Properties

Label 585.2.dp.a.397.5
Level $585$
Weight $2$
Character 585.397
Analytic conductor $4.671$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [585,2,Mod(28,585)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(585, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([0, 9, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("585.28"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 585 = 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 585.dp (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,6,0,6,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.67124851824\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(5\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 26 x^{18} + 279 x^{16} + 1604 x^{14} + 5353 x^{12} + 10466 x^{10} + 11441 x^{8} + 6176 x^{6} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 397.5
Root \(2.64975i\) of defining polynomial
Character \(\chi\) \(=\) 585.397
Dual form 585.2.dp.a.28.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.29475 + 1.32488i) q^{2} +(2.51060 + 4.34849i) q^{4} +(-1.81654 + 1.30391i) q^{5} +(0.0561740 + 0.0972962i) q^{7} +8.00544i q^{8} +(-5.89604 + 0.585458i) q^{10} +(-0.479564 - 1.78976i) q^{11} +(2.96279 + 2.05471i) q^{13} +0.297695i q^{14} +(-5.58502 + 9.67354i) q^{16} +(2.63669 + 0.706500i) q^{17} +(-6.72284 - 1.80138i) q^{19} +(-10.2306 - 4.62561i) q^{20} +(1.27073 - 4.74241i) q^{22} +(3.10327 - 0.831519i) q^{23} +(1.59964 - 4.73721i) q^{25} +(4.07664 + 8.64040i) q^{26} +(-0.282061 + 0.488544i) q^{28} +(4.03134 + 2.32749i) q^{29} +(-0.624367 - 0.624367i) q^{31} +(-11.7667 + 6.79350i) q^{32} +(5.11454 + 5.11454i) q^{34} +(-0.228908 - 0.103497i) q^{35} +(-0.737435 + 1.27728i) q^{37} +(-13.0407 - 13.0407i) q^{38} +(-10.4384 - 14.5422i) q^{40} +(5.24069 - 1.40424i) q^{41} +(1.00860 - 3.76415i) q^{43} +(6.57874 - 6.57874i) q^{44} +(8.22291 + 2.20332i) q^{46} +0.345095 q^{47} +(3.49369 - 6.05125i) q^{49} +(9.94700 - 8.75140i) q^{50} +(-1.49651 + 18.0422i) q^{52} +(3.59144 - 3.59144i) q^{53} +(3.20483 + 2.62586i) q^{55} +(-0.778898 + 0.449697i) q^{56} +(6.16729 + 10.6821i) q^{58} +(-0.332494 + 1.24088i) q^{59} +(1.39151 + 2.41016i) q^{61} +(-0.605559 - 2.25998i) q^{62} -13.6621 q^{64} +(-8.06120 + 0.130742i) q^{65} +(0.124992 + 0.0721643i) q^{67} +(3.54747 + 13.2394i) q^{68} +(-0.388167 - 0.540774i) q^{70} +(1.41668 - 5.28713i) q^{71} -9.06221i q^{73} +(-3.38447 + 1.95402i) q^{74} +(-9.04509 - 33.7567i) q^{76} +(0.147197 - 0.147197i) q^{77} +15.1689i q^{79} +(-2.46800 - 24.8547i) q^{80} +(13.8865 + 3.72089i) q^{82} -8.53853 q^{83} +(-5.71087 + 2.15462i) q^{85} +(7.30152 - 7.30152i) q^{86} +(14.3278 - 3.83912i) q^{88} +(-0.549735 + 0.147301i) q^{89} +(-0.0334840 + 0.403690i) q^{91} +(11.4069 + 11.4069i) q^{92} +(0.791908 + 0.457208i) q^{94} +(14.5612 - 5.49370i) q^{95} +(-12.9596 + 7.48223i) q^{97} +(16.0343 - 9.25742i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 6 q^{2} + 6 q^{4} - 2 q^{7} - 2 q^{10} + 16 q^{11} - 4 q^{13} - 2 q^{16} - 4 q^{17} - 20 q^{19} + 16 q^{22} + 10 q^{23} + 18 q^{25} + 24 q^{26} + 18 q^{28} - 48 q^{32} + 2 q^{34} - 40 q^{35} - 4 q^{37}+ \cdots + 30 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/585\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\) \(496\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{11}{12}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.29475 + 1.32488i 1.62264 + 0.936830i 0.986211 + 0.165491i \(0.0529210\pi\)
0.636425 + 0.771338i \(0.280412\pi\)
\(3\) 0 0
\(4\) 2.51060 + 4.34849i 1.25530 + 2.17424i
\(5\) −1.81654 + 1.30391i −0.812382 + 0.583126i
\(6\) 0 0
\(7\) 0.0561740 + 0.0972962i 0.0212318 + 0.0367745i 0.876446 0.481500i \(-0.159908\pi\)
−0.855214 + 0.518275i \(0.826575\pi\)
\(8\) 8.00544i 2.83035i
\(9\) 0 0
\(10\) −5.89604 + 0.585458i −1.86449 + 0.185138i
\(11\) −0.479564 1.78976i −0.144594 0.539632i −0.999773 0.0212994i \(-0.993220\pi\)
0.855179 0.518332i \(-0.173447\pi\)
\(12\) 0 0
\(13\) 2.96279 + 2.05471i 0.821731 + 0.569875i
\(14\) 0.297695i 0.0795622i
\(15\) 0 0
\(16\) −5.58502 + 9.67354i −1.39626 + 2.41838i
\(17\) 2.63669 + 0.706500i 0.639492 + 0.171351i 0.563973 0.825793i \(-0.309272\pi\)
0.0755186 + 0.997144i \(0.475939\pi\)
\(18\) 0 0
\(19\) −6.72284 1.80138i −1.54233 0.413265i −0.615309 0.788286i \(-0.710969\pi\)
−0.927016 + 0.375021i \(0.877636\pi\)
\(20\) −10.2306 4.62561i −2.28764 1.03432i
\(21\) 0 0
\(22\) 1.27073 4.74241i 0.270920 1.01109i
\(23\) 3.10327 0.831519i 0.647077 0.173384i 0.0796701 0.996821i \(-0.474613\pi\)
0.567407 + 0.823438i \(0.307947\pi\)
\(24\) 0 0
\(25\) 1.59964 4.73721i 0.319928 0.947442i
\(26\) 4.07664 + 8.64040i 0.799495 + 1.69452i
\(27\) 0 0
\(28\) −0.282061 + 0.488544i −0.0533045 + 0.0923261i
\(29\) 4.03134 + 2.32749i 0.748601 + 0.432205i 0.825188 0.564858i \(-0.191069\pi\)
−0.0765874 + 0.997063i \(0.524402\pi\)
\(30\) 0 0
\(31\) −0.624367 0.624367i −0.112140 0.112140i 0.648810 0.760950i \(-0.275267\pi\)
−0.760950 + 0.648810i \(0.775267\pi\)
\(32\) −11.7667 + 6.79350i −2.08008 + 1.20093i
\(33\) 0 0
\(34\) 5.11454 + 5.11454i 0.877136 + 0.877136i
\(35\) −0.228908 0.103497i −0.0386925 0.0174941i
\(36\) 0 0
\(37\) −0.737435 + 1.27728i −0.121234 + 0.209983i −0.920254 0.391321i \(-0.872018\pi\)
0.799021 + 0.601303i \(0.205352\pi\)
\(38\) −13.0407 13.0407i −2.11548 2.11548i
\(39\) 0 0
\(40\) −10.4384 14.5422i −1.65045 2.29932i
\(41\) 5.24069 1.40424i 0.818458 0.219305i 0.174786 0.984606i \(-0.444077\pi\)
0.643672 + 0.765301i \(0.277410\pi\)
\(42\) 0 0
\(43\) 1.00860 3.76415i 0.153810 0.574027i −0.845394 0.534143i \(-0.820634\pi\)
0.999204 0.0398840i \(-0.0126989\pi\)
\(44\) 6.57874 6.57874i 0.991782 0.991782i
\(45\) 0 0
\(46\) 8.22291 + 2.20332i 1.21240 + 0.324862i
\(47\) 0.345095 0.0503372 0.0251686 0.999683i \(-0.491988\pi\)
0.0251686 + 0.999683i \(0.491988\pi\)
\(48\) 0 0
\(49\) 3.49369 6.05125i 0.499098 0.864464i
\(50\) 9.94700 8.75140i 1.40672 1.23764i
\(51\) 0 0
\(52\) −1.49651 + 18.0422i −0.207528 + 2.50201i
\(53\) 3.59144 3.59144i 0.493322 0.493322i −0.416029 0.909351i \(-0.636579\pi\)
0.909351 + 0.416029i \(0.136579\pi\)
\(54\) 0 0
\(55\) 3.20483 + 2.62586i 0.432139 + 0.354071i
\(56\) −0.778898 + 0.449697i −0.104085 + 0.0600933i
\(57\) 0 0
\(58\) 6.16729 + 10.6821i 0.809805 + 1.40262i
\(59\) −0.332494 + 1.24088i −0.0432870 + 0.161549i −0.984186 0.177138i \(-0.943316\pi\)
0.940899 + 0.338687i \(0.109983\pi\)
\(60\) 0 0
\(61\) 1.39151 + 2.41016i 0.178164 + 0.308589i 0.941252 0.337706i \(-0.109651\pi\)
