Properties

Label 845.2.n.h.484.3
Level $845$
Weight $2$
Character 845.484
Analytic conductor $6.747$
Analytic rank $0$
Dimension $36$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [845,2,Mod(484,845)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("845.484"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(845, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 2])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 845 = 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 845.n (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [36,0,0,16,0,-16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.74735897080\)
Analytic rank: \(0\)
Dimension: \(36\)
Relative dimension: \(18\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 484.3
Character \(\chi\) \(=\) 845.484
Dual form 845.2.n.h.529.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.86013 + 1.07395i) q^{2} +(2.05625 - 1.18717i) q^{3} +(1.30673 - 2.26333i) q^{4} +(1.11435 + 1.93861i) q^{5} +(-2.54993 + 4.41661i) q^{6} +(3.07334 + 1.77439i) q^{7} +1.31766i q^{8} +(1.31877 - 2.28417i) q^{9} +(-4.15482 - 2.40932i) q^{10} +(-1.04426 - 1.80871i) q^{11} -6.20528i q^{12} -7.62244 q^{14} +(4.59285 + 2.66334i) q^{15} +(1.19836 + 2.07562i) q^{16} +(5.19678 + 3.00036i) q^{17} +5.66516i q^{18} +(-2.52362 + 4.37104i) q^{19} +(5.84388 + 0.0111067i) q^{20} +8.42607 q^{21} +(3.88493 + 2.24297i) q^{22} +(1.84180 - 1.06337i) q^{23} +(1.56430 + 2.70944i) q^{24} +(-2.51644 + 4.32059i) q^{25} +0.860615i q^{27} +(8.03208 - 4.63732i) q^{28} +(-5.07154 - 8.78417i) q^{29} +(-11.4036 - 0.0216733i) q^{30} +3.10862 q^{31} +(-6.74049 - 3.89162i) q^{32} +(-4.29452 - 2.47944i) q^{33} -12.8889 q^{34} +(-0.0150816 + 7.93532i) q^{35} +(-3.44656 - 5.96961i) q^{36} +(0.0865149 - 0.0499494i) q^{37} -10.8410i q^{38} +(-2.55444 + 1.46834i) q^{40} +(-1.89809 - 3.28758i) q^{41} +(-15.6736 + 9.04917i) q^{42} +(1.83303 + 1.05830i) q^{43} -5.45829 q^{44} +(5.89770 + 0.0112090i) q^{45} +(-2.28400 + 3.95601i) q^{46} -5.00374i q^{47} +(4.92826 + 2.84533i) q^{48} +(2.79695 + 4.84446i) q^{49} +(0.0408221 - 10.7394i) q^{50} +14.2478 q^{51} +5.29557i q^{53} +(-0.924257 - 1.60086i) q^{54} +(2.34272 - 4.03996i) q^{55} +(-2.33806 + 4.04963i) q^{56} +11.9839i q^{57} +(18.8675 + 10.8932i) q^{58} +(-1.50179 + 2.60118i) q^{59} +(12.0296 - 6.91487i) q^{60} +(2.38336 - 4.12811i) q^{61} +(-5.78245 + 3.33850i) q^{62} +(8.10605 - 4.68003i) q^{63} +11.9242 q^{64} +10.6512 q^{66} +(-5.86866 + 3.38827i) q^{67} +(13.5816 - 7.84135i) q^{68} +(2.52480 - 4.37309i) q^{69} +(-8.49408 - 14.7770i) q^{70} +(2.44796 - 4.24000i) q^{71} +(3.00977 + 1.73769i) q^{72} +4.02118i q^{73} +(-0.107286 + 0.185825i) q^{74} +(-0.0451260 + 11.8717i) q^{75} +(6.59541 + 11.4236i) q^{76} -7.41173i q^{77} +4.71456 q^{79} +(-2.68844 + 4.63614i) q^{80} +(4.97801 + 8.62216i) q^{81} +(7.06139 + 4.07690i) q^{82} -11.2703i q^{83} +(11.0106 - 19.0710i) q^{84} +(-0.0255018 + 13.4180i) q^{85} -4.54625 q^{86} +(-20.8567 - 12.0416i) q^{87} +(2.38328 - 1.37599i) q^{88} +(0.952337 + 1.64950i) q^{89} +(-10.9826 + 6.31298i) q^{90} -5.55814i q^{92} +(6.39209 - 3.69047i) q^{93} +(5.37376 + 9.30762i) q^{94} +(-11.2860 - 0.0214497i) q^{95} -18.4802 q^{96} +(-4.65004 - 2.68470i) q^{97} +(-10.4054 - 6.00757i) q^{98} -5.50856 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q + 16 q^{4} - 16 q^{6} + 18 q^{9} - 13 q^{10} - 22 q^{11} - 8 q^{14} - 8 q^{15} + 12 q^{16} + 28 q^{19} + 10 q^{20} + 52 q^{21} + 34 q^{24} - 16 q^{25} - 20 q^{29} - 31 q^{30} + 64 q^{31} - 36 q^{34}+ \cdots - 152 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/845\mathbb{Z}\right)^\times\).

\(n\) \(171\) \(677\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.86013 + 1.07395i −1.31531 + 0.759397i −0.982971 0.183762i \(-0.941172\pi\)
−0.332343 + 0.943159i \(0.607839\pi\)
\(3\) 2.05625 1.18717i 1.18717 0.685416i 0.229511 0.973306i \(-0.426287\pi\)
0.957663 + 0.287890i \(0.0929538\pi\)
\(4\) 1.30673 2.26333i 0.653367 1.13166i
\(5\) 1.11435 + 1.93861i 0.498353 + 0.866974i
\(6\) −2.54993 + 4.41661i −1.04100 + 1.80307i
\(7\) 3.07334 + 1.77439i 1.16161 + 0.670658i 0.951690 0.307060i \(-0.0993451\pi\)
0.209924 + 0.977718i \(0.432678\pi\)
\(8\) 1.31766i 0.465865i
\(9\) 1.31877 2.28417i 0.439589 0.761391i
\(10\) −4.15482 2.40932i −1.31387 0.761895i
\(11\) −1.04426 1.80871i −0.314857 0.545348i 0.664550 0.747243i \(-0.268623\pi\)
−0.979407 + 0.201896i \(0.935290\pi\)
\(12\) 6.20528i 1.79131i
\(13\) 0 0
\(14\) −7.62244 −2.03718
\(15\) 4.59285 + 2.66334i 1.18587 + 0.687671i
\(16\) 1.19836 + 2.07562i 0.299591 + 0.518906i
\(17\) 5.19678 + 3.00036i 1.26040 + 0.727695i 0.973153 0.230161i \(-0.0739252\pi\)
0.287251 + 0.957855i \(0.407259\pi\)
\(18\) 5.66516i 1.33529i
\(19\) −2.52362 + 4.37104i −0.578959 + 1.00279i 0.416640 + 0.909071i \(0.363208\pi\)
−0.995599 + 0.0937148i \(0.970126\pi\)
\(20\) 5.84388 + 0.0111067i 1.30673 + 0.00248353i
\(21\) 8.42607 1.83872
\(22\) 3.88493 + 2.24297i 0.828271 + 0.478202i
\(23\) 1.84180 1.06337i 0.384043 0.221727i −0.295533 0.955333i \(-0.595497\pi\)
0.679576 + 0.733605i \(0.262164\pi\)
\(24\) 1.56430 + 2.70944i 0.319311 + 0.553063i
\(25\) −2.51644 + 4.32059i −0.503288 + 0.864119i
\(26\) 0 0
\(27\) 0.860615i 0.165625i
\(28\) 8.03208 4.63732i 1.51792 0.876371i
\(29\) −5.07154 8.78417i −0.941762 1.63118i −0.762109 0.647449i \(-0.775836\pi\)
−0.179653 0.983730i \(-0.557498\pi\)
\(30\) −11.4036 0.0216733i −2.08201 0.00395699i
\(31\) 3.10862 0.558324 0.279162 0.960244i \(-0.409943\pi\)
0.279162 + 0.960244i \(0.409943\pi\)
\(32\) −6.74049 3.89162i −1.19156 0.687949i
\(33\) −4.29452 2.47944i −0.747580 0.431615i
\(34\) −12.8889 −2.21044
\(35\) −0.0150816 + 7.93532i −0.00254926 + 1.34131i
\(36\) −3.44656 5.96961i −0.574426 0.994935i
\(37\) 0.0865149 0.0499494i 0.0142230 0.00821163i −0.492872 0.870102i \(-0.664053\pi\)
0.507095 + 0.861890i \(0.330719\pi\)
\(38\) 10.8410i 1.75864i
\(39\) 0 0
\(40\) −2.55444 + 1.46834i −0.403893 + 0.232165i
\(41\) −1.89809 3.28758i −0.296431 0.513434i 0.678886 0.734244i \(-0.262463\pi\)
−0.975317 + 0.220810i \(0.929130\pi\)
\(42\) −15.6736 + 9.04917i −2.41849 + 1.39632i
\(43\) 1.83303 + 1.05830i 0.279535 + 0.161390i 0.633213 0.773978i \(-0.281736\pi\)
−0.353678 + 0.935367i \(0.615069\pi\)
\(44\) −5.45829 −0.822868
\(45\) 5.89770 + 0.0112090i 0.879177 + 0.00167094i
\(46\) −2.28400 + 3.95601i −0.336758 + 0.583282i
\(47\) 5.00374i 0.729870i −0.931033 0.364935i \(-0.881091\pi\)
0.931033 0.364935i \(-0.118909\pi\)
\(48\) 4.92826 + 2.84533i 0.711333 + 0.410688i
\(49\) 2.79695 + 4.84446i 0.399565 + 0.692066i
\(50\) 0.0408221 10.7394i 0.00577312 1.51878i
\(51\) 14.2478 1.99509
\(52\) 0 0
\(53\) 5.29557i 0.727402i 0.931516 + 0.363701i \(0.118487\pi\)
−0.931516 + 0.363701i \(0.881513\pi\)
\(54\) −0.924257 1.60086i −0.125775 0.217849i
\(55\) 2.34272 4.03996i 0.315893 0.544748i
\(56\) −2.33806 + 4.04963i −0.312436 + 0.541155i
\(57\) 11.9839i 1.58731i
\(58\) 18.8675 + 10.8932i 2.47742 + 1.43034i
\(59\) −1.50179 + 2.60118i −0.195517 + 0.338645i −0.947070 0.321028i \(-0.895972\pi\)
0.751553 + 0.659672i \(0.229305\pi\)
\(60\) 12.0296 6.91487i 1.55302 0.892706i
\(61\) 2.38336 4.12811i 0.305158 0.528550i −0.672138 0.740426i \(-0.734624\pi\)
