Properties

Label 8410.2.a.ca.1.7
Level $8410$
Weight $2$
Character 8410.1
Self dual yes
Analytic conductor $67.154$
Analytic rank $0$
Dimension $18$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8410,2,Mod(1,8410)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8410.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8410, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 8410 = 2 \cdot 5 \cdot 29^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8410.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [18,18,6,18,18,6,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(67.1541880999\)
Analytic rank: \(0\)
Dimension: \(18\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} - 6 x^{17} - 20 x^{16} + 176 x^{15} + 71 x^{14} - 2078 x^{13} + 1135 x^{12} + 12782 x^{11} + \cdots - 5887 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 290)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.7
Root \(-0.603364\) of defining polynomial
Character \(\chi\) \(=\) 8410.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} -0.603364 q^{3} +1.00000 q^{4} +1.00000 q^{5} -0.603364 q^{6} +3.60356 q^{7} +1.00000 q^{8} -2.63595 q^{9} +1.00000 q^{10} +3.83198 q^{11} -0.603364 q^{12} +0.122734 q^{13} +3.60356 q^{14} -0.603364 q^{15} +1.00000 q^{16} -2.31987 q^{17} -2.63595 q^{18} -6.64668 q^{19} +1.00000 q^{20} -2.17426 q^{21} +3.83198 q^{22} -4.09077 q^{23} -0.603364 q^{24} +1.00000 q^{25} +0.122734 q^{26} +3.40053 q^{27} +3.60356 q^{28} -0.603364 q^{30} +9.44644 q^{31} +1.00000 q^{32} -2.31208 q^{33} -2.31987 q^{34} +3.60356 q^{35} -2.63595 q^{36} +3.57990 q^{37} -6.64668 q^{38} -0.0740532 q^{39} +1.00000 q^{40} +10.4455 q^{41} -2.17426 q^{42} -9.28941 q^{43} +3.83198 q^{44} -2.63595 q^{45} -4.09077 q^{46} +13.1924 q^{47} -0.603364 q^{48} +5.98561 q^{49} +1.00000 q^{50} +1.39973 q^{51} +0.122734 q^{52} -2.73872 q^{53} +3.40053 q^{54} +3.83198 q^{55} +3.60356 q^{56} +4.01037 q^{57} -0.361609 q^{59} -0.603364 q^{60} -6.29724 q^{61} +9.44644 q^{62} -9.49880 q^{63} +1.00000 q^{64} +0.122734 q^{65} -2.31208 q^{66} -4.42687 q^{67} -2.31987 q^{68} +2.46823 q^{69} +3.60356 q^{70} +10.1456 q^{71} -2.63595 q^{72} +6.51726 q^{73} +3.57990 q^{74} -0.603364 q^{75} -6.64668 q^{76} +13.8088 q^{77} -0.0740532 q^{78} +13.9998 q^{79} +1.00000 q^{80} +5.85609 q^{81} +10.4455 q^{82} -4.87092 q^{83} -2.17426 q^{84} -2.31987 q^{85} -9.28941 q^{86} +3.83198 q^{88} -2.55283 q^{89} -2.63595 q^{90} +0.442278 q^{91} -4.09077 q^{92} -5.69964 q^{93} +13.1924 q^{94} -6.64668 q^{95} -0.603364 q^{96} +8.66831 q^{97} +5.98561 q^{98} -10.1009 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q + 18 q^{2} + 6 q^{3} + 18 q^{4} + 18 q^{5} + 6 q^{6} + 8 q^{7} + 18 q^{8} + 22 q^{9} + 18 q^{10} + 22 q^{11} + 6 q^{12} + 16 q^{13} + 8 q^{14} + 6 q^{15} + 18 q^{16} + 4 q^{17} + 22 q^{18} + 20 q^{19}+ \cdots + 86 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) −0.603364 −0.348353 −0.174176 0.984714i \(-0.555726\pi\)
−0.174176 + 0.984714i \(0.555726\pi\)
\(4\) 1.00000 0.500000
\(5\) 1.00000 0.447214
\(6\) −0.603364 −0.246322
\(7\) 3.60356 1.36202 0.681008 0.732276i \(-0.261542\pi\)
0.681008 + 0.732276i \(0.261542\pi\)
\(8\) 1.00000 0.353553
\(9\) −2.63595 −0.878650
\(10\) 1.00000 0.316228
\(11\) 3.83198 1.15539 0.577693 0.816254i \(-0.303953\pi\)
0.577693 + 0.816254i \(0.303953\pi\)
\(12\) −0.603364 −0.174176
\(13\) 0.122734 0.0340402 0.0170201 0.999855i \(-0.494582\pi\)
0.0170201 + 0.999855i \(0.494582\pi\)
\(14\) 3.60356 0.963091
\(15\) −0.603364 −0.155788
\(16\) 1.00000 0.250000
\(17\) −2.31987 −0.562652 −0.281326 0.959612i \(-0.590774\pi\)
−0.281326 + 0.959612i \(0.590774\pi\)
\(18\) −2.63595 −0.621300
\(19\) −6.64668 −1.52485 −0.762426 0.647075i \(-0.775992\pi\)
−0.762426 + 0.647075i \(0.775992\pi\)
\(20\) 1.00000 0.223607
\(21\) −2.17426 −0.474462
\(22\) 3.83198 0.816981
\(23\) −4.09077 −0.852985 −0.426492 0.904491i \(-0.640251\pi\)
−0.426492 + 0.904491i \(0.640251\pi\)
\(24\) −0.603364 −0.123161
\(25\) 1.00000 0.200000
\(26\) 0.122734 0.0240701
\(27\) 3.40053 0.654433
\(28\) 3.60356 0.681008
\(29\) 0 0
\(30\) −0.603364 −0.110159
\(31\) 9.44644 1.69663 0.848315 0.529492i \(-0.177617\pi\)
0.848315 + 0.529492i \(0.177617\pi\)
\(32\) 1.00000 0.176777
\(33\) −2.31208 −0.402482
\(34\) −2.31987 −0.397855
\(35\) 3.60356 0.609112
\(36\) −2.63595 −0.439325
\(37\) 3.57990 0.588532 0.294266 0.955724i \(-0.404925\pi\)
0.294266 + 0.955724i \(0.404925\pi\)
\(38\) −6.64668 −1.07823
\(39\) −0.0740532 −0.0118580
\(40\) 1.00000 0.158114
\(41\) 10.4455 1.63131 0.815656 0.578537i \(-0.196376\pi\)
0.815656 + 0.578537i \(0.196376\pi\)
\(42\) −2.17426 −0.335495
\(43\) −9.28941 −1.41662 −0.708310 0.705901i \(-0.750542\pi\)
−0.708310 + 0.705901i \(0.750542\pi\)
\(44\) 3.83198 0.577693
\(45\) −2.63595 −0.392944
\(46\) −4.09077 −0.603151
\(47\) 13.1924 1.92430 0.962152 0.272512i \(-0.0878543\pi\)
0.962152 + 0.272512i \(0.0878543\pi\)
\(48\) −0.603364 −0.0870881
\(49\) 5.98561 0.855087
\(50\) 1.00000 0.141421
\(51\) 1.39973 0.196001
\(52\) 0.122734 0.0170201
\(53\) −2.73872 −0.376192 −0.188096 0.982151i \(-0.560232\pi\)
−0.188096 + 0.982151i \(0.560232\pi\)
\(54\) 3.40053 0.462754
