Properties

Label 8410.2
Level 8410
Weight 2
Dimension 646029
Nonzero newspaces 24
Sturm bound 8477280

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 8410 = 2 \cdot 5 \cdot 29^{2} \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 24 \)
Sturm bound: \(8477280\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(8410))\).

Total New Old
Modular forms 2128952 646029 1482923
Cusp forms 2109689 646029 1463660
Eisenstein series 19263 0 19263

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(8410))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
8410.2.a \(\chi_{8410}(1, \cdot)\) 8410.2.a.a 1 1
8410.2.a.b 1
8410.2.a.c 1
8410.2.a.d 1
8410.2.a.e 1
8410.2.a.f 1
8410.2.a.g 1
8410.2.a.h 1
8410.2.a.i 1
8410.2.a.j 1
8410.2.a.k 1
8410.2.a.l 1
8410.2.a.m 1
8410.2.a.n 2
8410.2.a.o 2
8410.2.a.p 2
8410.2.a.q 2
8410.2.a.r 2
8410.2.a.s 2
8410.2.a.t 2
8410.2.a.u 2
8410.2.a.v 3
8410.2.a.w 3
8410.2.a.x 3
8410.2.a.y 3
8410.2.a.z 4
8410.2.a.ba 4
8410.2.a.bb 4
8410.2.a.bc 4
8410.2.a.bd 6
8410.2.a.be 6
8410.2.a.bf 6
8410.2.a.bg 6
8410.2.a.bh 6
8410.2.a.bi 6
8410.2.a.bj 6
8410.2.a.bk 6
8410.2.a.bl 6
8410.2.a.bm 6
8410.2.a.bn 8
8410.2.a.bo 8
8410.2.a.bp 8
8410.2.a.bq 8
8410.2.a.br 9
8410.2.a.bs 9
8410.2.a.bt 9
8410.2.a.bu 9
8410.2.a.bv 12
8410.2.a.bw 12
8410.2.a.bx 12
8410.2.a.by 12
8410.2.a.bz 18
8410.2.a.ca 18
8410.2.b \(\chi_{8410}(6729, \cdot)\) n/a 406 1
8410.2.c \(\chi_{8410}(1681, \cdot)\) n/a 270 1
8410.2.d \(\chi_{8410}(8409, \cdot)\) n/a 404 1
8410.2.e \(\chi_{8410}(1723, \cdot)\) n/a 810 2
8410.2.j \(\chi_{8410}(3323, \cdot)\) n/a 810 2
8410.2.k \(\chi_{8410}(571, \cdot)\) n/a 1620 6
8410.2.l \(\chi_{8410}(1949, \cdot)\) n/a 2424 6
8410.2.m \(\chi_{8410}(651, \cdot)\) n/a 1620 6
8410.2.n \(\chi_{8410}(1619, \cdot)\) n/a 2436 6
8410.2.o \(\chi_{8410}(827, \cdot)\) n/a 4860 12
8410.2.t \(\chi_{8410}(137, \cdot)\) n/a 4860 12
8410.2.u \(\chi_{8410}(291, \cdot)\) n/a 8120 28
8410.2.v \(\chi_{8410}(289, \cdot)\) n/a 12208 28
8410.2.w \(\chi_{8410}(231, \cdot)\) n/a 8120 28
8410.2.x \(\chi_{8410}(59, \cdot)\) n/a 12152 28
8410.2.y \(\chi_{8410}(133, \cdot)\) n/a 24360 56
8410.2.bd \(\chi_{8410}(17, \cdot)\) n/a 24360 56
8410.2.be \(\chi_{8410}(81, \cdot)\) n/a 48720 168
8410.2.bf \(\chi_{8410}(49, \cdot)\) n/a 72912 168
8410.2.bg \(\chi_{8410}(51, \cdot)\) n/a 48720 168
8410.2.bh \(\chi_{8410}(9, \cdot)\) n/a 73248 168
8410.2.bi \(\chi_{8410}(73, \cdot)\) n/a 146160 336
8410.2.bn \(\chi_{8410}(3, \cdot)\) n/a 146160 336

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(8410))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(8410)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(29))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(58))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(145))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(290))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(841))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(1682))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(4205))\)\(^{\oplus 2}\)