0.977297 + 0.211876i \(0.0679572\pi\)
\(62\) −5.78245 + 3.33850i −0.734371 + 0.423990i
\(63\) 8.10605 4.68003i 1.02127 0.589628i
\(64\) 11.9242 1.49052
\(65\) 0 0
\(66\) 10.6512 1.31107
\(67\) −5.86866 + 3.38827i −0.716971 + 0.413944i −0.813637 0.581373i \(-0.802516\pi\)
0.0966656 + 0.995317i \(0.469182\pi\)
\(68\) 13.5816 7.84135i 1.64701 0.950903i
\(69\) 2.52480 4.37309i 0.303951 0.526458i
\(70\) −8.49408 14.7770i −1.01524 1.76618i
\(71\) 2.44796 4.24000i 0.290520 0.503195i −0.683413 0.730032i \(-0.739505\pi\)
0.973933 + 0.226837i \(0.0728385\pi\)
\(72\) 3.00977 + 1.73769i 0.354705 + 0.204789i
\(73\) 4.02118i 0.470643i 0.971918 + 0.235321i \(0.0756143\pi\)
−0.971918 + 0.235321i \(0.924386\pi\)
\(74\) −0.107286 + 0.185825i −0.0124718 + 0.0216018i
\(75\) −0.0451260 + 11.8717i −0.00521070 + 1.37082i
\(76\) 6.59541 + 11.4236i 0.756545 + 1.31037i
\(77\) 7.41173i 0.844645i
\(78\) 0 0
\(79\) 4.71456 0.530429 0.265215 0.964189i \(-0.414557\pi\)
0.265215 + 0.964189i \(0.414557\pi\)
\(80\) −2.68844 + 4.63614i −0.300576 + 0.518336i
\(81\) 4.97801 + 8.62216i 0.553112 + 0.958018i
\(82\) 7.06139 + 4.07690i 0.779800 + 0.450218i
\(83\) 11.2703i 1.23707i −0.785757 0.618536i \(-0.787726\pi\)
0.785757 0.618536i \(-0.212274\pi\)
\(84\) 11.0106 19.0710i 1.20136 2.08081i
\(85\) −0.0255018 + 13.4180i −0.00276606 + 1.45539i
\(86\) −4.54625 −0.490235
\(87\) −20.8567 12.0416i −2.23607 1.29100i
\(88\) 2.38328 1.37599i 0.254058 0.146681i
\(89\) 0.952337 + 1.64950i 0.100948 + 0.174846i 0.912075 0.410023i \(-0.134479\pi\)
−0.811128 + 0.584869i \(0.801146\pi\)
\(90\) −10.9826 + 6.31298i −1.15766 + 0.665446i
\(91\) 0 0
\(92\) 5.55814i 0.579477i
\(93\) 6.39209 3.69047i 0.662828 0.382684i
\(94\) 5.37376 + 9.30762i 0.554261 + 0.960008i
\(95\) −11.2860 0.0214497i −1.15792 0.00220070i
\(96\) −18.4802 −1.88612
\(97\) −4.65004 2.68470i −0.472140 0.272590i 0.244995 0.969524i \(-0.421214\pi\)
−0.717135 + 0.696934i \(0.754547\pi\)
\(98\) −10.4054 6.00757i −1.05111 0.606856i
\(99\) −5.50856 −0.553631
\(100\) 6.49060 + 11.3414i 0.649060 + 1.13414i
\(101\) 5.60547 + 9.70896i 0.557765 + 0.966078i 0.997683 + 0.0680393i \(0.0216743\pi\)
−0.439918 + 0.898038i \(0.644992\pi\)
\(102\) −26.5029 + 15.3014i −2.62417 + 1.51507i
\(103\) 11.8123i 1.16390i 0.813224 + 0.581951i \(0.197710\pi\)
−0.813224 + 0.581951i \(0.802290\pi\)
\(104\) 0 0
\(105\) 9.38960 + 16.3349i 0.916331 + 1.59412i
\(106\) −5.68717 9.85047i −0.552387 0.956762i
\(107\) 4.77561 2.75720i 0.461675 0.266548i −0.251073 0.967968i \(-0.580783\pi\)
0.712748 + 0.701420i \(0.247450\pi\)
\(108\) 1.94786 + 1.12459i 0.187432 + 0.108214i
\(109\) 12.0982 1.15880 0.579401 0.815043i \(-0.303287\pi\)
0.579401 + 0.815043i \(0.303287\pi\)
\(110\) −0.0190643 + 10.0308i −0.00181771 + 0.956403i
\(111\) 0.118597 0.205417i 0.0112568 0.0194973i
\(112\) 8.50547i 0.803691i
\(113\) −5.16509 2.98207i −0.485891 0.280529i 0.236977 0.971515i \(-0.423843\pi\)
−0.722868 + 0.690986i \(0.757177\pi\)
\(114\) −12.8701 22.2917i −1.20540 2.08781i
\(115\) 4.11387 + 2.38558i 0.383621 + 0.222457i
\(116\) −26.5086 −2.46126
\(117\) 0 0
\(118\) 6.45139i 0.593898i
\(119\) 10.6476 + 18.4423i 0.976068 + 1.69060i
\(120\) −3.50939 + 6.05184i −0.320362 + 0.552455i
\(121\) 3.31904 5.74874i 0.301731 0.522613i
\(122\) 10.2384i 0.926945i
\(123\) −7.80587 4.50672i −0.703831 0.406357i
\(124\) 4.06213 7.03582i 0.364790 0.631836i
\(125\) −11.1802 0.0637465i −0.999984 0.00570166i
\(126\) −10.0522 + 17.4110i −0.895524 + 1.55109i
\(127\) −10.3837 + 5.99503i −0.921405 + 0.531973i −0.884083 0.467330i \(-0.845216\pi\)
−0.0373216 + 0.999303i \(0.511883\pi\)
\(128\) −8.69959 + 5.02271i −0.768943 + 0.443949i
\(129\) 5.02556 0.442476
\(130\) 0 0
\(131\) −19.5464 −1.70777 −0.853886 0.520459i \(-0.825761\pi\)
−0.853886 + 0.520459i \(0.825761\pi\)
\(132\) −11.2236 + 6.47994i −0.976888 + 0.564006i
\(133\) −15.5119 + 8.95581i −1.34505 + 0.776567i
\(134\) 7.27767 12.6053i 0.628695 1.08893i
\(135\) −1.66840 + 0.959028i −0.143593 + 0.0825400i
\(136\) −3.95347 + 6.84761i −0.339007 + 0.587178i
\(137\) 11.1190 + 6.41957i 0.949962 + 0.548461i 0.893069 0.449919i \(-0.148547\pi\)
0.0568932 + 0.998380i \(0.481881\pi\)
\(138\) 10.8460i 0.923276i
\(139\) 2.69126 4.66141i 0.228270 0.395375i −0.729025 0.684487i \(-0.760026\pi\)
0.957296 + 0.289111i \(0.0933597\pi\)
\(140\) 17.9405 + 10.4035i 1.51625 + 0.879255i
\(141\) −5.94031 10.2889i −0.500264 0.866483i
\(142\) 10.5160i 0.882479i
\(143\) 0 0
\(144\) 6.32145 0.526787
\(145\) 11.3776 19.6204i 0.944860 1.62939i
\(146\) −4.31854 7.47993i −0.357405 0.619043i
\(147\) 11.5024 + 6.64094i 0.948706 + 0.547736i
\(148\) 0.261082i 0.0214608i
\(149\) 7.77574 13.4680i 0.637013 1.10334i −0.349072 0.937096i \(-0.613503\pi\)
0.986085 0.166243i \(-0.0531637\pi\)
\(150\) −12.6656 22.1314i −1.03414 1.80702i
\(151\) 11.6494 0.948012 0.474006 0.880522i \(-0.342808\pi\)
0.474006 + 0.880522i \(0.342808\pi\)
\(152\) −5.75957 3.32529i −0.467163 0.269717i
\(153\) 13.7067 7.91356i 1.10812 0.639774i
\(154\) 7.95982 + 13.7868i 0.641420 + 1.11097i
\(155\) 3.46409 + 6.02641i 0.278243 + 0.484053i
\(156\) 0 0
\(157\) 2.02732i 0.161798i −0.996722 0.0808989i \(-0.974221\pi\)
0.996722 0.0808989i \(-0.0257791\pi\)
\(158\) −8.76971 + 5.06320i −0.697681 + 0.402806i
\(159\) 6.28676 + 10.8890i 0.498573 + 0.863553i
\(160\) 0.0330772 17.4038i 0.00261498 1.37589i
\(161\) 7.54732 0.594812
\(162\) −18.5195 10.6922i −1.45503 0.840062i
\(163\) −7.34711 4.24185i −0.575470 0.332248i 0.183861 0.982952i \(-0.441140\pi\)
−0.759331 + 0.650705i \(0.774474\pi\)
\(164\) −9.92117 −0.774713
\(165\) 0.0210742 11.0884i 0.00164063 0.863229i
\(166\) 12.1037 + 20.9642i 0.939428 + 1.62714i
\(167\) 3.92266 2.26475i 0.303545 0.175252i −0.340490 0.940248i \(-0.610593\pi\)
0.644034 + 0.764997i \(0.277259\pi\)
\(168\) 11.1027i 0.856594i
\(169\) 0 0
\(170\) −14.3628 24.9867i −1.10158 1.91639i
\(171\) 6.65615 + 11.5288i 0.509008 + 0.881628i
\(172\) 4.79057 2.76584i 0.365278 0.210893i
\(173\) −0.893052 0.515604i −0.0678975 0.0392006i 0.465667 0.884960i \(-0.345814\pi\)
−0.533564 + 0.845759i \(0.679148\pi\)
\(174\) 51.7283 3.92151
\(175\) −15.4003 + 8.81350i −1.16415 + 0.666238i
\(176\) 2.50281 4.33499i 0.188656 0.326762i
\(177\) 7.13155i 0.536040i
\(178\) −3.54295 2.04552i −0.265555 0.153318i
\(179\) −8.70157 15.0716i −0.650386 1.12650i −0.983029 0.183449i \(-0.941274\pi\)
0.332643 0.943053i \(-0.392060\pi\)
\(180\) 7.73209 13.3338i 0.576316 0.993842i
\(181\) −22.2540 −1.65412 −0.827062 0.562111i \(-0.809989\pi\)
−0.827062 + 0.562111i \(0.809989\pi\)
\(182\) 0 0
\(183\) 11.3179i 0.836642i
\(184\) 1.40116 + 2.42688i 0.103295 + 0.178912i
\(185\) 0.193241 + 0.112058i 0.0142073 + 0.00823865i
\(186\) −7.92676 + 13.7295i −0.581218 + 1.00670i
\(187\) 12.5326i 0.916478i
\(188\) −11.3251 6.53855i −0.825968 0.476873i
\(189\) −1.52707 + 2.64496i −0.111078 + 0.192393i
\(190\) 21.0165 12.0807i 1.52469 0.876423i
\(191\) 3.52968 6.11359i 0.255399 0.442364i −0.709605 0.704600i \(-0.751127\pi\)
0.965004 + 0.262236i \(0.0844598\pi\)
\(192\) 24.5191 14.1561i 1.76951 1.02163i
\(193\) 18.8681 10.8935i 1.35815 0.784130i 0.368779 0.929517i \(-0.379776\pi\)
0.989375 + 0.145387i \(0.0464427\pi\)
\(194\) 11.5329 0.828016