\(55\) 3.83198 0.516704
\(56\) 3.60356 0.481545
\(57\) 4.01037 0.531186
\(58\) 0 0
\(59\) −0.361609 −0.0470775 −0.0235388 0.999723i \(-0.507493\pi\)
−0.0235388 + 0.999723i \(0.507493\pi\)
\(60\) −0.603364 −0.0778940
\(61\) −6.29724 −0.806279 −0.403140 0.915138i \(-0.632081\pi\)
−0.403140 + 0.915138i \(0.632081\pi\)
\(62\) 9.44644 1.19970
\(63\) −9.49880 −1.19674
\(64\) 1.00000 0.125000
\(65\) 0.122734 0.0152233
\(66\) −2.31208 −0.284597
\(67\) −4.42687 −0.540828 −0.270414 0.962744i \(-0.587161\pi\)
−0.270414 + 0.962744i \(0.587161\pi\)
\(68\) −2.31987 −0.281326
\(69\) 2.46823 0.297139
\(70\) 3.60356 0.430707
\(71\) 10.1456 1.20407 0.602033 0.798471i \(-0.294357\pi\)
0.602033 + 0.798471i \(0.294357\pi\)
\(72\) −2.63595 −0.310650
\(73\) 6.51726 0.762787 0.381394 0.924413i \(-0.375444\pi\)
0.381394 + 0.924413i \(0.375444\pi\)
\(74\) 3.57990 0.416155
\(75\) −0.603364 −0.0696705
\(76\) −6.64668 −0.762426
\(77\) 13.8088 1.57365
\(78\) −0.0740532 −0.00838488
\(79\) 13.9998 1.57510 0.787549 0.616252i \(-0.211350\pi\)
0.787549 + 0.616252i \(0.211350\pi\)
\(80\) 1.00000 0.111803
\(81\) 5.85609 0.650677
\(82\) 10.4455 1.15351
\(83\) −4.87092 −0.534653 −0.267327 0.963606i \(-0.586140\pi\)
−0.267327 + 0.963606i \(0.586140\pi\)
\(84\) −2.17426 −0.237231
\(85\) −2.31987 −0.251626
\(86\) −9.28941 −1.00170
\(87\) 0 0
\(88\) 3.83198 0.408491
\(89\) −2.55283 −0.270600 −0.135300 0.990805i \(-0.543200\pi\)
−0.135300 + 0.990805i \(0.543200\pi\)
\(90\) −2.63595 −0.277854
\(91\) 0.442278 0.0463634
\(92\) −4.09077 −0.426492
\(93\) −5.69964 −0.591025
\(94\) 13.1924 1.36069
\(95\) −6.64668 −0.681935
\(96\) −0.603364 −0.0615806
\(97\) 8.66831 0.880134 0.440067 0.897965i \(-0.354955\pi\)
0.440067 + 0.897965i \(0.354955\pi\)
\(98\) 5.98561 0.604638
\(99\) −10.1009 −1.01518
\(100\) 1.00000 0.100000
\(101\) 0.170291 0.0169446 0.00847230 0.999964i \(-0.497303\pi\)
0.00847230 + 0.999964i \(0.497303\pi\)
\(102\) 1.39973 0.138594
\(103\) 11.9876 1.18118 0.590589 0.806973i \(-0.298896\pi\)
0.590589 + 0.806973i \(0.298896\pi\)
\(104\) 0.122734 0.0120350
\(105\) −2.17426 −0.212186
\(106\) −2.73872 −0.266008
\(107\) −3.61602 −0.349573 −0.174787 0.984606i \(-0.555924\pi\)
−0.174787 + 0.984606i \(0.555924\pi\)
\(108\) 3.40053 0.327216
\(109\) 16.3476 1.56581 0.782907 0.622138i \(-0.213736\pi\)
0.782907 + 0.622138i \(0.213736\pi\)
\(110\) 3.83198 0.365365
\(111\) −2.15998 −0.205017
\(112\) 3.60356 0.340504
\(113\) 11.5901 1.09031 0.545154 0.838336i \(-0.316471\pi\)
0.545154 + 0.838336i \(0.316471\pi\)
\(114\) 4.01037 0.375605
\(115\) −4.09077 −0.381466
\(116\) 0 0
\(117\) −0.323520 −0.0299095
\(118\) −0.361609 −0.0332888
\(119\) −8.35979 −0.766341
\(120\) −0.603364 −0.0550794
\(121\) 3.68408 0.334916
\(122\) −6.29724 −0.570126
\(123\) −6.30244 −0.568272
\(124\) 9.44644 0.848315
\(125\) 1.00000 0.0894427
\(126\) −9.49880 −0.846220
\(127\) 20.0845 1.78221 0.891106 0.453794i \(-0.149930\pi\)
0.891106 + 0.453794i \(0.149930\pi\)
\(128\) 1.00000 0.0883883
\(129\) 5.60490 0.493484
\(130\) 0.122734 0.0107645
\(131\) 5.25645 0.459258 0.229629 0.973278i \(-0.426249\pi\)
0.229629 + 0.973278i \(0.426249\pi\)
\(132\) −2.31208 −0.201241
\(133\) −23.9517 −2.07687
\(134\) −4.42687 −0.382423
\(135\) 3.40053 0.292671
\(136\) −2.31987 −0.198928
\(137\) −1.27995 −0.109354 −0.0546769 0.998504i \(-0.517413\pi\)
−0.0546769 + 0.998504i \(0.517413\pi\)
\(138\) 2.46823 0.210109
\(139\) 9.99988 0.848179 0.424089 0.905620i \(-0.360594\pi\)
0.424089 + 0.905620i \(0.360594\pi\)
\(140\) 3.60356 0.304556
\(141\) −7.95981 −0.670337
\(142\) 10.1456 0.851404
\(143\) 0.470314 0.0393296
\(144\) −2.63595 −0.219663
\(145\) 0 0
\(146\) 6.51726 0.539372
\(147\) −3.61150 −0.297872
\(148\) 3.57990 0.294266
\(149\) −11.7392 −0.961716 −0.480858 0.876799i \(-0.659675\pi\)
−0.480858 + 0.876799i \(0.659675\pi\)
\(150\) −0.603364 −0.0492645
\(151\) 0.0354882 0.00288799 0.00144400 0.999999i \(-0.499540\pi\)
0.00144400 + 0.999999i \(0.499540\pi\)
\(152\) −6.64668 −0.539117
\(153\) 6.11508 0.494375
\(154\) 13.8088 1.11274
\(155\) 9.44644 0.758756
\(156\) −0.0740532 −0.00592900
\(157\) −20.3105 −1.62096 −0.810479 0.585768i \(-0.800793\pi\)
−0.810479 + 0.585768i \(0.800793\pi\)
\(158\) 13.9998 1.11376
\(159\) 1.65245 0.131048
\(160\) 1.00000 0.0790569
\(161\) −14.7413 −1.16178
\(162\) 5.85609 0.460098
\(163\) 15.0038 1.17519 0.587595 0.809155i \(-0.300075\pi\)
0.587595 + 0.809155i \(0.300075\pi\)
\(164\) 10.4455 0.815656
\(165\) −2.31208 −0.179995
\(166\) −4.87092 −0.378057
\(167\) 9.97196 0.771653 0.385827 0.922571i \(-0.373916\pi\)
0.385827 + 0.922571i \(0.373916\pi\)
\(168\) −2.17426 −0.167748
\(169\) −12.9849 −0.998841
\(170\) −2.31987 −0.177926
\(171\) 17.5203 1.33981
\(172\) −9.28941 −0.708310
\(173\) −6.48842 −0.493305 −0.246653 0.969104i \(-0.579331\pi\)
−0.246653 + 0.969104i \(0.579331\pi\)
\(174\) 0 0
\(175\) 3.60356 0.272403
\(176\) 3.83198 0.288846
\(177\) 0.218182 0.0163996
\(178\) −2.55283 −0.191343
\(179\) −5.08224 −0.379865 −0.189932 0.981797i \(-0.560827\pi\)
−0.189932 + 0.981797i \(0.560827\pi\)
\(180\) −2.63595 −0.196472
\(181\) −6.30332 −0.468522 −0.234261 0.972174i \(-0.575267\pi\)
−0.234261 + 0.972174i \(0.575267\pi\)
