3.64628 3.64628i 0.140763 0.140763i
\(672\) −0.512407 + 1.91233i −0.0197665 + 0.0737696i
\(673\) −23.0041 + 6.16392i −0.886742 + 0.237602i −0.673314 0.739357i \(-0.735130\pi\)
−0.213428 + 0.976959i \(0.568463\pi\)
\(674\) −72.7057 + 19.4814i −2.80052 + 0.750396i
\(675\) 25.0933 12.4245i 0.965842 0.478218i
\(676\) 0 0
\(677\) 26.1344 + 26.1344i 1.00443 + 1.00443i 0.999990 + 0.00443504i \(0.00141172\pi\)
0.00443504 + 0.999990i \(0.498588\pi\)
\(678\) 10.5080 18.2004i 0.403557 0.698981i
\(679\) −1.45598 0.840613i −0.0558756 0.0322598i
\(680\) 17.2487 + 45.7180i 0.661457 + 1.75321i
\(681\) −8.41509 8.41509i −0.322467 0.322467i
\(682\) 3.75440 2.16761i 0.143764 0.0830019i
\(683\) 23.1988 13.3938i 0.887676 0.512500i 0.0144941 0.999895i \(-0.495386\pi\)
0.873181 + 0.487395i \(0.162053\pi\)
\(684\) 32.5667 + 32.5667i 1.24522 + 1.24522i
\(685\) 37.6615 + 17.0280i 1.43897 + 0.650606i
\(686\) −3.60610 2.08198i −0.137682 0.0794905i
\(687\) 11.4885 19.8987i 0.438314 0.759182i
\(688\) 30.7796 + 30.7796i 1.17346 + 1.17346i
\(689\) 0 0
\(690\) 14.3966 + 20.0566i 0.548068 + 0.763541i
\(691\) 38.9899 10.4473i 1.48325 0.397435i 0.575796 0.817593i \(-0.304692\pi\)
0.907451 + 0.420158i \(0.138025\pi\)
\(692\) 0.382655 0.102532i 0.0145464 0.00389769i
\(693\) −0.0710042 + 0.264991i −0.00269723 + 0.0100662i
\(694\) −13.4464 + 13.4464i −0.510419 + 0.510419i
\(695\) 10.0508 22.2297i 0.381247 0.843219i
\(696\) 46.6850 + 12.5092i 1.76959 + 0.474160i
\(697\) −14.8102 −0.560976
\(698\) −9.35058 2.50548i −0.353925 0.0948339i
\(699\) 10.8801 18.8449i 0.411524 0.712780i
\(700\) −1.86314 2.11768i −0.0704200 0.0800406i
\(701\) 24.9781i 0.943410i 0.881756 + 0.471705i \(0.156361\pi\)
−0.881756 + 0.471705i \(0.843639\pi\)
\(702\) 0 0
\(703\) 7.25852 7.25852i 0.273760 0.273760i
\(704\) 6.55185 + 24.4519i 0.246932 + 0.921564i
\(705\) −0.774146 0.634292i −0.0291560 0.0238888i
\(706\) 4.04624 2.33610i 0.152282 0.0879202i
\(707\) 0.933677i 0.0351145i
\(708\) −4.18306 7.24528i −0.157209 0.272294i
\(709\) 2.64139 9.85779i 0.0991993 0.370217i −0.898423 0.439130i \(-0.855287\pi\)
0.997623 + 0.0689135i \(0.0219533\pi\)
\(710\) −5.25742 + 32.0025i −0.197307 + 1.20103i
\(711\) 9.99535 + 17.3124i 0.374855 + 0.649268i
\(712\) −1.17921 4.40087i −0.0441927 0.164930i
\(713\) −2.45675 1.41841i −0.0920061 0.0531198i
\(714\) −1.05394 −0.0394428
\(715\) 0 0
\(716\) 106.570 3.98272
\(717\) 28.9355 + 16.7059i 1.08061 + 0.623893i
