Properties

Label 845.2.t.f.188.5
Level $845$
Weight $2$
Character 845.188
Analytic conductor $6.747$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [845,2,Mod(188,845)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(845, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([9, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("845.188"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 845 = 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 845.t (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,6,-2,6,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.74735897080\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(5\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 26 x^{18} + 279 x^{16} + 1604 x^{14} + 5353 x^{12} + 10466 x^{10} + 11441 x^{8} + 6176 x^{6} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 188.5
Root \(2.64975i\) of defining polynomial
Character \(\chi\) \(=\) 845.188
Dual form 845.2.t.f.427.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.29475 + 1.32488i) q^{2} +(-1.25278 + 0.335680i) q^{3} +(2.51060 + 4.34849i) q^{4} +(1.81654 + 1.30391i) q^{5} +(-3.31955 - 0.889471i) q^{6} +(0.0561740 + 0.0972962i) q^{7} +8.00544i q^{8} +(-1.14131 + 0.658935i) q^{9} +(2.44100 + 5.39885i) q^{10} +(-1.78976 + 0.479564i) q^{11} +(-4.60492 - 4.60492i) q^{12} +0.297695i q^{14} +(-2.71342 - 1.02373i) q^{15} +(-5.58502 + 9.67354i) q^{16} +(0.706500 - 2.63669i) q^{17} -3.49203 q^{18} +(1.80138 - 6.72284i) q^{19} +(-1.10942 + 11.1728i) q^{20} +(-0.103034 - 0.103034i) q^{21} +(-4.74241 - 1.27073i) q^{22} +(0.831519 + 3.10327i) q^{23} +(-2.68727 - 10.0290i) q^{24} +(1.59964 + 4.73721i) q^{25} +(3.95990 - 3.95990i) q^{27} +(-0.282061 + 0.488544i) q^{28} +(4.03134 + 2.32749i) q^{29} +(-4.87031 - 5.94415i) q^{30} +(-0.624367 + 0.624367i) q^{31} +(-11.7667 + 6.79350i) q^{32} +(2.08118 - 1.20157i) q^{33} +(5.11454 - 5.11454i) q^{34} +(-0.0248231 + 0.249988i) q^{35} +(-5.73074 - 3.30864i) q^{36} +(-0.737435 + 1.27728i) q^{37} +(13.0407 - 13.0407i) q^{38} +(-10.4384 + 14.5422i) q^{40} +(1.40424 + 5.24069i) q^{41} +(-0.0999302 - 0.372945i) q^{42} +(-3.76415 - 1.00860i) q^{43} +(-6.57874 - 6.57874i) q^{44} +(-2.93243 - 0.291181i) q^{45} +(-2.20332 + 8.22291i) q^{46} -0.345095 q^{47} +(3.74956 - 13.9936i) q^{48} +(3.49369 - 6.05125i) q^{49} +(-2.60544 + 12.9901i) q^{50} +3.54034i q^{51} +(-3.59144 - 3.59144i) q^{53} +(14.3334 - 3.84062i) q^{54} +(-3.87647 - 1.46253i) q^{55} +(-0.778898 + 0.449697i) q^{56} +9.02691i q^{57} +(6.16729 + 10.6821i) q^{58} +(-1.24088 - 0.332494i) q^{59} +(-2.36063 - 14.3694i) q^{60} +(1.39151 + 2.41016i) q^{61} +(-2.25998 + 0.605559i) q^{62} +(-0.128224 - 0.0740300i) q^{63} -13.6621 q^{64} +6.36774 q^{66} +(-0.124992 - 0.0721643i) q^{67} +(13.2394 - 3.54747i) q^{68} +(-2.08342 - 3.60858i) q^{69} +(-0.388167 + 0.540774i) q^{70} +(5.28713 + 1.41668i) q^{71} +(-5.27506 - 9.13667i) q^{72} +9.06221i q^{73} +(-3.38447 + 1.95402i) q^{74} +(-3.59418 - 5.39770i) q^{75} +(33.7567 - 9.04509i) q^{76} +(-0.147197 - 0.147197i) q^{77} -15.1689i q^{79} +(-22.7588 + 10.2900i) q^{80} +(-1.65480 + 2.86620i) q^{81} +(-3.72089 + 13.8865i) q^{82} +8.53853 q^{83} +(0.189365 - 0.706718i) q^{84} +(4.72139 - 3.86845i) q^{85} +(-7.30152 - 7.30152i) q^{86} +(-5.83166 - 1.56259i) q^{87} +(-3.83912 - 14.3278i) q^{88} +(-0.147301 - 0.549735i) q^{89} +(-6.34342 - 4.55329i) q^{90} +(-11.4069 + 11.4069i) q^{92} +(0.572604 - 0.991779i) q^{93} +(-0.791908 - 0.457208i) q^{94} +(12.0383 - 9.86348i) q^{95} +(12.4606 - 12.4606i) q^{96} +(12.9596 - 7.48223i) q^{97} +(16.0343 - 9.25742i) q^{98} +(1.72666 - 1.72666i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 6 q^{2} - 2 q^{3} + 6 q^{4} + 4 q^{6} - 2 q^{7} - 12 q^{9} + 10 q^{10} + 8 q^{11} - 24 q^{12} - 8 q^{15} - 2 q^{16} + 10 q^{17} + 16 q^{19} + 12 q^{20} + 4 q^{21} + 16 q^{22} + 2 q^{23} - 28 q^{24}+ \cdots + 60 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/845\mathbb{Z}\right)^\times\).

\(n\) \(171\) \(677\)
\(\chi(n)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.29475 + 1.32488i 1.62264 + 0.936830i 0.986211 + 0.165491i \(0.0529210\pi\)
0.636425 + 0.771338i \(0.280412\pi\)
\(3\) −1.25278 + 0.335680i −0.723291 + 0.193805i −0.601640 0.798768i \(-0.705486\pi\)
−0.121651 + 0.992573i \(0.538819\pi\)
\(4\) 2.51060 + 4.34849i 1.25530 + 2.17424i
\(5\) 1.81654 + 1.30391i 0.812382 + 0.583126i
\(6\) −3.31955 0.889471i −1.35520 0.363125i
\(7\) 0.0561740 + 0.0972962i 0.0212318 + 0.0367745i 0.876446 0.481500i \(-0.159908\pi\)
−0.855214 + 0.518275i \(0.826575\pi\)
\(8\) 8.00544i 2.83035i
\(9\) −1.14131 + 0.658935i −0.380436 + 0.219645i
\(10\) 2.44100 + 5.39885i 0.771911 + 1.70726i
\(11\) −1.78976 + 0.479564i −0.539632 + 0.144594i −0.518332 0.855179i \(-0.673447\pi\)
−0.0212994 + 0.999773i \(0.506780\pi\)
\(12\) −4.60492 4.60492i −1.32933 1.32933i
\(13\) 0 0
\(14\) 0.297695i 0.0795622i
\(15\) −2.71342 1.02373i −0.700601 0.264326i
\(16\) −5.58502 + 9.67354i −1.39626 + 2.41838i
\(17\) 0.706500 2.63669i 0.171351 0.639492i −0.825793 0.563973i \(-0.809272\pi\)
0.997144 0.0755186i \(-0.0240612\pi\)
\(18\) −3.49203 −0.823080
\(19\) 1.80138 6.72284i 0.413265 1.54233i −0.375021 0.927016i \(-0.622364\pi\)
0.788286 0.615309i \(-0.210969\pi\)
\(20\) −1.10942 + 11.1728i −0.248075 + 2.49831i
\(21\) −0.103034 0.103034i −0.0224838 0.0224838i
\(22\) −4.74241 1.27073i −1.01109 0.270920i
\(23\) 0.831519 + 3.10327i 0.173384 + 0.647077i 0.996821 + 0.0796701i \(0.0253867\pi\)
−0.823438 + 0.567407i \(0.807947\pi\)
\(24\) −2.68727 10.0290i −0.548536 2.04717i
\(25\) 1.59964 + 4.73721i 0.319928 + 0.947442i
\(26\) 0 0
\(27\) 3.95990 3.95990i 0.762083 0.762083i
\(28\) −0.282061 + 0.488544i −0.0533045 + 0.0923261i
\(29\) 4.03134 + 2.32749i 0.748601 + 0.432205i 0.825188 0.564858i \(-0.191069\pi\)
−0.0765874 + 0.997063i \(0.524402\pi\)
\(30\) −4.87031 5.94415i −0.889193 1.08525i
\(31\) −0.624367 + 0.624367i −0.112140 + 0.112140i −0.760950 0.648810i \(-0.775267\pi\)
0.648810 + 0.760950i \(0.275267\pi\)
\(32\) −11.7667 + 6.79350i −2.08008 + 1.20093i
\(33\) 2.08118 1.20157i 0.362288 0.209167i
\(34\) 5.11454 5.11454i 0.877136 0.877136i
\(35\) −0.0248231 + 0.249988i −0.00419587 + 0.0422557i
\(36\) −5.73074 3.30864i −0.955123 0.551441i
\(37\) −0.737435 + 1.27728i −0.121234 + 0.209983i −0.920254 0.391321i \(-0.872018\pi\)
0.799021 + 0.601303i \(0.205352\pi\)
\(38\) 13.0407 13.0407i 2.11548 2.11548i
\(39\) 0 0
\(40\) −10.4384 + 14.5422i −1.65045 + 2.29932i
\(41\) 1.40424 + 5.24069i 0.219305 + 0.818458i 0.984606 + 0.174786i \(0.0559233\pi\)
−0.765301 + 0.643672i \(0.777410\pi\)
\(42\) −0.0999302 0.372945i −0.0154196 0.0575466i
\(43\) −3.76415 1.00860i −0.574027 0.153810i −0.0398840 0.999204i \(-0.512699\pi\)
−0.534143 + 0.845394i \(0.679366\pi\)
\(44\) −6.57874 6.57874i −0.991782 0.991782i
\(45\) −2.93243 0.291181i −0.437140 0.0434067i
\(46\) −2.20332 + 8.22291i −0.324862 + 1.21240i
\(47\) −0.345095 −0.0503372 −0.0251686 0.999683i \(-0.508012\pi\)
−0.0251686 + 0.999683i \(0.508012\pi\)
\(48\) 3.74956 13.9936i 0.541203 2.01980i
\(49\) 3.49369 6.05125i 0.499098 0.864464i
\(50\) −2.60544 + 12.9901i −0.368464 + 1.83707i
\(51\) 3.54034i 0.495747i
\(52\) 0 0
\(53\) −3.59144 3.59144i −0.493322 0.493322i 0.416029 0.909351i \(-0.363421\pi\)
−0.909351 + 0.416029i \(0.863421\pi\)
\(54\) 14.3334 3.84062i 1.95053 0.522642i
\(55\) −3.87647 1.46253i −0.522703 0.197208i
\(56\) −0.778898 + 0.449697i −0.104085 + 0.0600933i
\(57\) 9.02691i 1.19564i
\(58\) 6.16729 + 10.6821i 0.809805 + 1.40262i
\(59\) −1.24088 0.332494i −0.161549 0.0432870i 0.177138 0.984186i \(-0.443316\pi\)