\(182\) 0.442278 0.0327838
\(183\) 3.79953 0.280870
\(184\) −4.09077 −0.301576
\(185\) 3.57990 0.263199
\(186\) −5.69964 −0.417918
\(187\) −8.88971 −0.650080
\(188\) 13.1924 0.962152
\(189\) 12.2540 0.891348
\(190\) −6.64668 −0.482201
\(191\) −16.2449 −1.17544 −0.587719 0.809065i \(-0.699974\pi\)
−0.587719 + 0.809065i \(0.699974\pi\)
\(192\) −0.603364 −0.0435441
\(193\) −1.52191 −0.109549 −0.0547747 0.998499i \(-0.517444\pi\)
−0.0547747 + 0.998499i \(0.517444\pi\)
\(194\) 8.66831 0.622349
\(195\) −0.0740532 −0.00530306
\(196\) 5.98561 0.427544
\(197\) −25.1520 −1.79201 −0.896005 0.444045i \(-0.853543\pi\)
−0.896005 + 0.444045i \(0.853543\pi\)
\(198\) −10.1009 −0.717841
\(199\) −5.81104 −0.411934 −0.205967 0.978559i \(-0.566034\pi\)
−0.205967 + 0.978559i \(0.566034\pi\)
\(200\) 1.00000 0.0707107
\(201\) 2.67101 0.188399
\(202\) 0.170291 0.0119816
\(203\) 0 0
\(204\) 1.39973 0.0980007
\(205\) 10.4455 0.729545
\(206\) 11.9876 0.835219
\(207\) 10.7831 0.749476
\(208\) 0.122734 0.00851006
\(209\) −25.4699 −1.76179
\(210\) −2.17426 −0.150038
\(211\) −4.07697 −0.280670 −0.140335 0.990104i \(-0.544818\pi\)
−0.140335 + 0.990104i \(0.544818\pi\)
\(212\) −2.73872 −0.188096
\(213\) −6.12152 −0.419440
\(214\) −3.61602 −0.247186
\(215\) −9.28941 −0.633532
\(216\) 3.40053 0.231377
\(217\) 34.0407 2.31084
\(218\) 16.3476 1.10720
\(219\) −3.93228 −0.265719
\(220\) 3.83198 0.258352
\(221\) −0.284727 −0.0191528
\(222\) −2.15998 −0.144969
\(223\) 4.31633 0.289043 0.144521 0.989502i \(-0.453836\pi\)
0.144521 + 0.989502i \(0.453836\pi\)
\(224\) 3.60356 0.240773
\(225\) −2.63595 −0.175730
\(226\) 11.5901 0.770964
\(227\) 8.07974 0.536271 0.268136 0.963381i \(-0.413592\pi\)
0.268136 + 0.963381i \(0.413592\pi\)
\(228\) 4.01037 0.265593
\(229\) −20.0722 −1.32641 −0.663203 0.748439i \(-0.730804\pi\)
−0.663203 + 0.748439i \(0.730804\pi\)
\(230\) −4.09077 −0.269738
\(231\) −8.33171 −0.548186
\(232\) 0 0
\(233\) 3.90478 0.255811 0.127905 0.991786i \(-0.459175\pi\)
0.127905 + 0.991786i \(0.459175\pi\)
\(234\) −0.323520 −0.0211492
\(235\) 13.1924 0.860575
\(236\) −0.361609 −0.0235388
\(237\) −8.44697 −0.548690
\(238\) −8.35979 −0.541885
\(239\) −26.6702 −1.72515 −0.862576 0.505928i \(-0.831150\pi\)
−0.862576 + 0.505928i \(0.831150\pi\)
\(240\) −0.603364 −0.0389470
\(241\) −25.4064 −1.63657 −0.818286 0.574811i \(-0.805076\pi\)
−0.818286 + 0.574811i \(0.805076\pi\)
\(242\) 3.68408 0.236822
\(243\) −13.7350 −0.881098
\(244\) −6.29724 −0.403140
\(245\) 5.98561 0.382407
\(246\) −6.30244 −0.401829
\(247\) −0.815772 −0.0519063
\(248\) 9.44644 0.599849
\(249\) 2.93894 0.186248
\(250\) 1.00000 0.0632456
\(251\) 17.7013 1.11730 0.558649 0.829404i \(-0.311320\pi\)
0.558649 + 0.829404i \(0.311320\pi\)
\(252\) −9.49880 −0.598368
\(253\) −15.6758 −0.985527
\(254\) 20.0845 1.26021
\(255\) 1.39973 0.0876545
\(256\) 1.00000 0.0625000
\(257\) −4.20376 −0.262224 −0.131112 0.991368i \(-0.541855\pi\)
−0.131112 + 0.991368i \(0.541855\pi\)
\(258\) 5.60490 0.348946
\(259\) 12.9004 0.801589
\(260\) 0.122734 0.00761163
\(261\) 0 0
\(262\) 5.25645 0.324745
\(263\) −5.67802 −0.350122 −0.175061 0.984558i \(-0.556012\pi\)
−0.175061 + 0.984558i \(0.556012\pi\)
\(264\) −2.31208 −0.142299
\(265\) −2.73872 −0.168238
\(266\) −23.9517 −1.46857
\(267\) 1.54029 0.0942642
\(268\) −4.42687 −0.270414
\(269\) 20.6000 1.25600 0.628002 0.778212i \(-0.283873\pi\)
0.628002 + 0.778212i \(0.283873\pi\)
\(270\) 3.40053 0.206950
\(271\) 4.53160 0.275275 0.137638 0.990483i \(-0.456049\pi\)
0.137638 + 0.990483i \(0.456049\pi\)
\(272\) −2.31987 −0.140663
\(273\) −0.266855 −0.0161508
\(274\) −1.27995 −0.0773249
\(275\) 3.83198 0.231077
\(276\) 2.46823 0.148570
\(277\) 0.117400 0.00705390 0.00352695 0.999994i \(-0.498877\pi\)
0.00352695 + 0.999994i \(0.498877\pi\)
\(278\) 9.99988 0.599753
\(279\) −24.9003 −1.49074
\(280\) 3.60356 0.215354
\(281\) 25.9075 1.54551 0.772757 0.634702i \(-0.218877\pi\)
0.772757 + 0.634702i \(0.218877\pi\)
\(282\) −7.95981 −0.474000
\(283\) −0.0238487 −0.00141766 −0.000708830 1.00000i \(-0.500226\pi\)
−0.000708830 1.00000i \(0.500226\pi\)
\(284\) 10.1456 0.602033
\(285\) 4.01037 0.237554
\(286\) 0.470314 0.0278102
\(287\) 37.6409 2.22187
\(288\) −2.63595 −0.155325
\(289\) −11.6182 −0.683423
\(290\) 0 0
\(291\) −5.23015 −0.306597
\(292\) 6.51726 0.381394
\(293\) −20.4762 −1.19623 −0.598117 0.801409i \(-0.704084\pi\)
−0.598117 + 0.801409i \(0.704084\pi\)
\(294\) −3.61150 −0.210627
\(295\) −0.361609 −0.0210537
\(296\) 3.57990 0.208077
\(297\) 13.0308 0.756122
\(298\) −11.7392 −0.680036
\(299\) −0.502076 −0.0290358
\(300\) −0.603364 −0.0348353
\(301\) −33.4749 −1.92946
\(302\) 0.0354882 0.00204212
\(303\) −0.102748 −0.00590269
\(304\) −6.64668 −0.381213
\(305\) −6.29724 −0.360579
\(306\) 6.11508 0.349576
\(307\) −4.82792 −0.275544 −0.137772 0.990464i \(-0.543994\pi\)
−0.137772 + 0.990464i \(0.543994\pi\)
\(308\) 13.8088 0.786827
\(309\) −7.23292 −0.411466
\(310\) 9.44644 0.536521
\(311\) 3.69623 0.209594 0.104797 0.994494i \(-0.466581\pi\)
0.104797 + 0.994494i \(0.466581\pi\)
\(312\) −0.0740532 −0.00419244
\(313\) 18.8606 1.06606 0.533032 0.846095i \(-0.321053\pi\)
0.533032 + 0.846095i \(0.321053\pi\)
\(314\) −20.3105 −1.14619