−0.763088 + 0.646295i \(0.776318\pi\)
\(62\) −0.605559 2.25998i −0.0769061 0.287017i
\(63\) 0 0
\(64\) −13.6621 −1.70776
\(65\) −8.06120 + 0.130742i −0.999869 + 0.0162165i
\(66\) 0 0
\(67\) 0.124992 + 0.0721643i 0.0152702 + 0.00881627i 0.507616 0.861584i \(-0.330527\pi\)
−0.492345 + 0.870400i \(0.663860\pi\)
\(68\) 3.54747 + 13.2394i 0.430194 + 1.60551i
\(69\) 0 0
\(70\) −0.388167 0.540774i −0.0463948 0.0646349i
\(71\) 1.41668 5.28713i 0.168129 0.627467i −0.829491 0.558520i \(-0.811369\pi\)
0.997620 0.0689472i \(-0.0219640\pi\)
\(72\) 0 0
\(73\) 9.06221i 1.06065i −0.847794 0.530326i \(-0.822070\pi\)
0.847794 0.530326i \(-0.177930\pi\)
\(74\) −3.38447 + 1.95402i −0.393436 + 0.227151i
\(75\) 0 0
\(76\) −9.04509 33.7567i −1.03754 3.87216i
\(77\) 0.147197 0.147197i 0.0167747 0.0167747i
\(78\) 0 0
\(79\) 15.1689i 1.70664i 0.521388 + 0.853320i \(0.325414\pi\)
−0.521388 + 0.853320i \(0.674586\pi\)
\(80\) −2.46800 24.8547i −0.275931 2.77884i
\(81\) 0 0
\(82\) 13.8865 + 3.72089i 1.53351 + 0.410903i
\(83\) −8.53853 −0.937226 −0.468613 0.883404i \(-0.655246\pi\)
−0.468613 + 0.883404i \(0.655246\pi\)
\(84\) 0 0
\(85\) −5.71087 + 2.15462i −0.619431 + 0.233702i
\(86\) 7.30152 7.30152i 0.787343 0.787343i
\(87\) 0 0
\(88\) 14.3278 3.83912i 1.52735 0.409251i
\(89\) −0.549735 + 0.147301i −0.0582718 + 0.0156139i −0.287837 0.957679i \(-0.592936\pi\)
0.229565 + 0.973293i \(0.426270\pi\)
\(90\) 0 0
\(91\) −0.0334840 + 0.403690i −0.00351007 + 0.0423182i
\(92\) 11.4069 + 11.4069i 1.18925 + 1.18925i
\(93\) 0 0
\(94\) 0.791908 + 0.457208i 0.0816791 + 0.0471574i
\(95\) 14.5612 5.49370i 1.49394 0.563641i
\(96\) 0 0
\(97\) −12.9596 + 7.48223i −1.31585 + 0.759705i −0.983058 0.183296i \(-0.941323\pi\)
−0.332790 + 0.943001i \(0.607990\pi\)
\(98\) 16.0343 9.25742i 1.61971 0.935140i
\(99\) 0 0
\(100\) 24.6157 4.93722i 2.46157 0.493722i
\(101\) −7.19717 4.15529i −0.716146 0.413467i 0.0971867 0.995266i \(-0.469016\pi\)
−0.813332 + 0.581799i \(0.802349\pi\)
\(102\) 0 0
\(103\) −7.72940 7.72940i −0.761600 0.761600i 0.215011 0.976612i \(-0.431021\pi\)
−0.976612 + 0.215011i \(0.931021\pi\)
\(104\) −16.4489 + 23.7185i −1.61295 + 2.32579i
\(105\) 0 0
\(106\) 12.9997 3.48325i 1.26264 0.338324i
\(107\) −7.15177 + 1.91631i −0.691388 + 0.185257i −0.587370 0.809318i \(-0.699837\pi\)
−0.104018 + 0.994575i \(0.533170\pi\)
\(108\) 0 0
\(109\) 3.34544 3.34544i 0.320435 0.320435i −0.528499 0.848934i \(-0.677245\pi\)
0.848934 + 0.528499i \(0.177245\pi\)
\(110\) 3.87535 + 10.2717i 0.369500 + 0.979368i
\(111\) 0 0
\(112\) −1.25493 −0.118580
\(113\) 5.90688 + 1.58274i 0.555672 + 0.148892i 0.525717 0.850659i \(-0.323797\pi\)
0.0299550 + 0.999551i \(0.490464\pi\)
\(114\) 0 0
\(115\) −4.55300 + 5.55688i −0.424569 + 0.518181i
\(116\) 23.3736i 2.17019i
\(117\) 0 0
\(118\) −2.40701 + 2.40701i −0.221583 + 0.221583i
\(119\) 0.0793738 + 0.296227i 0.00727618 + 0.0271551i
\(120\) 0 0
\(121\) 6.55303 3.78340i 0.595730 0.343945i
\(122\) 7.37430i 0.667638i
\(123\) 0 0
\(124\) 1.14751 4.28258i 0.103050 0.384587i
\(125\) 3.27108 + 10.6911i 0.292574 + 0.956243i
\(126\) 0 0
\(127\) −3.01994 11.2706i −0.267976 1.00010i −0.960403 0.278613i \(-0.910125\pi\)
0.692427 0.721488i \(-0.256541\pi\)
\(128\) −7.81784 4.51363i −0.691006 0.398953i
\(129\) 0 0
\(130\) −18.6717 10.3801i −1.63762 0.910393i
\(131\) −7.46380 −0.652115 −0.326058 0.945350i \(-0.605720\pi\)
−0.326058 + 0.945350i \(0.605720\pi\)
\(132\) 0 0
\(133\) −0.202381 0.755298i −0.0175487 0.0654926i
\(134\) 0.191218 + 0.331199i 0.0165187 + 0.0286112i
\(135\) 0 0
\(136\) −5.65584 + 21.1079i −0.484984 + 1.80998i
\(137\) −9.24213 16.0078i −0.789608 1.36764i −0.926207 0.377015i \(-0.876950\pi\)
0.136599 0.990626i \(-0.456383\pi\)
\(138\) 0 0
\(139\) −9.44862 + 5.45516i −0.801421 + 0.462701i −0.843968 0.536394i \(-0.819786\pi\)
0.0425466 + 0.999094i \(0.486453\pi\)
\(140\) −0.124642 1.25524i −0.0105341 0.106087i
\(141\) 0 0
\(142\) 10.2557 10.2557i 0.860643 0.860643i
\(143\) 2.25659 6.28804i 0.188705 0.525833i
\(144\) 0 0
\(145\) −10.3579 + 1.02851i −0.860179 + 0.0854132i
\(146\) 12.0063 20.7955i 0.993650 1.72105i
\(147\) 0 0
\(148\) −7.40562 −0.608738
\(149\) −13.4468 3.60307i −1.10161 0.295175i −0.338189 0.941078i \(-0.609814\pi\)
−0.763419 + 0.645903i \(0.776481\pi\)
\(150\) 0 0
\(151\) −8.49593 + 8.49593i −0.691389 + 0.691389i −0.962537 0.271149i \(-0.912596\pi\)
0.271149 + 0.962537i \(0.412596\pi\)
\(152\) 14.4208 53.8193i 1.16968 4.36532i
\(153\) 0 0
\(154\) 0.532801 0.142763i 0.0429343 0.0115042i
\(155\) 1.94830 + 0.320070i 0.156492 + 0.0257086i
\(156\) 0 0
\(157\) −5.14491 5.14491i −0.410609 0.410609i 0.471342 0.881951i \(-0.343770\pi\)
−0.881951 + 0.471342i \(0.843770\pi\)
\(158\) −20.0970 + 34.8090i −1.59883 + 2.76926i
\(159\) 0 0
\(160\) 12.5166 27.6833i 0.989520 2.18856i
\(161\) 0.255227 + 0.255227i 0.0201147 + 0.0201147i
\(162\) 0 0
\(163\) 17.7686 10.2587i 1.39175 0.803526i 0.398239 0.917282i \(-0.369621\pi\)
0.993509 + 0.113756i \(0.0362881\pi\)
\(164\) 19.2636 + 19.2636i 1.50423 + 1.50423i
\(165\) 0 0
\(166\) −19.5938 11.3125i −1.52078 0.878021i
\(167\) −1.27050 + 2.20058i −0.0983146 + 0.170286i −0.910987 0.412435i \(-0.864678\pi\)
0.812673 + 0.582721i \(0.198012\pi\)
\(168\) 0 0
\(169\) 4.55630 + 12.1754i 0.350484 + 0.936569i
\(170\) −15.9597 2.62187i −1.22405 0.201088i
\(171\) 0 0
\(172\) 18.9005 5.06438i 1.44115 0.386155i
\(173\) −0.0204199 + 0.0762079i −0.00155249 + 0.00579398i −0.966698 0.255921i \(-0.917621\pi\)
0.965145 + 0.261715i \(0.0842880\pi\)
\(174\) 0 0
\(175\) 0.550771 0.110469i 0.0416343 0.00835067i
\(176\) 19.9916 + 5.35675i 1.50693 + 0.403780i
\(177\) 0 0
\(178\) −1.45666 0.390312i −0.109182 0.0292551i
\(179\) −10.6120 + 18.3806i −0.793181 + 1.37383i 0.130808 + 0.991408i \(0.458243\pi\)
−0.923988 + 0.382421i \(0.875090\pi\)
\(180\) 0 0
\(181\) 22.5267i 1.67440i 0.546899 + 0.837198i \(0.315808\pi\)
−0.546899 + 0.837198i \(0.684192\pi\)
\(182\) −0.611677 + 0.882008i −0.0453405 + 0.0653788i
\(183\) 0 0
\(184\) 6.65667 + 24.8430i 0.490737 + 1.83145i
\(185\) −0.325870 3.28177i −0.0239584 0.241281i
\(186\) 0 0
\(187\) 5.05785i 0.369866i
\(188\) 0.866395 + 1.50064i 0.0631883 + 0.109445i
\(189\) 0 0
\(190\) 40.6927 + 6.68506i 2.95216 + 0.484985i
\(191\) 9.80326 + 16.9797i 0.709339 + 1.22861i 0.965103 + 0.261872i \(0.0843398\pi\)
−0.255764 + 0.966739i \(0.582327\pi\)
\(192\) 0 0
\(193\) 14.4730 + 8.35601i 1.04179 + 0.601479i 0.920340 0.391119i \(-0.127912\pi\)
0.121451 + 0.992597i \(0.461245\pi\)
\(194\) −39.6521 −2.84686