−0.338687 + 0.940899i \(0.609983\pi\)
\(60\) −2.36063 14.3694i −0.304756 1.85508i
\(61\) 1.39151 + 2.41016i 0.178164 + 0.308589i 0.941252 0.337706i \(-0.109651\pi\)
−0.763088 + 0.646295i \(0.776318\pi\)
\(62\) −2.25998 + 0.605559i −0.287017 + 0.0769061i
\(63\) −0.128224 0.0740300i −0.0161547 0.00932691i
\(64\) −13.6621 −1.70776
\(65\) 0 0
\(66\) 6.36774 0.783815
\(67\) −0.124992 0.0721643i −0.0152702 0.00881627i 0.492345 0.870400i \(-0.336140\pi\)
−0.507616 + 0.861584i \(0.669473\pi\)
\(68\) 13.2394 3.54747i 1.60551 0.430194i
\(69\) −2.08342 3.60858i −0.250814 0.434422i
\(70\) −0.388167 + 0.540774i −0.0463948 + 0.0646349i
\(71\) 5.28713 + 1.41668i 0.627467 + 0.168129i 0.558520 0.829491i \(-0.311369\pi\)
0.0689472 + 0.997620i \(0.478036\pi\)
\(72\) −5.27506 9.13667i −0.621672 1.07677i
\(73\) 9.06221i 1.06065i 0.847794 + 0.530326i \(0.177930\pi\)
−0.847794 + 0.530326i \(0.822070\pi\)
\(74\) −3.38447 + 1.95402i −0.393436 + 0.227151i
\(75\) −3.59418 5.39770i −0.415020 0.623272i
\(76\) 33.7567 9.04509i 3.87216 1.03754i
\(77\) −0.147197 0.147197i −0.0167747 0.0167747i
\(78\) 0 0
\(79\) 15.1689i 1.70664i −0.521388 0.853320i \(-0.674586\pi\)
0.521388 0.853320i \(-0.325414\pi\)
\(80\) −22.7588 + 10.2900i −2.54451 + 1.15046i
\(81\) −1.65480 + 2.86620i −0.183867 + 0.318467i
\(82\) −3.72089 + 13.8865i −0.410903 + 1.53351i
\(83\) 8.53853 0.937226 0.468613 0.883404i \(-0.344754\pi\)
0.468613 + 0.883404i \(0.344754\pi\)
\(84\) 0.189365 0.706718i 0.0206614 0.0771093i
\(85\) 4.72139 3.86845i 0.512107 0.419592i
\(86\) −7.30152 7.30152i −0.787343 0.787343i
\(87\) −5.83166 1.56259i −0.625219 0.167527i
\(88\) −3.83912 14.3278i −0.409251 1.52735i
\(89\) −0.147301 0.549735i −0.0156139 0.0582718i 0.957679 0.287837i \(-0.0929362\pi\)
−0.973293 + 0.229565i \(0.926270\pi\)
\(90\) −6.34342 4.55329i −0.668655 0.479959i
\(91\) 0 0
\(92\) −11.4069 + 11.4069i −1.18925 + 1.18925i
\(93\) 0.572604 0.991779i 0.0593763 0.102843i
\(94\) −0.791908 0.457208i −0.0816791 0.0471574i
\(95\) 12.0383 9.86348i 1.23510 1.01197i
\(96\) 12.4606 12.4606i 1.27175 1.27175i
\(97\) 12.9596 7.48223i 1.31585 0.759705i 0.332790 0.943001i \(-0.392010\pi\)
0.983058 + 0.183296i \(0.0586766\pi\)
\(98\) 16.0343 9.25742i 1.61971 0.935140i
\(99\) 1.72666 1.72666i 0.173536 0.173536i
\(100\) −16.5836 + 18.8493i −1.65836 + 1.88493i
\(101\) −7.19717 4.15529i −0.716146 0.413467i 0.0971867 0.995266i \(-0.469016\pi\)
−0.813332 + 0.581799i \(0.802349\pi\)
\(102\) −4.69052 + 8.12422i −0.464431 + 0.804418i
\(103\) −7.72940 + 7.72940i −0.761600 + 0.761600i −0.976612 0.215011i \(-0.931021\pi\)
0.215011 + 0.976612i \(0.431021\pi\)
\(104\) 0 0
\(105\) −0.0528184 0.321512i −0.00515455 0.0313764i
\(106\) −3.48325 12.9997i −0.338324 1.26264i
\(107\) −1.91631 7.15177i −0.185257 0.691388i −0.994575 0.104018i \(-0.966830\pi\)
0.809318 0.587370i \(-0.199837\pi\)
\(108\) 27.1613 + 7.27785i 2.61360 + 0.700311i
\(109\) 3.34544 + 3.34544i 0.320435 + 0.320435i 0.848934 0.528499i \(-0.177245\pi\)
−0.528499 + 0.848934i \(0.677245\pi\)
\(110\) −6.95788 8.49200i −0.663408 0.809681i
\(111\) 0.495085 1.84768i 0.0469914 0.175374i
\(112\) −1.25493 −0.118580
\(113\) 1.58274 5.90688i 0.148892 0.555672i −0.850659 0.525717i \(-0.823797\pi\)
0.999551 0.0299550i \(-0.00953640\pi\)
\(114\) −11.9595 + 20.7145i −1.12011 + 1.94009i
\(115\) −2.53590 + 6.72145i −0.236474 + 0.626778i
\(116\) 23.3736i 2.17019i
\(117\) 0 0
\(118\) −2.40701 2.40701i −0.221583 0.221583i
\(119\) 0.296227 0.0793738i 0.0271551 0.00727618i
\(120\) 8.19540 21.7221i 0.748134 1.98295i
\(121\) −6.55303 + 3.78340i −0.595730 + 0.343945i
\(122\) 7.37430i 0.667638i
\(123\) −3.51839 6.09404i −0.317243 0.549481i
\(124\) −4.28258 1.14751i −0.384587 0.103050i
\(125\) −3.27108 + 10.6911i −0.292574 + 0.956243i
\(126\) −0.196161 0.339761i −0.0174754 0.0302684i
\(127\) 11.2706 3.01994i 1.00010 0.267976i 0.278613 0.960403i \(-0.410125\pi\)
0.721488 + 0.692427i \(0.243459\pi\)
\(128\) −7.81784 4.51363i −0.691006 0.398953i
\(129\) 5.05420 0.444997
\(130\) 0 0
\(131\) 7.46380 0.652115 0.326058 0.945350i \(-0.394280\pi\)
0.326058 + 0.945350i \(0.394280\pi\)
\(132\) 10.4500 + 6.03333i 0.909559 + 0.525134i
\(133\) 0.755298 0.202381i 0.0654926 0.0175487i
\(134\) −0.191218 0.331199i −0.0165187 0.0286112i
\(135\) 12.3567 2.02997i 1.06349 0.174712i
\(136\) 21.1079 + 5.65584i 1.80998 + 0.484984i
\(137\) 9.24213 + 16.0078i 0.789608 + 1.36764i 0.926207 + 0.377015i \(0.123050\pi\)
−0.136599 + 0.990626i \(0.543617\pi\)
\(138\) 11.0411i 0.939879i
\(139\) 9.44862 5.45516i 0.801421 0.462701i −0.0425466 0.999094i \(-0.513547\pi\)
0.843968 + 0.536394i \(0.180214\pi\)
\(140\) −1.14939 + 0.519678i −0.0971413 + 0.0439208i
\(141\) 0.432327 0.115842i 0.0364085 0.00975562i
\(142\) 10.2557 + 10.2557i 0.860643 + 0.860643i
\(143\) 0 0
\(144\) 14.7207i 1.22672i
\(145\) 4.28825 + 9.48449i 0.356120 + 0.787644i
\(146\) −12.0063 + 20.7955i −0.993650 + 1.72105i
\(147\) −2.34553 + 8.75362i −0.193456 + 0.721987i
\(148\) −7.40562 −0.608738
\(149\) −3.60307 + 13.4468i −0.295175 + 1.10161i 0.645903 + 0.763419i \(0.276481\pi\)
−0.941078 + 0.338189i \(0.890186\pi\)
\(150\) −1.09648 17.1482i −0.0895272 1.40015i
\(151\) −8.49593 8.49593i −0.691389 0.691389i 0.271149 0.962537i \(-0.412596\pi\)
−0.962537 + 0.271149i \(0.912596\pi\)
\(152\) 53.8193 + 14.4208i 4.36532 + 1.16968i
\(153\) 0.931075 + 3.47482i 0.0752729 + 0.280922i
\(154\) −0.142763 0.532801i −0.0115042 0.0429343i
\(155\) −1.94830 + 0.320070i −0.156492 + 0.0257086i
\(156\) 0 0
\(157\) −5.14491 + 5.14491i −0.410609 + 0.410609i −0.881951 0.471342i \(-0.843770\pi\)
0.471342 + 0.881951i \(0.343770\pi\)
\(158\) 20.0970 34.8090i 1.59883 2.76926i
\(159\) 5.70484 + 3.29369i 0.452423 + 0.261207i
\(160\) −30.2328 3.00202i −2.39011 0.237331i
\(161\) −0.255227 + 0.255227i −0.0201147 + 0.0201147i
\(162\) −7.59474 + 4.38482i −0.596699 + 0.344504i
\(163\) −17.7686 + 10.2587i −1.39175 + 0.803526i −0.993509 0.113756i \(-0.963712\pi\)
−0.398239 + 0.917282i \(0.630379\pi\)
\(164\) −19.2636 + 19.2636i −1.50423 + 1.50423i
\(165\) 5.34730 + 0.530970i 0.416286 + 0.0413360i
\(166\) 19.5938 + 11.3125i 1.52078 + 0.878021i
\(167\) 1.27050 2.20058i 0.0983146 0.170286i −0.812673 0.582721i \(-0.801988\pi\)
0.910987 + 0.412435i \(0.135322\pi\)
\(168\) 0.824831 0.824831i 0.0636371 0.0636371i
\(169\) 0 0
\(170\) 15.9597 2.62187i 1.22405 0.201088i
\(171\) 2.37398 + 8.85983i 0.181543 + 0.677528i
\(172\) −5.06438 18.9005i −0.386155 1.44115i
\(173\) −0.0762079 0.0204199i −0.00579398 0.00155249i 0.255921 0.966698i \(-0.417621\pi\)
−0.261715 + 0.965145i \(0.584288\pi\)
\(174\) −11.3120 11.3120i −0.857560 0.857560i
\(175\) −0.371054 + 0.421747i −0.0280491 + 0.0318811i
\(176\) 5.35675 19.9916i 0.403780 1.50693i
\(177\) 1.66616 0.125236
\(178\) 0.390312 1.45666i 0.0292551 0.109182i
\(179\) 10.6120 18.3806i 0.793181 1.37383i −0.130808 0.991408i \(-0.541757\pi\)
0.923988 0.382421i \(-0.124910\pi\)
\(180\) −6.09595 13.4827i −0.454365 1.00494i
\(181\) 22.5267i 1.67440i −0.546899 0.837198i \(-0.684192\pi\)
0.546899 0.837198i \(-0.315808\pi\)
\(182\) 0 0
\(183\) −2.55229 2.55229i −0.188671 0.188671i
\(184\) −24.8430 + 6.65667i −1.83145 + 0.490737i
\(185\) −3.00503 + 1.35867i −0.220934 + 0.0998917i
\(186\) 2.62797 1.51726i 0.192692 0.111251i
\(187\) 5.05785i 0.369866i
\(188\) −0.866395 1.50064i −0.0631883 0.109445i
\(189\) 0.607727 + 0.162840i 0.0442056 + 0.0118449i
\(190\) 40.6927 6.68506i 2.95216 0.484985i
\(191\) −9.80326 16.9797i −0.709339 1.22861i −0.965103 0.261872i \(-0.915660\pi\)
0.255764 0.966739i \(-0.417673\pi\)
\(192\) 17.1156 4.58610i 1.23521 0.330974i