\(315\) −9.49880 −0.535197
\(316\) 13.9998 0.787549
\(317\) −21.8144 −1.22522 −0.612610 0.790385i \(-0.709880\pi\)
−0.612610 + 0.790385i \(0.709880\pi\)
\(318\) 1.65245 0.0926646
\(319\) 0 0
\(320\) 1.00000 0.0559017
\(321\) 2.18177 0.121775
\(322\) −14.7413 −0.821502
\(323\) 15.4195 0.857961
\(324\) 5.85609 0.325339
\(325\) 0.122734 0.00680805
\(326\) 15.0038 0.830985
\(327\) −9.86355 −0.545456
\(328\) 10.4455 0.576756
\(329\) 47.5394 2.62093
\(330\) −2.31208 −0.127276
\(331\) −17.8206 −0.979511 −0.489755 0.871860i \(-0.662914\pi\)
−0.489755 + 0.871860i \(0.662914\pi\)
\(332\) −4.87092 −0.267327
\(333\) −9.43644 −0.517114
\(334\) 9.97196 0.545641
\(335\) −4.42687 −0.241866
\(336\) −2.17426 −0.118615
\(337\) 2.63549 0.143564 0.0717822 0.997420i \(-0.477131\pi\)
0.0717822 + 0.997420i \(0.477131\pi\)
\(338\) −12.9849 −0.706287
\(339\) −6.99307 −0.379812
\(340\) −2.31987 −0.125813
\(341\) 36.1986 1.96026
\(342\) 17.5203 0.947390
\(343\) −3.65541 −0.197374
\(344\) −9.28941 −0.500851
\(345\) 2.46823 0.132885
\(346\) −6.48842 −0.348820
\(347\) −0.194460 −0.0104392 −0.00521958 0.999986i \(-0.501661\pi\)
−0.00521958 + 0.999986i \(0.501661\pi\)
\(348\) 0 0
\(349\) 25.8228 1.38226 0.691130 0.722730i \(-0.257113\pi\)
0.691130 + 0.722730i \(0.257113\pi\)
\(350\) 3.60356 0.192618
\(351\) 0.417360 0.0222771
\(352\) 3.83198 0.204245
\(353\) 1.95990 0.104315 0.0521575 0.998639i \(-0.483390\pi\)
0.0521575 + 0.998639i \(0.483390\pi\)
\(354\) 0.218182 0.0115963
\(355\) 10.1456 0.538475
\(356\) −2.55283 −0.135300
\(357\) 5.04400 0.266957
\(358\) −5.08224 −0.268605
\(359\) 0.296858 0.0156676 0.00783379 0.999969i \(-0.497506\pi\)
0.00783379 + 0.999969i \(0.497506\pi\)
\(360\) −2.63595 −0.138927
\(361\) 25.1783 1.32517
\(362\) −6.30332 −0.331295
\(363\) −2.22284 −0.116669
\(364\) 0.442278 0.0231817
\(365\) 6.51726 0.341129
\(366\) 3.79953 0.198605
\(367\) 26.4923 1.38288 0.691442 0.722432i \(-0.256976\pi\)
0.691442 + 0.722432i \(0.256976\pi\)
\(368\) −4.09077 −0.213246
\(369\) −27.5338 −1.43335
\(370\) 3.57990 0.186110
\(371\) −9.86913 −0.512380
\(372\) −5.69964 −0.295513
\(373\) 0.354533 0.0183570 0.00917852 0.999958i \(-0.497078\pi\)
0.00917852 + 0.999958i \(0.497078\pi\)
\(374\) −8.88971 −0.459676
\(375\) −0.603364 −0.0311576
\(376\) 13.1924 0.680345
\(377\) 0 0
\(378\) 12.2540 0.630278
\(379\) −30.3765 −1.56034 −0.780168 0.625570i \(-0.784867\pi\)
−0.780168 + 0.625570i \(0.784867\pi\)
\(380\) −6.64668 −0.340967
\(381\) −12.1183 −0.620838
\(382\) −16.2449 −0.831160
\(383\) 13.1239 0.670601 0.335300 0.942111i \(-0.391162\pi\)
0.335300 + 0.942111i \(0.391162\pi\)
\(384\) −0.603364 −0.0307903
\(385\) 13.8088 0.703759
\(386\) −1.52191 −0.0774631
\(387\) 24.4864 1.24471
\(388\) 8.66831 0.440067
\(389\) 27.2570 1.38198 0.690992 0.722863i \(-0.257174\pi\)
0.690992 + 0.722863i \(0.257174\pi\)
\(390\) −0.0740532 −0.00374983
\(391\) 9.49008 0.479934
\(392\) 5.98561 0.302319
\(393\) −3.17156 −0.159984
\(394\) −25.1520 −1.26714
\(395\) 13.9998 0.704405
\(396\) −10.1009 −0.507590
\(397\) −6.14121 −0.308218 −0.154109 0.988054i \(-0.549251\pi\)
−0.154109 + 0.988054i \(0.549251\pi\)
\(398\) −5.81104 −0.291281
\(399\) 14.4516 0.723484
\(400\) 1.00000 0.0500000
\(401\) 8.87415 0.443154 0.221577 0.975143i \(-0.428880\pi\)
0.221577 + 0.975143i \(0.428880\pi\)
\(402\) 2.67101 0.133218
\(403\) 1.15940 0.0577537
\(404\) 0.170291 0.00847230
\(405\) 5.85609 0.290992
\(406\) 0 0
\(407\) 13.7181 0.679981
\(408\) 1.39973 0.0692969
\(409\) 19.6980 0.974005 0.487003 0.873400i \(-0.338090\pi\)
0.487003 + 0.873400i \(0.338090\pi\)
\(410\) 10.4455 0.515866
\(411\) 0.772279 0.0380937
\(412\) 11.9876 0.590589
\(413\) −1.30308 −0.0641204
\(414\) 10.7831 0.529959
\(415\) −4.87092 −0.239104
\(416\) 0.122734 0.00601752
\(417\) −6.03357 −0.295465
\(418\) −25.4699 −1.24578
\(419\) 25.9470 1.26759 0.633796 0.773500i \(-0.281496\pi\)
0.633796 + 0.773500i \(0.281496\pi\)
\(420\) −2.17426 −0.106093
\(421\) 15.1158 0.736701 0.368350 0.929687i \(-0.379923\pi\)
0.368350 + 0.929687i \(0.379923\pi\)
\(422\) −4.07697 −0.198464
\(423\) −34.7744 −1.69079
\(424\) −2.73872 −0.133004
\(425\) −2.31987 −0.112530
\(426\) −6.12152 −0.296589
\(427\) −22.6925 −1.09817
\(428\) −3.61602 −0.174787
\(429\) −0.283771 −0.0137006
\(430\) −9.28941 −0.447975
\(431\) 25.2941 1.21837 0.609186 0.793027i \(-0.291496\pi\)
0.609186 + 0.793027i \(0.291496\pi\)
\(432\) 3.40053 0.163608
\(433\) 41.1212 1.97616 0.988080 0.153943i \(-0.0491972\pi\)
0.988080 + 0.153943i \(0.0491972\pi\)
\(434\) 34.0407 1.63401
\(435\) 0 0
\(436\) 16.3476 0.782907
\(437\) 27.1900 1.30068
\(438\) −3.93228 −0.187892
\(439\) −35.9038 −1.71360 −0.856798 0.515652i \(-0.827550\pi\)
−0.856798 + 0.515652i \(0.827550\pi\)
\(440\) 3.83198 0.182683
\(441\) −15.7778 −0.751323
\(442\) −0.284727 −0.0135431
\(443\) 17.1974 0.817073 0.408536 0.912742i \(-0.366039\pi\)
0.408536 + 0.912742i \(0.366039\pi\)
\(444\) −2.15998 −0.102508
\(445\) −2.55283 −0.121016
\(446\) 4.31633 0.204384
\(447\) 7.08304 0.335016
\(448\) 3.60356 0.170252
\(449\) 20.9010 0.986381 0.493191 0.869921i \(-0.335831\pi\)
0.493191 + 0.869921i \(0.335831\pi\)
\(450\) −2.63595 −0.124260
\(451\) 40.0269 1.88479