\(195\) 0 0
\(196\) 14.6195 1.04425
\(197\) −19.4369 + 11.2219i −1.38482 + 0.799526i −0.992726 0.120398i \(-0.961583\pi\)
−0.392095 + 0.919925i \(0.628249\pi\)
\(198\) 10.2467 5.91591i 0.728198 0.420425i
\(199\) −6.10483 + 10.5739i −0.432760 + 0.749562i −0.997110 0.0759734i \(-0.975794\pi\)
0.564350 + 0.825536i \(0.309127\pi\)
\(200\) −5.69309 3.31583i −0.402562 0.234464i
\(201\) −8.04495 + 13.9343i −0.567447 + 0.982847i
\(202\) −20.8539 12.0400i −1.46727 0.847130i
\(203\) 35.9957i 2.52640i
\(204\) 18.6181 32.2475i 1.30353 2.25778i
\(205\) 4.25821 7.34318i 0.297406 0.512870i
\(206\) −12.6858 21.9725i −0.883863 1.53090i
\(207\) 5.60933i 0.389876i
\(208\) 0 0
\(209\) 10.5413 0.729156
\(210\) −35.0088 20.3011i −2.41583 1.40091i
\(211\) −8.65902 14.9979i −0.596111 1.03250i −0.993389 0.114797i \(-0.963378\pi\)
0.397278 0.917699i \(-0.369955\pi\)
\(212\) 11.9856 + 6.91989i 0.823175 + 0.475260i
\(213\) 11.6246i 0.796507i
\(214\) −5.92218 + 10.2575i −0.404832 + 0.701189i
\(215\) −0.00899513 + 4.73286i −0.000613463 + 0.322779i
\(216\) −1.13400 −0.0771591
\(217\) 9.55384 + 5.51591i 0.648557 + 0.374445i
\(218\) −22.5044 + 12.9929i −1.52419 + 0.879990i
\(219\) 4.77384 + 8.26853i 0.322586 + 0.558735i
\(220\) −6.08245 10.5815i −0.410079 0.713405i
\(221\) 0 0
\(222\) 0.509470i 0.0341934i
\(223\) −4.57552 + 2.64168i −0.306399 + 0.176900i −0.645314 0.763917i \(-0.723274\pi\)
0.338915 + 0.940817i \(0.389940\pi\)
\(224\) −13.8106 23.9206i −0.922757 1.59826i
\(225\) 6.55038 + 11.4458i 0.436692 + 0.763057i
\(226\) 12.8103 0.852131
\(227\) 2.55428 + 1.47471i 0.169533 + 0.0978802i 0.582366 0.812927i \(-0.302127\pi\)
−0.412832 + 0.910807i \(0.635460\pi\)
\(228\) 27.1236 + 15.6598i 1.79630 + 1.03710i
\(229\) 3.09371 0.204438 0.102219 0.994762i \(-0.467406\pi\)
0.102219 + 0.994762i \(0.467406\pi\)
\(230\) −10.2143 0.0194131i −0.673514 0.00128006i
\(231\) −8.79902 15.2403i −0.578933 1.00274i
\(232\) 11.5746 6.68259i 0.759909 0.438734i
\(233\) 6.38449i 0.418262i −0.977888 0.209131i \(-0.932937\pi\)
0.977888 0.209131i \(-0.0670635\pi\)
\(234\) 0 0
\(235\) 9.70031 5.57592i 0.632778 0.363733i
\(236\) 3.92488 + 6.79809i 0.255488 + 0.442518i
\(237\) 9.69430 5.59701i 0.629712 0.363565i
\(238\) −39.6121 22.8701i −2.56767 1.48245i
\(239\) −23.8468 −1.54252 −0.771260 0.636521i \(-0.780373\pi\)
−0.771260 + 0.636521i \(0.780373\pi\)
\(240\) −0.0241841 + 12.7247i −0.00156108 + 0.821375i
\(241\) 13.7660 23.8433i 0.886744 1.53589i 0.0430417 0.999073i \(-0.486295\pi\)
0.843702 0.536812i \(-0.180371\pi\)
\(242\) 14.2579i 0.916533i
\(243\) 18.2361 + 10.5286i 1.16984 + 0.675410i
\(244\) −6.22884 10.7887i −0.398761 0.690674i
\(245\) −6.27475 + 10.8206i −0.400879 + 0.691305i
\(246\) 19.3600 1.23435
\(247\) 0 0
\(248\) 4.09611i 0.260104i
\(249\) −13.3798 23.1744i −0.847908 1.46862i
\(250\) 20.8651 11.8883i 1.31962 0.751885i
\(251\) −0.115410 + 0.199896i −0.00728462 + 0.0126173i −0.869645 0.493678i \(-0.835652\pi\)
0.862360 + 0.506295i \(0.168985\pi\)
\(252\) 24.4622i 1.54097i
\(253\) −3.84665 2.22086i −0.241837 0.139625i
\(254\) 12.8767 22.3031i 0.807957 1.39942i
\(255\) 15.8771 + 27.6210i 0.994261 + 1.72969i
\(256\) −1.13590 + 1.96744i −0.0709940 + 0.122965i
\(257\) 11.2076 6.47068i 0.699108 0.403630i −0.107907 0.994161i \(-0.534415\pi\)
0.807015 + 0.590531i \(0.201082\pi\)
\(258\) −9.34822 + 5.39720i −0.581995 + 0.336015i
\(259\) 0.354520 0.0220288
\(260\) 0 0
\(261\) −26.7528 −1.65595
\(262\) 36.3588 20.9918i 2.24626 1.29688i
\(263\) −8.57099 + 4.94847i −0.528510 + 0.305135i −0.740410 0.672156i \(-0.765368\pi\)
0.211899 + 0.977291i \(0.432035\pi\)
\(264\) 3.26707 5.65874i 0.201074 0.348271i
\(265\) −10.2661 + 5.90112i −0.630639 + 0.362503i
\(266\) 19.2362 33.3180i 1.17944 2.04286i
\(267\) 3.91648 + 2.26118i 0.239685 + 0.138382i
\(268\) 17.7103i 1.08183i
\(269\) 6.31999 10.9465i 0.385337 0.667423i −0.606479 0.795099i \(-0.707419\pi\)
0.991816 + 0.127677i \(0.0407519\pi\)
\(270\) 2.07350 3.57570i 0.126189 0.217610i
\(271\) −9.73877 16.8680i −0.591588 1.02466i −0.994019 0.109210i \(-0.965168\pi\)
0.402430 0.915451i \(-0.368166\pi\)
\(272\) 14.3821i 0.872042i
\(273\) 0 0
\(274\) −27.5772 −1.66600
\(275\) 10.4425 + 0.0396936i 0.629709 + 0.00239362i
\(276\) −6.59849 11.4289i −0.397182 0.687940i
\(277\) −24.1284 13.9305i −1.44973 0.837004i −0.451268 0.892388i \(-0.649028\pi\)
−0.998465 + 0.0553842i \(0.982362\pi\)
\(278\) 11.5611i 0.693390i
\(279\) 4.09955 7.10062i 0.245433 0.425103i
\(280\) −10.4561 0.0198725i −0.624871 0.00118761i
\(281\) −22.0533 −1.31559 −0.657796 0.753197i \(-0.728511\pi\)
−0.657796 + 0.753197i \(0.728511\pi\)
\(282\) 22.0996 + 12.7592i 1.31601 + 0.759798i
\(283\) 21.7682 12.5679i 1.29399 0.747083i 0.314628 0.949215i \(-0.398120\pi\)
0.979358 + 0.202132i \(0.0647869\pi\)
\(284\) −6.39767 11.0811i −0.379632 0.657542i
\(285\) −23.2322 + 13.3543i −1.37616 + 0.791041i
\(286\) 0 0
\(287\) 13.4718i 0.795216i
\(288\) −17.7783 + 10.2643i −1.04760 + 0.604830i
\(289\) 9.50434 + 16.4620i 0.559079 + 0.968353i
\(290\) −0.0925873 + 48.7156i −0.00543691 + 2.86068i
\(291\) −12.7488 −0.747350
\(292\) 9.10124 + 5.25460i 0.532610 + 0.307502i
\(293\) 6.27336 + 3.62192i 0.366493 + 0.211595i 0.671925 0.740619i \(-0.265468\pi\)
−0.305432 + 0.952214i \(0.598801\pi\)
\(294\) −28.5281 −1.66379
\(295\) −6.71620 0.0127646i −0.391032 0.000743183i
\(296\) 0.0658166 + 0.113998i 0.00382551 + 0.00662598i
\(297\) 1.55661 0.898707i 0.0903235 0.0521483i
\(298\) 33.4030i 1.93498i
\(299\) 0 0
\(300\) 26.8105 + 15.6152i 1.54791 + 0.901546i
\(301\) 3.75569 + 6.50505i 0.216475 + 0.374945i
\(302\) −21.6694 + 12.5108i −1.24693 + 0.719917i
\(303\) 23.0525 + 13.3093i 1.32433 + 0.764602i
\(304\) −12.0969 −0.693802
\(305\) 10.6587 + 0.0202576i 0.610316 + 0.00115995i
\(306\) −16.9975 + 29.4406i −0.971684 + 1.68301i
\(307\) 29.4770i 1.68234i −0.540770 0.841170i \(-0.681867\pi\)
0.540770 0.841170i \(-0.318133\pi\)
\(308\) −16.7752 9.68515i −0.955854 0.551863i
\(309\) 14.0233 + 24.2890i 0.797757 + 1.38176i
\(310\) −12.9157 7.48967i −0.733564 0.425384i
\(311\) −16.3474 −0.926978 −0.463489 0.886103i \(-0.653403\pi\)
−0.463489 + 0.886103i \(0.653403\pi\)
\(312\) 0 0
\(313\) 29.4517i 1.66471i 0.554244 + 0.832355i \(0.313008\pi\)
−0.554244 + 0.832355i \(0.686992\pi\)
\(314\) 2.17724 + 3.77109i 0.122869 + 0.212815i
\(315\) 18.1058 + 10.4993i 1.02014 + 0.591568i
\(316\) 6.16067 10.6706i 0.346565 0.600268i
\(317\) 16.8218i 0.944804i 0.881383 + 0.472402i \(0.156613\pi\)
−0.881383 + 0.472402i \(0.843387\pi\)
\(318\) −23.3885 13.5033i −1.31156 0.757229i
\(319\) −10.5920 + 18.3459i −0.593040 + 1.02718i
\(320\) 13.2877 + 23.1164i 0.742807 + 1.29224i
\(321\) 6.54655 11.3390i 0.365393 0.632879i
\(322\) −14.0390 + 8.10544i −0.782365 + 0.451699i
\(323\) −26.2294 + 15.1436i −1.45944 + 0.842610i
\(324\) 26.0197 1.44554
\(325\) 0 0
\(326\) 18.2221 1.00923
\(327\) 24.8770 14.3627i 1.37570 0.794261i
\(328\) 4.33193 2.50104i 0.239191 0.138097i
\(329\) 8.87860 15.3782i 0.489493 0.847827i
\(330\) 11.8692 + 20.6485i 0.653376 + 1.13666i
\(331\) −1.07525 + 1.86238i −0.0591009 + 0.102366i −0.894062 0.447943i \(-0.852157\pi\)
0.834961 + 0.550309i \(0.185490\pi\)
\(332\) −25.5083 14.7272i −1.39995 0.808261i