\(718\) −8.32175 31.0572i −0.310565 1.15904i
\(719\) −14.2117 24.6153i −0.530005 0.917996i −0.999387 0.0350008i \(-0.988857\pi\)
0.469382 0.882995i \(-0.344477\pi\)
\(720\) −19.1944 26.7407i −0.715333 0.996566i
\(721\) −0.317850 + 1.18623i −0.0118373 + 0.0441776i
\(722\) 39.0065 + 67.5612i 1.45167 + 2.51437i
\(723\) 7.09498i 0.263865i
\(724\) −97.9570 + 56.5555i −3.64054 + 2.10187i
\(725\) −17.4745 + 15.3741i −0.648987 + 0.570981i
\(726\) 6.73044 + 25.1183i 0.249790 + 0.932229i
\(727\) −8.56116 + 8.56116i −0.317516 + 0.317516i −0.847812 0.530296i \(-0.822081\pi\)
0.530296 + 0.847812i \(0.322081\pi\)
\(728\) 0 0
\(729\) 26.1513i 0.968566i
\(730\) −5.30555 53.4311i −0.196367 1.97757i
\(731\) −5.31873 + 9.21232i −0.196720 + 0.340730i
\(732\) −17.5064 4.69082i −0.647054 0.173378i
\(733\) 17.2200 0.636036 0.318018 0.948085i \(-0.396983\pi\)
0.318018 + 0.948085i \(0.396983\pi\)
\(734\) 35.8610 + 9.60893i 1.32365 + 0.354672i
\(735\) −18.9597 + 7.15319i −0.699338 + 0.263849i
\(736\) 30.8663 30.8663i 1.13775 1.13775i
\(737\) −0.0692148 + 0.258313i −0.00254956 + 0.00951508i
\(738\) 18.3007 4.90365i 0.673656 0.180506i
\(739\) 15.7497 4.22013i 0.579364 0.155240i 0.0427762 0.999085i \(-0.486380\pi\)
0.536588 + 0.843845i \(0.319713\pi\)
\(740\) −13.4526 + 9.65626i −0.494528 + 0.354971i
\(741\) 0 0
\(742\) 1.06915 + 1.06915i 0.0392498 + 0.0392498i
\(743\) −16.5599 + 28.6826i −0.607525 + 1.05226i 0.384122 + 0.923282i \(0.374504\pi\)
−0.991647 + 0.128982i \(0.958829\pi\)
\(744\) −7.93963 4.58395i −0.291081 0.168056i
\(745\) 29.1248 10.9883i 1.06705 0.402581i
\(746\) 54.1344 + 54.1344i 1.98200 + 1.98200i
\(747\) −9.74510 + 5.62634i −0.356555 + 0.205857i
\(748\) −21.9940 + 12.6982i −0.804179 + 0.464293i
\(749\) −0.588194 0.588194i −0.0214921 0.0214921i
\(750\) −38.3992 + 1.34907i −1.40214 + 0.0492609i
\(751\) 18.9961 + 10.9674i 0.693176 + 0.400205i 0.804801 0.593545i \(-0.202272\pi\)
−0.111625 + 0.993750i \(0.535605\pi\)
\(752\) −1.92736 + 3.33829i −0.0702836 + 0.121735i
\(753\) 11.9843 + 11.9843i 0.436732 + 0.436732i
\(754\) 0 0
\(755\) −4.35528 + 26.5111i −0.158505 + 0.964838i
\(756\) 3.05152 0.817652i 0.110983 0.0297377i
\(757\) −2.84678 + 0.762791i −0.103468 + 0.0277241i −0.310181 0.950677i \(-0.600390\pi\)
0.206714 + 0.978401i \(0.433723\pi\)
\(758\) 6.49926 24.2556i 0.236064 0.881002i
\(759\) −5.45935 + 5.45935i −0.198162 + 0.198162i
\(760\) −43.9794 116.568i −1.59530 4.22838i
\(761\) 21.2875 + 5.70396i 0.771670 + 0.206768i 0.623109 0.782135i \(-0.285869\pi\)