\(195\) 0 0
\(196\) 35.0850 2.50607
\(197\) −13.1517 7.59315i −0.937021 0.540990i −0.0479960 0.998848i \(-0.515283\pi\)
−0.889025 + 0.457858i \(0.848617\pi\)
\(198\) 0 0
\(199\) −6.97357 12.0786i −0.494343 0.856228i 0.505636 0.862747i \(-0.331258\pi\)
−0.999979 + 0.00651960i \(0.997925\pi\)
\(200\) 37.9234 + 12.8058i 2.68159 + 0.905508i
\(201\) 0 0
\(202\) −11.0105 19.0707i −0.774696 1.34181i
\(203\) 0.522979i 0.0367059i
\(204\) 0 0
\(205\) −7.68893 + 9.38424i −0.537018 + 0.655424i
\(206\) −7.49657 27.9776i −0.522311 1.94929i
\(207\) 0 0
\(208\) −36.4236 + 17.1851i −2.52552 + 1.19157i
\(209\) 12.8961i 0.892044i
\(210\) 0 0
\(211\) 11.8091 20.4539i 0.812969 1.40810i −0.0978083 0.995205i \(-0.531183\pi\)
0.910777 0.412898i \(-0.135483\pi\)
\(212\) 24.6340 + 6.60065i 1.69187 + 0.453335i
\(213\) 0 0
\(214\) −18.9504 5.07776i −1.29543 0.347108i
\(215\) 3.07594 + 8.15285i 0.209777 + 0.556019i
\(216\) 0 0
\(217\) 0.0256753 0.0958217i 0.00174296 0.00650480i
\(218\) 12.1093 3.24467i 0.820143 0.219757i
\(219\) 0 0
\(220\) −3.37247 + 20.5286i −0.227372 + 1.38404i
\(221\) 6.36032 + 7.51086i 0.427841 + 0.505235i
\(222\) 0 0
\(223\) −4.86319 + 8.42330i −0.325664 + 0.564066i −0.981646 0.190710i \(-0.938921\pi\)
0.655983 + 0.754776i \(0.272254\pi\)
\(224\) −1.32196 0.763236i −0.0883274 0.0509958i
\(225\) 0 0
\(226\) 11.4579 + 11.4579i 0.762168 + 0.762168i
\(227\) −7.94647 + 4.58790i −0.527426 + 0.304510i −0.739968 0.672642i \(-0.765159\pi\)
0.212542 + 0.977152i \(0.431826\pi\)
\(228\) 0 0
\(229\) 12.5270 + 12.5270i 0.827811 + 0.827811i 0.987214 0.159403i \(-0.0509569\pi\)
−0.159403 + 0.987214i \(0.550957\pi\)
\(230\) −17.8102 + 6.71950i −1.17437 + 0.443071i
\(231\) 0 0
\(232\) −18.6326 + 32.2726i −1.22329 + 2.11880i
\(233\) 11.8637 + 11.8637i 0.777214 + 0.777214i 0.979356 0.202142i \(-0.0647903\pi\)
−0.202142 + 0.979356i \(0.564790\pi\)
\(234\) 0 0
\(235\) −0.626879 + 0.449972i −0.0408931 + 0.0293530i
\(236\) −6.23072 + 1.66952i −0.405585 + 0.108676i
\(237\) 0 0
\(238\) −0.210321 + 0.784929i −0.0136331 + 0.0508794i
\(239\) 18.2161 18.2161i 1.17830 1.17830i 0.198124 0.980177i \(-0.436515\pi\)
0.980177 0.198124i \(-0.0634848\pi\)
\(240\) 0 0
\(241\) −5.28403 1.41585i −0.340374 0.0912030i 0.0845830 0.996416i \(-0.473044\pi\)
−0.424957 + 0.905213i \(0.639711\pi\)
\(242\) 20.0501 1.28887
\(243\) 0 0
\(244\) −6.98703 + 12.1019i −0.447299 + 0.774744i
\(245\) 1.54385 + 15.5478i 0.0986329 + 0.993312i
\(246\) 0 0
\(247\) −16.2171 19.1506i −1.03187 1.21853i
\(248\) 4.99833 4.99833i 0.317394 0.317394i
\(249\) 0 0
\(250\) −6.65810 + 28.8673i −0.421095 + 1.82573i
\(251\) −11.3169 + 6.53384i −0.714319 + 0.412412i −0.812658 0.582741i \(-0.801980\pi\)
0.0983394 + 0.995153i \(0.468647\pi\)
\(252\) 0 0
\(253\) −2.97643 5.15533i −0.187127 0.324113i
\(254\) 8.00209 29.8642i 0.502096 1.87385i
\(255\) 0 0
\(256\) 1.70209 + 2.94811i 0.106381 + 0.184257i
\(257\) −4.51603 16.8541i −0.281702 1.05133i −0.951215 0.308528i \(-0.900164\pi\)
0.669513 0.742800i \(-0.266503\pi\)
\(258\) 0 0
\(259\) −0.165699 −0.0102960
\(260\) −20.8070 34.7258i −1.29039 2.15360i
\(261\) 0 0
\(262\) −17.1276 9.88862i −1.05815 0.610921i
\(263\) −5.39593 20.1379i −0.332727 1.24175i −0.906312 0.422608i \(-0.861115\pi\)
0.573585 0.819146i \(-0.305552\pi\)
\(264\) 0 0
\(265\) −1.84108 + 11.2069i −0.113097 + 0.688434i
\(266\) 0.536261 2.00135i 0.0328803 0.122711i
\(267\) 0 0
\(268\) 0.724703i 0.0442683i
\(269\) 9.15088 5.28326i 0.557939 0.322126i −0.194379 0.980927i \(-0.562269\pi\)
0.752318 + 0.658800i \(0.228936\pi\)
\(270\) 0 0
\(271\) −2.04739 7.64095i −0.124370 0.464155i 0.875446 0.483315i \(-0.160567\pi\)
−0.999816 + 0.0191601i \(0.993901\pi\)
\(272\) −21.5603 + 21.5603i −1.30729 + 1.30729i
\(273\) 0 0
\(274\) 48.9787i 2.95891i
\(275\) −9.24558 0.591174i −0.557529 0.0356491i
\(276\) 0 0
\(277\) 9.86609 + 2.64361i 0.592796 + 0.158839i 0.542731 0.839907i \(-0.317390\pi\)
0.0500653 + 0.998746i \(0.484057\pi\)
\(278\) −28.9097 −1.73389
\(279\) 0 0
\(280\) 0.828536 1.83251i 0.0495145 0.109513i
\(281\) −12.4763 + 12.4763i −0.744271 + 0.744271i −0.973397 0.229126i \(-0.926413\pi\)
0.229126 + 0.973397i \(0.426413\pi\)
\(282\) 0 0
\(283\) −7.98478 + 2.13952i −0.474646 + 0.127181i −0.488208 0.872727i \(-0.662349\pi\)
0.0135626 + 0.999908i \(0.495683\pi\)
\(284\) 26.5478 7.11345i 1.57532 0.422105i
\(285\) 0 0
\(286\) 13.5092 11.4398i 0.798816 0.676451i
\(287\) 0.431018 + 0.431018i 0.0254422 + 0.0254422i
\(288\) 0 0
\(289\) −8.26943 4.77436i −0.486437 0.280844i
\(290\) −25.1316 11.3628i −1.47578 0.667247i
\(291\) 0 0
\(292\) 39.4069 22.7516i 2.30611 1.33144i
\(293\) 5.52378 3.18916i 0.322703 0.186313i −0.329894 0.944018i \(-0.607013\pi\)
0.652597 + 0.757705i \(0.273680\pi\)
\(294\) 0 0
\(295\) −1.01401 2.68766i −0.0590380 0.156481i
\(296\) −10.2251 5.90349i −0.594325 0.343133i
\(297\) 0 0
\(298\) −26.0836 26.0836i −1.51098 1.51098i
\(299\) 10.9029 + 3.91272i 0.630531 + 0.226278i
\(300\) 0 0
\(301\) 0.422894 0.113314i 0.0243752 0.00653132i
\(302\) −30.7521 + 8.24001i −1.76959 + 0.474159i
\(303\) 0 0
\(304\) 54.9729 54.9729i 3.15291 3.15291i
\(305\) −5.67036 2.56376i −0.324684 0.146800i
\(306\) 0 0
\(307\) −26.5460 −1.51506 −0.757530 0.652801i \(-0.773594\pi\)
−0.757530 + 0.652801i \(0.773594\pi\)
\(308\) 1.00964 + 0.270532i 0.0575296 + 0.0154150i
\(309\) 0 0
\(310\) 4.04683 + 3.31575i 0.229844 + 0.188322i
\(311\) 3.54417i 0.200972i −0.994938 0.100486i \(-0.967960\pi\)
0.994938 0.100486i \(-0.0320397\pi\)
\(312\) 0 0
\(313\) −6.21088 + 6.21088i −0.351060 + 0.351060i −0.860504 0.509444i \(-0.829851\pi\)
0.509444 + 0.860504i \(0.329851\pi\)
\(314\) −4.98993 18.6227i −0.281598 1.05094i
\(315\) 0 0
\(316\) −65.9619 + 38.0831i −3.71065 + 2.14234i
\(317\) 8.52812i 0.478987i 0.970898 + 0.239494i \(0.0769814\pi\)
−0.970898 + 0.239494i \(0.923019\pi\)
\(318\) 0 0
\(319\) 2.23236 8.33129i 0.124988 0.466463i
\(320\) 24.8178 17.8142i 1.38736 0.995842i
\(321\) 0 0
\(322\) 0.247539 + 0.923827i 0.0137948 + 0.0514829i
\(323\) −16.4534 9.49937i −0.915491 0.528559i
\(324\) 0 0
\(325\) 14.4730 10.7486i 0.802819 0.596223i
\(326\) 54.3663 3.01107
\(327\) 0 0
\(328\) 11.2415 + 41.9540i 0.620710 + 2.31652i
\(329\) 0.0193853 + 0.0335764i 0.00106875 + 0.00185113i
\(330\) 0 0
\(331\) 4.66054 17.3934i 0.256166 0.956026i −0.711271 0.702917i \(-0.751880\pi\)
0.967438 0.253109i \(-0.0814530\pi\)
\(332\) −21.4368 37.1297i −1.17650 2.03776i
\(333\) 0 0
\(334\) −5.83099 + 3.36652i −0.319058 + 0.184208i