\(193\) −14.4730 8.35601i −1.04179 0.601479i −0.121451 0.992597i \(-0.538755\pi\)
−0.920340 + 0.391119i \(0.872088\pi\)
\(194\) 39.6521 2.84686
\(195\) 0 0
\(196\) 35.0850 2.50607
\(197\) −13.1517 7.59315i −0.937021 0.540990i −0.0479960 0.998848i \(-0.515283\pi\)
−0.889025 + 0.457858i \(0.848617\pi\)
\(198\) 6.24989 1.67465i 0.444160 0.119012i
\(199\) −6.97357 12.0786i −0.494343 0.856228i 0.505636 0.862747i \(-0.331258\pi\)
−0.999979 + 0.00651960i \(0.997925\pi\)
\(200\) −37.9234 + 12.8058i −2.68159 + 0.905508i
\(201\) 0.180811 + 0.0484483i 0.0127535 + 0.00341728i
\(202\) −11.0105 19.0707i −0.774696 1.34181i
\(203\) 0.522979i 0.0367059i
\(204\) −15.3951 + 8.88838i −1.07787 + 0.622311i
\(205\) −4.28253 + 11.3509i −0.299105 + 0.792783i
\(206\) −27.9776 + 7.49657i −1.94929 + 0.522311i
\(207\) −2.99388 2.99388i −0.208089 0.208089i
\(208\) 0 0
\(209\) 12.8961i 0.892044i
\(210\) 0.304759 0.807769i 0.0210304 0.0557414i
\(211\) 11.8091 20.4539i 0.812969 1.40810i −0.0978083 0.995205i \(-0.531183\pi\)
0.910777 0.412898i \(-0.135483\pi\)
\(212\) 6.60065 24.6340i 0.453335 1.69187i
\(213\) −7.09915 −0.486426
\(214\) 5.07776 18.9504i 0.347108 1.29543i
\(215\) −5.52260 6.74027i −0.376638 0.459682i
\(216\) 31.7007 + 31.7007i 2.15696 + 2.15696i
\(217\) −0.0958217 0.0256753i −0.00650480 0.00174296i
\(218\) 3.24467 + 12.1093i 0.219757 + 0.820143i
\(219\) −3.04201 11.3529i −0.205560 0.767159i
\(220\) −3.37247 20.5286i −0.227372 1.38404i
\(221\) 0 0
\(222\) 3.58405 3.58405i 0.240546 0.240546i
\(223\) −4.86319 + 8.42330i −0.325664 + 0.564066i −0.981646 0.190710i \(-0.938921\pi\)
0.655983 + 0.754776i \(0.272254\pi\)
\(224\) −1.32196 0.763236i −0.0883274 0.0509958i
\(225\) −4.94720 4.35256i −0.329813 0.290171i
\(226\) 11.4579 11.4579i 0.762168 0.762168i
\(227\) −7.94647 + 4.58790i −0.527426 + 0.304510i −0.739968 0.672642i \(-0.765159\pi\)
0.212542 + 0.977152i \(0.431826\pi\)
\(228\) −39.2534 + 22.6629i −2.59962 + 1.50089i
\(229\) 12.5270 12.5270i 0.827811 0.827811i −0.159403 0.987214i \(-0.550957\pi\)
0.987214 + 0.159403i \(0.0509569\pi\)
\(230\) −14.7244 + 12.0643i −0.970895 + 0.795498i
\(231\) 0.233817 + 0.134994i 0.0153840 + 0.00888197i
\(232\) −18.6326 + 32.2726i −1.22329 + 2.11880i
\(233\) −11.8637 + 11.8637i −0.777214 + 0.777214i −0.979356 0.202142i \(-0.935210\pi\)
0.202142 + 0.979356i \(0.435210\pi\)
\(234\) 0 0
\(235\) −0.626879 0.449972i −0.0408931 0.0293530i
\(236\) −1.66952 6.23072i −0.108676 0.405585i
\(237\) 5.09192 + 19.0033i 0.330756 + 1.23440i
\(238\) 0.784929 + 0.210321i 0.0508794 + 0.0136331i
\(239\) −18.2161 18.2161i −1.17830 1.17830i −0.980177 0.198124i \(-0.936515\pi\)
−0.198124 0.980177i \(-0.563485\pi\)
\(240\) 25.0576 20.5308i 1.61746 1.32526i
\(241\) 1.41585 5.28403i 0.0912030 0.340374i −0.905213 0.424957i \(-0.860289\pi\)
0.996416 + 0.0845830i \(0.0269558\pi\)
\(242\) −20.0501 −1.28887
\(243\) −3.23730 + 12.0818i −0.207673 + 0.775046i
\(244\) −6.98703 + 12.1019i −0.447299 + 0.774744i
\(245\) 14.2367 6.43688i 0.909550 0.411237i
\(246\) 18.6458i 1.18881i
\(247\) 0 0
\(248\) −4.99833 4.99833i −0.317394 0.317394i
\(249\) −10.6969 + 2.86622i −0.677887 + 0.181639i
\(250\) −21.6707 + 20.1997i −1.37058 + 1.27754i
\(251\) −11.3169 + 6.53384i −0.714319 + 0.412412i −0.812658 0.582741i \(-0.801980\pi\)
0.0983394 + 0.995153i \(0.468647\pi\)
\(252\) 0.743439i 0.0468322i
\(253\) −2.97643 5.15533i −0.187127 0.324113i
\(254\) 29.8642 + 8.00209i 1.87385 + 0.502096i
\(255\) −4.61629 + 6.43118i −0.289083 + 0.402736i
\(256\) 1.70209 + 2.94811i 0.106381 + 0.184257i
\(257\) −16.8541 + 4.51603i −1.05133 + 0.281702i −0.742800 0.669513i \(-0.766503\pi\)
−0.308528 + 0.951215i \(0.599836\pi\)
\(258\) 11.5981 + 6.69619i 0.722069 + 0.416887i
\(259\) −0.165699 −0.0102960
\(260\) 0 0
\(261\) −6.13467 −0.379727
\(262\) 17.1276 + 9.88862i 1.05815 + 0.610921i
\(263\) −20.1379 + 5.39593i −1.24175 + 0.332727i −0.819146 0.573585i \(-0.805552\pi\)
−0.422608 + 0.906312i \(0.638885\pi\)
\(264\) 9.61911 + 16.6608i 0.592015 + 1.02540i
\(265\) −1.84108 11.2069i −0.113097 0.688434i
\(266\) 2.00135 + 0.536261i 0.122711 + 0.0328803i
\(267\) 0.369071 + 0.639249i 0.0225868 + 0.0391214i
\(268\) 0.724703i 0.0442683i
\(269\) 9.15088 5.28326i 0.557939 0.322126i −0.194379 0.980927i \(-0.562269\pi\)
0.752318 + 0.658800i \(0.228936\pi\)
\(270\) 31.0450 + 11.7128i 1.88934 + 0.712818i
\(271\) 7.64095 2.04739i 0.464155 0.124370i −0.0191601 0.999816i \(-0.506099\pi\)
0.483315 + 0.875446i \(0.339433\pi\)
\(272\) 21.5603 + 21.5603i 1.30729 + 1.30729i
\(273\) 0 0
\(274\) 48.9787i 2.95891i
\(275\) −5.13476 7.71132i −0.309638 0.465010i
\(276\) 10.4612 18.1194i 0.629693 1.09066i
\(277\) −2.64361 + 9.86609i −0.158839 + 0.592796i 0.839907 + 0.542731i \(0.182610\pi\)
−0.998746 + 0.0500653i \(0.984057\pi\)
\(278\) 28.9097 1.73389
\(279\) 0.301178 1.12401i 0.0180311 0.0672929i
\(280\) −2.00127 0.198720i −0.119598 0.0118758i
\(281\) 12.4763 + 12.4763i 0.744271 + 0.744271i 0.973397 0.229126i \(-0.0735867\pi\)
−0.229126 + 0.973397i \(0.573587\pi\)
\(282\) 1.14556 + 0.306952i 0.0682171 + 0.0182787i
\(283\) 2.13952 + 7.98478i 0.127181 + 0.474646i 0.999908 0.0135626i \(-0.00431723\pi\)
−0.872727 + 0.488208i \(0.837651\pi\)
\(284\) 7.11345 + 26.5478i 0.422105 + 1.57532i
\(285\) −11.7703 + 16.3977i −0.697210 + 0.971318i
\(286\) 0 0
\(287\) −0.431018 + 0.431018i −0.0254422 + 0.0254422i
\(288\) 8.95295 15.5070i 0.527557 0.913756i
\(289\) 8.26943 + 4.77436i 0.486437 + 0.280844i
\(290\) −2.72530 + 27.4460i −0.160035 + 1.61168i
\(291\) −13.7238 + 13.7238i −0.804506 + 0.804506i
\(292\) −39.4069 + 22.7516i −2.30611 + 1.33144i
\(293\) 5.52378 3.18916i 0.322703 0.186313i −0.329894 0.944018i \(-0.607013\pi\)
0.652597 + 0.757705i \(0.273680\pi\)
\(294\) −16.9799 + 16.9799i −0.990287 + 0.990287i
\(295\) −1.82057 2.22199i −0.105998 0.129369i
\(296\) −10.2251 5.90349i −0.594325 0.343133i
\(297\) −5.18823 + 8.98628i −0.301052 + 0.521437i
\(298\) −26.0836 + 26.0836i −1.51098 + 1.51098i
\(299\) 0 0
\(300\) 14.4483 29.1807i 0.834170 1.68475i
\(301\) −0.113314 0.422894i −0.00653132 0.0243752i
\(302\) −8.24001 30.7521i −0.474159 1.76959i
\(303\) 10.4113 + 2.78970i 0.598114 + 0.160264i
\(304\) 54.9729 + 54.9729i 3.15291 + 3.15291i
\(305\) −0.614902 + 6.19255i −0.0352092 + 0.354584i
\(306\) −2.46712 + 9.20741i −0.141036 + 0.526353i
\(307\) −26.5460 −1.51506 −0.757530 0.652801i \(-0.773594\pi\)
−0.757530 + 0.652801i \(0.773594\pi\)
\(308\) 0.270532 1.00964i 0.0154150 0.0575296i
\(309\) 7.08860 12.2778i 0.403256 0.698460i
\(310\) −4.89494 1.84678i −0.278014 0.104890i
\(311\) 3.54417i 0.200972i −0.994938 0.100486i \(-0.967960\pi\)
0.994938 0.100486i \(-0.0320397\pi\)
\(312\) 0 0
\(313\) −6.21088 6.21088i −0.351060 0.351060i 0.509444 0.860504i \(-0.329851\pi\)
−0.860504 + 0.509444i \(0.829851\pi\)
\(314\) −18.6227 + 4.98993i −1.05094 + 0.281598i
\(315\) −0.136395 0.301671i −0.00768500 0.0169972i
\(316\) 65.9619 38.0831i 3.71065 2.14234i
\(317\) 8.52812i 0.478987i 0.970898 + 0.239494i \(0.0769814\pi\)
−0.970898 + 0.239494i \(0.923019\pi\)
\(318\) 8.72748 + 15.1164i 0.489413 + 0.847688i
\(319\) −8.33129 2.23236i −0.466463 0.124988i
\(320\) −24.8178 17.8142i −1.38736 0.995842i
\(321\) 4.80142 + 8.31631i 0.267989 + 0.464171i
\(322\) −0.923827 + 0.247539i −0.0514829 + 0.0137948i
\(323\) −16.4534 9.49937i −0.915491 0.528559i
\(324\) −16.6182 −0.923233
\(325\) 0 0
\(326\) −54.3663 −3.01107
\(327\) −5.31409 3.06809i −0.293870 0.169666i
\(328\) −41.9540 + 11.2415i −2.31652 + 0.620710i
\(329\) −0.0193853 0.0335764i −0.00106875 0.00185113i
\(330\) 11.5673 + 8.30296i 0.636757 + 0.457063i
\(331\) −17.3934 4.66054i −0.956026 0.256166i −0.253109 0.967438i \(-0.581453\pi\)