0.148561 + 0.988903i \(0.452536\pi\)
\(762\) 40.0993 1.45265
\(763\) 0.513426 + 0.137572i 0.0185873 + 0.00498044i
\(764\) 49.2241 85.2587i 1.78087 3.08455i
\(765\) 5.09811 6.22218i 0.184323 0.224963i
\(766\) 55.8361i 2.01744i
\(767\) 0 0
\(768\) −3.12197 + 3.12197i −0.112654 + 0.112654i
\(769\) 5.46718 + 20.4038i 0.197152 + 0.735780i 0.991699 + 0.128578i \(0.0410413\pi\)
−0.794548 + 0.607202i \(0.792292\pi\)
\(770\) 0.781703 0.954059i 0.0281706 0.0343819i
\(771\) −19.5984 + 11.3152i −0.705820 + 0.407506i
\(772\) 83.9143i 3.02014i
\(773\) 9.34781 + 16.1909i 0.336217 + 0.582346i 0.983718 0.179719i \(-0.0575189\pi\)
−0.647500 + 0.762065i \(0.724186\pi\)
\(774\) 3.52206 13.1445i 0.126598 0.472470i
\(775\) 3.95652 1.95899i 0.142122 0.0703691i
\(776\) 59.8985 + 103.747i 2.15023 + 3.72431i
\(777\) −0.0556218 0.207583i −0.00199542 0.00744702i
\(778\) 0.138788 + 0.0801293i 0.00497579 + 0.00287278i
\(779\) 37.7619 1.35296
\(780\) 0 0
\(781\) −10.1421 −0.362912
\(782\) 20.1246 + 11.6190i 0.719656 + 0.415493i
\(783\) −6.74705 25.1803i −0.241120 0.899872i
\(784\) 39.0246 + 67.5927i 1.39374 + 2.41402i
\(785\) 16.0544 + 2.63744i 0.573008 + 0.0941344i
\(786\) −6.63883 + 24.7764i −0.236799 + 0.883747i
\(787\) −21.6615 37.5189i −0.772150 1.33740i −0.936382 0.350981i \(-0.885848\pi\)
0.164232 0.986422i \(-0.447485\pi\)
\(788\) 76.2534i 2.71642i
\(789\) −23.4169 + 13.5198i −0.833665 + 0.481317i
\(790\) −8.88078 89.4366i −0.315964 3.18201i
\(791\) 0.177818 + 0.663626i 0.00632248 + 0.0235958i
\(792\) 13.8227 13.8227i 0.491168 0.491168i
\(793\) 0 0
\(794\) 21.7710i 0.772625i
\(795\) 14.6578 1.45547i 0.519857 0.0516202i
\(796\) 35.0157 60.6489i 1.24110 2.14964i
\(797\) −33.9650 9.10089i −1.20310 0.322370i −0.399050 0.916929i \(-0.630660\pi\)
−0.804052 + 0.594559i \(0.797327\pi\)
\(798\) 2.68726 0.0951280
\(799\) −0.909909 0.243809i −0.0321903 0.00862535i
\(800\) 13.3597 + 66.6084i 0.472338 + 2.35496i
\(801\) −0.530356 + 0.530356i −0.0187392 + 0.0187392i
\(802\) −6.17139 + 23.0319i −0.217919 + 0.813286i
\(803\) 16.2191 4.34591i 0.572361 0.153364i
\(804\) 0.907890 0.243268i 0.0320188 0.00857942i
\(805\) −0.796423 0.130837i −0.0280702 0.00461141i
\(806\) 0 0
\(807\) −9.69052 9.69052i −0.341122 0.341122i
\(808\) −33.2649 + 57.6165i −1.17026 + 2.02694i
\(809\) −17.8779 10.3218i −0.628554 0.362896i 0.151638 0.988436i \(-0.451545\pi\)
−0.780192 + 0.625540i \(0.784879\pi\)