\(452\) 11.5901 0.545154
\(453\) −0.0214123 −0.00100604
\(454\) 8.07974 0.379201
\(455\) 0.442278 0.0207343
\(456\) 4.01037 0.187803
\(457\) 2.10802 0.0986089 0.0493045 0.998784i \(-0.484300\pi\)
0.0493045 + 0.998784i \(0.484300\pi\)
\(458\) −20.0722 −0.937911
\(459\) −7.88881 −0.368218
\(460\) −4.09077 −0.190733
\(461\) 0.540464 0.0251719 0.0125860 0.999921i \(-0.495994\pi\)
0.0125860 + 0.999921i \(0.495994\pi\)
\(462\) −8.33171 −0.387626
\(463\) −19.6759 −0.914418 −0.457209 0.889359i \(-0.651151\pi\)
−0.457209 + 0.889359i \(0.651151\pi\)
\(464\) 0 0
\(465\) −5.69964 −0.264315
\(466\) 3.90478 0.180885
\(467\) −38.8360 −1.79711 −0.898557 0.438856i \(-0.855384\pi\)
−0.898557 + 0.438856i \(0.855384\pi\)
\(468\) −0.323520 −0.0149547
\(469\) −15.9525 −0.736616
\(470\) 13.1924 0.608519
\(471\) 12.2547 0.564665
\(472\) −0.361609 −0.0166444
\(473\) −35.5968 −1.63674
\(474\) −8.44697 −0.387982
\(475\) −6.64668 −0.304970
\(476\) −8.35979 −0.383171
\(477\) 7.21914 0.330542
\(478\) −26.6702 −1.21987
\(479\) −14.4617 −0.660774 −0.330387 0.943846i \(-0.607179\pi\)
−0.330387 + 0.943846i \(0.607179\pi\)
\(480\) −0.603364 −0.0275397
\(481\) 0.439375 0.0200338
\(482\) −25.4064 −1.15723
\(483\) 8.89439 0.404709
\(484\) 3.68408 0.167458
\(485\) 8.66831 0.393608
\(486\) −13.7350 −0.623030
\(487\) 41.4896 1.88007 0.940037 0.341072i \(-0.110790\pi\)
0.940037 + 0.341072i \(0.110790\pi\)
\(488\) −6.29724 −0.285063
\(489\) −9.05278 −0.409381
\(490\) 5.98561 0.270402
\(491\) 37.3413 1.68519 0.842595 0.538548i \(-0.181027\pi\)
0.842595 + 0.538548i \(0.181027\pi\)
\(492\) −6.30244 −0.284136
\(493\) 0 0
\(494\) −0.815772 −0.0367033
\(495\) −10.1009 −0.454002
\(496\) 9.44644 0.424157
\(497\) 36.5604 1.63996
\(498\) 2.93894 0.131697
\(499\) −3.12421 −0.139859 −0.0699294 0.997552i \(-0.522277\pi\)
−0.0699294 + 0.997552i \(0.522277\pi\)
\(500\) 1.00000 0.0447214
\(501\) −6.01672 −0.268807
\(502\) 17.7013 0.790049
\(503\) 10.5499 0.470397 0.235199 0.971947i \(-0.424426\pi\)
0.235199 + 0.971947i \(0.424426\pi\)
\(504\) −9.49880 −0.423110
\(505\) 0.170291 0.00757785
\(506\) −15.6758 −0.696873
\(507\) 7.83465 0.347949
\(508\) 20.0845 0.891106
\(509\) 12.5371 0.555699 0.277850 0.960625i \(-0.410378\pi\)
0.277850 + 0.960625i \(0.410378\pi\)
\(510\) 1.39973 0.0619811
\(511\) 23.4853 1.03893
\(512\) 1.00000 0.0441942
\(513\) −22.6022 −0.997913
\(514\) −4.20376 −0.185420
\(515\) 11.9876 0.528239
\(516\) 5.60490 0.246742
\(517\) 50.5529 2.22331
\(518\) 12.9004 0.566809
\(519\) 3.91488 0.171844
\(520\) 0.122734 0.00538224
\(521\) −24.0757 −1.05478 −0.527388 0.849625i \(-0.676829\pi\)
−0.527388 + 0.849625i \(0.676829\pi\)
\(522\) 0 0
\(523\) −15.4390 −0.675102 −0.337551 0.941307i \(-0.609598\pi\)
−0.337551 + 0.941307i \(0.609598\pi\)
\(524\) 5.25645 0.229629
\(525\) −2.17426 −0.0948923
\(526\) −5.67802 −0.247574
\(527\) −21.9145 −0.954612
\(528\) −2.31208 −0.100620
\(529\) −6.26559 −0.272417
\(530\) −2.73872 −0.118962
\(531\) 0.953185 0.0413647
\(532\) −23.9517 −1.03844
\(533\) 1.28202 0.0555303
\(534\) 1.54029 0.0666548
\(535\) −3.61602 −0.156334
\(536\) −4.42687 −0.191211
\(537\) 3.06644 0.132327
\(538\) 20.6000 0.888129
\(539\) 22.9367 0.987955
\(540\) 3.40053 0.146336
\(541\) −1.92205 −0.0826353 −0.0413176 0.999146i \(-0.513156\pi\)
−0.0413176 + 0.999146i \(0.513156\pi\)
\(542\) 4.53160 0.194649
\(543\) 3.80320 0.163211
\(544\) −2.31987 −0.0994638
\(545\) 16.3476 0.700254
\(546\) −0.266855 −0.0114203
\(547\) −0.779603 −0.0333334 −0.0166667 0.999861i \(-0.505305\pi\)
−0.0166667 + 0.999861i \(0.505305\pi\)
\(548\) −1.27995 −0.0546769
\(549\) 16.5992 0.708438
\(550\) 3.83198 0.163396
\(551\) 0 0
\(552\) 2.46823 0.105055
\(553\) 50.4490 2.14531
\(554\) 0.117400 0.00498786
\(555\) −2.15998 −0.0916862
\(556\) 9.99988 0.424089
\(557\) 23.2478 0.985040 0.492520 0.870301i \(-0.336076\pi\)
0.492520 + 0.870301i \(0.336076\pi\)
\(558\) −24.9003 −1.05412
\(559\) −1.14012 −0.0482221
\(560\) 3.60356 0.152278
\(561\) 5.36374 0.226457
\(562\) 25.9075 1.09284
\(563\) −22.6546 −0.954778 −0.477389 0.878692i \(-0.658417\pi\)
−0.477389 + 0.878692i \(0.658417\pi\)
\(564\) −7.95981 −0.335168
\(565\) 11.5901 0.487600
\(566\) −0.0238487 −0.00100244
\(567\) 21.1028 0.886233
\(568\) 10.1456 0.425702
\(569\) 1.48366 0.0621981 0.0310990 0.999516i \(-0.490099\pi\)
0.0310990 + 0.999516i \(0.490099\pi\)
\(570\) 4.01037 0.167976
\(571\) −3.43685 −0.143828 −0.0719139 0.997411i \(-0.522911\pi\)
−0.0719139 + 0.997411i \(0.522911\pi\)
\(572\) 0.470314 0.0196648
\(573\) 9.80158 0.409467
\(574\) 37.6409 1.57110
\(575\) −4.09077 −0.170597
\(576\) −2.63595 −0.109831
\(577\) −22.3286 −0.929554 −0.464777 0.885428i \(-0.653865\pi\)
−0.464777 + 0.885428i \(0.653865\pi\)
\(578\) −11.6182 −0.483253
\(579\) 0.918266 0.0381618
\(580\) 0 0
\(581\) −17.5526 −0.728206
\(582\) −5.23015 −0.216797
\(583\) −10.4947 −0.434647
\(584\) 6.51726 0.269686
\(585\) −0.323520 −0.0133759
\(586\) −20.4762 −0.845865
\(587\) −8.88067 −0.366544 −0.183272 0.983062i \(-0.558669\pi\)
−0.183272 + 0.983062i \(0.558669\pi\)
\(588\) −3.61150 −0.148936
\(589\) −62.7874 −2.58711
\(590\) −0.361609 −0.0148872
\(591\) 15.1759 0.624251
\(592\) 3.57990 0.147133