\(333\) 0.263487i 0.0144390i
\(334\) −4.86445 + 8.42547i −0.266171 + 0.461021i
\(335\) −13.1083 7.60134i −0.716183 0.415306i
\(336\) 10.0975 + 17.4893i 0.550863 + 0.954122i
\(337\) 2.37962i 0.129626i −0.997897 0.0648131i \(-0.979355\pi\)
0.997897 0.0648131i \(-0.0206451\pi\)
\(338\) 0 0
\(339\) −14.1609 −0.769116
\(340\) 30.3360 + 17.5915i 1.64520 + 0.954031i
\(341\) −3.24621 5.62260i −0.175792 0.304481i
\(342\) −24.7627 14.2967i −1.33901 0.773079i
\(343\) 4.98994i 0.269431i
\(344\) −1.39449 + 2.41532i −0.0751858 + 0.130226i
\(345\) 11.2912 + 0.0214598i 0.607900 + 0.00115535i
\(346\) 2.21493 0.119075
\(347\) −22.5960 13.0458i −1.21302 0.700336i −0.249602 0.968348i \(-0.580300\pi\)
−0.963416 + 0.268012i \(0.913633\pi\)
\(348\) −54.5083 + 31.4704i −2.92195 + 1.68699i
\(349\) 8.17947 + 14.1673i 0.437837 + 0.758356i 0.997522 0.0703492i \(-0.0224113\pi\)
−0.559685 + 0.828705i \(0.689078\pi\)
\(350\) 19.1814 32.9335i 1.02529 1.76037i
\(351\) 0 0
\(352\) 16.2555i 0.866421i
\(353\) 2.39871 1.38489i 0.127670 0.0737105i −0.434805 0.900525i \(-0.643183\pi\)
0.562475 + 0.826814i \(0.309849\pi\)
\(354\) −7.65893 13.2656i −0.407067 0.705061i
\(355\) 10.9476 + 0.0208067i 0.581038 + 0.00110430i
\(356\) 4.97780 0.263823
\(357\) 43.7884 + 25.2812i 2.31753 + 1.33803i
\(358\) 32.3722 + 18.6901i 1.71092 + 0.987802i
\(359\) −17.9581 −0.947791 −0.473896 0.880581i \(-0.657153\pi\)
−0.473896 + 0.880581i \(0.657153\pi\)
\(360\) −0.0147697 + 7.77119i −0.000778430 + 0.409578i
\(361\) −3.23735 5.60725i −0.170387 0.295119i
\(362\) 41.3954 23.8996i 2.17569 1.25614i
\(363\) 15.7611i 0.827243i
\(364\) 0 0
\(365\) −7.79550 + 4.48100i −0.408035 + 0.234546i
\(366\) 12.1548 + 21.0528i 0.635343 + 1.10045i
\(367\) 23.4260 13.5250i 1.22283 0.706001i 0.257309 0.966329i \(-0.417164\pi\)
0.965520 + 0.260328i \(0.0838307\pi\)
\(368\) 4.41430 + 2.54860i 0.230111 + 0.132855i
\(369\) −10.0125 −0.521232
\(370\) −0.479798 0.000911888i −0.0249435 4.74068e-5i
\(371\) −9.39642 + 16.2751i −0.487838 + 0.844960i
\(372\) 19.2899i 1.00013i
\(373\) 0.570084 + 0.329138i 0.0295178 + 0.0170421i 0.514686 0.857379i \(-0.327908\pi\)
−0.485168 + 0.874421i \(0.661242\pi\)
\(374\) 13.4594 + 23.3124i 0.695970 + 1.20546i
\(375\) −23.0648 + 13.1417i −1.19106 + 0.678636i
\(376\) 6.59325 0.340021
\(377\) 0 0
\(378\) 6.55999i 0.337409i
\(379\) −8.98576 15.5638i −0.461568 0.799459i 0.537472 0.843282i \(-0.319380\pi\)
−0.999039 + 0.0438232i \(0.986046\pi\)
\(380\) −14.7963 + 25.5158i −0.759034 + 1.30893i
\(381\) −14.2343 + 24.6545i −0.729246 + 1.26309i
\(382\) 15.1628i 0.775797i
\(383\) −1.19483 0.689834i −0.0610529 0.0352489i 0.469163 0.883112i \(-0.344556\pi\)
−0.530216 + 0.847863i \(0.677889\pi\)
\(384\) −11.9257 + 20.6559i −0.608580 + 1.05409i
\(385\) 14.3685 8.25927i 0.732285 0.420931i
\(386\) −23.3981 + 40.5267i −1.19093 + 2.06275i
\(387\) 4.83469 2.79131i 0.245761 0.141890i
\(388\) −12.1527 + 7.01637i −0.616961 + 0.356202i
\(389\) −6.64124 −0.336724 −0.168362 0.985725i \(-0.553848\pi\)
−0.168362 + 0.985725i \(0.553848\pi\)
\(390\) 0 0
\(391\) 12.7619 0.645399
\(392\) −6.38338 + 3.68544i −0.322409 + 0.186143i
\(393\) −40.1921 + 23.2049i −2.02743 + 1.17053i
\(394\) 24.1035 41.7484i 1.21432 2.10326i
\(395\) 5.25368 + 9.13971i 0.264341 + 0.459868i
\(396\) −7.19821 + 12.4677i −0.361724 + 0.626524i
\(397\) −15.0829 8.70813i −0.756990 0.437048i 0.0712239 0.997460i \(-0.477310\pi\)
−0.828214 + 0.560412i \(0.810643\pi\)
\(398\) 26.2251i 1.31455i
\(399\) −21.2642 + 36.8307i −1.06454 + 1.84384i
\(400\) −11.9835 0.0455512i −0.599177 0.00227756i
\(401\) 13.5781 + 23.5179i 0.678058 + 1.17443i 0.975565 + 0.219711i \(0.0705113\pi\)
−0.297508 + 0.954719i \(0.596155\pi\)
\(402\) 34.5595i 1.72367i
\(403\) 0 0
\(404\) 29.2994 1.45770
\(405\) −11.1678 + 19.2585i −0.554931 + 0.956965i
\(406\) 38.6575 + 66.9568i 1.91854 + 3.32301i
\(407\) −0.180688 0.104321i −0.00895639 0.00517098i
\(408\) 18.7738i 0.929444i
\(409\) −1.56077 + 2.70333i −0.0771751 + 0.133671i −0.902030 0.431673i \(-0.857923\pi\)
0.824855 + 0.565344i \(0.191257\pi\)
\(410\) −0.0346519 + 18.2324i −0.00171134 + 0.900434i
\(411\) 30.4846 1.50370
\(412\) 26.7352 + 15.4355i 1.31715 + 0.760455i
\(413\) −9.23103 + 5.32954i −0.454229 + 0.262249i
\(414\) 6.02414 + 10.4341i 0.296070 + 0.512809i
\(415\) 21.8487 12.5590i 1.07251 0.616498i
\(416\) 0 0
\(417\) 12.7800i 0.625840i
\(418\) −19.6082 + 11.3208i −0.959069 + 0.553719i
\(419\) −1.67932 2.90867i −0.0820402 0.142098i 0.822086 0.569363i \(-0.192810\pi\)
−0.904126 + 0.427266i \(0.859477\pi\)
\(420\) 49.2409 + 0.0935857i 2.40271 + 0.00456651i
\(421\) −9.50793 −0.463388 −0.231694 0.972789i \(-0.574427\pi\)
−0.231694 + 0.972789i \(0.574427\pi\)
\(422\) 32.2139 + 18.5987i 1.56815 + 0.905370i
\(423\) −11.4294 6.59877i −0.555717 0.320843i
\(424\) −6.97778 −0.338871
\(425\) −26.0407 + 14.9029i −1.26316 + 0.722898i
\(426\) 12.4843 + 21.6234i 0.604865 + 1.04766i
\(427\) 14.6498 8.45806i 0.708953 0.409314i
\(428\) 14.4117i 0.696615i
\(429\) 0 0
\(430\) −5.06612 8.81343i −0.244310 0.425021i
\(431\) −18.8515 32.6517i −0.908043 1.57278i −0.816780 0.576949i \(-0.804243\pi\)
−0.0912624 0.995827i \(-0.529090\pi\)
\(432\) −1.78631 + 1.03133i −0.0859441 + 0.0496198i
\(433\) −18.1546 10.4816i −0.872456 0.503712i −0.00429212 0.999991i \(-0.501366\pi\)
−0.868163 + 0.496278i \(0.834700\pi\)
\(434\) −23.6952 −1.13741
\(435\) 0.102349 53.8516i 0.00490724 2.58199i
\(436\) 15.8092 27.3823i 0.757123 1.31137i
\(437\) 10.7341i 0.513484i
\(438\) −17.7600 10.2537i −0.848604 0.489942i
\(439\) −5.23003 9.05868i −0.249616 0.432347i 0.713803 0.700346i \(-0.246971\pi\)
−0.963419 + 0.267999i \(0.913638\pi\)
\(440\) 5.32332 + 3.08692i 0.253779 + 0.147163i
\(441\) 14.7541 0.702577
\(442\) 0 0
\(443\) 19.6909i 0.935543i −0.883849 0.467772i \(-0.845057\pi\)
0.883849 0.467772i \(-0.154943\pi\)
\(444\) −0.309950 0.536850i −0.0147096 0.0254778i
\(445\) −2.13650 + 3.68433i −0.101280 + 0.174654i
\(446\) 5.67405 9.82775i 0.268674 0.465357i
\(447\) 36.9246i 1.74648i
\(448\) 36.6471 + 21.1582i 1.73141 + 0.999631i
\(449\) 3.96933 6.87507i 0.187324 0.324455i −0.757033 0.653376i \(-0.773352\pi\)
0.944357 + 0.328922i \(0.106685\pi\)
\(450\) −24.4768 14.2560i −1.15385 0.672036i
\(451\) −3.96420 + 6.86619i −0.186667 + 0.323316i
\(452\) −13.4988 + 7.79353i −0.634930 + 0.366577i
\(453\) 23.9540 13.8298i 1.12546 0.649782i
\(454\) −6.33507 −0.297319
\(455\) 0 0
\(456\) −15.7908 −0.739472
\(457\) −6.15395 + 3.55299i −0.287870 + 0.166202i −0.636981 0.770880i \(-0.719817\pi\)
0.349111 + 0.937081i \(0.386484\pi\)
\(458\) −5.75472 + 3.32249i −0.268901 + 0.155250i
\(459\) −2.58216 + 4.47243i −0.120525 + 0.208755i
\(460\) 10.7751 6.19373i 0.502391 0.288784i
\(461\) −7.67119 + 13.2869i −0.357283 + 0.618832i −0.987506 0.157582i \(-0.949630\pi\)
0.630223 + 0.776414i \(0.282963\pi\)
\(462\) 32.7347 + 18.8994i 1.52296 + 0.879279i
\(463\) 10.1047i 0.469606i 0.972043 + 0.234803i \(0.0754446\pi\)
−0.972043 + 0.234803i \(0.924555\pi\)
\(464\) 12.1551 21.0532i 0.564286 0.977372i
\(465\) 14.2774 + 8.27930i 0.662100 + 0.383943i
\(466\) 6.85662 + 11.8760i 0.317627 + 0.550146i
\(467\) 14.2884i 0.661190i 0.943773 + 0.330595i \(0.107249\pi\)
−0.943773 + 0.330595i \(0.892751\pi\)