−0.702917 + 0.711271i \(0.748120\pi\)
\(332\) 21.4368 + 37.1297i 1.17650 + 2.03776i
\(333\) 1.94369i 0.106513i
\(334\) 5.83099 3.36652i 0.319058 0.184208i
\(335\) −0.132958 0.294068i −0.00726426 0.0160666i
\(336\) 1.57215 0.421256i 0.0857677 0.0229814i
\(337\) −20.0865 20.0865i −1.09418 1.09418i −0.995077 0.0991030i \(-0.968403\pi\)
−0.0991030 0.995077i \(-0.531597\pi\)
\(338\) 0 0
\(339\) 7.93129i 0.430769i
\(340\) 28.6754 + 10.8188i 1.55514 + 0.586731i
\(341\) 0.818040 1.41689i 0.0442994 0.0767288i
\(342\) −6.29048 + 23.4764i −0.340150 + 1.26946i
\(343\) 1.57145 0.0848505
\(344\) 8.07428 30.1336i 0.435336 1.62470i
\(345\) 0.920654 9.27172i 0.0495663 0.499173i
\(346\) −0.147825 0.147825i −0.00794710 0.00794710i
\(347\) 6.93201 + 1.85743i 0.372130 + 0.0997119i 0.440037 0.897980i \(-0.354965\pi\)
−0.0679068 + 0.997692i \(0.521632\pi\)
\(348\) −7.84607 29.2819i −0.420593 1.56968i
\(349\) −0.945552 3.52885i −0.0506143 0.188895i 0.935990 0.352026i \(-0.114507\pi\)
−0.986604 + 0.163131i \(0.947841\pi\)
\(350\) −1.41024 + 0.476204i −0.0753806 + 0.0254542i
\(351\) 0 0
\(352\) 17.8016 17.8016i 0.948827 0.948827i
\(353\) −0.881628 + 1.52702i −0.0469243 + 0.0812753i −0.888534 0.458812i \(-0.848275\pi\)
0.841609 + 0.540087i \(0.181609\pi\)
\(354\) 3.82343 + 2.20746i 0.203213 + 0.117325i
\(355\) 7.75707 + 9.46741i 0.411702 + 0.502478i
\(356\) 2.02070 2.02070i 0.107097 0.107097i
\(357\) −0.344462 + 0.198875i −0.0182309 + 0.0105256i
\(358\) 48.7040 28.1193i 2.57409 1.48615i
\(359\) 8.58021 8.58021i 0.452846 0.452846i −0.443452 0.896298i \(-0.646246\pi\)
0.896298 + 0.443452i \(0.146246\pi\)
\(360\) 2.33103 23.4753i 0.122856 1.23726i
\(361\) −25.4972 14.7208i −1.34196 0.774778i
\(362\) 29.8451 51.6933i 1.56862 2.71694i
\(363\) 6.93947 6.93947i 0.364228 0.364228i
\(364\) 0 0
\(365\) −11.8163 + 16.4619i −0.618493 + 0.861654i
\(366\) −2.47541 9.23835i −0.129392 0.482896i
\(367\) −3.62635 13.5337i −0.189294 0.706454i −0.993670 0.112334i \(-0.964167\pi\)
0.804377 0.594120i \(-0.202499\pi\)
\(368\) −34.6637 9.28811i −1.80697 0.484176i
\(369\) −5.05594 5.05594i −0.263202 0.263202i
\(370\) −8.69589 0.863475i −0.452078 0.0448900i
\(371\) 0.147688 0.551179i 0.00766757 0.0286158i
\(372\) 5.75032 0.298140
\(373\) −7.47789 + 27.9078i −0.387190 + 1.44501i 0.447495 + 0.894286i \(0.352316\pi\)
−0.834685 + 0.550727i \(0.814350\pi\)
\(374\) −6.70103 + 11.6065i −0.346502 + 0.600159i
\(375\) 0.509129 14.4916i 0.0262913 0.748344i
\(376\) 2.76263i 0.142472i
\(377\) 0 0
\(378\) 1.17884 + 1.17884i 0.0606330 + 0.0606330i
\(379\) −9.15390 + 2.45278i −0.470204 + 0.125991i −0.486138 0.873882i \(-0.661595\pi\)
0.0159336 + 0.999873i \(0.494928\pi\)
\(380\) 73.1144 + 27.5849i 3.75069 + 1.41508i
\(381\) −13.1058 + 7.56661i −0.671428 + 0.387649i
\(382\) 51.9525i 2.65812i
\(383\) 10.5361 + 18.2490i 0.538369 + 0.932483i 0.998992 + 0.0448868i \(0.0142927\pi\)
−0.460623 + 0.887596i \(0.652374\pi\)
\(384\) 11.3091 + 3.03028i 0.577118 + 0.154638i
\(385\) −0.0754581 0.459322i −0.00384570 0.0234092i
\(386\) −22.1414 38.3500i −1.12697 1.95196i
\(387\) 4.96065 1.32920i 0.252164 0.0675672i
\(388\) 65.0727 + 37.5698i 3.30357 + 1.90732i
\(389\) 0.0604806 0.00306649 0.00153324 0.999999i \(-0.499512\pi\)
0.00153324 + 0.999999i \(0.499512\pi\)
\(390\) 0 0
\(391\) 8.76984 0.443510
\(392\) 48.4429 + 27.9685i 2.44673 + 1.41262i
\(393\) −9.35047 + 2.50545i −0.471669 + 0.126383i
\(394\) −20.1200 34.8488i −1.01363 1.75566i
\(395\) 19.7789 27.5550i 0.995186 1.38644i
\(396\) 11.8433 + 3.17341i 0.595150 + 0.159470i
\(397\) −4.10812 7.11548i −0.206181 0.357116i 0.744327 0.667815i \(-0.232770\pi\)
−0.950508 + 0.310699i \(0.899437\pi\)
\(398\) 36.9565i 1.85246i
\(399\) −0.878284 + 0.507077i −0.0439692 + 0.0253856i
\(400\) −54.7596 10.9832i −2.73798 0.549161i
\(401\) 8.69210 2.32904i 0.434063 0.116307i −0.0351698 0.999381i \(-0.511197\pi\)
0.469233 + 0.883075i \(0.344531\pi\)
\(402\) 0.350730 + 0.350730i 0.0174928 + 0.0174928i
\(403\) 0 0
\(404\) 41.7291i 2.07610i
\(405\) −6.74329 + 3.04886i −0.335077 + 0.151499i
\(406\) −0.692882 + 1.20011i −0.0343872 + 0.0595603i
\(407\) 0.707294 2.63966i 0.0350593 0.130843i
\(408\) −28.3420 −1.40314
\(409\) −9.27138 + 34.6013i −0.458440 + 1.71092i 0.219332 + 0.975650i \(0.429612\pi\)
−0.677772 + 0.735272i \(0.737054\pi\)
\(410\) −24.8659 + 20.3738i −1.22804 + 1.00619i
\(411\) −16.9518 16.9518i −0.836173 0.836173i
\(412\) −53.0166 14.2058i −2.61194 0.699867i
\(413\) −0.0373550 0.139411i −0.00183812 0.00685995i
\(414\) −2.90369 10.8367i −0.142709 0.532596i
\(415\) 15.5106 + 11.1335i 0.761385 + 0.546521i
\(416\) 0 0
\(417\) −10.0058 + 10.0058i −0.489987 + 0.489987i
\(418\) −17.0858 + 29.5934i −0.835693 + 1.44746i
\(419\) 11.3282 + 6.54037i 0.553421 + 0.319518i 0.750501 0.660870i \(-0.229812\pi\)
−0.197080 + 0.980387i \(0.563146\pi\)
\(420\) 1.26548 1.03687i 0.0617493 0.0505940i
\(421\) −13.7924 + 13.7924i −0.672203 + 0.672203i −0.958223 0.286021i \(-0.907667\pi\)
0.286021 + 0.958223i \(0.407667\pi\)
\(422\) 54.1978 31.2911i 2.63831 1.52323i
\(423\) 0.393860 0.227395i 0.0191501 0.0110563i
\(424\) 28.7510 28.7510i 1.39627 1.39627i
\(425\) 13.6207 0.870925i 0.660701 0.0422461i
\(426\) −16.2908 9.40550i −0.789292 0.455698i
\(427\) −0.156333 + 0.270777i −0.00756548 + 0.0131038i
\(428\) 26.2883 26.2883i 1.27069 1.27069i
\(429\) 0 0
\(430\) −3.74299 22.7840i −0.180503 1.09874i
\(431\) −5.75070 21.4619i −0.277002 1.03378i −0.954488 0.298249i \(-0.903597\pi\)
0.677487 0.735535i \(-0.263069\pi\)
\(432\) 16.1901 + 60.4224i 0.778948 + 2.90707i
\(433\) −0.177294 0.0475058i −0.00852021 0.00228298i 0.254556 0.967058i \(-0.418071\pi\)
−0.263077 + 0.964775i \(0.584737\pi\)
\(434\) −0.185871 0.185871i −0.00892207 0.00892207i
\(435\) −8.55597 10.4425i −0.410228 0.500678i
\(436\) −6.14854 + 22.9467i −0.294462 + 1.09895i
\(437\) 22.3607 1.06966
\(438\) 8.06057 30.0825i 0.385149 1.43740i
\(439\) −8.64682 + 14.9767i −0.412690 + 0.714800i −0.995183 0.0980356i \(-0.968744\pi\)
0.582493 + 0.812836i \(0.302077\pi\)
\(440\) 11.7082 31.0328i 0.558167 1.47943i
\(441\) 9.20846i 0.438498i
\(442\) 0 0
\(443\) 24.4472 + 24.4472i 1.16152 + 1.16152i 0.984143 + 0.177377i \(0.0567611\pi\)
0.177377 + 0.984143i \(0.443239\pi\)
\(444\) 9.27758 2.48592i 0.440295 0.117977i
\(445\) 0.449226 1.19068i 0.0212954 0.0564438i
\(446\) −22.3197 + 12.8863i −1.05687 + 0.610183i
\(447\) 18.0554i 0.853989i
\(448\) −0.767456 1.32927i −0.0362589 0.0628022i
\(449\) −35.9175 9.62407i −1.69505 0.454188i −0.723366 0.690465i \(-0.757406\pi\)
−0.971686 + 0.236277i \(0.924073\pi\)
\(450\) −5.58600 16.5425i −0.263326 0.779820i
\(451\) −5.02649 8.70613i −0.236688 0.409956i
\(452\) 29.6596 7.94727i 1.39507 0.373808i
\(453\) 13.4954 + 7.79158i 0.634070 + 0.366080i
\(454\) −24.3136 −1.14109
\(455\) 0 0
\(456\) −72.2643 −3.38409
\(457\) 8.16394 + 4.71345i 0.381893 + 0.220486i 0.678642 0.734470i \(-0.262569\pi\)
−0.296749 + 0.954956i \(0.595902\pi\)
\(458\) 45.3433 12.1497i 2.11875 0.567718i
\(459\) −7.64337 13.2387i −0.356762 0.617930i
\(460\) −35.5947 + 5.84755i −1.65961 + 0.272643i
\(461\) 31.7653 + 8.51149i 1.47946 + 0.396419i 0.906162 0.422930i \(-0.138998\pi\)
0.573295 + 0.819349i \(0.305665\pi\)
\(462\) 0.357701 + 0.619557i 0.0166418 + 0.0288244i
\(463\) 18.6729i 0.867805i 0.900960 + 0.433903i \(0.142864\pi\)
−0.900960 + 0.433903i \(0.857136\pi\)
\(464\) −45.0302 + 25.9982i −2.09047 + 1.20694i
\(465\) 2.33335 1.05498i 0.108206 0.0489237i
\(466\) −42.9421 + 11.5063i −1.98925 + 0.533019i
\(467\) −12.1678 12.1678i −0.563057 0.563057i 0.367118 0.930175i \(-0.380345\pi\)
−0.930175 + 0.367118i \(0.880345\pi\)