\(593\) −40.6401 −1.66889 −0.834444 0.551092i \(-0.814211\pi\)
−0.834444 + 0.551092i \(0.814211\pi\)
\(594\) 13.0308 0.534659
\(595\) −8.35979 −0.342718
\(596\) −11.7392 −0.480858
\(597\) 3.50617 0.143498
\(598\) −0.502076 −0.0205314
\(599\) 10.9687 0.448168 0.224084 0.974570i \(-0.428061\pi\)
0.224084 + 0.974570i \(0.428061\pi\)
\(600\) −0.603364 −0.0246322
\(601\) −25.8168 −1.05309 −0.526544 0.850148i \(-0.676513\pi\)
−0.526544 + 0.850148i \(0.676513\pi\)
\(602\) −33.4749 −1.36433
\(603\) 11.6690 0.475199
\(604\) 0.0354882 0.00144400
\(605\) 3.68408 0.149779
\(606\) −0.102748 −0.00417383
\(607\) 8.62429 0.350049 0.175025 0.984564i \(-0.443999\pi\)
0.175025 + 0.984564i \(0.443999\pi\)
\(608\) −6.64668 −0.269558
\(609\) 0 0
\(610\) −6.29724 −0.254968
\(611\) 1.61915 0.0655038
\(612\) 6.11508 0.247187
\(613\) −31.2508 −1.26221 −0.631105 0.775698i \(-0.717398\pi\)
−0.631105 + 0.775698i \(0.717398\pi\)
\(614\) −4.82792 −0.194839
\(615\) −6.30244 −0.254139
\(616\) 13.8088 0.556371
\(617\) −44.9370 −1.80910 −0.904548 0.426372i \(-0.859792\pi\)
−0.904548 + 0.426372i \(0.859792\pi\)
\(618\) −7.23292 −0.290951
\(619\) −5.56321 −0.223604 −0.111802 0.993730i \(-0.535662\pi\)
−0.111802 + 0.993730i \(0.535662\pi\)
\(620\) 9.44644 0.379378
\(621\) −13.9108 −0.558221
\(622\) 3.69623 0.148205
\(623\) −9.19928 −0.368561
\(624\) −0.0740532 −0.00296450
\(625\) 1.00000 0.0400000
\(626\) 18.8606 0.753821
\(627\) 15.3677 0.613725
\(628\) −20.3105 −0.810479
\(629\) −8.30491 −0.331139
\(630\) −9.49880 −0.378441
\(631\) −18.5487 −0.738411 −0.369205 0.929348i \(-0.620370\pi\)
−0.369205 + 0.929348i \(0.620370\pi\)
\(632\) 13.9998 0.556881
\(633\) 2.45990 0.0977721
\(634\) −21.8144 −0.866361
\(635\) 20.0845 0.797030
\(636\) 1.65245 0.0655238
\(637\) 0.734637 0.0291074
\(638\) 0 0
\(639\) −26.7434 −1.05795
\(640\) 1.00000 0.0395285
\(641\) −15.4052 −0.608467 −0.304234 0.952597i \(-0.598400\pi\)
−0.304234 + 0.952597i \(0.598400\pi\)
\(642\) 2.18177 0.0861078
\(643\) −30.9993 −1.22249 −0.611247 0.791440i \(-0.709332\pi\)
−0.611247 + 0.791440i \(0.709332\pi\)
\(644\) −14.7413 −0.580889
\(645\) 5.60490 0.220693
\(646\) 15.4195 0.606670
\(647\) −47.0809 −1.85094 −0.925470 0.378820i \(-0.876330\pi\)
−0.925470 + 0.378820i \(0.876330\pi\)
\(648\) 5.85609 0.230049
\(649\) −1.38568 −0.0543927
\(650\) 0.122734 0.00481402
\(651\) −20.5390 −0.804986
\(652\) 15.0038 0.587595
\(653\) 33.5439 1.31267 0.656336 0.754468i \(-0.272105\pi\)
0.656336 + 0.754468i \(0.272105\pi\)
\(654\) −9.86355 −0.385695
\(655\) 5.25645 0.205387
\(656\) 10.4455 0.407828
\(657\) −17.1792 −0.670223
\(658\) 47.5394 1.85328
\(659\) 4.28214 0.166809 0.0834043 0.996516i \(-0.473421\pi\)
0.0834043 + 0.996516i \(0.473421\pi\)
\(660\) −2.31208 −0.0899976
\(661\) −30.7677 −1.19673 −0.598363 0.801225i \(-0.704182\pi\)
−0.598363 + 0.801225i \(0.704182\pi\)
\(662\) −17.8206 −0.692619
\(663\) 0.171794 0.00667193
\(664\) −4.87092 −0.189028
\(665\) −23.9517 −0.928806
\(666\) −9.43644 −0.365655
\(667\) 0 0
\(668\) 9.97196 0.385827
\(669\) −2.60432 −0.100689
\(670\) −4.42687 −0.171025
\(671\) −24.1309 −0.931564
\(672\) −2.17426 −0.0838738
\(673\) 27.7149 1.06833 0.534165 0.845380i \(-0.320626\pi\)
0.534165 + 0.845380i \(0.320626\pi\)
\(674\) 2.63549 0.101515
\(675\) 3.40053 0.130887
\(676\) −12.9849 −0.499421
\(677\) −18.0761 −0.694723 −0.347361 0.937731i \(-0.612922\pi\)
−0.347361 + 0.937731i \(0.612922\pi\)
\(678\) −6.99307 −0.268567
\(679\) 31.2367 1.19876
\(680\) −2.31987 −0.0889631
\(681\) −4.87503 −0.186812
\(682\) 36.1986 1.38611
\(683\) −35.1214 −1.34388 −0.671942 0.740604i \(-0.734540\pi\)
−0.671942 + 0.740604i \(0.734540\pi\)
\(684\) 17.5203 0.669906
\(685\) −1.27995 −0.0489045
\(686\) −3.65541 −0.139564
\(687\) 12.1108 0.462057
\(688\) −9.28941 −0.354155
\(689\) −0.336134 −0.0128057
\(690\) 2.46823 0.0939638
\(691\) 26.7629 1.01811 0.509055 0.860734i \(-0.329995\pi\)
0.509055 + 0.860734i \(0.329995\pi\)
\(692\) −6.48842 −0.246653
\(693\) −36.3992 −1.38269
\(694\) −0.194460 −0.00738160
\(695\) 9.99988 0.379317
\(696\) 0 0
\(697\) −24.2322 −0.917861
\(698\) 25.8228 0.977406
\(699\) −2.35600 −0.0891123
\(700\) 3.60356 0.136202
\(701\) −25.6224 −0.967743 −0.483872 0.875139i \(-0.660770\pi\)
−0.483872 + 0.875139i \(0.660770\pi\)
\(702\) 0.417360 0.0157523
\(703\) −23.7944 −0.897424
\(704\) 3.83198 0.144423
\(705\) −7.95981 −0.299784
\(706\) 1.95990 0.0737618
\(707\) 0.613653 0.0230788
\(708\) 0.218182 0.00819979
\(709\) 23.6702 0.888954 0.444477 0.895790i \(-0.353390\pi\)
0.444477 + 0.895790i \(0.353390\pi\)
\(710\) 10.1456 0.380759
\(711\) −36.9027 −1.38396
\(712\) −2.55283 −0.0956715
\(713\) −38.6432 −1.44720
\(714\) 5.04400 0.188767
\(715\) 0.470314 0.0175887
\(716\) −5.08224 −0.189932
\(717\) 16.0918 0.600961
\(718\) 0.296858 0.0110787
\(719\) 0.902040 0.0336404 0.0168202 0.999859i \(-0.494646\pi\)
0.0168202 + 0.999859i \(0.494646\pi\)
\(720\) −2.63595 −0.0982361
\(721\) 43.1981 1.60878
\(722\) 25.1783 0.937040
\(723\) 15.3293 0.570104
\(724\) −6.30332 −0.234261
\(725\) 0 0
\(726\) −2.22284 −0.0824974
\(727\) −38.7704 −1.43792 −0.718958 0.695054i \(-0.755381\pi\)
−0.718958 + 0.695054i \(0.755381\pi\)
\(728\) 0.442278 0.0163919