\(468\) 0 0
\(469\) −24.0485 −1.11046
\(470\) −12.0556 + 20.7896i −0.556084 + 0.958953i
\(471\) −2.40678 4.16867i −0.110899 0.192082i
\(472\) −3.42748 1.97886i −0.157763 0.0910843i
\(473\) 4.42058i 0.203258i
\(474\) −12.0218 + 20.8224i −0.552180 + 0.956403i
\(475\) −12.5350 21.9030i −0.575143 1.00498i
\(476\) 55.6546 2.55092
\(477\) 12.0960 + 6.98363i 0.553837 + 0.319758i
\(478\) 44.3582 25.6102i 2.02890 1.17138i
\(479\) 16.9338 + 29.3303i 0.773727 + 1.34013i 0.935507 + 0.353307i \(0.114943\pi\)
−0.161780 + 0.986827i \(0.551724\pi\)
\(480\) −20.5934 35.8259i −0.939955 1.63522i
\(481\) 0 0
\(482\) 59.1358i 2.69356i
\(483\) 15.5192 8.95999i 0.706146 0.407694i
\(484\) −8.67419 15.0241i −0.394281 0.682915i
\(485\) 0.0228188 12.0063i 0.00103615 0.545179i
\(486\) −45.2287 −2.05162
\(487\) −11.3081 6.52871i −0.512417 0.295844i 0.221409 0.975181i \(-0.428934\pi\)
−0.733827 + 0.679337i \(0.762268\pi\)
\(488\) 5.43946 + 3.14047i 0.246233 + 0.142163i
\(489\) −20.1433 −0.910911
\(490\) 0.0510618 26.8666i 0.00230674 1.21371i
\(491\) −20.4102 35.3515i −0.921101 1.59539i −0.797715 0.603034i \(-0.793958\pi\)
−0.123385 0.992359i \(-0.539375\pi\)
\(492\) −20.4004 + 11.7782i −0.919720 + 0.531001i
\(493\) 60.8658i 2.74126i
\(494\) 0 0
\(495\) −6.13847 10.6790i −0.275904 0.479983i
\(496\) 3.72525 + 6.45232i 0.167269 + 0.289718i
\(497\) 15.0469 8.68730i 0.674944 0.389679i
\(498\) 49.7763 + 28.7384i 2.23053 + 1.28780i
\(499\) 34.5723 1.54767 0.773833 0.633389i \(-0.218337\pi\)
0.773833 + 0.633389i \(0.218337\pi\)
\(500\) −14.7538 + 25.2211i −0.659808 + 1.12792i
\(501\) 5.37730 9.31377i 0.240240 0.416108i
\(502\) 0.495779i 0.0221277i
\(503\) 38.1624 + 22.0331i 1.70158 + 0.982407i 0.944166 + 0.329470i \(0.106870\pi\)
0.757412 + 0.652937i \(0.226463\pi\)
\(504\) 6.16671 + 10.6811i 0.274687 + 0.475772i
\(505\) −12.5755 + 21.6860i −0.559600 + 0.965016i
\(506\) 9.54038 0.424122
\(507\) 0 0
\(508\) 31.3356i 1.39029i
\(509\) 21.0886 + 36.5265i 0.934735 + 1.61901i 0.775105 + 0.631832i \(0.217697\pi\)
0.159630 + 0.987177i \(0.448970\pi\)
\(510\) −59.1970 34.3276i −2.62129 1.52005i
\(511\) −7.13515 + 12.3584i −0.315641 + 0.546705i
\(512\) 24.9705i 1.10355i
\(513\) −3.76179 2.17187i −0.166087 0.0958904i
\(514\) −13.8984 + 24.0727i −0.613031 + 1.06180i
\(515\) −22.8995 + 13.1631i −1.00907 + 0.580034i
\(516\) 6.56707 11.3745i 0.289099 0.500734i
\(517\) −9.05033 + 5.22521i −0.398033 + 0.229804i
\(518\) −0.659455 + 0.380736i −0.0289748 + 0.0167286i
\(519\) −2.44845 −0.107475
\(520\) 0 0
\(521\) 28.6488 1.25513 0.627564 0.778565i \(-0.284052\pi\)
0.627564 + 0.778565i \(0.284052\pi\)
\(522\) 49.7637 28.7311i 2.17810 1.25753i
\(523\) −17.9133 + 10.3423i −0.783295 + 0.452235i −0.837597 0.546289i \(-0.816040\pi\)
0.0543019 + 0.998525i \(0.482707\pi\)
\(524\) −25.5419 + 44.2398i −1.11580 + 1.93263i
\(525\) −21.2037 + 36.4056i −0.925405 + 1.58887i
\(526\) 10.6288 18.4096i 0.463438 0.802698i
\(527\) 16.1548 + 9.32698i 0.703714 + 0.406289i
\(528\) 11.8851i 0.517232i
\(529\) −9.23851 + 16.0016i −0.401674 + 0.695720i
\(530\) 12.7587 22.0021i 0.554204 0.955710i
\(531\) 3.96103 + 6.86070i 0.171894 + 0.297729i
\(532\) 46.8114i 2.02953i
\(533\) 0 0
\(534\) −9.71357 −0.420347
\(535\) 10.6668 + 6.18556i 0.461168 + 0.267425i
\(536\) −4.46461 7.73293i −0.192842 0.334012i
\(537\) −35.7852 20.6606i −1.54424 0.891570i
\(538\) 27.1494i 1.17049i
\(539\) 5.84150 10.1178i 0.251611 0.435803i
\(540\) −0.00955858 + 5.02933i −0.000411336 + 0.216428i
\(541\) −25.8647 −1.11201 −0.556005 0.831179i \(-0.687666\pi\)
−0.556005 + 0.831179i \(0.687666\pi\)
\(542\) 36.2308 + 20.9179i 1.55625 + 0.898500i
\(543\) −45.7596 + 26.4193i −1.96373 + 1.13376i
\(544\) −23.3526 40.4478i −1.00123 1.73419i
\(545\) 13.4817 + 23.4538i 0.577493 + 1.00465i
\(546\) 0 0
\(547\) 29.5937i 1.26533i 0.774424 + 0.632667i \(0.218040\pi\)
−0.774424 + 0.632667i \(0.781960\pi\)
\(548\) 29.0592 16.7773i 1.24135 0.716692i
\(549\) −6.28621 10.8880i −0.268289 0.464690i
\(550\) −19.4672 + 11.1409i −0.830082 + 0.475050i
\(551\) 51.1947 2.18097
\(552\) 5.76226 + 3.32684i 0.245258 + 0.141600i
\(553\) 14.4894 + 8.36549i 0.616154 + 0.355737i
\(554\) 59.8427 2.54247
\(555\) 0.530383 + 0.00100803i 0.0225135 + 4.27884e-5i
\(556\) −7.03353 12.1824i −0.298288 0.516650i
\(557\) −24.5536 + 14.1760i −1.04037 + 0.600657i −0.919938 0.392065i \(-0.871761\pi\)
−0.120431 + 0.992722i \(0.538428\pi\)
\(558\) 17.6108i 0.745525i
\(559\) 0 0
\(560\) −16.4888 + 9.47808i −0.696780 + 0.400522i
\(561\) −14.8784 25.7702i −0.628168 1.08802i
\(562\) 41.0222 23.6841i 1.73041 0.999056i
\(563\) 11.4377 + 6.60357i 0.482043 + 0.278307i 0.721267 0.692657i \(-0.243560\pi\)
−0.239225 + 0.970964i \(0.576893\pi\)
\(564\) −31.0496 −1.30742
\(565\) 0.0253463 13.3362i 0.00106633 0.561057i
\(566\) −26.9945 + 46.7559i −1.13467 + 1.96530i
\(567\) 35.3318i 1.48380i
\(568\) 5.58689 + 3.22559i 0.234421 + 0.135343i
\(569\) −5.42968 9.40447i −0.227624 0.394256i 0.729480 0.684003i \(-0.239762\pi\)
−0.957103 + 0.289747i \(0.906429\pi\)
\(570\) 28.8732 49.7910i 1.20936 2.08552i
\(571\) 3.37601 0.141282 0.0706409 0.997502i \(-0.477496\pi\)
0.0706409 + 0.997502i \(0.477496\pi\)
\(572\) 0 0
\(573\) 16.7614i 0.700218i
\(574\) 14.4680 + 25.0594i 0.603884 + 1.04596i
\(575\) −0.0404198 + 10.6336i −0.00168562 + 0.443451i
\(576\) 15.7252 27.2369i 0.655218 1.13487i
\(577\) 0.958534i 0.0399043i −0.999801 0.0199521i \(-0.993649\pi\)
0.999801 0.0199521i \(-0.00635139\pi\)
\(578\) −35.3587 20.4144i −1.47073 0.849125i
\(579\) 25.8649 44.7994i 1.07491 1.86180i
\(580\) −29.5399 51.3900i −1.22658 2.13385i
\(581\) 19.9979 34.6373i 0.829652 1.43700i
\(582\) 23.7145 13.6916i 0.982999 0.567535i
\(583\) 9.57817 5.52996i 0.396687 0.229027i
\(584\) −5.29856 −0.219256
\(585\) 0 0
\(586\) −15.5590 −0.642738
\(587\) 18.7776 10.8413i 0.775035 0.447467i −0.0596325 0.998220i \(-0.518993\pi\)
0.834668 + 0.550753i \(0.185660\pi\)
\(588\) 30.0613 17.3559i 1.23971 0.715744i
\(589\) −7.84498 + 13.5879i −0.323247 + 0.559880i
\(590\) 12.5067 7.18911i 0.514895 0.295971i
\(591\) −26.6447 + 46.1500i −1.09602 + 1.89836i
\(592\) 0.207352 + 0.119715i 0.00852213 + 0.00492026i
\(593\) 37.9527i 1.55853i 0.626695 + 0.779264i \(0.284407\pi\)
−0.626695 + 0.779264i \(0.715593\pi\)
\(594\) −1.93033 + 3.34343i −0.0792025 + 0.137183i
\(595\) −23.8872 + 41.1928i −0.979280 + 1.68874i
\(596\) −20.3216 35.1981i −0.832406 1.44177i
\(597\) 28.9900i 1.18648i
\(598\) 0 0
\(599\) 4.17043 0.170399 0.0851995 0.996364i \(-0.472847\pi\)
0.0851995 + 0.996364i \(0.472847\pi\)
\(600\) −15.6429 0.0594609i −0.638618 0.00242748i
\(601\) −21.1117 36.5666i −0.861165 1.49158i −0.870806 0.491627i \(-0.836402\pi\)
0.00964108 0.999954i \(-0.496931\pi\)
\(602\) −13.9722 8.06685i −0.569464 0.328780i
\(603\) 17.8734i 0.727861i
\(604\) 15.2226 26.3663i 0.619399 1.07283i
\(605\) 14.8432 + 0.0282104i 0.603460 + 0.00114692i
\(606\) −57.1742 −2.32254
\(607\) 7.47812 + 4.31749i 0.303527 + 0.175242i 0.644026 0.765003i \(-0.277263\pi\)
−0.340499 + 0.940245i \(0.610596\pi\)
\(608\) 34.0209 19.6420i 1.37973 0.796588i
\(609\) −42.7332 74.0160i −1.73163 2.99928i
\(610\) −19.8484 + 11.4092i −0.803638 + 0.461946i
\(611\) 0 0
\(612\) 41.3637i 1.67203i