\(468\) 0 0
\(469\) 0.0162150i 0.000748740i
\(470\) −0.842375 1.86311i −0.0388559 0.0859390i
\(471\) 4.71838 8.17247i 0.217411 0.376568i
\(472\) 2.66176 9.93381i 0.122517 0.457241i
\(473\) 7.22059 0.332003
\(474\) −13.4923 + 50.3541i −0.619723 + 2.31284i
\(475\) 34.7291 2.22062i 1.59348 0.101889i
\(476\) 1.08886 + 1.08886i 0.0499080 + 0.0499080i
\(477\) 6.46546 + 1.73242i 0.296033 + 0.0793219i
\(478\) −17.6674 65.9355i −0.808087 3.01582i
\(479\) 8.53158 + 31.8403i 0.389818 + 1.45482i 0.830430 + 0.557123i \(0.188095\pi\)
−0.440612 + 0.897697i \(0.645239\pi\)
\(480\) 38.8826 6.38768i 1.77474 0.291557i
\(481\) 0 0
\(482\) 10.2497 10.2497i 0.466862 0.466862i
\(483\) 0.234068 0.405417i 0.0106504 0.0184471i
\(484\) −32.9041 18.9972i −1.49564 0.863508i
\(485\) 33.2978 + 3.30637i 1.51197 + 0.150134i
\(486\) −23.4357 + 23.4357i −1.06306 + 1.06306i
\(487\) −28.5670 + 16.4931i −1.29449 + 0.747376i −0.979447 0.201701i \(-0.935353\pi\)
−0.315045 + 0.949077i \(0.602020\pi\)
\(488\) −19.2944 + 11.1396i −0.873415 + 0.504267i
\(489\) 18.8165 18.8165i 0.850911 0.850911i
\(490\) 41.1978 + 4.09082i 1.86113 + 0.184804i
\(491\) 18.4427 + 10.6479i 0.832307 + 0.480533i 0.854642 0.519218i \(-0.173777\pi\)
−0.0223350 + 0.999751i \(0.507110\pi\)
\(492\) 17.6666 30.5994i 0.796470 1.37953i
\(493\) 8.98502 8.98502i 0.404665 0.404665i
\(494\) 0 0
\(495\) 5.38797 0.885142i 0.242171 0.0397842i
\(496\) −2.55273 9.52693i −0.114621 0.427772i
\(497\) 0.159161 + 0.593999i 0.00713937 + 0.0266445i
\(498\) −28.3441 7.59477i −1.27013 0.340330i
\(499\) −14.9199 14.9199i −0.667904 0.667904i 0.289326 0.957231i \(-0.406569\pi\)
−0.957231 + 0.289326i \(0.906569\pi\)
\(500\) −54.7025 + 12.6169i −2.44637 + 0.564244i
\(501\) −0.852967 + 3.18332i −0.0381077 + 0.142220i
\(502\) −34.6261 −1.54544
\(503\) 11.3059 42.1943i 0.504106 1.88135i 0.0326345 0.999467i \(-0.489610\pi\)
0.471471 0.881881i \(-0.343723\pi\)
\(504\) 0.592643 1.02649i 0.0263984 0.0457234i
\(505\) −7.65584 16.9327i −0.340680 0.753496i
\(506\) 15.7736i 0.701224i
\(507\) 0 0
\(508\) 41.4280 + 41.4280i 1.83807 + 1.83807i
\(509\) 36.0898 9.67023i 1.59965 0.428626i 0.654715 0.755876i \(-0.272789\pi\)
0.944938 + 0.327250i \(0.106122\pi\)
\(510\) −19.1138 + 8.64196i −0.846372 + 0.382673i
\(511\) −0.881719 + 0.509060i −0.0390049 + 0.0225195i
\(512\) 27.0748i 1.19655i
\(513\) −19.4885 33.7551i −0.860438 1.49032i
\(514\) −44.6591 11.9664i −1.96983 0.527814i
\(515\) −24.1192 + 3.96233i −1.06282 + 0.174601i
\(516\) 12.6891 + 21.9781i 0.558605 + 0.967533i
\(517\) 0.617635 0.165495i 0.0271636 0.00727846i
\(518\) −0.380238 0.219530i −0.0167067 0.00964562i
\(519\) 0.102326 0.00449161
\(520\) 0 0
\(521\) −35.6853 −1.56340 −0.781701 0.623653i \(-0.785648\pi\)
−0.781701 + 0.623653i \(0.785648\pi\)
\(522\) −14.0776 8.12768i −0.616158 0.355739i
\(523\) 4.16849 1.11694i 0.182275 0.0488406i −0.166527 0.986037i \(-0.553255\pi\)
0.348802 + 0.937196i \(0.386589\pi\)
\(524\) 18.7386 + 32.4562i 0.818600 + 1.41786i
\(525\) 0.323276 0.652910i 0.0141089 0.0284953i
\(526\) −53.3604 14.2979i −2.32662 0.623417i
\(527\) 1.20515 + 2.08738i 0.0524971 + 0.0909276i
\(528\) 26.8432i 1.16820i
\(529\) 10.9797 6.33914i 0.477379 0.275615i
\(530\) 10.6229 28.1563i 0.461431 1.22303i
\(531\) 1.63532 0.438183i 0.0709670 0.0190155i
\(532\) 2.77630 + 2.77630i 0.120368 + 0.120368i
\(533\) 0 0
\(534\) 1.95589i 0.0846398i
\(535\) 5.84421 15.4902i 0.252667 0.669699i
\(536\) 0.577707 1.00062i 0.0249531 0.0432201i
\(537\) −7.12450 + 26.5890i −0.307445 + 1.14740i
\(538\) 27.9987 1.20711
\(539\) −3.35089 + 12.5057i −0.144333 + 0.538659i
\(540\) 39.8500 + 48.6364i 1.71487 + 2.09298i
\(541\) −5.42748 5.42748i −0.233345 0.233345i 0.580742 0.814088i \(-0.302762\pi\)
−0.814088 + 0.580742i \(0.802762\pi\)
\(542\) 20.2467 + 5.42507i 0.869668 + 0.233027i
\(543\) 7.56177 + 28.2209i 0.324507 + 1.21108i
\(544\) 9.59920 + 35.8247i 0.411563 + 1.53597i
\(545\) 1.71498 + 10.4393i 0.0734616 + 0.447170i
\(546\) 0 0
\(547\) 11.6940 11.6940i 0.500000 0.500000i −0.411438 0.911438i \(-0.634973\pi\)
0.911438 + 0.411438i \(0.134973\pi\)
\(548\) −46.4066 + 80.3785i −1.98239 + 3.43360i
\(549\) −3.17628 1.83382i −0.135560 0.0782657i
\(550\) −1.56647 24.4985i −0.0667943 1.04462i
\(551\) 22.9093 22.9093i 0.975971 0.975971i
\(552\) 28.8883 16.6786i 1.22957 0.709890i
\(553\) 1.47588 0.852100i 0.0627608 0.0362350i
\(554\) −19.1378 + 19.1378i −0.813087 + 0.813087i
\(555\) 3.30855 2.71085i 0.140440 0.115069i
\(556\) 47.4434 + 27.3915i 2.01205 + 1.16166i
\(557\) 2.43751 4.22190i 0.103281 0.178888i −0.809754 0.586770i \(-0.800399\pi\)
0.913034 + 0.407882i \(0.133733\pi\)
\(558\) 2.18031 2.18031i 0.0922998 0.0922998i
\(559\) 0 0
\(560\) −2.27963 1.63632i −0.0963321 0.0691470i
\(561\) −1.69782 6.33635i −0.0716820 0.267521i
\(562\) 12.1004 + 45.1595i 0.510426 + 1.90494i
\(563\) 37.6390 + 10.0853i 1.58630 + 0.425047i 0.940868 0.338774i \(-0.110012\pi\)
0.645428 + 0.763821i \(0.276679\pi\)
\(564\) 1.58913 + 1.58913i 0.0669146 + 0.0669146i
\(565\) 10.5772 8.66633i 0.444984 0.364595i
\(566\) −5.66919 + 21.1577i −0.238294 + 0.889325i
\(567\) −0.371828 −0.0156153
\(568\) −11.3412 + 42.3258i −0.475865 + 1.77595i
\(569\) 1.84104 3.18877i 0.0771804 0.133680i −0.824852 0.565349i \(-0.808742\pi\)
0.902032 + 0.431668i \(0.142075\pi\)
\(570\) −48.7349 + 22.0346i −2.04128 + 0.922929i
\(571\) 2.96698i 0.124164i −0.998071 0.0620821i \(-0.980226\pi\)
0.998071 0.0620821i \(-0.0197741\pi\)
\(572\) 0 0
\(573\) 17.9811 + 17.9811i 0.751170 + 0.751170i
\(574\) −1.56012 + 0.418034i −0.0651184 + 0.0174484i
\(575\) −13.3707 + 8.90320i −0.557598 + 0.371289i
\(576\) 15.5927 9.00245i 0.649696 0.375102i
\(577\) 35.0533i 1.45929i 0.683827 + 0.729644i \(0.260314\pi\)
−0.683827 + 0.729644i \(0.739686\pi\)
\(578\) 12.6509 + 21.9120i 0.526207 + 0.911417i
\(579\) 20.9364 + 5.60990i 0.870088 + 0.233139i
\(580\) −30.4771 + 42.4591i −1.26549 + 1.76302i
\(581\) 0.479643 + 0.830767i 0.0198990 + 0.0344660i
\(582\) −49.6753 + 13.3104i −2.05911 + 0.551736i
\(583\) 8.15012 + 4.70547i 0.337543 + 0.194881i
\(584\) −72.5469 −3.00201
\(585\) 0 0
\(586\) 16.9010 0.698173
\(587\) 6.10926 + 3.52719i 0.252156 + 0.145583i 0.620751 0.784008i \(-0.286828\pi\)
−0.368595 + 0.929590i \(0.620161\pi\)
\(588\) −43.9537 + 11.7774i −1.81262 + 0.485690i
\(589\) 3.07280 + 5.32224i 0.126612 + 0.219299i
\(590\) −1.23391 7.51095i −0.0507992 0.309221i
\(591\) 19.0250 + 5.09774i 0.782585 + 0.209693i
\(592\) −8.23718 14.2672i −0.338546 0.586379i
\(593\) 40.0169i 1.64330i 0.569993 + 0.821649i \(0.306946\pi\)
−0.569993 + 0.821649i \(0.693054\pi\)
\(594\) −23.8114 + 13.7475i −0.976995 + 0.564068i
\(595\) 0.641605 + 0.242067i 0.0263032 + 0.00992380i
\(596\) −67.5192 + 18.0917i −2.76570 + 0.741066i
\(597\) 12.7909 + 12.7909i 0.523495 + 0.523495i
\(598\) 0 0
\(599\) 13.9207i 0.568784i −0.958708 0.284392i \(-0.908208\pi\)
0.958708 0.284392i \(-0.0917918\pi\)
\(600\) 43.2109 28.7730i 1.76408 1.17465i
\(601\) 1.15689 2.00379i 0.0471906 0.0817365i −0.841465 0.540311i \(-0.818307\pi\)
0.888656 + 0.458575i \(0.151640\pi\)
\(602\) 0.300255 1.12057i 0.0122375 0.0456708i
\(603\) 0.190206 0.00774580
\(604\) 15.6145 58.2743i 0.635347 2.37115i
\(605\) −16.8371 1.67187i −0.684524 0.0679711i
\(606\) 20.1954 + 20.1954i 0.820381 + 0.820381i
\(607\) −22.7965 6.10830i −0.925282 0.247928i −0.235440 0.971889i \(-0.575653\pi\)
−0.689842 + 0.723960i \(0.742320\pi\)
\(608\) 24.4753 + 91.3432i 0.992606 + 3.70446i
\(609\) −0.175554 0.655175i −0.00711379 0.0265490i
\(610\) −9.61542 + 13.3957i −0.389317 + 0.542377i
\(611\) 0 0
\(612\) −12.7726 + 12.7726i −0.516303 + 0.516303i