\(810\) 8.07874 17.8681i 0.283858 0.627820i
\(811\) 22.0471 + 22.0471i 0.774178 + 0.774178i 0.978834 0.204656i \(-0.0656076\pi\)
−0.204656 + 0.978834i \(0.565608\pi\)
\(812\) −2.27416 + 1.31299i −0.0798075 + 0.0460769i
\(813\) −8.88514 + 5.12984i −0.311615 + 0.179911i
\(814\) −5.12029 5.12029i −0.179466 0.179466i
\(815\) 18.9010 41.8041i 0.662074 1.46433i
\(816\) 34.2477 + 19.7729i 1.19891 + 0.692190i
\(817\) 13.5613 23.4889i 0.474450 0.821772i
\(818\) −67.1180 67.1180i −2.34672 2.34672i
\(819\) 0 0
\(820\) −60.1111 9.87512i −2.09917 0.344854i
\(821\) −35.4477 + 9.49818i −1.23713 + 0.331489i −0.817353 0.576137i \(-0.804559\pi\)
−0.419780 + 0.907626i \(0.637893\pi\)
\(822\) 61.3594 16.4412i 2.14016 0.573453i
\(823\) 6.11025 22.8038i 0.212990 0.794889i −0.773875 0.633339i \(-0.781684\pi\)
0.986865 0.161550i \(-0.0516494\pi\)
\(824\) 61.8772 61.8772i 2.15559 2.15559i
\(825\) −2.36295 11.7811i −0.0822674 0.410165i
\(826\) 0.369404 + 0.0989816i 0.0128532 + 0.00344401i
\(827\) 4.44429 0.154543 0.0772716 0.997010i \(-0.475379\pi\)
0.0772716 + 0.997010i \(0.475379\pi\)
\(828\) −20.5352 5.50240i −0.713649 0.191222i
\(829\) −14.6685 + 25.4065i −0.509457 + 0.882406i 0.490483 + 0.871451i \(0.336820\pi\)
−0.999940 + 0.0109548i \(0.996513\pi\)
\(830\) 50.3435 4.99895i 1.74745 0.173516i
\(831\) 13.2474i 0.459548i
\(832\) 0 0
\(833\) −13.4870 + 13.4870i −0.467296 + 0.467296i
\(834\) −9.70441 36.2174i −0.336036 1.25410i
\(835\) −0.561431 5.65406i −0.0194291 0.195667i
\(836\) 56.0786 32.3770i 1.93952 1.11978i
\(837\) 4.94486i 0.170919i
\(838\) −17.3304 30.0171i −0.598668 1.03692i
\(839\) 2.19656 8.19766i 0.0758336 0.283015i −0.917587 0.397534i \(-0.869866\pi\)
0.993421 + 0.114519i \(0.0365327\pi\)
\(840\) −2.57384 0.422834i −0.0888061 0.0145892i
\(841\) −3.66554 6.34891i −0.126398 0.218928i
\(842\) 13.3770 + 49.9236i 0.461001 + 1.72048i
\(843\) −19.8180 11.4419i −0.682568 0.394081i
\(844\) 118.591 4.08208
\(845\) 0 0
\(846\) 1.20508 0.0414316
\(847\) −0.736220 0.425057i −0.0252968 0.0146051i
\(848\) −14.6837 54.8002i −0.504239 1.88185i
\(849\) −5.36067 9.28495i −0.183978 0.318659i
\(850\) −32.4101 + 16.0472i −1.11166 + 0.550415i
\(851\) −1.22638 + 4.57693i −0.0420399 + 0.156895i
\(852\) 17.8231 + 30.8705i 0.610610 + 1.05761i
\(853\) 34.3415i 1.17583i −0.808923 0.587915i \(-0.799949\pi\)
0.808923 0.587915i \(-0.200051\pi\)
\(854\) 0.717491 0.414244i 0.0245521 0.0141751i
\(855\) −12.9988 + 15.8649i −0.444549 + 0.542567i