\(729\) −9.28110 −0.343744
\(730\) 6.51726 0.241215
\(731\) 21.5503 0.797065
\(732\) 3.79953 0.140435
\(733\) −6.37964 −0.235637 −0.117819 0.993035i \(-0.537590\pi\)
−0.117819 + 0.993035i \(0.537590\pi\)
\(734\) 26.4923 0.977847
\(735\) −3.61150 −0.133212
\(736\) −4.09077 −0.150788
\(737\) −16.9637 −0.624865
\(738\) −27.5338 −1.01353
\(739\) 23.8248 0.876411 0.438205 0.898875i \(-0.355614\pi\)
0.438205 + 0.898875i \(0.355614\pi\)
\(740\) 3.57990 0.131600
\(741\) 0.492208 0.0180817
\(742\) −9.86913 −0.362307
\(743\) 15.9546 0.585318 0.292659 0.956217i \(-0.405460\pi\)
0.292659 + 0.956217i \(0.405460\pi\)
\(744\) −5.69964 −0.208959
\(745\) −11.7392 −0.430092
\(746\) 0.354533 0.0129804
\(747\) 12.8395 0.469773
\(748\) −8.88971 −0.325040
\(749\) −13.0305 −0.476124
\(750\) −0.603364 −0.0220318
\(751\) 0.789105 0.0287948 0.0143974 0.999896i \(-0.495417\pi\)
0.0143974 + 0.999896i \(0.495417\pi\)
\(752\) 13.1924 0.481076
\(753\) −10.6804 −0.389214
\(754\) 0 0
\(755\) 0.0354882 0.00129155
\(756\) 12.2540 0.445674
\(757\) 20.6059 0.748934 0.374467 0.927240i \(-0.377826\pi\)
0.374467 + 0.927240i \(0.377826\pi\)
\(758\) −30.3765 −1.10332
\(759\) 9.45820 0.343311
\(760\) −6.64668 −0.241100
\(761\) −45.3956 −1.64559 −0.822794 0.568339i \(-0.807586\pi\)
−0.822794 + 0.568339i \(0.807586\pi\)
\(762\) −12.1183 −0.438999
\(763\) 58.9094 2.13266
\(764\) −16.2449 −0.587719
\(765\) 6.11508 0.221091
\(766\) 13.1239 0.474186
\(767\) −0.0443817 −0.00160253
\(768\) −0.603364 −0.0217720
\(769\) −4.77005 −0.172012 −0.0860061 0.996295i \(-0.527410\pi\)
−0.0860061 + 0.996295i \(0.527410\pi\)
\(770\) 13.8088 0.497633
\(771\) 2.53640 0.0913462
\(772\) −1.52191 −0.0547747
\(773\) 40.0731 1.44133 0.720665 0.693284i \(-0.243837\pi\)
0.720665 + 0.693284i \(0.243837\pi\)
\(774\) 24.4864 0.880146
\(775\) 9.44644 0.339326
\(776\) 8.66831 0.311174
\(777\) −7.78362 −0.279236
\(778\) 27.2570 0.977210
\(779\) −69.4278 −2.48751
\(780\) −0.0740532 −0.00265153
\(781\) 38.8779 1.39116
\(782\) 9.49008 0.339364
\(783\) 0 0
\(784\) 5.98561 0.213772
\(785\) −20.3105 −0.724914
\(786\) −3.17156 −0.113126
\(787\) −17.6384 −0.628742 −0.314371 0.949300i \(-0.601794\pi\)
−0.314371 + 0.949300i \(0.601794\pi\)
\(788\) −25.1520 −0.896005
\(789\) 3.42592 0.121966
\(790\) 13.9998 0.498090
\(791\) 41.7657 1.48502
\(792\) −10.1009 −0.358920
\(793\) −0.772885 −0.0274459
\(794\) −6.14121 −0.217943
\(795\) 1.65245 0.0586063
\(796\) −5.81104 −0.205967
\(797\) −1.63486 −0.0579098 −0.0289549 0.999581i \(-0.509218\pi\)
−0.0289549 + 0.999581i \(0.509218\pi\)
\(798\) 14.4516 0.511580
\(799\) −30.6046 −1.08271
\(800\) 1.00000 0.0353553
\(801\) 6.72915 0.237763
\(802\) 8.87415 0.313357
\(803\) 24.9740 0.881314
\(804\) 2.67101 0.0941994
\(805\) −14.7413 −0.519563
\(806\) 1.15940 0.0408380
\(807\) −12.4293 −0.437532
\(808\) 0.170291 0.00599082
\(809\) 34.8204 1.22422 0.612111 0.790772i \(-0.290321\pi\)
0.612111 + 0.790772i \(0.290321\pi\)
\(810\) 5.85609 0.205762
\(811\) 6.86089 0.240918 0.120459 0.992718i \(-0.461563\pi\)
0.120459 + 0.992718i \(0.461563\pi\)
\(812\) 0 0
\(813\) −2.73421 −0.0958929
\(814\) 13.7181 0.480819
\(815\) 15.0038 0.525561
\(816\) 1.39973 0.0490003
\(817\) 61.7437 2.16014
\(818\) 19.6980 0.688726
\(819\) −1.16582 −0.0407372
\(820\) 10.4455 0.364772
\(821\) 54.4518 1.90038 0.950190 0.311671i \(-0.100889\pi\)
0.950190 + 0.311671i \(0.100889\pi\)
\(822\) 0.772279 0.0269363
\(823\) −22.9091 −0.798561 −0.399281 0.916829i \(-0.630740\pi\)
−0.399281 + 0.916829i \(0.630740\pi\)
\(824\) 11.9876 0.417609
\(825\) −2.31208 −0.0804963
\(826\) −1.30308 −0.0453399
\(827\) −2.08475 −0.0724939 −0.0362469 0.999343i \(-0.511540\pi\)
−0.0362469 + 0.999343i \(0.511540\pi\)
\(828\) 10.7831 0.374738
\(829\) 6.08168 0.211226 0.105613 0.994407i \(-0.466320\pi\)
0.105613 + 0.994407i \(0.466320\pi\)
\(830\) −4.87092 −0.169072
\(831\) −0.0708352 −0.00245725
\(832\) 0.122734 0.00425503
\(833\) −13.8859 −0.481117
\(834\) −6.03357 −0.208925
\(835\) 9.97196 0.345094
\(836\) −25.4699 −0.880896
\(837\) 32.1229 1.11033
\(838\) 25.9470 0.896323
\(839\) −10.9715 −0.378780 −0.189390 0.981902i \(-0.560651\pi\)
−0.189390 + 0.981902i \(0.560651\pi\)
\(840\) −2.17426 −0.0750190
\(841\) 0 0
\(842\) 15.1158 0.520926
\(843\) −15.6317 −0.538384
\(844\) −4.07697 −0.140335
\(845\) −12.9849 −0.446695
\(846\) −34.7744 −1.19557
\(847\) 13.2758 0.456161
\(848\) −2.73872 −0.0940481
\(849\) 0.0143895 0.000493846 0
\(850\) −2.31987 −0.0795710
\(851\) −14.6445 −0.502009
\(852\) −6.12152 −0.209720
\(853\) 37.6867 1.29037 0.645183 0.764028i \(-0.276781\pi\)
0.645183 + 0.764028i \(0.276781\pi\)
\(854\) −22.6925 −0.776520
\(855\) 17.5203 0.599182
\(856\) −3.61602 −0.123593
\(857\) 33.7203 1.15186 0.575932 0.817498i \(-0.304639\pi\)
0.575932 + 0.817498i \(0.304639\pi\)
\(858\) −0.283771 −0.00968777
\(859\) −26.4372 −0.902024 −0.451012 0.892518i \(-0.648937\pi\)
−0.451012 + 0.892518i \(0.648937\pi\)
\(860\) −9.28941 −0.316766
\(861\) −22.7112 −0.773995
\(862\) 25.2941 0.861520
\(863\) −11.5573 −0.393414 −0.196707 0.980462i \(-0.563025\pi\)
−0.196707 + 0.980462i \(0.563025\pi\)
\(864\) 3.40053 0.115688
\(865\) −6.48842 −0.220613
\(866\) 41.1212 1.39736
