Properties

Label 2-8410-1.1-c1-0-109
Degree $2$
Conductor $8410$
Sign $1$
Analytic cond. $67.1541$
Root an. cond. $8.19476$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 0.603·3-s + 4-s + 5-s − 0.603·6-s + 3.60·7-s + 8-s − 2.63·9-s + 10-s + 3.83·11-s − 0.603·12-s + 0.122·13-s + 3.60·14-s − 0.603·15-s + 16-s − 2.31·17-s − 2.63·18-s − 6.64·19-s + 20-s − 2.17·21-s + 3.83·22-s − 4.09·23-s − 0.603·24-s + 25-s + 0.122·26-s + 3.40·27-s + 3.60·28-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.348·3-s + 0.5·4-s + 0.447·5-s − 0.246·6-s + 1.36·7-s + 0.353·8-s − 0.878·9-s + 0.316·10-s + 1.15·11-s − 0.174·12-s + 0.0340·13-s + 0.963·14-s − 0.155·15-s + 0.250·16-s − 0.562·17-s − 0.621·18-s − 1.52·19-s + 0.223·20-s − 0.474·21-s + 0.816·22-s − 0.852·23-s − 0.123·24-s + 0.200·25-s + 0.0240·26-s + 0.654·27-s + 0.681·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8410 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8410 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8410\)    =    \(2 \cdot 5 \cdot 29^{2}\)
Sign: $1$
Analytic conductor: \(67.1541\)
Root analytic conductor: \(8.19476\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 8410,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.801643256\)
\(L(\frac12)\) \(\approx\) \(3.801643256\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
5 \( 1 - T \)
29 \( 1 \)
good3 \( 1 + 0.603T + 3T^{2} \)
7 \( 1 - 3.60T + 7T^{2} \)
11 \( 1 - 3.83T + 11T^{2} \)
13 \( 1 - 0.122T + 13T^{2} \)
17 \( 1 + 2.31T + 17T^{2} \)
19 \( 1 + 6.64T + 19T^{2} \)
23 \( 1 + 4.09T + 23T^{2} \)
31 \( 1 - 9.44T + 31T^{2} \)
37 \( 1 - 3.57T + 37T^{2} \)
41 \( 1 - 10.4T + 41T^{2} \)
43 \( 1 + 9.28T + 43T^{2} \)
47 \( 1 - 13.1T + 47T^{2} \)
53 \( 1 + 2.73T + 53T^{2} \)
59 \( 1 + 0.361T + 59T^{2} \)
61 \( 1 + 6.29T + 61T^{2} \)
67 \( 1 + 4.42T + 67T^{2} \)
71 \( 1 - 10.1T + 71T^{2} \)
73 \( 1 - 6.51T + 73T^{2} \)
79 \( 1 - 13.9T + 79T^{2} \)
83 \( 1 + 4.87T + 83T^{2} \)
89 \( 1 + 2.55T + 89T^{2} \)
97 \( 1 - 8.66T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.83472575783775835828635951976, −6.84493629715647397910789316998, −6.08753133258639913725306379836, −5.96992043519554530342107935842, −4.75678010388597597073233167146, −4.54983703799827159368374571818, −3.68754119394793805145091061063, −2.48322307964426296850221947465, −1.97428045413643277384787682671, −0.893788516859927770586249140087, 0.893788516859927770586249140087, 1.97428045413643277384787682671, 2.48322307964426296850221947465, 3.68754119394793805145091061063, 4.54983703799827159368374571818, 4.75678010388597597073233167146, 5.96992043519554530342107935842, 6.08753133258639913725306379836, 6.84493629715647397910789316998, 7.83472575783775835828635951976

Graph of the $Z$-function along the critical line