\(613\) −30.9707 + 17.8809i −1.25090 + 0.722205i −0.971287 0.237910i \(-0.923538\pi\)
−0.279608 + 0.960114i \(0.590204\pi\)
\(614\) 31.6568 + 54.8312i 1.27756 + 2.21281i
\(615\) 0.0383052 20.1546i 0.00154462 0.812713i
\(616\) 9.76617 0.393490
\(617\) 0.983506 + 0.567827i 0.0395944 + 0.0228599i 0.519667 0.854369i \(-0.326056\pi\)
−0.480072 + 0.877229i \(0.659390\pi\)
\(618\) −52.1704 30.1206i −2.09860 1.21163i
\(619\) 47.6316 1.91447 0.957237 0.289305i \(-0.0934241\pi\)
0.957237 + 0.289305i \(0.0934241\pi\)
\(620\) 18.1664 + 0.0345264i 0.729580 + 0.00138662i
\(621\) 0.915149 + 1.58508i 0.0367237 + 0.0636073i
\(622\) 30.4084 17.5563i 1.21927 0.703944i
\(623\) 6.75929i 0.270805i
\(624\) 0 0
\(625\) −12.3350 21.7450i −0.493402 0.869801i
\(626\) −31.6296 54.7841i −1.26417 2.18961i
\(627\) 21.6755 12.5144i 0.865636 0.499775i
\(628\) −4.58849 2.64917i −0.183101 0.105713i
\(629\) 0.599465 0.0239022
\(630\) −44.9549 0.0854397i −1.79104 0.00340400i
\(631\) 3.83621 6.64450i 0.152717 0.264513i −0.779508 0.626392i \(-0.784531\pi\)
0.932225 + 0.361878i \(0.117864\pi\)
\(632\) 6.21221i 0.247108i
\(633\) −35.6102 20.5595i −1.41538 0.817168i
\(634\) −18.0657 31.2907i −0.717481 1.24271i
\(635\) −23.1931 13.4494i −0.920392 0.533723i
\(636\) 32.8605 1.30300
\(637\) 0 0
\(638\) 45.5012i 1.80141i
\(639\) −6.45659 11.1831i −0.255419 0.442398i
\(640\) −19.4315 11.2681i −0.768098 0.445410i
\(641\) 7.92722 13.7303i 0.313106 0.542316i −0.665927 0.746017i \(-0.731964\pi\)
0.979033 + 0.203701i \(0.0652970\pi\)
\(642\) 28.1226i 1.10991i
\(643\) 17.6914 + 10.2141i 0.697680 + 0.402806i 0.806483 0.591258i \(-0.201368\pi\)
−0.108803 + 0.994063i \(0.534702\pi\)
\(644\) 9.86234 17.0821i 0.388631 0.673128i
\(645\) 5.60024 + 9.74262i 0.220509 + 0.383615i
\(646\) 32.5268 56.3381i 1.27975 2.21659i
\(647\) −20.6202 + 11.9051i −0.810663 + 0.468036i −0.847186 0.531296i \(-0.821705\pi\)
0.0365231 + 0.999333i \(0.488372\pi\)
\(648\) −11.3611 + 6.55934i −0.446307 + 0.257675i
\(649\) 6.27305 0.246239
\(650\) 0 0
\(651\) 26.1934 1.02660
\(652\) −19.2014 + 11.0859i −0.751986 + 0.434159i
\(653\) 26.9921 15.5839i 1.05628 0.609844i 0.131880 0.991266i \(-0.457899\pi\)
0.924401 + 0.381421i \(0.124565\pi\)
\(654\) −30.8497 + 53.4332i −1.20632 + 2.08940i
\(655\) −21.7815 37.8928i −0.851074 1.48059i
\(656\) 4.54919 7.87943i 0.177616 0.307640i
\(657\) 9.18506 + 5.30300i 0.358343 + 0.206890i
\(658\) 38.1407i 1.48688i
\(659\) 17.5459 30.3904i 0.683492 1.18384i −0.290416 0.956900i \(-0.593794\pi\)
0.973908 0.226942i \(-0.0728729\pi\)
\(660\) −25.0691 14.5373i −0.975814 0.565862i
\(661\) 8.18204 + 14.1717i 0.318244 + 0.551215i 0.980122 0.198397i \(-0.0635734\pi\)
−0.661877 + 0.749612i \(0.730240\pi\)
\(662\) 4.61904i 0.179524i
\(663\) 0 0
\(664\) 14.8504 0.576308
\(665\) −34.6476 20.0917i −1.34358 0.779122i
\(666\) 0.282971 + 0.490121i 0.0109649 + 0.0189918i
\(667\) −18.6816 10.7858i −0.723353 0.417628i
\(668\) 11.8377i 0.458014i
\(669\) −6.27227 + 10.8639i −0.242500 + 0.420022i
\(670\) 32.5467 + 0.0618571i 1.25739 + 0.00238975i
\(671\) −9.95542 −0.384325
\(672\) −56.7958 32.7911i −2.19095 1.26494i
\(673\) 40.8495 23.5844i 1.57463 0.909114i 0.579042 0.815298i \(-0.303427\pi\)
0.995590 0.0938157i \(-0.0299064\pi\)
\(674\) 2.55559 + 4.42641i 0.0984377 + 0.170499i
\(675\) −3.71837 2.16569i −0.143120 0.0833574i
\(676\) 0 0
\(677\) 6.68421i 0.256895i −0.991716 0.128448i \(-0.959001\pi\)
0.991716 0.128448i \(-0.0409994\pi\)
\(678\) 26.3412 15.2081i 1.01163 0.584064i
\(679\) −9.52743 16.5020i −0.365629 0.633288i
\(680\) −17.6804 0.0336028i −0.678013 0.00128861i
\(681\) 7.00297 0.268354
\(682\) 12.0768 + 6.97253i 0.462443 + 0.266992i
\(683\) −18.5826 10.7287i −0.711044 0.410522i 0.100403 0.994947i \(-0.467987\pi\)
−0.811448 + 0.584425i \(0.801320\pi\)
\(684\) 34.7912 1.33028
\(685\) −0.0545637 + 28.7091i −0.00208477 + 1.09692i
\(686\) 5.35894 + 9.28196i 0.204605 + 0.354387i
\(687\) 6.36144 3.67278i 0.242704 0.140125i
\(688\) 5.07292i 0.193403i
\(689\) 0 0
\(690\) −21.0263 + 12.0863i −0.800457 + 0.460118i
\(691\) 18.3937 + 31.8588i 0.699728 + 1.21196i 0.968561 + 0.248778i \(0.0800289\pi\)
−0.268832 + 0.963187i \(0.586638\pi\)
\(692\) −2.33396 + 1.34751i −0.0887239 + 0.0512248i
\(693\) −16.9297 9.77435i −0.643105 0.371297i
\(694\) 56.0422 2.12733
\(695\) 12.0357 + 0.0228746i 0.456539 + 0.000867684i
\(696\) 15.8668 27.4821i 0.601430 1.04171i
\(697\) 22.7798i 0.862846i
\(698\) −30.4298 17.5687i −1.15179 0.664984i
\(699\) −7.57951 13.1281i −0.286683 0.496550i
\(700\) −0.176270 + 46.3729i −0.00666239 + 1.75273i
\(701\) 26.7626 1.01081 0.505404 0.862883i \(-0.331344\pi\)
0.505404 + 0.862883i \(0.331344\pi\)
\(702\) 0 0
\(703\) 0.504214i 0.0190168i
\(704\) −12.4520 21.5674i −0.469301 0.812853i
\(705\) 13.3266 22.9814i 0.501910 0.865531i
\(706\) −2.97461 + 5.15218i −0.111951 + 0.193905i
\(707\) 39.7853i 1.49628i
\(708\) 16.1411 + 9.31904i 0.606618 + 0.350231i
\(709\) −11.7424 + 20.3384i −0.440994 + 0.763824i −0.997764 0.0668430i \(-0.978707\pi\)
0.556770 + 0.830667i \(0.312041\pi\)
\(710\) −20.3864 + 11.7185i −0.765086 + 0.439786i
\(711\) 6.21741 10.7689i 0.233171 0.403864i
\(712\) −2.17348 + 1.25486i −0.0814547 + 0.0470279i
\(713\) 5.72546 3.30560i 0.214420 0.123796i
\(714\) −108.603 −4.06437
\(715\) 0 0
\(716\) −45.4825 −1.69976
\(717\) −49.0349 + 28.3103i −1.83124 + 1.05727i
\(718\) 33.4044 19.2861i 1.24664 0.719750i
\(719\) −8.66421 + 15.0069i −0.323121 + 0.559661i −0.981130 0.193348i \(-0.938065\pi\)
0.658010 + 0.753009i \(0.271399\pi\)
\(720\) 7.04431 + 12.2548i 0.262526 + 0.456711i
\(721\) −20.9597 + 36.3033i −0.780580 + 1.35200i
\(722\) 12.0438 + 6.95350i 0.448224 + 0.258782i
\(723\) 65.3704i 2.43115i
\(724\) −29.0800 + 50.3680i −1.08075 + 1.87191i
\(725\) 50.7151 + 0.192775i 1.88351 + 0.00715950i
\(726\) 16.9266 + 29.3178i 0.628206 + 1.08808i
\(727\) 2.13255i 0.0790919i 0.999218 + 0.0395460i \(0.0125912\pi\)
−0.999218 + 0.0395460i \(0.987409\pi\)
\(728\) 0 0
\(729\) 20.1291 0.745524
\(730\) 9.68831 16.7072i 0.358581 0.618363i
\(731\) 6.35058 + 10.9995i 0.234885 + 0.406832i
\(732\) −25.6161 14.7895i −0.946798 0.546634i
\(733\) 4.01857i 0.148429i −0.997242 0.0742147i \(-0.976355\pi\)
0.997242 0.0742147i \(-0.0236450\pi\)
\(734\) −29.0504 + 50.3168i −1.07227 + 1.85723i
\(735\) −0.0564452 + 29.6991i −0.00208201 + 1.09547i
\(736\) −16.5529 −0.610147
\(737\) 12.2568 + 7.07649i 0.451486 + 0.260666i
\(738\) 18.6247 10.7530i 0.685584 0.395822i
\(739\) 1.00246 + 1.73631i 0.0368759 + 0.0638710i 0.883874 0.467724i \(-0.154926\pi\)
−0.846998 + 0.531595i \(0.821593\pi\)
\(740\) 0.506138 0.290937i 0.0186060 0.0106951i
\(741\) 0 0
\(742\) 40.3651i 1.48185i
\(743\) 5.62049 3.24499i 0.206196 0.119047i −0.393346 0.919390i \(-0.628683\pi\)
0.599542 + 0.800343i \(0.295349\pi\)
\(744\) 4.86280 + 8.42262i 0.178279 + 0.308788i
\(745\) 34.7741 + 0.0660905i 1.27402 + 0.00242137i
\(746\) −1.41391 −0.0517669
\(747\) −25.7432 14.8629i −0.941895 0.543803i
\(748\) −28.3655 16.3768i −1.03715 0.598796i
\(749\) 19.5694 0.715051
\(750\) 28.7902 49.2158i 1.05127 1.79711i
\(751\) 14.3696 + 24.8889i 0.524355 + 0.908210i 0.999598 + 0.0283552i \(0.00902695\pi\)
−0.475243 + 0.879855i \(0.657640\pi\)