\(613\) 5.32964 9.23121i 0.215262 0.372845i −0.738091 0.674701i \(-0.764273\pi\)
0.953354 + 0.301856i \(0.0976060\pi\)
\(614\) −60.9165 35.1702i −2.45839 1.41935i
\(615\) 1.55477 15.6577i 0.0626942 0.631381i
\(616\) 1.17838 1.17838i 0.0474783 0.0474783i
\(617\) 11.8892 6.86421i 0.478639 0.276343i −0.241210 0.970473i \(-0.577544\pi\)
0.719849 + 0.694130i \(0.244211\pi\)
\(618\) 32.5332 18.7830i 1.30868 0.755565i
\(619\) 16.8604 16.8604i 0.677679 0.677679i −0.281796 0.959474i \(-0.590930\pi\)
0.959474 + 0.281796i \(0.0909301\pi\)
\(620\) −6.28323 7.66861i −0.252341 0.307979i
\(621\) 15.5814 + 8.99592i 0.625260 + 0.360994i
\(622\) 4.69560 8.13301i 0.188276 0.326104i
\(623\) 0.0452127 0.0452127i 0.00181141 0.00181141i
\(624\) 0 0
\(625\) −19.8823 + 15.1557i −0.795292 + 0.606227i
\(626\) −6.02379 22.4811i −0.240759 0.898526i
\(627\) −4.32898 16.1560i −0.172883 0.645207i
\(628\) −35.2894 9.45576i −1.40820 0.377326i
\(629\) 2.84678 + 2.84678i 0.113509 + 0.113509i
\(630\) 0.0866830 0.872967i 0.00345353 0.0347798i
\(631\) −7.91879 + 29.5533i −0.315242 + 1.17650i 0.608522 + 0.793537i \(0.291763\pi\)
−0.923764 + 0.382962i \(0.874904\pi\)
\(632\) 121.434 4.83038
\(633\) −7.92814 + 29.5882i −0.315115 + 1.17603i
\(634\) −11.2987 + 19.5700i −0.448729 + 0.777222i
\(635\) 24.4112 + 9.20995i 0.968727 + 0.365486i
\(636\) 33.0766i 1.31157i
\(637\) 0 0
\(638\) −16.1607 16.1607i −0.639807 0.639807i
\(639\) −6.96776 + 1.86700i −0.275640 + 0.0738576i
\(640\) −8.31606 18.3930i −0.328721 0.727046i
\(641\) 13.2495 7.64957i 0.523322 0.302140i −0.214971 0.976620i \(-0.568966\pi\)
0.738293 + 0.674480i \(0.235632\pi\)
\(642\) 25.4452i 1.00424i
\(643\) −11.1740 19.3539i −0.440660 0.763245i 0.557079 0.830460i \(-0.311922\pi\)
−0.997739 + 0.0672147i \(0.978589\pi\)
\(644\) −1.75062 0.469078i −0.0689842 0.0184843i
\(645\) 9.18116 + 6.59022i 0.361508 + 0.259490i
\(646\) −25.1710 43.5974i −0.990340 1.71532i
\(647\) −4.51668 + 1.21024i −0.177569 + 0.0475795i −0.346508 0.938047i \(-0.612633\pi\)
0.168939 + 0.985627i \(0.445966\pi\)
\(648\) −22.9452 13.2474i −0.901373 0.520408i
\(649\) 2.38033 0.0934361
\(650\) 0 0
\(651\) 0.128662 0.00504265
\(652\) −89.2199 51.5111i −3.49412 2.01733i
\(653\) −23.6714 + 6.34274i −0.926335 + 0.248211i −0.690291 0.723532i \(-0.742518\pi\)
−0.236044 + 0.971742i \(0.575851\pi\)
\(654\) −8.12969 14.0810i −0.317896 0.550612i
\(655\) 13.5583 + 9.73212i 0.529766 + 0.380265i
\(656\) −58.5387 15.6854i −2.28555 0.612412i
\(657\) −5.97141 10.3428i −0.232967 0.403510i
\(658\) 0.102733i 0.00400494i
\(659\) −35.2803 + 20.3691i −1.37433 + 0.793467i −0.991469 0.130341i \(-0.958393\pi\)
−0.382856 + 0.923808i \(0.625059\pi\)
\(660\) 11.1160 + 24.5857i 0.432690 + 0.956997i
\(661\) −16.5152 + 4.42523i −0.642367 + 0.172122i −0.565275 0.824902i \(-0.691230\pi\)
−0.0770916 + 0.997024i \(0.524563\pi\)
\(662\) −33.7389 33.7389i −1.31130 1.31130i
\(663\) 0 0
\(664\) 68.3547i 2.65268i
\(665\) 1.63592 + 0.617206i 0.0634381 + 0.0239342i
\(666\) 2.57515 4.46029i 0.0997850 0.172833i
\(667\) −3.87071 + 14.4457i −0.149875 + 0.559340i
\(668\) 12.7589 0.493657
\(669\) 3.26496 12.1850i 0.126231 0.471099i
\(670\) 0.0844984 0.850967i 0.00326446 0.0328757i
\(671\) −3.64628 3.64628i −0.140763 0.140763i
\(672\) 1.91233 + 0.512407i 0.0737696 + 0.0197665i
\(673\) 6.16392 + 23.0041i 0.237602 + 0.886742i 0.976959 + 0.213428i \(0.0684630\pi\)
−0.739357 + 0.673314i \(0.764870\pi\)
\(674\) −19.4814 72.7057i −0.750396 2.80052i
\(675\) 25.0933 + 12.4245i 0.965842 + 0.478218i
\(676\) 0 0
\(677\) 26.1344 26.1344i 1.00443 1.00443i 0.00443504 0.999990i \(-0.498588\pi\)
0.999990 0.00443504i \(-0.00141172\pi\)
\(678\) −10.5080 + 18.2004i −0.403557 + 0.698981i
\(679\) 1.45598 + 0.840613i 0.0558756 + 0.0322598i
\(680\) 30.9686 + 37.7968i 1.18759 + 1.44944i
\(681\) 8.41509 8.41509i 0.322467 0.322467i
\(682\) 3.75440 2.16761i 0.143764 0.0830019i
\(683\) 23.1988 13.3938i 0.887676 0.512500i 0.0144941 0.999895i \(-0.495386\pi\)
0.873181 + 0.487395i \(0.162053\pi\)
\(684\) −32.5667 + 32.5667i −1.24522 + 1.24522i
\(685\) −4.08406 + 41.1298i −0.156044 + 1.57149i
\(686\) 3.60610 + 2.08198i 0.137682 + 0.0794905i
\(687\) −11.4885 + 19.8987i −0.438314 + 0.759182i
\(688\) 30.7796 30.7796i 1.17346 1.17346i
\(689\) 0 0
\(690\) 14.3966 20.0566i 0.548068 0.763541i
\(691\) 10.4473 + 38.9899i 0.397435 + 1.48325i 0.817593 + 0.575796i \(0.195308\pi\)
−0.420158 + 0.907451i \(0.638025\pi\)
\(692\) −0.102532 0.382655i −0.00389769 0.0145464i
\(693\) 0.264991 + 0.0710042i 0.0100662 + 0.00269723i
\(694\) 13.4464 + 13.4464i 0.510419 + 0.510419i
\(695\) 24.2768 + 2.41062i 0.920873 + 0.0914399i
\(696\) 12.5092 46.6850i 0.474160 1.76959i
\(697\) 14.8102 0.560976
\(698\) 2.50548 9.35058i 0.0948339 0.353925i
\(699\) 10.8801 18.8449i 0.411524 0.712780i
\(700\) −2.76553 0.554686i −0.104527 0.0209652i
\(701\) 24.9781i 0.943410i −0.881756 0.471705i \(-0.843639\pi\)
0.881756 0.471705i \(-0.156361\pi\)
\(702\) 0 0
\(703\) 7.25852 + 7.25852i 0.273760 + 0.273760i
\(704\) 24.4519 6.55185i 0.921564 0.246932i
\(705\) 0.936386 + 0.353284i 0.0352663 + 0.0133054i
\(706\) −4.04624 + 2.33610i −0.152282 + 0.0879202i
\(707\) 0.933677i 0.0351145i
\(708\) 4.18306 + 7.24528i 0.157209 + 0.272294i
\(709\) 9.85779 + 2.64139i 0.370217 + 0.0991993i 0.439130 0.898423i \(-0.355287\pi\)
−0.0689135 + 0.997623i \(0.521953\pi\)
\(710\) 5.25742 + 32.0025i 0.197307 + 1.20103i
\(711\) 9.99535 + 17.3124i 0.374855 + 0.649268i
\(712\) 4.40087 1.17921i 0.164930 0.0441927i
\(713\) −2.45675 1.41841i −0.0920061 0.0531198i
\(714\) −1.05394 −0.0394428
\(715\) 0 0
\(716\) 106.570 3.98272
\(717\) 28.9355 + 16.7059i 1.08061 + 0.623893i
\(718\) 31.0572 8.32175i 1.15904 0.310565i
\(719\) −14.2117 24.6153i −0.530005 0.917996i −0.999387 0.0350008i \(-0.988857\pi\)
0.469382 0.882995i \(-0.344477\pi\)
\(720\) 19.1944 26.7407i 0.715333 0.996566i
\(721\) −1.18623 0.317850i −0.0441776 0.0118373i
\(722\) −39.0065 67.5612i −1.45167 2.51437i
\(723\) 7.09498i 0.263865i
\(724\) 97.9570 56.5555i 3.64054 2.10187i
\(725\) −4.57713 + 22.8204i −0.169990 + 0.847530i
\(726\) 25.1183 6.73044i 0.932229 0.249790i
\(727\) −8.56116 8.56116i −0.317516 0.317516i 0.530296 0.847812i \(-0.322081\pi\)
−0.847812 + 0.530296i \(0.822081\pi\)
\(728\) 0 0
\(729\) 26.1513i 0.968566i
\(730\) −48.9255 + 22.1208i −1.81081 + 0.818728i
\(731\) −5.31873 + 9.21232i −0.196720 + 0.340730i
\(732\) 4.69082 17.5064i 0.173378 0.647054i
\(733\) −17.2200 −0.636036 −0.318018 0.948085i \(-0.603017\pi\)
−0.318018 + 0.948085i \(0.603017\pi\)
\(734\) 9.60893 35.8610i 0.354672 1.32365i
\(735\) −15.6747 + 12.8430i −0.578169 + 0.473720i
\(736\) −30.8663 30.8663i −1.13775 1.13775i
\(737\) 0.258313 + 0.0692148i 0.00951508 + 0.00254956i
\(738\) −4.90365 18.3007i −0.180506 0.673656i
\(739\) 4.22013 + 15.7497i 0.155240 + 0.579364i 0.999085 + 0.0427762i \(0.0136202\pi\)
−0.843845 + 0.536588i \(0.819713\pi\)
\(740\) −13.4526 9.65626i −0.494528 0.354971i
\(741\) 0 0
\(742\) 1.06915 1.06915i 0.0392498 0.0392498i
\(743\) 16.5599 28.6826i 0.607525 1.05226i −0.384122 0.923282i \(-0.625496\pi\)
0.991647 0.128982i \(-0.0411708\pi\)
\(744\) 7.93963 + 4.58395i 0.291081 + 0.168056i
\(745\) −24.0786 + 19.7287i −0.882171 + 0.722802i
\(746\) −54.1344 + 54.1344i −1.98200 + 1.98200i
\(747\) −9.74510 + 5.62634i −0.356555 + 0.205857i
\(748\) −21.9940 + 12.6982i −0.804179 + 0.464293i
\(749\) 0.588194 0.588194i 0.0214921 0.0214921i
\(750\) 20.3679 32.5802i 0.743732 1.18966i
\(751\) −18.9961 10.9674i −0.693176 0.400205i 0.111625 0.993750i \(-0.464395\pi\)
−0.804801 + 0.593545i \(0.797728\pi\)
\(752\) 1.92736 3.33829i 0.0702836 0.121735i