\(867\) 7.01000 0.238072
\(868\) 34.0407 1.15542
\(869\) 53.6469 1.81985
\(870\) 0 0
\(871\) −0.543326 −0.0184099
\(872\) 16.3476 0.553599
\(873\) −22.8493 −0.773330
\(874\) 27.1900 0.919717
\(875\) 3.60356 0.121822
\(876\) −3.93228 −0.132859
\(877\) −10.7417 −0.362723 −0.181361 0.983416i \(-0.558050\pi\)
−0.181361 + 0.983416i \(0.558050\pi\)
\(878\) −35.9038 −1.21170
\(879\) 12.3546 0.416711
\(880\) 3.83198 0.129176
\(881\) 6.57916 0.221657 0.110829 0.993840i \(-0.464650\pi\)
0.110829 + 0.993840i \(0.464650\pi\)
\(882\) −15.7778 −0.531265
\(883\) 24.3827 0.820544 0.410272 0.911963i \(-0.365434\pi\)
0.410272 + 0.911963i \(0.365434\pi\)
\(884\) −0.284727 −0.00957641
\(885\) 0.218182 0.00733412
\(886\) 17.1974 0.577758
\(887\) 12.6067 0.423291 0.211645 0.977347i \(-0.432118\pi\)
0.211645 + 0.977347i \(0.432118\pi\)
\(888\) −2.15998 −0.0724843
\(889\) 72.3757 2.42740
\(890\) −2.55283 −0.0855712
\(891\) 22.4404 0.751783
\(892\) 4.31633 0.144521
\(893\) −87.6854 −2.93428
\(894\) 7.08304 0.236892
\(895\) −5.08224 −0.169881
\(896\) 3.60356 0.120386
\(897\) 0.302935 0.0101147
\(898\) 20.9010 0.697477
\(899\) 0 0
\(900\) −2.63595 −0.0878650
\(901\) 6.35349 0.211665
\(902\) 40.0269 1.33275
\(903\) 20.1976 0.672132
\(904\) 11.5901 0.385482
\(905\) −6.30332 −0.209529
\(906\) −0.0214123 −0.000711377 0
\(907\) −36.1775 −1.20126 −0.600628 0.799529i \(-0.705083\pi\)
−0.600628 + 0.799529i \(0.705083\pi\)
\(908\) 8.07974 0.268136
\(909\) −0.448879 −0.0148884
\(910\) 0.442278 0.0146614
\(911\) −4.96412 −0.164469 −0.0822344 0.996613i \(-0.526206\pi\)
−0.0822344 + 0.996613i \(0.526206\pi\)
\(912\) 4.01037 0.132797
\(913\) −18.6653 −0.617731
\(914\) 2.10802 0.0697271
\(915\) 3.79953 0.125609
\(916\) −20.0722 −0.663203
\(917\) 18.9419 0.625517
\(918\) −7.88881 −0.260369
\(919\) −56.4943 −1.86358 −0.931788 0.363003i \(-0.881751\pi\)
−0.931788 + 0.363003i \(0.881751\pi\)
\(920\) −4.09077 −0.134869
\(921\) 2.91299 0.0959864
\(922\) 0.540464 0.0177992
\(923\) 1.24521 0.0409867
\(924\) −8.33171 −0.274093
\(925\) 3.57990 0.117706
\(926\) −19.6759 −0.646591
\(927\) −31.5988 −1.03784
\(928\) 0 0
\(929\) −10.0874 −0.330958 −0.165479 0.986213i \(-0.552917\pi\)
−0.165479 + 0.986213i \(0.552917\pi\)
\(930\) −5.69964 −0.186899
\(931\) −39.7844 −1.30388
\(932\) 3.90478 0.127905
\(933\) −2.23017 −0.0730125
\(934\) −38.8360 −1.27075
\(935\) −8.88971 −0.290725
\(936\) −0.323520 −0.0105746
\(937\) −32.4711 −1.06079 −0.530393 0.847752i \(-0.677956\pi\)
−0.530393 + 0.847752i \(0.677956\pi\)
\(938\) −15.9525 −0.520866
\(939\) −11.3798 −0.371366
\(940\) 13.1924 0.430288
\(941\) 13.3717 0.435906 0.217953 0.975959i \(-0.430062\pi\)
0.217953 + 0.975959i \(0.430062\pi\)
\(942\) 12.2547 0.399278
\(943\) −42.7301 −1.39148
\(944\) −0.361609 −0.0117694
\(945\) 12.2540 0.398623
\(946\) −35.5968 −1.15735
\(947\) −0.0979024 −0.00318140 −0.00159070 0.999999i \(-0.500506\pi\)
−0.00159070 + 0.999999i \(0.500506\pi\)
\(948\) −8.44697 −0.274345
\(949\) 0.799888 0.0259655
\(950\) −6.64668 −0.215647
\(951\) 13.1620 0.426809
\(952\) −8.35979 −0.270942
\(953\) 47.1826 1.52839 0.764197 0.644983i \(-0.223135\pi\)
0.764197 + 0.644983i \(0.223135\pi\)
\(954\) 7.21914 0.233728
\(955\) −16.2449 −0.525672
\(956\) −26.6702 −0.862576
\(957\) 0 0
\(958\) −14.4617 −0.467238
\(959\) −4.61239 −0.148942
\(960\) −0.603364 −0.0194735
\(961\) 58.2351 1.87855
\(962\) 0.439375 0.0141660
\(963\) 9.53164 0.307153
\(964\) −25.4064 −0.818286
\(965\) −1.52191 −0.0489920
\(966\) 8.89439 0.286172
\(967\) −22.6980 −0.729919 −0.364959 0.931023i \(-0.618917\pi\)
−0.364959 + 0.931023i \(0.618917\pi\)
\(968\) 3.68408 0.118411
\(969\) −9.30355 −0.298873
\(970\) 8.66831 0.278323
\(971\) 4.15521 0.133347 0.0666735 0.997775i \(-0.478761\pi\)
0.0666735 + 0.997775i \(0.478761\pi\)
\(972\) −13.7350 −0.440549
\(973\) 36.0351 1.15523
\(974\) 41.4896 1.32941
\(975\) −0.0740532 −0.00237160
\(976\) −6.29724 −0.201570
\(977\) 50.6645 1.62090 0.810450 0.585807i \(-0.199222\pi\)
0.810450 + 0.585807i \(0.199222\pi\)
\(978\) −9.05278 −0.289476
\(979\) −9.78241 −0.312647
\(980\) 5.98561 0.191203
\(981\) −43.0914 −1.37580
\(982\) 37.3413 1.19161
\(983\) −56.8414 −1.81296 −0.906479 0.422250i \(-0.861240\pi\)
−0.906479 + 0.422250i \(0.861240\pi\)
\(984\) −6.30244 −0.200914
\(985\) −25.1520 −0.801411
\(986\) 0 0
\(987\) −28.6836 −0.913009
\(988\) −0.815772 −0.0259532
\(989\) 38.0008 1.20836
\(990\) −10.1009 −0.321028
\(991\) −0.787146 −0.0250045 −0.0125023 0.999922i \(-0.503980\pi\)
−0.0125023 + 0.999922i \(0.503980\pi\)
\(992\) 9.44644 0.299925
\(993\) 10.7523 0.341215
\(994\) 36.5604 1.15963
\(995\) −5.81104 −0.184222
\(996\) 2.93894 0.0931239
\(997\) −49.1329 −1.55605 −0.778027 0.628231i \(-0.783779\pi\)
−0.778027 + 0.628231i \(0.783779\pi\)
\(998\) −3.12421 −0.0988952
\(999\) 12.1736 0.385154
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8410.2.a.ca.1.7 18
29.19 odd 28 290.2.m.b.71.2 36
29.26 odd 28 290.2.m.b.241.2 yes 36
29.28 even 2 8410.2.a.bz.1.12 18
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
290.2.m.b.71.2 36 29.19 odd 28
290.2.m.b.241.2 yes 36 29.26 odd 28
8410.2.a.bz.1.12 18 29.28 even 2
8410.2.a.ca.1.7 18 1.1 even 1 trivial