\(856\) 15.3409 + 57.2531i 0.524342 + 1.95687i
\(857\) 24.6090 24.6090i 0.840626 0.840626i −0.148314 0.988940i \(-0.547385\pi\)
0.988940 + 0.148314i \(0.0473847\pi\)
\(858\) 0 0
\(859\) 12.8606i 0.438798i −0.975635 0.219399i \(-0.929590\pi\)
0.975635 0.219399i \(-0.0704097\pi\)
\(860\) −27.7301 + 33.8442i −0.945588 + 1.15408i
\(861\) 0.395284 0.684653i 0.0134713 0.0233329i
\(862\) −56.8688 15.2379i −1.93696 0.519007i
\(863\) 2.75373 0.0937379 0.0468690 0.998901i \(-0.485076\pi\)
0.0468690 + 0.998901i \(0.485076\pi\)
\(864\) −73.4965 19.6933i −2.50040 0.669980i
\(865\) 0.0622747 + 0.165060i 0.00211740 + 0.00561222i
\(866\) 0.343907 0.343907i 0.0116864 0.0116864i
\(867\) 3.20532 11.9624i 0.108858 0.406264i
\(868\) 0.481140 0.128921i 0.0163309 0.00437586i
\(869\) 27.1487 7.27447i 0.920957 0.246770i
\(870\) −5.79888 + 35.2985i −0.196601 + 1.19673i
\(871\) 0 0
\(872\) −26.7817 26.7817i −0.906944 0.906944i
\(873\) 9.86060 17.0791i 0.333731 0.578039i
\(874\) −51.3123 29.6252i −1.73566 1.00209i
\(875\) 0.856456 0.918826i 0.0289535 0.0310620i
\(876\) −41.7308 41.7308i −1.40995 1.40995i
\(877\) 40.9311 23.6316i 1.38214 0.797981i 0.389730 0.920929i \(-0.372568\pi\)
0.992413 + 0.122948i \(0.0392349\pi\)
\(878\) −39.6847 + 22.9119i −1.33929 + 0.773241i
\(879\) 5.84953 + 5.84953i 0.197300 + 0.197300i
\(880\) −43.3004 + 16.3365i −1.45965 + 0.550705i
\(881\) 35.7854 + 20.6607i 1.20564 + 0.696077i 0.961804 0.273739i \(-0.0882605\pi\)
0.243837 + 0.969816i \(0.421594\pi\)
\(882\) 12.2001 21.1311i 0.410798 0.711523i
\(883\) 13.4808 + 13.4808i 0.453666 + 0.453666i 0.896569 0.442903i \(-0.146051\pi\)
−0.442903 + 0.896569i \(0.646051\pi\)
\(884\) 0 0
\(885\) 3.02665 2.17252i 0.101740 0.0730285i
\(886\) 88.4897 23.7108i 2.97287 0.796578i
\(887\) −22.1438 + 5.93341i −0.743516 + 0.199225i −0.610640 0.791908i \(-0.709088\pi\)
−0.132876 + 0.991133i \(0.542421\pi\)
\(888\) −3.96337 + 14.7915i −0.133002 + 0.496371i
\(889\) −0.926941 + 0.926941i −0.0310886 + 0.0310886i
\(890\) 3.15502 1.19034i 0.105757 0.0399003i
\(891\) 5.92339 + 1.58717i 0.198441 + 0.0531721i
\(892\) 48.8381 1.63522
\(893\) 2.32002 + 0.621647i 0.0776364 + 0.0208026i
\(894\) 23.9211 41.4326i 0.800042 1.38571i
\(895\) 4.68942 + 47.2262i 0.156750 + 1.57860i
\(896\) 1.01420i 0.0338819i
\(897\) 0 0
\(898\) −69.6712 + 69.6712i −2.32496 + 2.32496i
\(899\) −1.06382 3.97024i −0.0354805 0.132415i
\(900\) 24.8409 21.8551i 0.828029 0.728502i