\(753\) 11.9843 11.9843i 0.436732 0.436732i
\(754\) 0 0
\(755\) −4.35528 26.5111i −0.158505 0.964838i
\(756\) 0.817652 + 3.05152i 0.0297377 + 0.110983i
\(757\) 0.762791 + 2.84678i 0.0277241 + 0.103468i 0.978401 0.206714i \(-0.0662768\pi\)
−0.950677 + 0.310181i \(0.899610\pi\)
\(758\) −24.2556 6.49926i −0.881002 0.236064i
\(759\) 5.45935 + 5.45935i 0.198162 + 0.198162i
\(760\) 78.9615 + 96.3715i 2.86423 + 3.49576i
\(761\) 5.70396 21.2875i 0.206768 0.771670i −0.782135 0.623109i \(-0.785869\pi\)
0.988903 0.148561i \(-0.0474640\pi\)
\(762\) −40.0993 −1.45265
\(763\) −0.137572 + 0.513426i −0.00498044 + 0.0185873i
\(764\) 49.2241 85.2587i 1.78087 3.08455i
\(765\) −2.83951 + 7.52619i −0.102663 + 0.272110i
\(766\) 55.8361i 2.01744i
\(767\) 0 0
\(768\) −3.12197 3.12197i −0.112654 0.112654i
\(769\) 20.4038 5.46718i 0.735780 0.197152i 0.128578 0.991699i \(-0.458959\pi\)
0.607202 + 0.794548i \(0.292292\pi\)
\(770\) 0.435388 1.15400i 0.0156903 0.0415874i
\(771\) 19.5984 11.3152i 0.705820 0.407506i
\(772\) 83.9143i 3.02014i
\(773\) −9.34781 16.1909i −0.336217 0.582346i 0.647500 0.762065i \(-0.275814\pi\)
−0.983718 + 0.179719i \(0.942481\pi\)
\(774\) 13.1445 + 3.52206i 0.472470 + 0.126598i
\(775\) −3.95652 1.95899i −0.142122 0.0703691i
\(776\) 59.8985 + 103.747i 2.15023 + 3.72431i
\(777\) 0.207583 0.0556218i 0.00744702 0.00199542i
\(778\) 0.138788 + 0.0801293i 0.00497579 + 0.00287278i
\(779\) 37.7619 1.35296
\(780\) 0 0
\(781\) −10.1421 −0.362912
\(782\) 20.1246 + 11.6190i 0.719656 + 0.415493i
\(783\) 25.1803 6.74705i 0.899872 0.241120i
\(784\) 39.0246 + 67.5927i 1.39374 + 2.41402i
\(785\) −16.0544 + 2.63744i −0.573008 + 0.0941344i
\(786\) −24.7764 6.63883i −0.883747 0.236799i
\(787\) 21.6615 + 37.5189i 0.772150 + 1.33740i 0.936382 + 0.350981i \(0.114152\pi\)
−0.164232 + 0.986422i \(0.552515\pi\)
\(788\) 76.2534i 2.71642i
\(789\) 23.4169 13.5198i 0.833665 0.481317i
\(790\) 81.8948 37.0273i 2.91369 1.31737i
\(791\) 0.663626 0.177818i 0.0235958 0.00632248i
\(792\) 13.8227 + 13.8227i 0.491168 + 0.491168i
\(793\) 0 0
\(794\) 21.7710i 0.772625i
\(795\) 6.06840 + 13.4217i 0.215224 + 0.476020i
\(796\) 35.0157 60.6489i 1.24110 2.14964i
\(797\) 9.10089 33.9650i 0.322370 1.20310i −0.594559 0.804052i \(-0.702673\pi\)
0.916929 0.399050i \(-0.130660\pi\)
\(798\) −2.68726 −0.0951280
\(799\) −0.243809 + 0.909909i −0.00862535 + 0.0321903i
\(800\) −51.0047 44.8741i −1.80329 1.58654i
\(801\) 0.530356 + 0.530356i 0.0187392 + 0.0187392i
\(802\) 23.0319 + 6.17139i 0.813286 + 0.217919i
\(803\) −4.34591 16.2191i −0.153364 0.572361i
\(804\) 0.243268 + 0.907890i 0.00857942 + 0.0320188i
\(805\) −0.796423 + 0.130837i −0.0280702 + 0.00461141i
\(806\) 0 0
\(807\) −9.69052 + 9.69052i −0.341122 + 0.341122i
\(808\) 33.2649 57.6165i 1.17026 2.02694i
\(809\) 17.8779 + 10.3218i 0.628554 + 0.362896i 0.780192 0.625540i \(-0.215121\pi\)
−0.151638 + 0.988436i \(0.548455\pi\)
\(810\) −19.5136 1.93764i −0.685637 0.0680817i
\(811\) −22.0471 + 22.0471i −0.774178 + 0.774178i −0.978834 0.204656i \(-0.934392\pi\)
0.204656 + 0.978834i \(0.434392\pi\)
\(812\) −2.27416 + 1.31299i −0.0798075 + 0.0460769i
\(813\) −8.88514 + 5.12984i −0.311615 + 0.179911i
\(814\) 5.12029 5.12029i 0.179466 0.179466i
\(815\) −45.6539 4.53330i −1.59919 0.158794i
\(816\) −34.2477 19.7729i −1.19891 0.692190i
\(817\) −13.5613 + 23.4889i −0.474450 + 0.821772i
\(818\) −67.1180 + 67.1180i −2.34672 + 2.34672i
\(819\) 0 0
\(820\) −60.1111 + 9.87512i −2.09917 + 0.344854i
\(821\) −9.49818 35.4477i −0.331489 1.23713i −0.907626 0.419780i \(-0.862107\pi\)
0.576137 0.817353i \(-0.304559\pi\)
\(822\) −16.4412 61.3594i −0.573453 2.14016i
\(823\) −22.8038 6.11025i −0.794889 0.212990i −0.161550 0.986865i \(-0.551649\pi\)
−0.633339 + 0.773875i \(0.718316\pi\)
\(824\) −61.8772 61.8772i −2.15559 2.15559i
\(825\) 9.02125 + 7.93692i 0.314079 + 0.276328i
\(826\) 0.0989816 0.369404i 0.00344401 0.0128532i
\(827\) −4.44429 −0.154543 −0.0772716 0.997010i \(-0.524621\pi\)
−0.0772716 + 0.997010i \(0.524621\pi\)
\(828\) 5.50240 20.5352i 0.191222 0.713649i
\(829\) −14.6685 + 25.4065i −0.509457 + 0.882406i 0.490483 + 0.871451i \(0.336820\pi\)
−0.999940 + 0.0109548i \(0.996513\pi\)
\(830\) 20.8425 + 46.0982i 0.723454 + 1.60009i
\(831\) 13.2474i 0.459548i
\(832\) 0 0
\(833\) −13.4870 13.4870i −0.467296 0.467296i
\(834\) −36.2174 + 9.70441i −1.25410 + 0.336036i
\(835\) 5.17728 2.34082i 0.179167 0.0810073i
\(836\) −56.0786 + 32.3770i −1.93952 + 1.11978i
\(837\) 4.94486i 0.170919i
\(838\) 17.3304 + 30.0171i 0.598668 + 1.03692i
\(839\) 8.19766 + 2.19656i 0.283015 + 0.0758336i 0.397534 0.917587i \(-0.369866\pi\)
−0.114519 + 0.993421i \(0.536533\pi\)
\(840\) 2.57384 0.422834i 0.0888061 0.0145892i
\(841\) −3.66554 6.34891i −0.126398 0.218928i
\(842\) −49.9236 + 13.3770i −1.72048 + 0.461001i
\(843\) −19.8180 11.4419i −0.682568 0.394081i
\(844\) 118.591 4.08208
\(845\) 0 0
\(846\) 1.20508 0.0414316
\(847\) −0.736220 0.425057i −0.0252968 0.0146051i
\(848\) 54.8002 14.6837i 1.88185 0.504239i
\(849\) −5.36067 9.28495i −0.183978 0.318659i
\(850\) 32.4101 + 16.0472i 1.11166 + 0.550415i
\(851\) −4.57693 1.22638i −0.156895 0.0420399i
\(852\) −17.8231 30.8705i −0.610610 1.05761i
\(853\) 34.3415i 1.17583i −0.808923 0.587915i \(-0.799949\pi\)
0.808923 0.587915i \(-0.200051\pi\)
\(854\) −0.717491 + 0.414244i −0.0245521 + 0.0141751i
\(855\) −7.23998 + 19.1897i −0.247602 + 0.656274i
\(856\) 57.2531 15.3409i 1.95687 0.524342i
\(857\) 24.6090 + 24.6090i 0.840626 + 0.840626i 0.988940 0.148314i \(-0.0473847\pi\)
−0.148314 + 0.988940i \(0.547385\pi\)
\(858\) 0 0
\(859\) 12.8606i 0.438798i 0.975635 + 0.219399i \(0.0704097\pi\)
−0.975635 + 0.219399i \(0.929590\pi\)
\(860\) 15.4449 40.9371i 0.526667 1.39594i
\(861\) 0.395284 0.684653i 0.0134713 0.0233329i
\(862\) 15.2379 56.8688i 0.519007 1.93696i
\(863\) −2.75373 −0.0937379 −0.0468690 0.998901i \(-0.514924\pi\)
−0.0468690 + 0.998901i \(0.514924\pi\)
\(864\) −19.6933 + 73.4965i −0.669980 + 2.50040i
\(865\) −0.111809 0.136462i −0.00380163 0.00463984i
\(866\) −0.343907 0.343907i −0.0116864 0.0116864i
\(867\) −11.9624 3.20532i −0.406264 0.108858i
\(868\) −0.128921 0.481140i −0.00437586 0.0163309i
\(869\) 7.27447 + 27.1487i 0.246770 + 0.920957i
\(870\) −5.79888 35.2985i −0.196601 1.19673i
\(871\) 0 0
\(872\) −26.7817 + 26.7817i −0.906944 + 0.906944i
\(873\) −9.86060 + 17.0791i −0.333731 + 0.578039i
\(874\) 51.3123 + 29.6252i 1.73566 + 1.00209i
\(875\) −1.22395 + 0.282299i −0.0413772 + 0.00954346i
\(876\) 41.7308 41.7308i 1.40995 1.40995i
\(877\) 40.9311 23.6316i 1.38214 0.797981i 0.389730 0.920929i \(-0.372568\pi\)
0.992413 + 0.122948i \(0.0392349\pi\)
\(878\) −39.6847 + 22.9119i −1.33929 + 0.773241i
\(879\) −5.84953 + 5.84953i −0.197300 + 0.197300i
\(880\) 35.7980 29.3309i 1.20675 0.988745i
\(881\) −35.7854 20.6607i −1.20564 0.696077i −0.243837 0.969816i \(-0.578406\pi\)
−0.961804 + 0.273739i \(0.911739\pi\)
\(882\) −12.2001 + 21.1311i −0.410798 + 0.711523i
\(883\) 13.4808 13.4808i 0.453666 0.453666i −0.442903 0.896569i \(-0.646051\pi\)
0.896569 + 0.442903i \(0.146051\pi\)
\(884\) 0 0
\(885\) 3.02665 + 2.17252i 0.101740 + 0.0730285i
\(886\) 23.7108 + 88.4897i 0.796578 + 2.97287i
\(887\) 5.93341 + 22.1438i 0.199225 + 0.743516i 0.991133 + 0.132876i \(0.0424212\pi\)
−0.791908 + 0.610640i \(0.790912\pi\)
\(888\) 14.7915 + 3.96337i 0.496371 + 0.133002i
\(889\) 0.926941 + 0.926941i 0.0310886 + 0.0310886i
\(890\) 2.60837 2.13716i 0.0874329 0.0716377i
\(891\) 1.58717 5.92339i 0.0531721 0.198441i
\(892\) −48.8381 −1.63522
\(893\) −0.621647 + 2.32002i −0.0208026 + 0.0776364i
\(894\) 23.9211 41.4326i 0.800042 1.38571i