\(335\) −0.321149 + 0.0318891i −0.0175463 + 0.00174229i
\(336\) 0 0
\(337\) −20.0865 + 20.0865i −1.09418 + 1.09418i −0.0991030 + 0.995077i \(0.531597\pi\)
−0.995077 + 0.0991030i \(0.968403\pi\)
\(338\) −5.67532 + 33.9761i −0.308697 + 1.84805i
\(339\) 0 0
\(340\) −23.7071 19.4242i −1.28570 1.05343i
\(341\) −0.818040 + 1.41689i −0.0442994 + 0.0767288i
\(342\) 0 0
\(343\) 1.57145 0.0848505
\(344\) 30.1336 + 8.07428i 1.62470 + 0.435336i
\(345\) 0 0
\(346\) −0.147825 + 0.147825i −0.00794710 + 0.00794710i
\(347\) 1.85743 6.93201i 0.0997119 0.372130i −0.897980 0.440037i \(-0.854965\pi\)
0.997692 + 0.0679068i \(0.0216321\pi\)
\(348\) 0 0
\(349\) 3.52885 0.945552i 0.188895 0.0506143i −0.163131 0.986604i \(-0.552159\pi\)
0.352026 + 0.935990i \(0.385493\pi\)
\(350\) 1.41024 + 0.476204i 0.0753806 + 0.0254542i
\(351\) 0 0
\(352\) 17.8016 + 17.8016i 0.948827 + 0.948827i
\(353\) 0.881628 1.52702i 0.0469243 0.0812753i −0.841609 0.540087i \(-0.818391\pi\)
0.888534 + 0.458812i \(0.151725\pi\)
\(354\) 0 0
\(355\) 4.32048 + 11.4515i 0.229307 + 0.607784i
\(356\) −2.02070 2.02070i −0.107097 0.107097i
\(357\) 0 0
\(358\) −48.7040 + 28.1193i −2.57409 + 1.48615i
\(359\) −8.58021 8.58021i −0.452846 0.452846i 0.443452 0.896298i \(-0.353754\pi\)
−0.896298 + 0.443452i \(0.853754\pi\)
\(360\) 0 0
\(361\) 25.4972 + 14.7208i 1.34196 + 0.774778i
\(362\) −29.8451 + 51.6933i −1.56862 + 2.71694i
\(363\) 0 0
\(364\) −1.83951 + 0.867900i −0.0964163 + 0.0454903i
\(365\) 11.8163 + 16.4619i 0.618493 + 0.861654i
\(366\) 0 0
\(367\) 13.5337 3.62635i 0.706454 0.189294i 0.112334 0.993670i \(-0.464167\pi\)
0.594120 + 0.804377i \(0.297501\pi\)
\(368\) −9.28811 + 34.6637i −0.484176 + 1.80697i
\(369\) 0 0
\(370\) 3.60015 7.96260i 0.187163 0.413956i
\(371\) 0.551179 + 0.147688i 0.0286158 + 0.00766757i
\(372\) 0 0
\(373\) 27.9078 + 7.47789i 1.44501 + 0.387190i 0.894286 0.447495i \(-0.147684\pi\)
0.550727 + 0.834685i \(0.314350\pi\)
\(374\) 6.70103 11.6065i 0.346502 0.600159i
\(375\) 0 0
\(376\) 2.76263i 0.142472i
\(377\) 7.16169 + 15.1791i 0.368846 + 0.781765i
\(378\) 0 0
\(379\) 2.45278 + 9.15390i 0.125991 + 0.470204i 0.999873 0.0159336i \(-0.00507204\pi\)
−0.873882 + 0.486138i \(0.838405\pi\)
\(380\) 60.4465 + 49.5265i 3.10084 + 2.54066i
\(381\) 0 0
\(382\) 51.9525i 2.65812i
\(383\) −10.5361 18.2490i −0.538369 0.932483i −0.998992 0.0448868i \(-0.985707\pi\)
0.460623 0.887596i \(-0.347626\pi\)
\(384\) 0 0
\(385\) −0.0754581 + 0.459322i −0.00384570 + 0.0234092i
\(386\) 22.1414 + 38.3500i 1.12697 + 1.95196i
\(387\) 0 0
\(388\) −65.0727 37.5698i −3.30357 1.90732i
\(389\) −0.0604806 −0.00306649 −0.00153324 0.999999i \(-0.500488\pi\)
−0.00153324 + 0.999999i \(0.500488\pi\)
\(390\) 0 0
\(391\) 8.76984 0.443510
\(392\) 48.4429 + 27.9685i 2.44673 + 1.41262i
\(393\) 0 0
\(394\) −20.1200 34.8488i −1.01363 1.75566i
\(395\) −19.7789 27.5550i −0.995186 1.38644i
\(396\) 0 0
\(397\) −4.10812 7.11548i −0.206181 0.357116i 0.744327 0.667815i \(-0.232770\pi\)
−0.950508 + 0.310699i \(0.899437\pi\)
\(398\) 36.9565i 1.85246i
\(399\) 0 0
\(400\) 36.8915 + 41.9316i 1.84458 + 2.09658i
\(401\) 2.32904 + 8.69210i 0.116307 + 0.434063i 0.999381 0.0351698i \(-0.0111972\pi\)
−0.883075 + 0.469233i \(0.844531\pi\)
\(402\) 0 0
\(403\) −0.566974 3.13276i −0.0282430 0.156054i
\(404\) 41.7291i 2.07610i
\(405\) 0 0
\(406\) −0.692882 + 1.20011i −0.0343872 + 0.0595603i
\(407\) 2.63966 + 0.707294i 0.130843 + 0.0350593i
\(408\) 0 0
\(409\) 34.6013 + 9.27138i 1.71092 + 0.458440i 0.975650 0.219332i \(-0.0703877\pi\)
0.735272 + 0.677772i \(0.237054\pi\)
\(410\) −30.0772 + 11.3476i −1.48541 + 0.560420i
\(411\) 0 0
\(412\) 14.2058 53.0166i 0.699867 2.61194i
\(413\) −0.139411 + 0.0373550i −0.00685995 + 0.00183812i
\(414\) 0 0
\(415\) 15.5106 11.1335i 0.761385 0.546521i
\(416\) −48.8209 4.04944i −2.39364 0.198540i
\(417\) 0 0
\(418\) −17.0858 + 29.5934i −0.835693 + 1.44746i
\(419\) 11.3282 + 6.54037i 0.553421 + 0.319518i 0.750501 0.660870i \(-0.229812\pi\)
−0.197080 + 0.980387i \(0.563146\pi\)
\(420\) 0 0
\(421\) −13.7924 13.7924i −0.672203 0.672203i 0.286021 0.958223i \(-0.407667\pi\)
−0.958223 + 0.286021i \(0.907667\pi\)
\(422\) 54.1978 31.2911i 2.63831 1.52323i
\(423\) 0 0
\(424\) 28.7510 + 28.7510i 1.39627 + 1.39627i
\(425\) 7.56460 11.3604i 0.366937 0.551061i
\(426\) 0 0
\(427\) −0.156333 + 0.270777i −0.00756548 + 0.0131038i
\(428\) −26.2883 26.2883i −1.27069 1.27069i
\(429\) 0 0
\(430\) −3.74299 + 22.7840i −0.180503 + 1.09874i
\(431\) −21.4619 + 5.75070i −1.03378 + 0.277002i −0.735535 0.677487i \(-0.763069\pi\)
−0.298249 + 0.954488i \(0.596403\pi\)
\(432\) 0 0
\(433\) 0.0475058 0.177294i 0.00228298 0.00852021i −0.964775 0.263077i \(-0.915263\pi\)
0.967058 + 0.254556i \(0.0819295\pi\)
\(434\) 0.185871 0.185871i 0.00892207 0.00892207i
\(435\) 0 0
\(436\) 22.9467 + 6.14854i 1.09895 + 0.294462i
\(437\) −22.3607 −1.06966
\(438\) 0 0
\(439\) −8.64682 + 14.9767i −0.412690 + 0.714800i −0.995183 0.0980356i \(-0.968744\pi\)
0.582493 + 0.812836i \(0.302077\pi\)
\(440\) −21.0211 + 25.6560i −1.00214 + 1.22310i
\(441\) 0 0
\(442\) 4.64440 + 25.6622i 0.220912 + 1.22063i
\(443\) −24.4472 + 24.4472i −1.16152 + 1.16152i −0.177377 + 0.984143i \(0.556761\pi\)
−0.984143 + 0.177377i \(0.943239\pi\)
\(444\) 0 0
\(445\) 0.806549 0.984383i 0.0382341 0.0466643i
\(446\) −22.3197 + 12.8863i −1.05687 + 0.610183i
\(447\) 0 0
\(448\) −0.767456 1.32927i −0.0362589 0.0628022i
\(449\) −9.62407 + 35.9175i −0.454188 + 1.69505i 0.236277 + 0.971686i \(0.424073\pi\)
−0.690465 + 0.723366i \(0.742594\pi\)
\(450\) 0 0
\(451\) −5.02649 8.70613i −0.236688 0.409956i
\(452\) 7.94727 + 29.6596i 0.373808 + 1.39507i
\(453\) 0 0
\(454\) −24.3136 −1.14109
\(455\) −0.465550 0.776980i −0.0218253 0.0364254i
\(456\) 0 0
\(457\) −8.16394 4.71345i −0.381893 0.220486i 0.296749 0.954956i \(-0.404098\pi\)
−0.678642 + 0.734470i \(0.737431\pi\)
\(458\) 12.1497 + 45.3433i 0.567718 + 2.11875i
\(459\) 0 0
\(460\) −35.5947 5.84755i −1.65961 0.272643i
\(461\) 8.51149 31.7653i 0.396419 1.47946i −0.422930 0.906162i \(-0.638998\pi\)
0.819349 0.573295i \(-0.194335\pi\)
\(462\) 0 0
\(463\) 18.6729i 0.867805i −0.900960 0.433903i \(-0.857136\pi\)
0.900960 0.433903i \(-0.142864\pi\)
\(464\) −45.0302 + 25.9982i −2.09047 + 1.20694i
\(465\) 0 0
\(466\) 11.5063 + 42.9421i 0.533019 + 1.98925i
\(467\) 12.1678 12.1678i 0.563057 0.563057i −0.367118 0.930175i \(-0.619655\pi\)
0.930175 + 0.367118i \(0.119655\pi\)
\(468\) 0 0
\(469\) 0.0162150i 0.000748740i
\(470\) −2.03469 + 0.202039i −0.0938533 + 0.00931935i
\(471\) 0 0