\(752\) 10.3859 5.99629i 0.378734 0.218662i
\(753\) 0.548048i 0.0199720i
\(754\) 0 0
\(755\) 12.9815 + 22.5836i 0.472445 + 0.821902i
\(756\) 3.99095 + 6.91253i 0.145149 + 0.251406i
\(757\) −37.3868 + 21.5853i −1.35885 + 0.784530i −0.989468 0.144750i \(-0.953762\pi\)
−0.369377 + 0.929280i \(0.620429\pi\)
\(758\) 33.4295 + 19.3005i 1.21421 + 0.701026i
\(759\) −10.5462 −0.382803
\(760\) 0.0282636 14.8711i 0.00102523 0.539432i
\(761\) −2.50567 + 4.33994i −0.0908303 + 0.157323i −0.907861 0.419272i \(-0.862285\pi\)
0.817030 + 0.576595i \(0.195619\pi\)
\(762\) 61.1477i 2.21515i
\(763\) 37.1820 + 21.4671i 1.34608 + 0.777160i
\(764\) −9.22471 15.9777i −0.333738 0.578052i
\(765\) 30.6154 + 17.7535i 1.10690 + 0.641879i
\(766\) 2.96339 0.107072
\(767\) 0 0
\(768\) 5.39406i 0.194642i
\(769\) −0.0585443 0.101402i −0.00211116 0.00365664i 0.864968 0.501827i \(-0.167339\pi\)
−0.867079 + 0.498171i \(0.834005\pi\)
\(770\) −17.8573 + 30.7944i −0.643531 + 1.10975i
\(771\) 15.3637 26.6106i 0.553309 0.958359i
\(772\) 56.9395i 2.04930i
\(773\) −18.9136 10.9197i −0.680273 0.392756i 0.119685 0.992812i \(-0.461812\pi\)
−0.799958 + 0.600056i \(0.795145\pi\)
\(774\) −5.99545 + 10.3844i −0.215502 + 0.373261i
\(775\) −7.82265 + 13.4311i −0.280998 + 0.482458i
\(776\) 3.53753 6.12719i 0.126990 0.219953i
\(777\) 0.728981 0.420877i 0.0261520 0.0150989i
\(778\) 12.3536 7.13235i 0.442898 0.255707i
\(779\) 19.1602 0.686486
\(780\) 0 0
\(781\) −10.2253 −0.365888
\(782\) −23.7389 + 13.7057i −0.848902 + 0.490114i
\(783\) 7.55979 4.36465i 0.270165 0.155980i
\(784\) −6.70352 + 11.6108i −0.239412 + 0.414673i
\(785\) 3.93019 2.25915i 0.140274 0.0806324i
\(786\) 49.8419 86.3286i 1.77780 3.07924i
\(787\) −24.0427 13.8811i −0.857030 0.494807i 0.00598642 0.999982i \(-0.498094\pi\)
−0.863017 + 0.505175i \(0.831428\pi\)
\(788\) 58.6561i 2.08954i
\(789\) −11.7494 + 20.3505i −0.418289 + 0.724498i
\(790\) −19.5881 11.3589i −0.696914 0.404132i
\(791\) −10.5827 18.3298i −0.376278 0.651733i
\(792\) 7.25843i 0.257917i
\(793\) 0 0
\(794\) 37.4084 1.32757
\(795\) −14.1039 + 24.3218i −0.500213 + 0.862604i
\(796\) 15.9548 + 27.6345i 0.565502 + 0.979478i
\(797\) 36.3354 + 20.9783i 1.28707 + 0.743088i 0.978130 0.207995i \(-0.0666937\pi\)
0.308936 + 0.951083i \(0.400027\pi\)
\(798\) 91.3468i 3.23364i
\(799\) 15.0130 26.0033i 0.531122 0.919931i
\(800\) 33.7762 19.3299i 1.19417 0.683414i
\(801\) 5.02365 0.177502
\(802\) −50.5142 29.1644i −1.78372 1.02983i
\(803\) 7.27316 4.19916i 0.256664 0.148185i
\(804\) 21.0252 + 36.4167i 0.741502 + 1.28432i
\(805\) 8.41037 + 14.6313i 0.296427 + 0.515687i
\(806\) 0 0
\(807\) 30.0117i 1.05646i
\(808\) −12.7932 + 7.38613i −0.450062 + 0.259843i
\(809\) 4.03354 + 6.98629i 0.141812 + 0.245625i 0.928179 0.372134i \(-0.121374\pi\)
−0.786367 + 0.617759i \(0.788041\pi\)
\(810\) 0.0908796 47.8171i 0.00319318 1.68012i
\(811\) 16.0953 0.565181 0.282591 0.959241i \(-0.408806\pi\)
0.282591 + 0.959241i \(0.408806\pi\)
\(812\) −81.4700 47.0367i −2.85904 1.65067i
\(813\) −40.0506 23.1232i −1.40464 0.810968i
\(814\) 0.448140 0.0157073
\(815\) 0.0360540 18.9701i 0.00126292 0.664494i
\(816\) 17.0740 + 29.5731i 0.597711 + 1.03527i
\(817\) −9.25178 + 5.34151i −0.323679 + 0.186876i
\(818\) 6.70475i 0.234426i
\(819\) 0 0
\(820\) −11.0557 19.2333i −0.386081 0.671656i
\(821\) 8.28883 + 14.3567i 0.289282 + 0.501051i 0.973639 0.228096i \(-0.0732501\pi\)
−0.684356 + 0.729148i \(0.739917\pi\)
\(822\) −56.7055 + 32.7389i −1.97783 + 1.14190i
\(823\) 21.6415 + 12.4948i 0.754377 + 0.435540i 0.827273 0.561800i \(-0.189891\pi\)
−0.0728963 + 0.997340i \(0.523224\pi\)
\(824\) −15.5647 −0.542221
\(825\) 21.5196 12.3155i 0.749215 0.428771i
\(826\) 11.4473 19.8273i 0.398303 0.689881i
\(827\) 9.28575i 0.322897i 0.986881 + 0.161449i \(0.0516166\pi\)
−0.986881 + 0.161449i \(0.948383\pi\)
\(828\) −12.6958 7.32990i −0.441208 0.254732i
\(829\) 24.1845 + 41.8887i 0.839961 + 1.45486i 0.889926 + 0.456105i \(0.150756\pi\)
−0.0499648 + 0.998751i \(0.515911\pi\)
\(830\) −27.1537 + 46.8258i −0.942519 + 1.62535i
\(831\) −66.1519 −2.29478
\(832\) 0 0
\(833\) 33.5675i 1.16304i
\(834\) 13.7251 + 23.7725i 0.475261 + 0.823176i
\(835\) 8.76169 + 5.08079i 0.303211 + 0.175828i
\(836\) 13.7747 23.8584i 0.476406 0.825160i
\(837\) 2.67532i 0.0924727i
\(838\) 6.24753 + 3.60701i 0.215817 + 0.124602i
\(839\) 13.7886 23.8825i 0.476034 0.824515i −0.523589 0.851971i \(-0.675407\pi\)
0.999623 + 0.0274561i \(0.00874065\pi\)
\(840\) −21.5239 + 12.3723i −0.742645 + 0.426886i
\(841\) −36.9411 + 63.9838i −1.27383 + 2.20634i
\(842\) 17.6860 10.2110i 0.609501 0.351895i
\(843\) −45.3471 + 26.1812i −1.56184 + 0.901727i
\(844\) −45.2601 −1.55792
\(845\) 0 0
\(846\) 28.3470 0.974589
\(847\) 20.4011 11.7786i 0.700989 0.404716i
\(848\) −10.9916 + 6.34601i −0.377453 + 0.217923i
\(849\) 29.8406 51.6854i 1.02413 1.77384i
\(850\) 32.4343 55.6879i 1.11249 1.91008i
\(851\) 0.106229 0.183994i 0.00364148 0.00630724i
\(852\) −26.3104 15.1903i −0.901379 0.520411i
\(853\) 36.3384i 1.24420i 0.782937 + 0.622101i \(0.213721\pi\)
−0.782937 + 0.622101i \(0.786279\pi\)
\(854\) −18.1670 + 31.4662i −0.621663 + 1.07675i
\(855\) −14.9326 + 25.7508i −0.510683 + 0.880659i
\(856\) 3.63306 + 6.29265i 0.124175 + 0.215078i
\(857\) 18.4246i 0.629373i 0.949196 + 0.314687i \(0.101899\pi\)
−0.949196 + 0.314687i \(0.898101\pi\)
\(858\) 0 0
\(859\) 36.8252 1.25646 0.628229 0.778028i \(-0.283780\pi\)
0.628229 + 0.778028i \(0.283780\pi\)
\(860\) 10.7003 + 6.20495i 0.364876 + 0.211587i
\(861\) −15.9934 27.7014i −0.545054 0.944060i
\(862\) 70.1325 + 40.4910i 2.38872 + 1.37913i
\(863\) 12.0557i 0.410380i 0.978722 + 0.205190i \(0.0657812\pi\)
−0.978722 + 0.205190i \(0.934219\pi\)
\(864\) 3.34919 5.80097i 0.113942 0.197353i
\(865\) 0.00438242 2.30585i 0.000149007 0.0784011i
\(866\) 45.0267 1.53007
\(867\) 39.0865 + 22.5666i 1.32745 + 0.766403i
\(868\) 24.9687 14.4157i 0.847491 0.489299i
\(869\) −4.92323 8.52729i −0.167009 0.289268i
\(870\) 57.6435 + 100.281i 1.95430 + 3.39985i
\(871\) 0 0
\(872\) 15.9414i 0.539845i
\(873\) −12.2646 + 7.08099i −0.415095 + 0.239655i
\(874\) −11.5279 19.9669i −0.389938 0.675392i
\(875\) −34.2473 20.0339i −1.15777 0.677270i
\(876\) 24.9525 0.843068
\(877\) 15.9725 + 9.22175i 0.539354 + 0.311396i 0.744817 0.667269i \(-0.232537\pi\)
−0.205463 + 0.978665i \(0.565870\pi\)
\(878\) 19.4571 + 11.2336i 0.656646 + 0.379115i
\(879\) 17.1994 0.580122
\(880\) 11.1929 + 0.0212728i 0.377312 + 0.000717106i
\(881\) −21.7185 37.6176i −0.731716 1.26737i −0.956149 0.292880i \(-0.905386\pi\)
0.224433 0.974489i \(-0.427947\pi\)
\(882\) −27.4447 + 15.8452i −0.924110 + 0.533535i
\(883\) 26.7242i 0.899341i 0.893195 + 0.449670i \(0.148459\pi\)
−0.893195 + 0.449670i \(0.851541\pi\)
\(884\) 0 0
\(885\) −13.8253 + 7.94706i −0.464733 + 0.267137i
\(886\) 21.1470 + 36.6277i 0.710449 + 1.23053i
\(887\) −36.6973 + 21.1872i −1.23217 + 0.711396i −0.967483 0.252937i \(-0.918604\pi\)
−0.264692 + 0.964333i \(0.585270\pi\)
\(888\) 0.270670 + 0.156272i 0.00908310 + 0.00524413i
\(889\) −42.5502 −1.42709
\(890\) 0.0173861 9.14784i 0.000582783 0.306636i
\(891\) 10.3967 18.0076i 0.348302 0.603276i
\(892\) 13.8079i 0.462322i
\(893\) 21.8716 + 12.6275i 0.731904 + 0.422565i