\(895\) 43.2438 19.5519i 1.44548 0.653549i
\(896\) 1.01420i 0.0338819i
\(897\) 0 0
\(898\) −69.6712 69.6712i −2.32496 2.32496i
\(899\) −3.97024 + 1.06382i −0.132415 + 0.0354805i
\(900\) 6.50661 32.4404i 0.216887 1.08135i
\(901\) −12.0069 + 6.93217i −0.400007 + 0.230944i
\(902\) 26.6379i 0.886946i
\(903\) 0.283915 + 0.491754i 0.00944808 + 0.0163646i
\(904\) 47.2871 + 12.6705i 1.57275 + 0.421416i
\(905\) 29.3728 40.9207i 0.976384 1.36025i
\(906\) 20.6458 + 35.7595i 0.685910 + 1.18803i
\(907\) 23.2963 6.24222i 0.773541 0.207270i 0.149606 0.988746i \(-0.452200\pi\)
0.623935 + 0.781476i \(0.285533\pi\)
\(908\) −39.9008 23.0367i −1.32416 0.764501i
\(909\) 10.9523 0.363264
\(910\) 0 0
\(911\) 58.5135 1.93864 0.969320 0.245803i \(-0.0790515\pi\)
0.969320 + 0.245803i \(0.0790515\pi\)
\(912\) −87.3221 50.4154i −2.89152 1.66942i
\(913\) −15.2819 + 4.09477i −0.505757 + 0.135517i
\(914\) 12.4895 + 21.6324i 0.413116 + 0.715537i
\(915\) −1.30838 7.96429i −0.0432538 0.263291i
\(916\) 85.9241 + 23.0233i 2.83901 + 0.760711i
\(917\) 0.419271 + 0.726199i 0.0138456 + 0.0239812i
\(918\) 40.5061i 1.33690i
\(919\) −38.8451 + 22.4272i −1.28138 + 0.739806i −0.977101 0.212776i \(-0.931749\pi\)
−0.304281 + 0.952582i \(0.598416\pi\)
\(920\) −53.8081 20.3010i −1.77400 0.669303i
\(921\) 33.2562 8.91097i 1.09583 0.293626i
\(922\) 61.6169 + 61.6169i 2.02924 + 2.02924i
\(923\) 0 0
\(924\) 1.35567i 0.0445981i
\(925\) −7.23035 1.45020i −0.237733 0.0476824i
\(926\) −24.7394 + 42.8498i −0.812986 + 1.40813i
\(927\) 3.72846 13.9148i 0.122459 0.457022i
\(928\) −63.2473 −2.07619
\(929\) 7.26384 27.1090i 0.238319 0.889418i −0.738306 0.674466i \(-0.764374\pi\)
0.976625 0.214952i \(-0.0689595\pi\)
\(930\) 6.75219 + 0.670472i 0.221413 + 0.0219856i
\(931\) −34.3881 34.3881i −1.12702 1.12702i
\(932\) −81.3738 21.8041i −2.66549 0.714215i
\(933\) 1.18971 + 4.44006i 0.0389493 + 0.145361i
\(934\) −11.8012 44.0428i −0.386148 1.44113i
\(935\) −6.59497 + 9.18779i −0.215679 + 0.300473i
\(936\) 0 0
\(937\) 20.7545 20.7545i 0.678019 0.678019i −0.281533 0.959552i \(-0.590843\pi\)
0.959552 + 0.281533i \(0.0908428\pi\)
\(938\) 0.0214829 0.0372095i 0.000701442 0.00121493i
\(939\) 9.86572 + 5.69597i 0.321955 + 0.185881i
\(940\) 0.382857 3.85567i 0.0124874 0.125758i
\(941\) −6.70533 + 6.70533i −0.218588 + 0.218588i −0.807903 0.589315i \(-0.799398\pi\)
0.589315 + 0.807903i \(0.299398\pi\)
\(942\) 21.6550 12.5025i 0.705559 0.407355i
\(943\) −15.0956 + 8.71547i −0.491582 + 0.283815i
\(944\) 10.1467 10.1467i 0.330249 0.330249i
\(945\) 0.891632 + 1.08823i 0.0290048 + 0.0354000i
\(946\) 16.5695 + 9.56639i 0.538720 + 0.311030i
\(947\) −2.25542 + 3.90651i −0.0732915 + 0.126945i −0.900342 0.435183i \(-0.856684\pi\)
0.827051 + 0.562128i \(0.190017\pi\)
\(948\) −69.8518 + 69.8518i −2.26868 + 2.26868i
\(949\) 0 0
\(950\) 82.6367 + 40.9160i 2.68109 + 1.32749i
\(951\) −2.86272 10.6838i −0.0928302 0.346447i
\(952\) 0.635422 + 2.37143i 0.0205941 + 0.0768584i
\(953\) 5.54756 + 1.48646i 0.179703 + 0.0481513i 0.347548 0.937662i \(-0.387014\pi\)
−0.167845 + 0.985813i \(0.553681\pi\)
\(954\) 12.5414 + 12.5414i 0.406043 + 0.406043i
\(955\) 4.33202 43.6270i 0.140181 1.41174i
\(956\) 33.4791 124.946i 1.08279 4.04103i
\(957\) 11.1866 0.361612
\(958\) −22.6066 + 84.3690i −0.730386 + 2.72584i
\(959\) −1.03833 + 1.79845i −0.0335296 + 0.0580749i
\(960\) 37.0710 + 13.9863i 1.19646 + 0.451406i
\(961\) 30.2203i 0.974849i
\(962\) 0 0
\(963\) 6.89966 + 6.89966i 0.222338 + 0.222338i
\(964\) 26.5322 7.10927i 0.854543 0.228974i
\(965\) −15.3954 34.0505i −0.495595 1.09613i
\(966\) 1.07426 0.620222i 0.0345636 0.0199553i
\(967\) 17.6414i 0.567310i 0.958926 + 0.283655i \(0.0915470\pi\)
−0.958926 + 0.283655i \(0.908453\pi\)
\(968\) −30.2877 52.4599i −0.973485 1.68612i
\(969\) 23.8012 + 6.37750i 0.764604 + 0.204875i
\(970\) 72.0297 + 51.7028i 2.31273 + 1.66008i
\(971\) −16.6987 28.9229i −0.535886 0.928181i −0.999120 0.0419454i \(-0.986644\pi\)
0.463234 0.886236i \(-0.346689\pi\)
\(972\) −60.6650 + 16.2551i −1.94583 + 0.521384i
\(973\) 1.06153 + 0.612876i 0.0340312 + 0.0196479i
\(974\) −87.4056 −2.80065
\(975\) 0 0
\(976\) −31.0864 −0.995050
\(977\) −13.2886 7.67217i −0.425139 0.245454i 0.272134 0.962259i \(-0.412270\pi\)
−0.697274 + 0.716805i \(0.745604\pi\)
\(978\) 68.1088 18.2497i 2.17788 0.583561i
\(979\) 0.527266 + 0.913252i 0.0168515 + 0.0291877i
\(980\) 63.7334 + 45.7477i 2.03589 + 1.46136i
\(981\) −6.02261 1.61375i −0.192287 0.0515232i
\(982\) 28.2143 + 48.8686i 0.900354 + 1.55946i
\(983\) 4.80751i 0.153336i −0.997057 0.0766679i \(-0.975572\pi\)
0.997057 0.0766679i \(-0.0244281\pi\)
\(984\) 48.7854 28.1663i 1.55522 0.897908i
\(985\) −13.9899 30.9419i −0.445754 0.985891i
\(986\) 32.5225 8.71437i 1.03573 0.277522i
\(987\) 0.0355565 + 0.0355565i 0.00113177 + 0.00113177i
\(988\) 0 0
\(989\) 12.5198i 0.398108i
\(990\) 13.5368 + 5.10721i 0.430227 + 0.162318i
\(991\) −0.219558 + 0.380286i −0.00697450 + 0.0120802i −0.869492 0.493948i \(-0.835553\pi\)
0.862517 + 0.506028i \(0.168887\pi\)
\(992\) 3.10509 11.5884i 0.0985867 0.367931i
\(993\) 23.3545 0.741131
\(994\) −0.421739 + 1.57395i −0.0133767 + 0.0499227i
\(995\) 3.08159 31.0341i 0.0976931 0.983848i
\(996\) −39.3193 39.3193i −1.24588 1.24588i
\(997\) 6.34461 + 1.70003i 0.200936 + 0.0538406i 0.357883 0.933766i \(-0.383499\pi\)
−0.156947 + 0.987607i \(0.550165\pi\)
\(998\) −14.4704 54.0044i −0.458053 1.70948i
\(999\) 2.13771 + 7.97806i 0.0676343 + 0.252415i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 845.2.t.f.188.5 20
5.2 odd 4 845.2.o.e.357.1 20
13.2 odd 12 845.2.o.f.258.5 20
13.3 even 3 65.2.t.a.28.1 yes 20
13.4 even 6 845.2.f.d.408.10 20
13.5 odd 4 845.2.o.g.488.5 20
13.6 odd 12 845.2.k.d.268.1 20
13.7 odd 12 845.2.k.e.268.10 20
13.8 odd 4 65.2.o.a.33.1 yes 20
13.9 even 3 845.2.f.e.408.1 20
13.10 even 6 845.2.t.g.418.5 20
13.11 odd 12 845.2.o.e.258.1 20
13.12 even 2 845.2.t.e.188.1 20
39.8 even 4 585.2.cf.a.163.5 20
39.29 odd 6 585.2.dp.a.28.5 20
65.2 even 12 845.2.t.e.427.1 20
65.3 odd 12 325.2.s.b.132.5 20
65.7 even 12 845.2.f.e.437.10 20
65.8 even 4 325.2.x.b.7.5 20
65.12 odd 4 845.2.o.f.357.5 20
65.17 odd 12 845.2.k.d.577.1 20
65.22 odd 12 845.2.k.e.577.10 20
65.29 even 6 325.2.x.b.93.5 20
65.32 even 12 845.2.f.d.437.1 20
65.34 odd 4 325.2.s.b.293.5 20
65.37 even 12 inner 845.2.t.f.427.5 20
65.42 odd 12 65.2.o.a.2.1 20
65.47 even 4 65.2.t.a.7.1 yes 20
65.57 even 4 845.2.t.g.657.5 20
65.62 odd 12 845.2.o.g.587.5 20
195.47 odd 4 585.2.dp.a.397.5 20
195.107 even 12 585.2.cf.a.262.5 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.2.o.a.2.1 20 65.42 odd 12
65.2.o.a.33.1 yes 20 13.8 odd 4
65.2.t.a.7.1 yes 20 65.47 even 4
65.2.t.a.28.1 yes 20 13.3 even 3
325.2.s.b.132.5 20 65.3 odd 12
325.2.s.b.293.5 20 65.34 odd 4
325.2.x.b.7.5 20 65.8 even 4
325.2.x.b.93.5 20 65.29 even 6
585.2.cf.a.163.5 20 39.8 even 4
585.2.cf.a.262.5 20 195.107 even 12
585.2.dp.a.28.5 20 39.29 odd 6
585.2.dp.a.397.5 20 195.47 odd 4
845.2.f.d.408.10 20 13.4 even 6
845.2.f.d.437.1 20 65.32 even 12
845.2.f.e.408.1 20 13.9 even 3
845.2.f.e.437.10 20 65.7 even 12
845.2.k.d.268.1 20 13.6 odd 12
845.2.k.d.577.1 20 65.17 odd 12
845.2.k.e.268.10 20 13.7 odd 12
845.2.k.e.577.10 20 65.22 odd 12
845.2.o.e.258.1 20 13.11 odd 12
845.2.o.e.357.1 20 5.2 odd 4
845.2.o.f.258.5 20 13.2 odd 12
845.2.o.f.357.5 20 65.12 odd 4
845.2.o.g.488.5 20 13.5 odd 4
845.2.o.g.587.5 20 65.62 odd 12
845.2.t.e.188.1 20 13.12 even 2
845.2.t.e.427.1 20 65.2 even 12
845.2.t.f.188.5 20 1.1 even 1 trivial
845.2.t.f.427.5 20 65.37 even 12 inner
845.2.t.g.418.5 20 13.10 even 6
845.2.t.g.657.5 20 65.57 even 4