Properties

Label 845.2.a.i
Level $845$
Weight $2$
Character orbit 845.a
Self dual yes
Analytic conductor $6.747$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [845,2,Mod(1,845)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(845, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("845.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 845 = 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 845.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,-1,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(6.74735897080\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.564.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 5x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 65)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{2} + (\beta_1 - 1) q^{3} + (\beta_{2} + 2) q^{4} + q^{5} + ( - \beta_{2} + \beta_1 - 4) q^{6} + ( - \beta_{2} - 1) q^{7} + ( - \beta_{2} - \beta_1 - 1) q^{8} + (\beta_{2} - 2 \beta_1 + 2) q^{9}+ \cdots + ( - 5 \beta_{2} + 7 \beta_1 - 8) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - q^{2} - 2 q^{3} + 5 q^{4} + 3 q^{5} - 10 q^{6} - 2 q^{7} - 3 q^{8} + 3 q^{9} - q^{10} - 6 q^{11} + 4 q^{14} - 2 q^{15} + 5 q^{16} - 4 q^{17} + 17 q^{18} - 8 q^{19} + 5 q^{20} - 2 q^{21} - 12 q^{22}+ \cdots - 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 5x + 3 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 4 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 4 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.51414
0.571993
−2.08613
−2.51414 1.51414 4.32088 1.00000 −3.80675 −3.32088 −5.83502 −0.707389 −2.51414
1.2 −0.571993 −0.428007 −1.67282 1.00000 0.244817 2.67282 2.10083 −2.81681 −0.571993
1.3 2.08613 −3.08613 2.35194 1.00000 −6.43807 −1.35194 0.734191 6.52420 2.08613
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(5\) \( -1 \)
\(13\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 845.2.a.i 3
3.b odd 2 1 7605.2.a.cc 3
5.b even 2 1 4225.2.a.be 3
13.b even 2 1 845.2.a.k 3
13.c even 3 2 845.2.e.k 6
13.d odd 4 2 65.2.c.a 6
13.e even 6 2 845.2.e.i 6
13.f odd 12 4 845.2.m.h 12
39.d odd 2 1 7605.2.a.bs 3
39.f even 4 2 585.2.b.g 6
52.f even 4 2 1040.2.k.d 6
65.d even 2 1 4225.2.a.bc 3
65.f even 4 2 325.2.d.f 6
65.g odd 4 2 325.2.c.g 6
65.k even 4 2 325.2.d.e 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
65.2.c.a 6 13.d odd 4 2
325.2.c.g 6 65.g odd 4 2
325.2.d.e 6 65.k even 4 2
325.2.d.f 6 65.f even 4 2
585.2.b.g 6 39.f even 4 2
845.2.a.i 3 1.a even 1 1 trivial
845.2.a.k 3 13.b even 2 1
845.2.e.i 6 13.e even 6 2
845.2.e.k 6 13.c even 3 2
845.2.m.h 12 13.f odd 12 4
1040.2.k.d 6 52.f even 4 2
4225.2.a.bc 3 65.d even 2 1
4225.2.a.be 3 5.b even 2 1
7605.2.a.bs 3 39.d odd 2 1
7605.2.a.cc 3 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{3} + T_{2}^{2} - 5T_{2} - 3 \) acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(845))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} + T^{2} - 5T - 3 \) Copy content Toggle raw display
$3$ \( T^{3} + 2 T^{2} + \cdots - 2 \) Copy content Toggle raw display
$5$ \( (T - 1)^{3} \) Copy content Toggle raw display
$7$ \( T^{3} + 2 T^{2} + \cdots - 12 \) Copy content Toggle raw display
$11$ \( T^{3} + 6 T^{2} + \cdots - 54 \) Copy content Toggle raw display
$13$ \( T^{3} \) Copy content Toggle raw display
$17$ \( T^{3} + 4 T^{2} + \cdots - 96 \) Copy content Toggle raw display
$19$ \( T^{3} + 8 T^{2} + \cdots - 6 \) Copy content Toggle raw display
$23$ \( T^{3} + 8 T^{2} + \cdots + 6 \) Copy content Toggle raw display
$29$ \( T^{3} + 2 T^{2} + \cdots - 12 \) Copy content Toggle raw display
$31$ \( T^{3} + 10 T^{2} + \cdots - 6 \) Copy content Toggle raw display
$37$ \( T^{3} + 20 T^{2} + \cdots + 228 \) Copy content Toggle raw display
$41$ \( T^{3} - 2 T^{2} + \cdots + 72 \) Copy content Toggle raw display
$43$ \( T^{3} + 12 T^{2} + \cdots + 2 \) Copy content Toggle raw display
$47$ \( T^{3} - 2 T^{2} + \cdots + 12 \) Copy content Toggle raw display
$53$ \( T^{3} - 6 T^{2} + \cdots - 72 \) Copy content Toggle raw display
$59$ \( T^{3} - 12 T^{2} + \cdots - 18 \) Copy content Toggle raw display
$61$ \( T^{3} + 6 T^{2} + \cdots - 76 \) Copy content Toggle raw display
$67$ \( T^{3} + 18 T^{2} + \cdots + 108 \) Copy content Toggle raw display
$71$ \( T^{3} + 8 T^{2} + \cdots - 6 \) Copy content Toggle raw display
$73$ \( T^{3} + 20 T^{2} + \cdots - 516 \) Copy content Toggle raw display
$79$ \( T^{3} - 12 T^{2} + \cdots + 32 \) Copy content Toggle raw display
$83$ \( T^{3} + 18 T^{2} + \cdots + 36 \) Copy content Toggle raw display
$89$ \( T^{3} - 96T - 288 \) Copy content Toggle raw display
$97$ \( T^{3} - 14 T^{2} + \cdots + 24 \) Copy content Toggle raw display
show more
show less