\(472\) −9.93381 2.66176i −0.457241 0.122517i
\(473\) −7.22059 −0.332003
\(474\) 0 0
\(475\) −19.2876 + 28.9659i −0.884978 + 1.32905i
\(476\) −1.08886 + 1.08886i −0.0499080 + 0.0499080i
\(477\) 0 0
\(478\) 65.9355 17.6674i 3.01582 0.808087i
\(479\) 31.8403 8.53158i 1.45482 0.389818i 0.557123 0.830430i \(-0.311905\pi\)
0.897697 + 0.440612i \(0.145239\pi\)
\(480\) 0 0
\(481\) −4.80931 + 2.26908i −0.219285 + 0.103461i
\(482\) −10.2497 10.2497i −0.466862 0.466862i
\(483\) 0 0
\(484\) 32.9041 + 18.9972i 1.49564 + 0.863508i
\(485\) 13.7855 30.4899i 0.625967 1.38448i
\(486\) 0 0
\(487\) 28.5670 16.4931i 1.29449 0.747376i 0.315045 0.949077i \(-0.397980\pi\)
0.979447 + 0.201701i \(0.0646469\pi\)
\(488\) −19.2944 + 11.1396i −0.873415 + 0.504267i
\(489\) 0 0
\(490\) −17.0562 + 37.7238i −0.770519 + 1.70419i
\(491\) 18.4427 + 10.6479i 0.832307 + 0.480533i 0.854642 0.519218i \(-0.173777\pi\)
−0.0223350 + 0.999751i \(0.507110\pi\)
\(492\) 0 0
\(493\) 8.98502 + 8.98502i 0.404665 + 0.404665i
\(494\) −11.8420 65.4317i −0.532795 2.94391i
\(495\) 0 0
\(496\) 9.52693 2.55273i 0.427772 0.114621i
\(497\) 0.593999 0.159161i 0.0266445 0.00713937i
\(498\) 0 0
\(499\) −14.9199 + 14.9199i −0.667904 + 0.667904i −0.957231 0.289326i \(-0.906569\pi\)
0.289326 + 0.957231i \(0.406569\pi\)
\(500\) −38.2778 + 41.0654i −1.71184 + 1.83650i
\(501\) 0 0
\(502\) −34.6261 −1.54544
\(503\) 42.1943 + 11.3059i 1.88135 + 0.504106i 0.999467 + 0.0326345i \(0.0103897\pi\)
0.881881 + 0.471471i \(0.156277\pi\)
\(504\) 0 0
\(505\) 18.4921 1.83621i 0.822887 0.0817102i
\(506\) 15.7736i 0.701224i
\(507\) 0 0
\(508\) 41.4280 41.4280i 1.83807 1.83807i
\(509\) 9.67023 + 36.0898i 0.428626 + 1.59965i 0.755876 + 0.654715i \(0.227211\pi\)
−0.327250 + 0.944938i \(0.606122\pi\)
\(510\) 0 0
\(511\) 0.881719 0.509060i 0.0390049 0.0225195i
\(512\) 27.0748i 1.19655i
\(513\) 0 0
\(514\) 11.9664 44.6591i 0.527814 1.96983i
\(515\) 24.1192 + 3.96233i 1.06282 + 0.174601i
\(516\) 0 0
\(517\) −0.165495 0.617635i −0.00727846 0.0271636i
\(518\) −0.380238 0.219530i −0.0167067 0.00964562i
\(519\) 0 0
\(520\) −1.04664 64.5334i −0.0458984 2.82998i
\(521\) 35.6853 1.56340 0.781701 0.623653i \(-0.214352\pi\)
0.781701 + 0.623653i \(0.214352\pi\)
\(522\) 0 0
\(523\) −1.11694 4.16849i −0.0488406 0.182275i 0.937196 0.348802i \(-0.113411\pi\)
−0.986037 + 0.166527i \(0.946745\pi\)
\(524\) −18.7386 32.4562i −0.818600 1.41786i
\(525\) 0 0
\(526\) 14.2979 53.3604i 0.623417 2.32662i
\(527\) −1.20515 2.08738i −0.0524971 0.0909276i
\(528\) 0 0
\(529\) −10.9797 + 6.33914i −0.477379 + 0.275615i
\(530\) −19.0726 + 23.2779i −0.828461 + 1.01113i
\(531\) 0 0
\(532\) 2.77630 2.77630i 0.120368 0.120368i
\(533\) 18.4124 + 6.60765i 0.797529 + 0.286209i
\(534\) 0 0
\(535\) 10.4928 12.8063i 0.453643 0.553666i
\(536\) −0.577707 + 1.00062i −0.0249531 + 0.0432201i
\(537\) 0 0
\(538\) 27.9987 1.20711
\(539\) −12.5057 3.35089i −0.538659 0.144333i
\(540\) 0 0
\(541\) −5.42748 + 5.42748i −0.233345 + 0.233345i −0.814088 0.580742i \(-0.802762\pi\)
0.580742 + 0.814088i \(0.302762\pi\)
\(542\) 5.42507 20.2467i 0.233027 0.869668i
\(543\) 0 0
\(544\) −35.8247 + 9.59920i −1.53597 + 0.411563i
\(545\) −1.71498 + 10.4393i −0.0734616 + 0.447170i
\(546\) 0 0
\(547\) 11.6940 + 11.6940i 0.500000 + 0.500000i 0.911438 0.411438i \(-0.134973\pi\)
−0.411438 + 0.911438i \(0.634973\pi\)
\(548\) 46.4066 80.3785i 1.98239 3.43360i
\(549\) 0 0
\(550\) −20.4331 13.6059i −0.871270 0.580156i
\(551\) −22.9093 22.9093i −0.975971 0.975971i
\(552\) 0 0
\(553\) −1.47588 + 0.852100i −0.0627608 + 0.0362350i
\(554\) 19.1378 + 19.1378i 0.813087 + 0.813087i
\(555\) 0 0
\(556\) −47.4434 27.3915i −2.01205 1.16166i
\(557\) −2.43751 + 4.22190i −0.103281 + 0.178888i −0.913034 0.407882i \(-0.866267\pi\)
0.809754 + 0.586770i \(0.199601\pi\)
\(558\) 0 0
\(559\) 10.7225 9.08000i 0.453514 0.384043i
\(560\) 2.27963 1.63632i 0.0963321 0.0691470i
\(561\) 0 0
\(562\) −45.1595 + 12.1004i −1.90494 + 0.510426i
\(563\) 10.0853 37.6390i 0.425047 1.58630i −0.338774 0.940868i \(-0.610012\pi\)
0.763821 0.645428i \(-0.223321\pi\)
\(564\) 0 0
\(565\) −12.7938 + 4.82692i −0.538241 + 0.203070i
\(566\) −21.1577 5.66919i −0.889325 0.238294i
\(567\) 0 0
\(568\) 42.3258 + 11.3412i 1.77595 + 0.475865i
\(569\) −1.84104 + 3.18877i −0.0771804 + 0.133680i −0.902032 0.431668i \(-0.857925\pi\)
0.824852 + 0.565349i \(0.191258\pi\)
\(570\) 0 0
\(571\) 2.96698i 0.124164i 0.998071 + 0.0620821i \(0.0197741\pi\)
−0.998071 + 0.0620821i \(0.980226\pi\)
\(572\) 33.0089 5.97401i 1.38017 0.249786i
\(573\) 0 0
\(574\) 0.418034 + 1.56012i 0.0174484 + 0.0651184i
\(575\) 1.02504 16.0310i 0.0427472 0.668538i
\(576\) 0 0
\(577\) 35.0533i 1.45929i −0.683827 0.729644i \(-0.739686\pi\)
0.683827 0.729644i \(-0.260314\pi\)
\(578\) −12.6509 21.9120i −0.526207 0.911417i
\(579\) 0 0
\(580\) −30.4771 42.4591i −1.26549 1.76302i
\(581\) −0.479643 0.830767i −0.0198990 0.0344660i
\(582\) 0 0
\(583\) −8.15012 4.70547i −0.337543 0.194881i
\(584\) 72.5469 3.00201
\(585\) 0 0
\(586\) 16.9010 0.698173
\(587\) 6.10926 + 3.52719i 0.252156 + 0.145583i 0.620751 0.784008i \(-0.286828\pi\)
−0.368595 + 0.929590i \(0.620161\pi\)
\(588\) 0 0
\(589\) 3.07280 + 5.32224i 0.126612 + 0.219299i
\(590\) 1.23391 7.51095i 0.0507992 0.309221i
\(591\) 0 0
\(592\) −8.23718 14.2672i −0.338546 0.586379i
\(593\) 40.0169i 1.64330i 0.569993 + 0.821649i \(0.306946\pi\)
−0.569993 + 0.821649i \(0.693054\pi\)
\(594\) 0 0
\(595\) −0.530439 0.434612i −0.0217459 0.0178174i
\(596\) −18.0917 67.5192i −0.741066 2.76570i
\(597\) 0 0
\(598\) 19.8356 + 23.4237i 0.811138 + 0.957867i
\(599\) 13.9207i 0.568784i −0.958708 0.284392i \(-0.908208\pi\)
0.958708 0.284392i \(-0.0917918\pi\)
\(600\) 0 0
\(601\) 1.15689 2.00379i 0.0471906 0.0817365i −0.841465 0.540311i \(-0.818307\pi\)
0.888656 + 0.458575i \(0.151640\pi\)
\(602\) 1.12057 + 0.300255i 0.0456708 + 0.0122375i
\(603\) 0 0
\(604\) −58.2743 15.6145i −2.37115 0.635347i
\(605\) −6.97065 + 15.4173i −0.283397 + 0.626801i
\(606\) 0 0
\(607\) 6.10830 22.7965i 0.247928 0.925282i −0.723960 0.689842i \(-0.757680\pi\)
0.971889 0.235440i \(-0.0756531\pi\)
\(608\) 91.3432 24.4753i 3.70446 0.992606i
\(609\) 0 0
\(610\) −9.61542 13.3957i −0.389317 0.542377i
\(611\) 1.02244 + 0.709071i 0.0413637 + 0.0286860i
\(612\) 0 0
\(613\) 5.32964 9.23121i 0.215262 0.372845i −0.738091 0.674701i \(-0.764273\pi\)
0.953354 + 0.301856i \(0.0976060\pi\)
\(614\) −60.9165 35.1702i −2.45839 1.41935i
\(615\) 0 0
\(616\) 1.17838 + 1.17838i 0.0474783 + 0.0474783i