\(901\) 12.0069 6.93217i 0.400007 0.230944i
\(902\) 26.6379i 0.886946i
\(903\) −0.283915 0.491754i −0.00944808 0.0163646i
\(904\) 12.6705 47.2871i 0.421416 1.57275i
\(905\) −29.3728 40.9207i −0.976384 1.36025i
\(906\) 20.6458 + 35.7595i 0.685910 + 1.18803i
\(907\) −6.24222 23.2963i −0.207270 0.773541i −0.988746 0.149606i \(-0.952200\pi\)
0.781476 0.623935i \(-0.214467\pi\)
\(908\) −39.9008 23.0367i −1.32416 0.764501i
\(909\) 10.9523 0.363264
\(910\) 0 0
\(911\) 58.5135 1.93864 0.969320 0.245803i \(-0.0790515\pi\)
0.969320 + 0.245803i \(0.0790515\pi\)
\(912\) −87.3221 50.4154i −2.89152 1.66942i
\(913\) 4.09477 + 15.2819i 0.135517 + 0.505757i
\(914\) 12.4895 + 21.6324i 0.413116 + 0.715537i
\(915\) 1.30838 7.96429i 0.0432538 0.263291i
\(916\) 23.0233 85.9241i 0.760711 2.83901i
\(917\) −0.419271 0.726199i −0.0138456 0.0239812i
\(918\) 40.5061i 1.33690i
\(919\) 38.8451 22.4272i 1.28138 0.739806i 0.304281 0.952582i \(-0.401584\pi\)
0.977101 + 0.212776i \(0.0682506\pi\)
\(920\) 44.4852 + 36.4487i 1.46663 + 1.20168i
\(921\) 8.91097 + 33.2562i 0.293626 + 1.09583i
\(922\) 61.6169 61.6169i 2.02924 2.02924i
\(923\) 0 0
\(924\) 1.35567i 0.0445981i
\(925\) −4.87109 5.53657i −0.160160 0.182041i
\(926\) −24.7394 + 42.8498i −0.812986 + 1.40813i
\(927\) −13.9148 3.72846i −0.457022 0.122459i
\(928\) 63.2473 2.07619
\(929\) 27.1090 + 7.26384i 0.889418 + 0.238319i 0.674466 0.738306i \(-0.264374\pi\)
0.214952 + 0.976625i \(0.431040\pi\)
\(930\) 2.79545 6.18280i 0.0916664 0.202742i
\(931\) 34.3881 34.3881i 1.12702 1.12702i
\(932\) 21.8041 81.3738i 0.714215 2.66549i
\(933\) −4.44006 + 1.18971i −0.145361 + 0.0389493i
\(934\) −44.0428 + 11.8012i −1.44113 + 0.386148i
\(935\) −6.59497 9.18779i −0.215679 0.300473i
\(936\) 0 0
\(937\) 20.7545 + 20.7545i 0.678019 + 0.678019i 0.959552 0.281533i \(-0.0908428\pi\)
−0.281533 + 0.959552i \(0.590843\pi\)
\(938\) −0.0214829 + 0.0372095i −0.000701442 + 0.00121493i
\(939\) −9.86572 5.69597i −0.321955 0.185881i
\(940\) −3.53054 1.59627i −0.115153 0.0520647i
\(941\) 6.70533 + 6.70533i 0.218588 + 0.218588i 0.807903 0.589315i \(-0.200602\pi\)
−0.589315 + 0.807903i \(0.700602\pi\)
\(942\) 21.6550 12.5025i 0.705559 0.407355i
\(943\) −15.0956 + 8.71547i −0.491582 + 0.283815i
\(944\) −10.1467 10.1467i −0.330249 0.330249i
\(945\) 0.496615 + 1.31629i 0.0161549 + 0.0428189i
\(946\) −16.5695 9.56639i −0.538720 0.311030i
\(947\) 2.25542 3.90651i 0.0732915 0.126945i −0.827051 0.562128i \(-0.809983\pi\)
