Properties

Label 65.2.c.a
Level 65
Weight 2
Character orbit 65.c
Analytic conductor 0.519
Analytic rank 0
Dimension 6
CM No
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 65 = 5 \cdot 13 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 65.c (of order \(2\) and degree \(1\))

Newform invariants

Self dual: No
Analytic conductor: \(0.519027613138\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.5089536.1
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q -\beta_{5} q^{2} + ( -1 - \beta_{1} ) q^{3} + ( -2 + \beta_{3} ) q^{4} + \beta_{4} q^{5} + ( -\beta_{2} - 4 \beta_{4} + \beta_{5} ) q^{6} + ( \beta_{2} + \beta_{4} ) q^{7} + ( \beta_{2} + \beta_{4} + \beta_{5} ) q^{8} + ( 2 + 2 \beta_{1} - \beta_{3} ) q^{9} +O(q^{10})\) \( q -\beta_{5} q^{2} + ( -1 - \beta_{1} ) q^{3} + ( -2 + \beta_{3} ) q^{4} + \beta_{4} q^{5} + ( -\beta_{2} - 4 \beta_{4} + \beta_{5} ) q^{6} + ( \beta_{2} + \beta_{4} ) q^{7} + ( \beta_{2} + \beta_{4} + \beta_{5} ) q^{8} + ( 2 + 2 \beta_{1} - \beta_{3} ) q^{9} -\beta_{1} q^{10} + ( -\beta_{2} + 2 \beta_{4} - \beta_{5} ) q^{11} + ( 1 + 3 \beta_{1} ) q^{12} + ( -1 + \beta_{1} - \beta_{2} - \beta_{4} + \beta_{5} ) q^{13} + ( 1 - 2 \beta_{1} - \beta_{3} ) q^{14} + ( -\beta_{4} + \beta_{5} ) q^{15} + ( 1 - 2 \beta_{1} ) q^{16} + ( 2 - 2 \beta_{3} ) q^{17} + ( \beta_{2} + 7 \beta_{4} - 3 \beta_{5} ) q^{18} + ( \beta_{2} - 2 \beta_{4} - \beta_{5} ) q^{19} + ( -\beta_{2} - 2 \beta_{4} ) q^{20} + 2 \beta_{5} q^{21} + ( -5 - \beta_{1} + 2 \beta_{3} ) q^{22} + ( 3 + \beta_{1} ) q^{23} + ( \beta_{2} + 4 \beta_{4} + \beta_{5} ) q^{24} - q^{25} + ( 3 + 2 \beta_{1} + \beta_{2} + 4 \beta_{4} + \beta_{5} ) q^{26} + ( -6 - 2 \beta_{1} + 2 \beta_{3} ) q^{27} + ( -\beta_{2} - 7 \beta_{4} - 2 \beta_{5} ) q^{28} + ( -1 + \beta_{3} ) q^{29} + ( 4 + \beta_{1} - \beta_{3} ) q^{30} + ( -\beta_{2} - 4 \beta_{4} + \beta_{5} ) q^{31} + ( -6 \beta_{4} + \beta_{5} ) q^{32} + ( -\beta_{2} - 7 \beta_{4} + 2 \beta_{5} ) q^{33} + ( -2 \beta_{2} - 2 \beta_{4} - 4 \beta_{5} ) q^{34} + ( -1 + \beta_{3} ) q^{35} + ( -7 - 4 \beta_{1} ) q^{36} + ( \beta_{2} + 7 \beta_{4} ) q^{37} + ( -3 + \beta_{1} ) q^{38} + ( -3 + \beta_{2} + \beta_{3} + 4 \beta_{4} - 3 \beta_{5} ) q^{39} + ( -1 + \beta_{1} + \beta_{3} ) q^{40} + ( 2 \beta_{2} + 2 \beta_{4} - 2 \beta_{5} ) q^{41} + ( 8 - 2 \beta_{3} ) q^{42} + ( 3 - \beta_{1} + 2 \beta_{3} ) q^{43} + ( -\beta_{2} + 2 \beta_{4} + 5 \beta_{5} ) q^{44} + ( \beta_{2} + 2 \beta_{4} - 2 \beta_{5} ) q^{45} + ( \beta_{2} + 4 \beta_{4} - 3 \beta_{5} ) q^{46} + ( -\beta_{2} - \beta_{4} ) q^{47} + ( 7 + \beta_{1} - 2 \beta_{3} ) q^{48} + ( 1 + 2 \beta_{1} ) q^{49} + \beta_{5} q^{50} -4 \beta_{1} q^{51} + ( 3 - 3 \beta_{1} - 2 \beta_{3} + 6 \beta_{4} - \beta_{5} ) q^{52} + ( 2 - 2 \beta_{1} - 2 \beta_{3} ) q^{53} + ( -6 \beta_{4} + 8 \beta_{5} ) q^{54} + ( -2 - \beta_{1} - \beta_{3} ) q^{55} + ( -7 + 4 \beta_{1} + \beta_{3} ) q^{56} + ( -\beta_{2} - \beta_{4} ) q^{57} + ( \beta_{2} + \beta_{4} + 2 \beta_{5} ) q^{58} + ( -\beta_{2} - 4 \beta_{4} - \beta_{5} ) q^{59} + ( \beta_{4} - 3 \beta_{5} ) q^{60} + ( -1 + 2 \beta_{1} - \beta_{3} ) q^{61} + ( 3 + 5 \beta_{1} ) q^{62} + ( -\beta_{2} + 5 \beta_{4} - 2 \beta_{5} ) q^{63} + ( 6 + 2 \beta_{1} - \beta_{3} ) q^{64} + ( 1 + \beta_{1} - \beta_{3} - \beta_{4} - \beta_{5} ) q^{65} + ( 7 + 8 \beta_{1} - \beta_{3} ) q^{66} + ( -\beta_{2} - 7 \beta_{4} + 2 \beta_{5} ) q^{67} + ( -14 + 4 \beta_{1} + 2 \beta_{3} ) q^{68} + ( -7 - 4 \beta_{1} + \beta_{3} ) q^{69} + ( \beta_{2} + \beta_{4} + 2 \beta_{5} ) q^{70} + ( \beta_{2} - 2 \beta_{4} - \beta_{5} ) q^{71} + ( -2 \beta_{2} - 2 \beta_{4} + \beta_{5} ) q^{72} + ( -\beta_{2} + 5 \beta_{4} + 4 \beta_{5} ) q^{73} + ( 1 - 8 \beta_{1} - \beta_{3} ) q^{74} + ( 1 + \beta_{1} ) q^{75} + ( 3 \beta_{2} + \beta_{5} ) q^{76} + ( 4 - 4 \beta_{1} + 2 \beta_{3} ) q^{77} + ( -11 - 5 \beta_{1} + \beta_{2} + 2 \beta_{3} + \beta_{4} + 4 \beta_{5} ) q^{78} + ( 6 + 4 \beta_{1} - 2 \beta_{3} ) q^{79} + ( \beta_{4} + 2 \beta_{5} ) q^{80} + ( 6 + 4 \beta_{1} + \beta_{3} ) q^{81} + ( -6 - 4 \beta_{1} ) q^{82} + ( \beta_{2} - 5 \beta_{4} - 2 \beta_{5} ) q^{83} + ( -2 \beta_{2} - 2 \beta_{4} - 6 \beta_{5} ) q^{84} + ( 2 \beta_{2} + 2 \beta_{4} ) q^{85} + ( \beta_{2} - 2 \beta_{4} - \beta_{5} ) q^{86} + 2 \beta_{1} q^{87} + ( 9 - 3 \beta_{1} ) q^{88} + ( -2 \beta_{2} - 2 \beta_{4} + 4 \beta_{5} ) q^{89} + ( -7 - 3 \beta_{1} + \beta_{3} ) q^{90} + ( 5 - 2 \beta_{2} + \beta_{3} - 2 \beta_{4} - 2 \beta_{5} ) q^{91} + ( -5 - 3 \beta_{1} + 2 \beta_{3} ) q^{92} + ( \beta_{2} + 7 \beta_{4} - 6 \beta_{5} ) q^{93} + ( -1 + 2 \beta_{1} + \beta_{3} ) q^{94} + ( 2 - \beta_{1} + \beta_{3} ) q^{95} + ( \beta_{2} + 10 \beta_{4} - 7 \beta_{5} ) q^{96} + ( -2 \beta_{2} + 4 \beta_{4} ) q^{97} + ( 2 \beta_{2} + 8 \beta_{4} - \beta_{5} ) q^{98} + ( 5 \beta_{2} + 8 \beta_{4} - 7 \beta_{5} ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6q - 4q^{3} - 10q^{4} + 6q^{9} + O(q^{10}) \) \( 6q - 4q^{3} - 10q^{4} + 6q^{9} + 2q^{10} - 8q^{13} + 8q^{14} + 10q^{16} + 8q^{17} - 24q^{22} + 16q^{23} - 6q^{25} + 14q^{26} - 28q^{27} - 4q^{29} + 20q^{30} - 4q^{35} - 34q^{36} - 20q^{38} - 16q^{39} - 6q^{40} + 44q^{42} + 24q^{43} + 36q^{48} + 2q^{49} + 8q^{51} + 20q^{52} + 12q^{53} - 12q^{55} - 48q^{56} - 12q^{61} + 8q^{62} + 30q^{64} + 2q^{65} + 24q^{66} - 88q^{68} - 32q^{69} + 20q^{74} + 4q^{75} + 36q^{77} - 52q^{78} + 24q^{79} + 30q^{81} - 28q^{82} - 4q^{87} + 60q^{88} - 34q^{90} + 32q^{91} - 20q^{92} - 8q^{94} + 16q^{95} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{6} - 2 x^{5} + 2 x^{4} + 2 x^{3} + 16 x^{2} - 24 x + 18\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\((\)\( -\nu^{5} + 24 \nu^{4} - 6 \nu^{3} - \nu^{2} + 6 \nu + 285 \)\()/131\)
\(\beta_{2}\)\(=\)\((\)\( -5 \nu^{5} - 11 \nu^{4} + 101 \nu^{3} - 136 \nu^{2} + 292 \nu - 147 \)\()/393\)
\(\beta_{3}\)\(=\)\((\)\( 6 \nu^{5} - 13 \nu^{4} + 36 \nu^{3} + 6 \nu^{2} - 36 \nu - 7 \)\()/131\)
\(\beta_{4}\)\(=\)\((\)\( 23 \nu^{5} - 28 \nu^{4} + 7 \nu^{3} + 154 \nu^{2} + 386 \nu - 267 \)\()/393\)
\(\beta_{5}\)\(=\)\((\)\( -23 \nu^{5} + 28 \nu^{4} - 7 \nu^{3} - 23 \nu^{2} - 386 \nu + 267 \)\()/131\)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\((\)\(\beta_{4} - \beta_{3} + \beta_{2} + 1\)\()/2\)
\(\nu^{2}\)\(=\)\(\beta_{5} + 3 \beta_{4}\)
\(\nu^{3}\)\(=\)\(\beta_{5} + 2 \beta_{4} + 2 \beta_{3} + 2 \beta_{2} + \beta_{1} - 2\)
\(\nu^{4}\)\(=\)\(\beta_{3} + 6 \beta_{1} - 13\)
\(\nu^{5}\)\(=\)\(-7 \beta_{5} - 12 \beta_{4} + 9 \beta_{3} - 9 \beta_{2} + 7 \beta_{1} - 12\)