\(617\) 11.8892 6.86421i 0.478639 0.276343i −0.241210 0.970473i \(-0.577544\pi\)
0.719849 + 0.694130i \(0.244211\pi\)
\(618\) 0 0
\(619\) 16.8604 + 16.8604i 0.677679 + 0.677679i 0.959474 0.281796i \(-0.0909301\pi\)
−0.281796 + 0.959474i \(0.590930\pi\)
\(620\) 3.49959 + 9.27574i 0.140547 + 0.372523i
\(621\) 0 0
\(622\) 4.69560 8.13301i 0.188276 0.326104i
\(623\) −0.0452127 0.0452127i −0.00181141 0.00181141i
\(624\) 0 0
\(625\) −19.8823 15.1557i −0.795292 0.606227i
\(626\) −22.4811 + 6.02379i −0.898526 + 0.240759i
\(627\) 0 0
\(628\) 9.45576 35.2894i 0.377326 1.40820i
\(629\) −2.84678 + 2.84678i −0.113509 + 0.113509i
\(630\) 0 0
\(631\) 29.5533 + 7.91879i 1.17650 + 0.315242i 0.793537 0.608522i \(-0.208237\pi\)
0.382962 + 0.923764i \(0.374904\pi\)
\(632\) −121.434 −4.83038
\(633\) 0 0
\(634\) −11.2987 + 19.5700i −0.448729 + 0.777222i
\(635\) 20.1816 + 16.5357i 0.800884 + 0.656200i
\(636\) 0 0
\(637\) 22.7847 10.7501i 0.902761 0.425933i
\(638\) 16.1607 16.1607i 0.639807 0.639807i
\(639\) 0 0
\(640\) 20.0868 1.99456i 0.794001 0.0788418i
\(641\) 13.2495 7.64957i 0.523322 0.302140i −0.214971 0.976620i \(-0.568966\pi\)
0.738293 + 0.674480i \(0.235632\pi\)
\(642\) 0 0
\(643\) −11.1740 19.3539i −0.440660 0.763245i 0.557079 0.830460i \(-0.311922\pi\)
−0.997739 + 0.0672147i \(0.978589\pi\)
\(644\) −0.469078 + 1.75062i −0.0184843 + 0.0689842i
\(645\) 0 0
\(646\) −25.1710 43.5974i −0.990340 1.71532i
\(647\) −1.21024 4.51668i −0.0475795 0.177569i 0.938047 0.346508i \(-0.112633\pi\)
−0.985627 + 0.168939i \(0.945966\pi\)
\(648\) 0 0
\(649\) 2.38033 0.0934361
\(650\) 47.4526 5.49035i 1.86124 0.215349i
\(651\) 0 0
\(652\) 89.2199 + 51.5111i 3.49412 + 2.01733i
\(653\) −6.34274 23.6714i −0.248211 0.926335i −0.971742 0.236044i \(-0.924149\pi\)
0.723532 0.690291i \(-0.242518\pi\)
\(654\) 0 0
\(655\) 13.5583 9.73212i 0.529766 0.380265i
\(656\) −15.6854 + 58.5387i −0.612412 + 2.28555i
\(657\) 0 0
\(658\) 0.102733i 0.00400494i
\(659\) −35.2803 + 20.3691i −1.37433 + 0.793467i −0.991469 0.130341i \(-0.958393\pi\)
−0.382856 + 0.923808i \(0.625059\pi\)
\(660\) 0 0
\(661\) 4.42523 + 16.5152i 0.172122 + 0.642367i 0.997024 + 0.0770916i \(0.0245634\pi\)
−0.824902 + 0.565275i \(0.808770\pi\)
\(662\) 33.7389 33.7389i 1.31130 1.31130i
\(663\) 0 0
\(664\) 68.3547i 2.65268i
\(665\) 1.35247 + 1.10814i 0.0524467 + 0.0429719i
\(666\) 0 0
\(667\) 14.4457 + 3.87071i 0.559340 + 0.149875i
\(668\) −12.7589 −0.493657
\(669\) 0 0
\(670\) −0.779208 0.352306i −0.0301034 0.0136107i
\(671\) 3.64628 3.64628i 0.140763 0.140763i
\(672\) 0 0
\(673\) −23.0041 + 6.16392i −0.886742 + 0.237602i −0.673314 0.739357i \(-0.735130\pi\)
−0.213428 + 0.976959i \(0.568463\pi\)
\(674\) −72.7057 + 19.4814i −2.80052 + 0.750396i
\(675\) 0 0
\(676\) −41.5055 + 50.3805i −1.59636 + 1.93771i
\(677\) −26.1344 26.1344i −1.00443 1.00443i −0.999990 0.00443504i \(-0.998588\pi\)
−0.00443504 0.999990i \(-0.501412\pi\)
\(678\) 0 0
\(679\) −1.45598 0.840613i −0.0558756 0.0322598i
\(680\) −17.2487 45.7180i −0.661457 1.75321i
\(681\) 0 0
\(682\) −3.75440 + 2.16761i −0.143764 + 0.0830019i
\(683\) 23.1988 13.3938i 0.887676 0.512500i 0.0144941 0.999895i \(-0.495386\pi\)
0.873181 + 0.487395i \(0.162053\pi\)
\(684\) 0 0
\(685\) 37.6615 + 17.0280i 1.43897 + 0.650606i
\(686\) 3.60610 + 2.08198i 0.137682 + 0.0794905i
\(687\) 0 0
\(688\) 30.7796 + 30.7796i 1.17346 + 1.17346i
\(689\) 18.0201 3.26131i 0.686510 0.124246i
\(690\) 0 0
\(691\) −38.9899 + 10.4473i −1.48325 + 0.397435i −0.907451 0.420158i \(-0.861975\pi\)
−0.575796 + 0.817593i \(0.695308\pi\)
\(692\) −0.382655 + 0.102532i −0.0145464 + 0.00389769i
\(693\) 0 0
\(694\) 13.4464 13.4464i 0.510419 0.510419i
\(695\) 10.0508 22.2297i 0.381247 0.843219i
\(696\) 0 0
\(697\) 14.8102 0.560976
\(698\) 9.35058 + 2.50548i 0.353925 + 0.0948339i
\(699\) 0 0
\(700\) 1.86314 + 2.11768i 0.0704200 + 0.0800406i
\(701\) 24.9781i 0.943410i −0.881756 0.471705i \(-0.843639\pi\)
0.881756 0.471705i \(-0.156361\pi\)
\(702\) 0 0
\(703\) 7.25852 7.25852i 0.273760 0.273760i
\(704\) 6.55185 + 24.4519i 0.246932 + 0.921564i
\(705\) 0 0
\(706\) 4.04624 2.33610i 0.152282 0.0879202i
\(707\) 0.933677i 0.0351145i
\(708\) 0 0
\(709\) −2.64139 + 9.85779i −0.0991993 + 0.370217i −0.997623 0.0689135i \(-0.978047\pi\)
0.898423 + 0.439130i \(0.144713\pi\)
\(710\) −5.25742 + 32.0025i −0.197307 + 1.20103i
\(711\) 0 0
\(712\) −1.17921 4.40087i −0.0441927 0.164930i
\(713\) −2.45675 1.41841i −0.0920061 0.0531198i
\(714\) 0 0
\(715\) 4.09985 + 14.3649i 0.153326 + 0.537216i
\(716\) −106.570 −3.98272
\(717\) 0 0
\(718\) −8.32175 31.0572i −0.310565 1.15904i
\(719\) 14.2117 + 24.6153i 0.530005 + 0.917996i 0.999387 + 0.0350008i \(0.0111434\pi\)
−0.469382 + 0.882995i \(0.655523\pi\)
\(720\) 0 0
\(721\) 0.317850 1.18623i 0.0118373 0.0441776i
\(722\) 39.0065 + 67.5612i 1.45167 + 2.51437i
\(723\) 0 0
\(724\) −97.9570 + 56.5555i −3.64054 + 2.10187i
\(725\) 17.4745 15.3741i 0.648987 0.570981i
\(726\) 0 0
\(727\) −8.56116 + 8.56116i −0.317516 + 0.317516i −0.847812 0.530296i \(-0.822081\pi\)
0.530296 + 0.847812i \(0.322081\pi\)
\(728\) −3.23172 0.268054i −0.119775 0.00993473i
\(729\) 0 0
\(730\) 5.30555 + 53.4311i 0.196367 + 1.97757i
\(731\) 5.31873 9.21232i 0.196720 0.340730i
\(732\) 0 0
\(733\) −17.2200 −0.636036 −0.318018 0.948085i \(-0.603017\pi\)
−0.318018 + 0.948085i \(0.603017\pi\)
\(734\) 35.8610 + 9.60893i 1.32365 + 0.354672i
\(735\) 0 0
\(736\) −30.8663 + 30.8663i −1.13775 + 1.13775i
\(737\) 0.0692148 0.258313i 0.00254956 0.00951508i
\(738\) 0 0
\(739\) −15.7497 + 4.22013i −0.579364 + 0.155240i −0.536588 0.843845i \(-0.680287\pi\)
−0.0427762 + 0.999085i \(0.513620\pi\)
\(740\) 13.4526 9.65626i 0.494528 0.354971i
\(741\) 0 0
\(742\) 1.06915 + 1.06915i 0.0392498 + 0.0392498i
\(743\) −16.5599 + 28.6826i −0.607525 + 1.05226i 0.384122 + 0.923282i \(0.374504\pi\)
−0.991647 + 0.128982i \(0.958829\pi\)
\(744\) 0 0
\(745\) 29.1248 10.9883i 1.06705 0.402581i
\(746\) 54.1344 + 54.1344i 1.98200 + 1.98200i
\(747\) 0 0
\(748\) 21.9940 12.6982i 0.804179 0.464293i
\(749\) −0.588194 0.588194i −0.0214921 0.0214921i
\(750\) 0 0
\(751\) 18.9961 + 10.9674i 0.693176 + 0.400205i 0.804801 0.593545i \(-0.202272\pi\)
−0.111625 + 0.993750i \(0.535605\pi\)
\(752\) −1.92736 + 3.33829i −0.0702836 + 0.121735i
\(753\) 0 0
\(754\) −3.67617 + 44.3207i −0.133878 + 1.61407i
\(755\) 4.35528 26.5111i 0.158505 0.964838i
\(756\) 0 0
\(757\) −2.84678 + 0.762791i −0.103468 + 0.0277241i −0.310181 0.950677i \(-0.600390\pi\)
0.206714 + 0.978401i \(0.433723\pi\)