0.900342 + 0.435183i \(0.143316\pi\)
\(948\) −69.8518 69.8518i −2.26868 2.26868i
\(949\) 0 0
\(950\) 82.6367 40.9160i 2.68109 1.32749i
\(951\) −10.6838 + 2.86272i −0.346447 + 0.0928302i
\(952\) −2.37143 + 0.635422i −0.0768584 + 0.0205941i
\(953\) −1.48646 + 5.54756i −0.0481513 + 0.179703i −0.985813 0.167845i \(-0.946319\pi\)
0.937662 + 0.347548i \(0.112986\pi\)
\(954\) −12.5414 + 12.5414i −0.406043 + 0.406043i
\(955\) 39.9481 + 18.0618i 1.29269 + 0.584467i
\(956\) 124.946 + 33.4791i 4.04103 + 1.08279i
\(957\) −11.1866 −0.361612
\(958\) 84.3690 + 22.6066i 2.72584 + 0.730386i
\(959\) −1.03833 + 1.79845i −0.0335296 + 0.0580749i
\(960\) 30.6480 + 25.1113i 0.989160 + 0.810463i
\(961\) 30.2203i 0.974849i
\(962\) 0 0
\(963\) 6.89966 6.89966i 0.222338 0.222338i
\(964\) 7.10927 + 26.5322i 0.228974 + 0.854543i
\(965\) 37.1863 3.69249i 1.19707 0.118865i
\(966\) −1.07426 + 0.620222i −0.0345636 + 0.0199553i
\(967\) 17.6414i 0.567310i 0.958926 + 0.283655i \(0.0915470\pi\)
−0.958926 + 0.283655i \(0.908453\pi\)
\(968\) 30.2877 + 52.4599i 0.973485 + 1.68612i
\(969\) 6.37750 23.8012i 0.204875 0.764604i
\(970\) −72.0297 + 51.7028i −2.31273 + 1.66008i
\(971\) −16.6987 28.9229i −0.535886 0.928181i −0.999120 0.0419454i \(-0.986644\pi\)
0.463234 0.886236i \(-0.346689\pi\)
\(972\) 16.2551 + 60.6650i 0.521384 + 1.94583i
\(973\) 1.06153 + 0.612876i 0.0340312 + 0.0196479i
\(974\) −87.4056 −2.80065
\(975\) 0 0
\(976\) −31.0864 −0.995050
\(977\) −13.2886 7.67217i −0.425139 0.245454i 0.272134 0.962259i \(-0.412270\pi\)
−0.697274 + 0.716805i \(0.745604\pi\)
\(978\) −18.2497 68.1088i −0.583561 2.17788i
\(979\) 0.527266 + 0.913252i 0.0168515 + 0.0291877i
\(980\) −63.7334 + 45.7477i −2.03589 + 1.46136i
\(981\) −1.61375 + 6.02261i −0.0515232 + 0.192287i
\(982\) −28.2143 48.8686i −0.900354 1.55946i
\(983\) 4.80751i 0.153336i −0.997057 0.0766679i \(-0.975572\pi\)
0.997057 0.0766679i \(-0.0244281\pi\)
\(984\) −48.7854 + 28.1663i −1.55522 + 0.897908i
\(985\) 33.7914 3.35539i 1.07668 0.106911i
\(986\) 8.71437 + 32.5225i 0.277522 + 1.03573i
\(987\) 0.0355565 0.0355565i 0.00113177 0.00113177i
\(988\) 0 0
\(989\) 12.5198i 0.398108i
\(990\) 11.1914 + 9.16958i 0.355685 + 0.291428i
\(991\) −0.219558 + 0.380286i −0.00697450 + 0.0120802i −0.869492 0.493948i \(-0.835553\pi\)
0.862517 + 0.506028i \(0.168887\pi\)
\(992\) −11.5884 3.10509i −0.367931 0.0985867i
\(993\) −23.3545 −0.741131
\(994\) −1.57395 0.421739i −0.0499227 0.0133767i