Character Values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/65\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(41\)
\(\chi(n)\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
51.1
1.66044 + 1.66044i
0.675970 0.675970i
−1.33641 1.33641i
−1.33641 + 1.33641i
0.675970 + 0.675970i
1.66044 1.66044i
2.51414i 1.51414 −4.32088 1.00000i 3.80675i 3.32088i 5.83502i −0.707389 2.51414
51.2 2.08613i −3.08613 −2.35194 1.00000i 6.43807i 1.35194i 0.734191i 6.52420 −2.08613
51.3 0.571993i −0.428007 1.67282 1.00000i 0.244817i 2.67282i 2.10083i −2.81681 0.571993
51.4 0.571993i −0.428007 1.67282 1.00000i 0.244817i 2.67282i 2.10083i −2.81681 0.571993
51.5 2.08613i −3.08613 −2.35194 1.00000i 6.43807i 1.35194i 0.734191i 6.52420 −2.08613
51.6 2.51414i 1.51414 −4.32088 1.00000i 3.80675i 3.32088i 5.83502i −0.707389 2.51414
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 51.6
Significant digits:
Format:

Inner twists

Char. orbit Parity Mult. Self Twist Proved
1.a Even 1 trivial yes
13.b Even 1 yes

Hecke kernels

There are no other newforms in \(S_{2}^{\mathrm{new}}(65, [\chi])\).