\(894\) 39.6552 + 68.6848i 1.32627 + 2.29716i
\(895\) 19.5213 33.6640i 0.652526 1.12526i
\(896\) −35.6491 −1.19095
\(897\) 0 0
\(898\) 17.0514i 0.569013i
\(899\) −15.7655 27.3066i −0.525808 0.910727i
\(900\) 34.4653 + 0.131008i 1.14884 + 0.00436693i
\(901\) −15.8886 + 27.5199i −0.529326 + 0.916820i
\(902\) 17.0294i 0.567016i
\(903\) 15.4453 + 8.91733i 0.513986 + 0.296750i
\(904\) 3.92936 6.80585i 0.130689 0.226359i
\(905\) −24.7987 43.1418i −0.824338 1.43408i
\(906\) −29.7051 + 51.4507i −0.986885 + 1.70933i
\(907\) −17.6921 + 10.2145i −0.587457 + 0.339168i −0.764091 0.645108i \(-0.776812\pi\)
0.176634 + 0.984277i \(0.443479\pi\)
\(908\) 6.67552 3.85411i 0.221535 0.127903i
\(909\) 29.5693 0.980751
\(910\) 0 0
\(911\) 23.7626 0.787290 0.393645 0.919263i \(-0.371214\pi\)
0.393645 + 0.919263i \(0.371214\pi\)
\(912\) −24.8741 + 14.3611i −0.823665 + 0.475543i
\(913\) −20.3847 + 11.7691i −0.674634 + 0.389500i
\(914\) 7.63145 13.2181i 0.252426 0.437215i
\(915\) 21.9410 12.6121i 0.725347 0.416943i
\(916\) 4.04266 7.00209i 0.133573 0.231356i
\(917\) −60.0726 34.6829i −1.98377 1.14533i
\(918\) 11.0924i 0.366104i
\(919\) −3.23809 + 5.60854i −0.106815 + 0.185009i −0.914478 0.404635i \(-0.867399\pi\)
0.807663 + 0.589644i \(0.200732\pi\)
\(920\) −3.14340 + 5.42070i −0.103635 + 0.178715i
\(921\) −34.9943 60.6120i −1.15310 1.99723i
\(922\) 32.9539i 1.08528i
\(923\) 0 0
\(924\) −45.9919 −1.51302
\(925\) −0.00189864 + 0.499491i −6.24268e−5 + 0.0164232i
\(926\) −10.8520 18.7962i −0.356618 0.617680i
\(927\) 26.9814 + 15.5777i 0.886185 + 0.511639i
\(928\) 78.9462i 2.59153i
\(929\) −10.4103 + 18.0312i −0.341551 + 0.591583i −0.984721 0.174140i \(-0.944285\pi\)
0.643170 + 0.765723i \(0.277619\pi\)
\(930\) −35.4495 0.0673741i −1.16243 0.00220928i
\(931\) −28.2338 −0.925326
\(932\) −14.4502 8.34283i −0.473332 0.273278i
\(933\) −33.6144 + 19.4073i −1.10049 + 0.635365i
\(934\) −15.3451 26.5784i −0.502106 0.869673i
\(935\) 24.2960 13.9658i 0.794563 0.456730i
\(936\) 0 0
\(937\) 18.1838i 0.594039i 0.954871 + 0.297019i \(0.0959926\pi\)
−0.954871 + 0.297019i \(0.904007\pi\)
\(938\) 44.7335 25.8269i 1.46060 0.843279i
\(939\) 34.9643 + 60.5600i 1.14102 + 1.97630i
\(940\) 0.0555749 29.2412i 0.00181265 0.953744i
\(941\) −4.73191 −0.154256 −0.0771279 0.997021i \(-0.524575\pi\)
−0.0771279 + 0.997021i \(0.524575\pi\)
\(942\) 8.95388 + 5.16953i 0.291733 + 0.168432i
\(943\) −6.99180 4.03672i −0.227684 0.131454i
\(944\) −7.19876 −0.234300
\(945\) −6.82926 0.0129795i −0.222156 0.000422222i
\(946\) 4.74748 + 8.22287i 0.154354 + 0.267349i
\(947\) −25.6304 + 14.7977i −0.832875 + 0.480861i −0.854836 0.518898i \(-0.826342\pi\)
0.0219609 + 0.999759i \(0.493009\pi\)
\(948\) 29.2552i 0.950164i
\(949\) 0 0
\(950\) 46.8394 + 27.2807i 1.51967 + 0.885102i
\(951\) 19.9704 + 34.5897i 0.647584 + 1.12165i
\(952\) −24.3007 + 14.0300i −0.787591 + 0.454716i
\(953\) −1.29331 0.746693i −0.0418944 0.0241877i 0.478907 0.877866i \(-0.341033\pi\)
−0.520801 + 0.853678i \(0.674367\pi\)
\(954\) −30.0002 −0.971293
\(955\) 15.7852 + 0.0300008i 0.510797 + 0.000970804i
\(956\) −31.1614 + 53.9731i −1.00783 + 1.74561i
\(957\) 50.2984i 1.62592i
\(958\) −62.9984 36.3722i −2.03539 1.17513i
\(959\) 22.7817 + 39.4591i 0.735660 + 1.27420i
\(960\) 54.7660 + 31.7581i 1.76757 + 1.02499i
\(961\) −21.3365 −0.688274
\(962\) 0 0
\(963\) 14.5444i 0.468687i
\(964\) −35.9769 62.3138i −1.15874 2.00699i
\(965\) 42.1439 + 24.4387i 1.35666 + 0.786710i
\(966\) −19.2452 + 33.3336i −0.619203 + 1.07249i
\(967\) 10.0656i 0.323687i −0.986816 0.161844i \(-0.948256\pi\)
0.986816 0.161844i \(-0.0517440\pi\)
\(968\) 7.57491 + 4.37338i 0.243467 + 0.140566i
\(969\) −35.9561 + 62.2778i −1.15508 + 2.00065i
\(970\) 12.8517 + 22.3579i 0.412644 + 0.717868i
\(971\) 6.15928 10.6682i 0.197661 0.342359i −0.750109 0.661315i \(-0.769999\pi\)
0.947770 + 0.318956i \(0.103332\pi\)
\(972\) 47.6594 27.5162i 1.52868 0.882581i
\(973\) 16.5424 9.55073i 0.530323 0.306182i
\(974\) 28.0460 0.898653
\(975\) 0 0
\(976\) 11.4245 0.365690
\(977\) −12.8698 + 7.43038i −0.411741 + 0.237719i −0.691538 0.722340i \(-0.743066\pi\)
0.279796 + 0.960059i \(0.409733\pi\)
\(978\) 37.4692 21.6329i 1.19813 0.691743i
\(979\) 1.98898 3.44501i 0.0635680 0.110103i
\(980\) 16.2912 + 28.3415i 0.520405 + 0.905337i
\(981\) 15.9548 27.6345i 0.509397 0.882302i
\(982\) 75.9315 + 43.8391i 2.42307 + 1.39896i
\(983\) 51.5408i 1.64390i −0.569562 0.821948i \(-0.692887\pi\)
0.569562 0.821948i \(-0.307113\pi\)
\(984\) 5.93835 10.2855i 0.189308 0.327890i
\(985\) −43.4144 25.1755i −1.38330 0.802157i
\(986\) 65.3668 + 113.219i 2.08170 + 3.60562i
\(987\) 42.1618i 1.34203i
\(988\) 0 0
\(989\) 4.50145 0.143138
\(990\) 22.8870 + 13.2719i 0.727398 + 0.421809i
\(991\) 2.78760 + 4.82827i 0.0885511 + 0.153375i 0.906899 0.421348i \(-0.138443\pi\)
−0.818348 + 0.574723i \(0.805110\pi\)
\(992\) −20.9536 12.0976i −0.665278 0.384098i
\(993\) 5.10602i 0.162035i
\(994\) −18.6594 + 32.3191i −0.591842 + 1.02510i
\(995\) −27.3016 0.0518885i −0.865519 0.00164498i
\(996\) −69.9351 −2.21598
\(997\) −22.2577 12.8505i −0.704909 0.406979i 0.104264 0.994550i \(-0.466751\pi\)
−0.809173 + 0.587570i \(0.800085\pi\)
\(998\) −64.3090 + 37.1288i −2.03567 + 1.17529i
\(999\) 0.0429872 + 0.0744561i 0.00136006 + 0.00235569i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 845.2.n.h.484.3 36
5.4 even 2 inner 845.2.n.h.484.16 36
13.2 odd 12 845.2.d.e.844.6 36
13.3 even 3 845.2.b.h.339.3 yes 18
13.4 even 6 845.2.n.i.529.3 36
13.5 odd 4 845.2.l.g.699.32 72
13.6 odd 12 845.2.l.g.654.31 72
13.7 odd 12 845.2.l.g.654.5 72
13.8 odd 4 845.2.l.g.699.6 72
13.9 even 3 inner 845.2.n.h.529.16 36
13.10 even 6 845.2.b.g.339.16 yes 18
13.11 odd 12 845.2.d.e.844.32 36
13.12 even 2 845.2.n.i.484.16 36
65.3 odd 12 4225.2.a.cb.1.3 18
65.4 even 6 845.2.n.i.529.16 36
65.9 even 6 inner 845.2.n.h.529.3 36
65.19 odd 12 845.2.l.g.654.6 72
65.23 odd 12 4225.2.a.ca.1.16 18
65.24 odd 12 845.2.d.e.844.5 36
65.29 even 6 845.2.b.h.339.16 yes 18
65.34 odd 4 845.2.l.g.699.31 72
65.42 odd 12 4225.2.a.cb.1.16 18
65.44 odd 4 845.2.l.g.699.5 72
65.49 even 6 845.2.b.g.339.3 18
65.54 odd 12 845.2.d.e.844.31 36
65.59 odd 12 845.2.l.g.654.32 72
65.62 odd 12 4225.2.a.ca.1.3 18
65.64 even 2 845.2.n.i.484.3 36
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
845.2.b.g.339.3 18 65.49 even 6
845.2.b.g.339.16 yes 18 13.10 even 6
845.2.b.h.339.3 yes 18 13.3 even 3
845.2.b.h.339.16 yes 18 65.29 even 6
845.2.d.e.844.5 36 65.24 odd 12
845.2.d.e.844.6 36 13.2 odd 12
845.2.d.e.844.31 36 65.54 odd 12
845.2.d.e.844.32 36 13.11 odd 12
845.2.l.g.654.5 72 13.7 odd 12
845.2.l.g.654.6 72 65.19 odd 12
845.2.l.g.654.31 72 13.6 odd 12
845.2.l.g.654.32 72 65.59 odd 12
845.2.l.g.699.5 72 65.44 odd 4
845.2.l.g.699.6 72 13.8 odd 4
845.2.l.g.699.31 72 65.34 odd 4
845.2.l.g.699.32 72 13.5 odd 4
845.2.n.h.484.3 36 1.1 even 1 trivial
845.2.n.h.484.16 36 5.4 even 2 inner
845.2.n.h.529.3 36 65.9 even 6 inner
845.2.n.h.529.16 36 13.9 even 3 inner
845.2.n.i.484.3 36 65.64 even 2
845.2.n.i.484.16 36 13.12 even 2
845.2.n.i.529.3 36 13.4 even 6
845.2.n.i.529.16 36 65.4 even 6
4225.2.a.ca.1.3 18 65.62 odd 12
4225.2.a.ca.1.16 18 65.23 odd 12
4225.2.a.cb.1.3 18 65.3 odd 12
4225.2.a.cb.1.16 18 65.42 odd 12