\(995\) 28.4171 + 12.8483i 0.900884 + 0.407319i
\(996\) 39.3193 39.3193i 1.24588 1.24588i
\(997\) −1.70003 + 6.34461i −0.0538406 + 0.200936i −0.987607 0.156947i \(-0.949835\pi\)
0.933766 + 0.357883i \(0.116501\pi\)
\(998\) 54.0044 14.4704i 1.70948 0.458053i
\(999\) 7.97806 2.13771i 0.252415 0.0676343i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 845.2.t.g.657.5 20
5.3 odd 4 845.2.o.g.488.5 20
13.2 odd 12 845.2.o.g.587.5 20
13.3 even 3 845.2.t.e.427.1 20
13.4 even 6 845.2.f.e.437.10 20
13.5 odd 4 845.2.o.f.357.5 20
13.6 odd 12 845.2.k.d.577.1 20
13.7 odd 12 845.2.k.e.577.10 20
13.8 odd 4 845.2.o.e.357.1 20
13.9 even 3 845.2.f.d.437.1 20
13.10 even 6 845.2.t.f.427.5 20
13.11 odd 12 65.2.o.a.2.1 20
13.12 even 2 65.2.t.a.7.1 yes 20
39.11 even 12 585.2.cf.a.262.5 20
39.38 odd 2 585.2.dp.a.397.5 20
65.3 odd 12 845.2.o.f.258.5 20
65.8 even 4 845.2.t.f.188.5 20
65.12 odd 4 325.2.s.b.293.5 20
65.18 even 4 845.2.t.e.188.1 20
65.23 odd 12 845.2.o.e.258.1 20
65.24 odd 12 325.2.s.b.132.5 20
65.28 even 12 inner 845.2.t.g.418.5 20
65.33 even 12 845.2.f.e.408.1 20
65.37 even 12 325.2.x.b.93.5 20
65.38 odd 4 65.2.o.a.33.1 yes 20
65.43 odd 12 845.2.k.e.268.10 20
65.48 odd 12 845.2.k.d.268.1 20
65.58 even 12 845.2.f.d.408.10 20
65.63 even 12 65.2.t.a.28.1 yes 20
65.64 even 2 325.2.x.b.7.5 20
195.38 even 4 585.2.cf.a.163.5 20
195.128 odd 12 585.2.dp.a.28.5 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.2.o.a.2.1 20 13.11 odd 12
65.2.o.a.33.1 yes 20 65.38 odd 4
65.2.t.a.7.1 yes 20 13.12 even 2
65.2.t.a.28.1 yes 20 65.63 even 12
325.2.s.b.132.5 20 65.24 odd 12
325.2.s.b.293.5 20 65.12 odd 4
325.2.x.b.7.5 20 65.64 even 2
325.2.x.b.93.5 20 65.37 even 12
585.2.cf.a.163.5 20 195.38 even 4
585.2.cf.a.262.5 20 39.11 even 12
585.2.dp.a.28.5 20 195.128 odd 12
585.2.dp.a.397.5 20 39.38 odd 2
845.2.f.d.408.10 20 65.58 even 12
845.2.f.d.437.1 20 13.9 even 3
845.2.f.e.408.1 20 65.33 even 12
845.2.f.e.437.10 20 13.4 even 6
845.2.k.d.268.1 20 65.48 odd 12
845.2.k.d.577.1 20 13.6 odd 12
845.2.k.e.268.10 20 65.43 odd 12
845.2.k.e.577.10 20 13.7 odd 12
845.2.o.e.258.1 20 65.23 odd 12
845.2.o.e.357.1 20 13.8 odd 4
845.2.o.f.258.5 20 65.3 odd 12
845.2.o.f.357.5 20 13.5 odd 4
845.2.o.g.488.5 20 5.3 odd 4
845.2.o.g.587.5 20 13.2 odd 12
845.2.t.e.188.1 20 65.18 even 4
845.2.t.e.427.1 20 13.3 even 3
845.2.t.f.188.5 20 65.8 even 4
845.2.t.f.427.5 20 13.10 even 6
845.2.t.g.418.5 20 65.28 even 12 inner
845.2.t.g.657.5 20 1.1 even 1 trivial