\(758\) −6.49926 + 24.2556i −0.236064 + 0.881002i
\(759\) 0 0
\(760\) 43.9794 + 116.568i 1.59530 + 4.22838i
\(761\) 21.2875 + 5.70396i 0.771670 + 0.206768i 0.623109 0.782135i \(-0.285869\pi\)
0.148561 + 0.988903i \(0.452536\pi\)
\(762\) 0 0
\(763\) 0.513426 + 0.137572i 0.0185873 + 0.00498044i
\(764\) −49.2241 + 85.2587i −1.78087 + 3.08455i
\(765\) 0 0
\(766\) 55.8361i 2.01744i
\(767\) −3.53477 + 2.99330i −0.127633 + 0.108082i
\(768\) 0 0
\(769\) −5.46718 20.4038i −0.197152 0.735780i −0.991699 0.128578i \(-0.958959\pi\)
0.794548 0.607202i \(-0.207708\pi\)
\(770\) −0.781703 + 0.954059i −0.0281706 + 0.0343819i
\(771\) 0 0
\(772\) 83.9143i 3.02014i
\(773\) 9.34781 + 16.1909i 0.336217 + 0.582346i 0.983718 0.179719i \(-0.0575189\pi\)
−0.647500 + 0.762065i \(0.724186\pi\)
\(774\) 0 0
\(775\) −3.95652 + 1.95899i −0.142122 + 0.0703691i
\(776\) −59.8985 103.747i −2.15023 3.72431i
\(777\) 0 0
\(778\) −0.138788 0.0801293i −0.00497579 0.00287278i
\(779\) −37.7619 −1.35296
\(780\) 0 0
\(781\) −10.1421 −0.362912
\(782\) 20.1246 + 11.6190i 0.719656 + 0.415493i
\(783\) 0 0
\(784\) 39.0246 + 67.5927i 1.39374 + 2.41402i
\(785\) 16.0544 + 2.63744i 0.573008 + 0.0941344i
\(786\) 0 0
\(787\) 21.6615 + 37.5189i 0.772150 + 1.33740i 0.936382 + 0.350981i \(0.114152\pi\)
−0.164232 + 0.986422i \(0.552515\pi\)
\(788\) 76.2534i 2.71642i
\(789\) 0 0
\(790\) −8.88078 89.4366i −0.315964 3.18201i
\(791\) 0.177818 + 0.663626i 0.00632248 + 0.0235958i
\(792\) 0 0
\(793\) −0.829444 + 9.99995i −0.0294544 + 0.355109i
\(794\) 21.7710i 0.772625i
\(795\) 0 0
\(796\) 35.0157 60.6489i 1.24110 2.14964i
\(797\) 33.9650 + 9.10089i 1.20310 + 0.322370i 0.804052 0.594559i \(-0.202673\pi\)
0.399050 + 0.916929i \(0.369340\pi\)
\(798\) 0 0
\(799\) 0.909909 + 0.243809i 0.0321903 + 0.00862535i
\(800\) 13.3597 + 66.6084i 0.472338 + 2.35496i
\(801\) 0 0
\(802\) −6.17139 + 23.0319i −0.217919 + 0.813286i
\(803\) −16.2191 + 4.34591i −0.572361 + 0.153364i
\(804\) 0 0
\(805\) −0.796423 0.130837i −0.0280702 0.00461141i
\(806\) 2.84946 7.94010i 0.100368 0.279678i
\(807\) 0 0
\(808\) 33.2649 57.6165i 1.17026 2.02694i
\(809\) 17.8779 + 10.3218i 0.628554 + 0.362896i 0.780192 0.625540i \(-0.215121\pi\)
−0.151638 + 0.988436i \(0.548455\pi\)
\(810\) 0 0
\(811\) −22.0471 22.0471i −0.774178 0.774178i 0.204656 0.978834i \(-0.434392\pi\)
−0.978834 + 0.204656i \(0.934392\pi\)
\(812\) −2.27416 + 1.31299i −0.0798075 + 0.0460769i
\(813\) 0 0
\(814\) 5.12029 + 5.12029i 0.179466 + 0.179466i
\(815\) −18.9010 + 41.8041i −0.662074 + 1.46433i
\(816\) 0 0
\(817\) −13.5613 + 23.4889i −0.474450 + 0.821772i
\(818\) 67.1180 + 67.1180i 2.34672 + 2.34672i
\(819\) 0 0
\(820\) −60.1111 9.87512i −2.09917 0.344854i
\(821\) −35.4477 + 9.49818i −1.23713 + 0.331489i −0.817353 0.576137i \(-0.804559\pi\)
−0.419780 + 0.907626i \(0.637893\pi\)
\(822\) 0 0
\(823\) 6.11025 22.8038i 0.212990 0.794889i −0.773875 0.633339i \(-0.781684\pi\)
0.986865 0.161550i \(-0.0516494\pi\)
\(824\) 61.8772 61.8772i 2.15559 2.15559i
\(825\) 0 0
\(826\) −0.369404 0.0989816i −0.0128532 0.00344401i
\(827\) 4.44429 0.154543 0.0772716 0.997010i \(-0.475379\pi\)
0.0772716 + 0.997010i \(0.475379\pi\)
\(828\) 0 0
\(829\) −14.6685 + 25.4065i −0.509457 + 0.882406i 0.490483 + 0.871451i \(0.336820\pi\)
−0.999940 + 0.0109548i \(0.996513\pi\)
\(830\) 50.3435 4.99895i 1.74745 0.173516i
\(831\) 0 0
\(832\) −40.4780 28.0718i −1.40332 0.973213i
\(833\) 13.4870 13.4870i 0.467296 0.467296i
\(834\) 0 0
\(835\) −0.561431 5.65406i −0.0194291 0.195667i
\(836\) −56.0786 + 32.3770i −1.93952 + 1.11978i
\(837\) 0 0
\(838\) 17.3304 + 30.0171i 0.598668 + 1.03692i
\(839\) 2.19656 8.19766i 0.0758336 0.283015i −0.917587 0.397534i \(-0.869866\pi\)
0.993421 + 0.114519i \(0.0365327\pi\)
\(840\) 0 0
\(841\) −3.66554 6.34891i −0.126398 0.218928i
\(842\) −13.3770 49.9236i −0.461001 1.72048i
\(843\) 0 0
\(844\) 118.591 4.08208
\(845\) −24.1523 16.1761i −0.830865 0.556475i
\(846\) 0 0
\(847\) 0.736220 + 0.425057i 0.0252968 + 0.0146051i
\(848\) 14.6837 + 54.8002i 0.504239 + 1.88185i
\(849\) 0 0
\(850\) 32.4101 16.0472i 1.11166 0.550415i
\(851\) −1.22638 + 4.57693i −0.0420399 + 0.156895i
\(852\) 0 0
\(853\) 34.3415i 1.17583i 0.808923 + 0.587915i \(0.200051\pi\)
−0.808923 + 0.587915i \(0.799949\pi\)
\(854\) −0.717491 + 0.414244i −0.0245521 + 0.0141751i
\(855\) 0 0
\(856\) −15.3409 57.2531i −0.524342 1.95687i
\(857\) −24.6090 + 24.6090i −0.840626 + 0.840626i −0.988940 0.148314i \(-0.952615\pi\)
0.148314 + 0.988940i \(0.452615\pi\)
\(858\) 0 0
\(859\) 12.8606i 0.438798i −0.975635 0.219399i \(-0.929590\pi\)
0.975635 0.219399i \(-0.0704097\pi\)
\(860\) −27.7301 + 33.8442i −0.945588 + 1.15408i
\(861\) 0 0
\(862\) −56.8688 15.2379i −1.93696 0.519007i
\(863\) 2.75373 0.0937379 0.0468690 0.998901i \(-0.485076\pi\)
0.0468690 + 0.998901i \(0.485076\pi\)
\(864\) 0 0
\(865\) −0.0622747 0.165060i −0.00211740 0.00561222i
\(866\) 0.343907 0.343907i 0.0116864 0.0116864i
\(867\) 0 0
\(868\) 0.481140 0.128921i 0.0163309 0.00437586i
\(869\) 27.1487 7.27447i 0.920957 0.246770i
\(870\) 0 0
\(871\) 0.222049 + 0.470631i 0.00752385 + 0.0159467i
\(872\) 26.7817 + 26.7817i 0.906944 + 0.906944i
\(873\) 0 0
\(874\) −51.3123 29.6252i −1.73566 1.00209i
\(875\) −0.856456 + 0.918826i −0.0289535 + 0.0310620i
\(876\) 0 0
\(877\) −40.9311 + 23.6316i −1.38214 + 0.797981i −0.992413 0.122948i \(-0.960765\pi\)
−0.389730 + 0.920929i \(0.627432\pi\)
\(878\) −39.6847 + 22.9119i −1.33929 + 0.773241i
\(879\) 0 0
\(880\) −43.3004 + 16.3365i −1.45965 + 0.550705i
\(881\) −35.7854 20.6607i −1.20564 0.696077i −0.243837 0.969816i \(-0.578406\pi\)
−0.961804 + 0.273739i \(0.911739\pi\)
\(882\) 0 0
\(883\) 13.4808 + 13.4808i 0.453666 + 0.453666i 0.896569 0.442903i \(-0.146051\pi\)
−0.442903 + 0.896569i \(0.646051\pi\)
\(884\) −16.6927 + 46.5145i −0.561435 + 1.56445i
\(885\) 0 0
\(886\) −88.4897 + 23.7108i −2.97287 + 0.796578i
\(887\) 22.1438 5.93341i 0.743516 0.199225i 0.132876 0.991133i \(-0.457579\pi\)
0.610640 + 0.791908i \(0.290912\pi\)
\(888\) 0 0
\(889\) 0.926941 0.926941i 0.0310886 0.0310886i
\(890\) 3.15502 1.19034i 0.105757 0.0399003i
\(891\) 0 0
\(892\) −48.8381 −1.63522
\(893\) −2.32002 0.621647i −0.0776364 0.0208026i
\(894\) 0 0
\(895\) −4.68942 47.2262i −0.156750 1.57860i
\(896\) 1.01420i 0.0338819i
\(897\) 0 0
\(898\) −69.6712 + 69.6712i −2.32496 + 2.32496i
\(899\) −1.06382 3.97024i −0.0354805 0.132415i
\(900\) 0 0
\(901\) 12.0069 6.93217i 0.400007 0.230944i
\(902\) 26.6379i 0.886946i
\(903\) 0 0
\(904\) −12.6705 + 47.2871i −0.421416 + 1.57275i
\(905\) −29.3728 40.9207i −0.976384 1.36025i
\(906\) 0 0
\(907\) −6.24222 23.2963i −0.207270 0.773541i −0.988746 0.149606i \(-0.952200\pi\)
0.781476 0.623935i \(-0.214467\pi\)
\(908\) −39.9008 23.0367i −1.32416 0.764501i
\(909\) 0 0
\(910\) −0.0389211 2.39977i −0.00129022 0.0795518i
\(911\) −58.5135 −1.93864 −0.969320 0.245803i \(-0.920948\pi\)
−0.969320 + 0.245803i \(0.920948\pi\)
\(912\) 0 0
\(913\) 4.09477 + 15.2819i 0.135517 + 0.505757i
\(914\) −12.4895 21.6324i −0.413116 0.715537i
\(915\) 0 0
\(916\) −23.0233 + 85.9241i −0.760711 + 2.83901i
\(917\) −0.419271 0.726199i −0.0138456 0.0239812i
\(918\) 0 0
\(919\) 38.8451 22.4272i 1.28138 0.739806i 0.304281 0.952582i \(-0.401584\pi\)
0.977101 + 0.212776i \(0.0682506\pi\)
\(920\) −44.4852 36.4487i −1.46663 1.20168i
\(921\) 0 0
\(922\) 61.6169 61.6169i 2.02924 2.02924i
\(923\) 15.0609 12.7538i 0.495735 0.419797i
\(924\) 0 0
\(925\) 4.87109 + 5.53657i 0.160160 + 0.182041i
\(926\) 24.7394 42.8498i 0.812986 1.40813i
\(927\) 0 0
\(928\) −63.2473 −2.07619
\(929\) 27.1090 + 7.26384i 0.889418 + 0.238319i 0.674466 0.738306i \(-0.264374\pi\)
0.214952 + 0.976625i \(0.431040\pi\)
\(930\) 0 0
\(931\) −34.3881 + 34.3881i −1.12702 + 1.12702i
\(932\) −21.8041 + 81.3738i −0.714215 + 2.66549i
\(933\) 0 0
\(934\) 44.0428 11.8012i 1.44113 0.386148i
\(935\) 6.59497 + 9.18779i 0.215679 + 0.300473i
\(936\) 0 0
\(937\) 20.7545 + 20.7545i 0.678019 + 0.678019i 0.959552 0.281533i \(-0.0908428\pi\)
−0.281533 + 0.959552i \(0.590843\pi\)
\(938\) −0.0214829 + 0.0372095i −0.000701442 + 0.00121493i
\(939\) 0 0
\(940\) −3.53054 1.59627i −0.115153 0.0520647i
\(941\) 6.70533 + 6.70533i 0.218588 + 0.218588i 0.807903 0.589315i \(-0.200602\pi\)
−0.589315 + 0.807903i \(0.700602\pi\)
\(942\) 0 0
\(943\) 15.0956 8.71547i 0.491582 0.283815i
\(944\) −10.1467 10.1467i −0.330249 0.330249i
\(945\) 0 0
\(946\) −16.5695 9.56639i −0.538720 0.311030i
\(947\) 2.25542 3.90651i 0.0732915 0.126945i −0.827051 0.562128i \(-0.809983\pi\)
0.900342 + 0.435183i \(0.143316\pi\)
\(948\) 0 0
\(949\) 18.6203 26.8495i 0.604439 0.871570i
\(950\) −82.6367 + 40.9160i −2.68109 + 1.32749i
\(951\) 0 0
\(952\) −2.37143 + 0.635422i −0.0768584 + 0.0205941i
\(953\) 1.48646 5.54756i 0.0481513 0.179703i −0.937662 0.347548i \(-0.887014\pi\)
0.985813 + 0.167845i \(0.0536809\pi\)
\(954\) 0 0
\(955\) −39.9481 18.0618i −1.29269 0.584467i
\(956\) 124.946 + 33.4791i 4.04103 + 1.08279i
\(957\) 0 0
\(958\) 84.3690 + 22.6066i 2.72584 + 0.730386i
\(959\) 1.03833 1.79845i 0.0335296 0.0580749i
\(960\) 0 0
\(961\) 30.2203i 0.974849i
\(962\) −14.0424 1.16475i −0.452746 0.0375529i
\(963\) 0 0
\(964\) −7.10927 26.5322i −0.228974 0.854543i
\(965\) −37.1863 + 3.69249i −1.19707 + 0.118865i
\(966\) 0 0
\(967\) 17.6414i 0.567310i −0.958926 0.283655i \(-0.908453\pi\)
0.958926 0.283655i \(-0.0915470\pi\)
\(968\) 30.2877 + 52.4599i 0.973485 + 1.68612i
\(969\) 0 0
\(970\) 72.0297 51.7028i 2.31273 1.66008i
\(971\) 16.6987 + 28.9229i 0.535886 + 0.928181i 0.999120 + 0.0419454i \(0.0133556\pi\)
−0.463234 + 0.886236i \(0.653311\pi\)
\(972\) 0 0
\(973\) −1.06153 0.612876i −0.0340312 0.0196479i
\(974\) 87.4056 2.80065
\(975\) 0 0
\(976\) −31.0864 −0.995050
\(977\) −13.2886 7.67217i −0.425139 0.245454i 0.272134 0.962259i \(-0.412270\pi\)
−0.697274 + 0.716805i \(0.745604\pi\)
\(978\) 0 0
\(979\) 0.527266 + 0.913252i 0.0168515 + 0.0291877i
\(980\) −63.7334 + 45.7477i −2.03589 + 1.46136i
\(981\) 0 0
\(982\) 28.2143 + 48.8686i 0.900354 + 1.55946i
\(983\) 4.80751i 0.153336i −0.997057 0.0766679i \(-0.975572\pi\)
0.997057 0.0766679i \(-0.0244281\pi\)
\(984\) 0 0
\(985\) 33.7914 3.35539i 1.07668 0.106911i
\(986\) 8.71437 + 32.5225i 0.277522 + 1.03573i
\(987\) 0 0
\(988\) 42.5617 118.599i 1.35407 3.77315i
\(989\) 12.5198i 0.398108i
\(990\) 0 0
\(991\) −0.219558 + 0.380286i −0.00697450 + 0.0120802i −0.869492 0.493948i \(-0.835553\pi\)
0.862517 + 0.506028i \(0.168887\pi\)
\(992\) 11.5884 + 3.10509i 0.367931 + 0.0985867i
\(993\) 0 0
\(994\) 1.57395 + 0.421739i 0.0499227 + 0.0133767i
\(995\) 28.4171 + 12.8483i 0.900884 + 0.407319i
\(996\) 0 0
\(997\) −1.70003 + 6.34461i −0.0538406 + 0.200936i −0.987607 0.156947i \(-0.949835\pi\)
0.933766 + 0.357883i \(0.116501\pi\)
\(998\) −54.0044 + 14.4704i −1.70948 + 0.458053i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 585.2.dp.a.397.5 20
3.2 odd 2 65.2.t.a.7.1 yes 20
5.3 odd 4 585.2.cf.a.163.5 20
13.2 odd 12 585.2.cf.a.262.5 20
15.2 even 4 325.2.s.b.293.5 20
15.8 even 4 65.2.o.a.33.1 yes 20
15.14 odd 2 325.2.x.b.7.5 20
39.2 even 12 65.2.o.a.2.1 20
39.5 even 4 845.2.o.e.357.1 20
39.8 even 4 845.2.o.f.357.5 20
39.11 even 12 845.2.o.g.587.5 20
39.17 odd 6 845.2.f.d.437.1 20
39.20 even 12 845.2.k.d.577.1 20
39.23 odd 6 845.2.t.e.427.1 20
39.29 odd 6 845.2.t.f.427.5 20
39.32 even 12 845.2.k.e.577.10 20
39.35 odd 6 845.2.f.e.437.10 20
39.38 odd 2 845.2.t.g.657.5 20
65.28 even 12 inner 585.2.dp.a.28.5 20
195.2 odd 12 325.2.x.b.93.5 20
195.8 odd 4 845.2.t.e.188.1 20
195.23 even 12 845.2.o.f.258.5 20
195.38 even 4 845.2.o.g.488.5 20
195.68 even 12 845.2.o.e.258.1 20
195.83 odd 4 845.2.t.f.188.5 20
195.98 odd 12 845.2.f.d.408.10 20
195.113 even 12 845.2.k.e.268.10 20
195.119 even 12 325.2.s.b.132.5 20
195.128 odd 12 845.2.t.g.418.5 20
195.158 odd 12 65.2.t.a.28.1 yes 20
195.173 even 12 845.2.k.d.268.1 20
195.188 odd 12 845.2.f.e.408.1 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.2.o.a.2.1 20 39.2 even 12
65.2.o.a.33.1 yes 20 15.8 even 4
65.2.t.a.7.1 yes 20 3.2 odd 2
65.2.t.a.28.1 yes 20 195.158 odd 12
325.2.s.b.132.5 20 195.119 even 12
325.2.s.b.293.5 20 15.2 even 4
325.2.x.b.7.5 20 15.14 odd 2
325.2.x.b.93.5 20 195.2 odd 12
585.2.cf.a.163.5 20 5.3 odd 4
585.2.cf.a.262.5 20 13.2 odd 12
585.2.dp.a.28.5 20 65.28 even 12 inner
585.2.dp.a.397.5 20 1.1 even 1 trivial
845.2.f.d.408.10 20 195.98 odd 12
845.2.f.d.437.1 20 39.17 odd 6
845.2.f.e.408.1 20 195.188 odd 12
845.2.f.e.437.10 20 39.35 odd 6
845.2.k.d.268.1 20 195.173 even 12
845.2.k.d.577.1 20 39.20 even 12
845.2.k.e.268.10 20 195.113 even 12
845.2.k.e.577.10 20 39.32 even 12
845.2.o.e.258.1 20 195.68 even 12
845.2.o.e.357.1 20 39.5 even 4
845.2.o.f.258.5 20 195.23 even 12
845.2.o.f.357.5 20 39.8 even 4
845.2.o.g.488.5 20 195.38 even 4
845.2.o.g.587.5 20 39.11 even 12
845.2.t.e.188.1 20 195.8 odd 4
845.2.t.e.427.1 20 39.23 odd 6
845.2.t.f.188.5 20 195.83 odd 4
845.2.t.f.427.5 20 39.29 odd 6
845.2.t.g.418.5 20 195.128 odd 12
845.2.t.g.657.5 20 39.38 odd 2