Properties

Label 840.2.z.b.811.3
Level $840$
Weight $2$
Character 840.811
Analytic conductor $6.707$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [840,2,Mod(811,840)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(840, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("840.811"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 840 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 840.z (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-4,0,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.70743376979\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 811.3
Root \(1.22474 - 1.22474i\) of defining polynomial
Character \(\chi\) \(=\) 840.811
Dual form 840.2.z.b.811.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.00000 + 1.00000i) q^{2} +1.00000i q^{3} -2.00000i q^{4} +1.00000 q^{5} +(-1.00000 - 1.00000i) q^{6} +(-1.00000 - 2.44949i) q^{7} +(2.00000 + 2.00000i) q^{8} -1.00000 q^{9} +(-1.00000 + 1.00000i) q^{10} +2.00000 q^{11} +2.00000 q^{12} -2.89898 q^{13} +(3.44949 + 1.44949i) q^{14} +1.00000i q^{15} -4.00000 q^{16} -4.89898i q^{17} +(1.00000 - 1.00000i) q^{18} +2.89898i q^{19} -2.00000i q^{20} +(2.44949 - 1.00000i) q^{21} +(-2.00000 + 2.00000i) q^{22} -6.00000i q^{23} +(-2.00000 + 2.00000i) q^{24} +1.00000 q^{25} +(2.89898 - 2.89898i) q^{26} -1.00000i q^{27} +(-4.89898 + 2.00000i) q^{28} -0.898979i q^{29} +(-1.00000 - 1.00000i) q^{30} +2.00000 q^{31} +(4.00000 - 4.00000i) q^{32} +2.00000i q^{33} +(4.89898 + 4.89898i) q^{34} +(-1.00000 - 2.44949i) q^{35} +2.00000i q^{36} -11.7980i q^{37} +(-2.89898 - 2.89898i) q^{38} -2.89898i q^{39} +(2.00000 + 2.00000i) q^{40} -6.89898i q^{41} +(-1.44949 + 3.44949i) q^{42} +0.898979 q^{43} -4.00000i q^{44} -1.00000 q^{45} +(6.00000 + 6.00000i) q^{46} +1.10102 q^{47} -4.00000i q^{48} +(-5.00000 + 4.89898i) q^{49} +(-1.00000 + 1.00000i) q^{50} +4.89898 q^{51} +5.79796i q^{52} -9.79796i q^{53} +(1.00000 + 1.00000i) q^{54} +2.00000 q^{55} +(2.89898 - 6.89898i) q^{56} -2.89898 q^{57} +(0.898979 + 0.898979i) q^{58} +12.8990i q^{59} +2.00000 q^{60} +8.89898 q^{61} +(-2.00000 + 2.00000i) q^{62} +(1.00000 + 2.44949i) q^{63} +8.00000i q^{64} -2.89898 q^{65} +(-2.00000 - 2.00000i) q^{66} +4.89898 q^{67} -9.79796 q^{68} +6.00000 q^{69} +(3.44949 + 1.44949i) q^{70} +3.10102i q^{71} +(-2.00000 - 2.00000i) q^{72} +0.898979i q^{73} +(11.7980 + 11.7980i) q^{74} +1.00000i q^{75} +5.79796 q^{76} +(-2.00000 - 4.89898i) q^{77} +(2.89898 + 2.89898i) q^{78} -4.00000i q^{79} -4.00000 q^{80} +1.00000 q^{81} +(6.89898 + 6.89898i) q^{82} +4.00000i q^{83} +(-2.00000 - 4.89898i) q^{84} -4.89898i q^{85} +(-0.898979 + 0.898979i) q^{86} +0.898979 q^{87} +(4.00000 + 4.00000i) q^{88} -10.8990i q^{89} +(1.00000 - 1.00000i) q^{90} +(2.89898 + 7.10102i) q^{91} -12.0000 q^{92} +2.00000i q^{93} +(-1.10102 + 1.10102i) q^{94} +2.89898i q^{95} +(4.00000 + 4.00000i) q^{96} +8.89898i q^{97} +(0.101021 - 9.89898i) q^{98} -2.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{2} + 4 q^{5} - 4 q^{6} - 4 q^{7} + 8 q^{8} - 4 q^{9} - 4 q^{10} + 8 q^{11} + 8 q^{12} + 8 q^{13} + 4 q^{14} - 16 q^{16} + 4 q^{18} - 8 q^{22} - 8 q^{24} + 4 q^{25} - 8 q^{26} - 4 q^{30} + 8 q^{31}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/840\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(281\) \(337\) \(421\) \(631\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 + 1.00000i −0.707107 + 0.707107i
\(3\) 1.00000i 0.577350i
\(4\) 2.00000i 1.00000i
\(5\) 1.00000 0.447214
\(6\) −1.00000 1.00000i −0.408248 0.408248i
\(7\) −1.00000 2.44949i −0.377964 0.925820i
\(8\) 2.00000 + 2.00000i 0.707107 + 0.707107i
\(9\) −1.00000 −0.333333
\(10\) −1.00000 + 1.00000i −0.316228 + 0.316228i
\(11\) 2.00000 0.603023 0.301511 0.953463i \(-0.402509\pi\)
0.301511 + 0.953463i \(0.402509\pi\)
\(12\) 2.00000 0.577350
\(13\) −2.89898 −0.804032 −0.402016 0.915633i \(-0.631690\pi\)
−0.402016 + 0.915633i \(0.631690\pi\)
\(14\) 3.44949 + 1.44949i 0.921915 + 0.387392i
\(15\) 1.00000i 0.258199i
\(16\) −4.00000 −1.00000
\(17\) 4.89898i 1.18818i −0.804400 0.594089i \(-0.797513\pi\)
0.804400 0.594089i \(-0.202487\pi\)
\(18\) 1.00000 1.00000i 0.235702 0.235702i
\(19\) 2.89898i 0.665072i 0.943091 + 0.332536i \(0.107904\pi\)
−0.943091 + 0.332536i \(0.892096\pi\)
\(20\) 2.00000i 0.447214i
\(21\) 2.44949 1.00000i 0.534522 0.218218i
\(22\) −2.00000 + 2.00000i −0.426401 + 0.426401i
\(23\) 6.00000i 1.25109i −0.780189 0.625543i \(-0.784877\pi\)
0.780189 0.625543i \(-0.215123\pi\)
\(24\) −2.00000 + 2.00000i −0.408248 + 0.408248i
\(25\) 1.00000 0.200000
\(26\) 2.89898 2.89898i 0.568537 0.568537i
\(27\) 1.00000i 0.192450i
\(28\) −4.89898 + 2.00000i −0.925820 + 0.377964i
\(29\) 0.898979i 0.166936i −0.996510 0.0834681i \(-0.973400\pi\)
0.996510 0.0834681i \(-0.0265997\pi\)
\(30\) −1.00000 1.00000i −0.182574 0.182574i
\(31\) 2.00000 0.359211 0.179605 0.983739i \(-0.442518\pi\)
0.179605 + 0.983739i \(0.442518\pi\)
\(32\) 4.00000 4.00000i 0.707107 0.707107i
\(33\) 2.00000i 0.348155i
\(34\) 4.89898 + 4.89898i 0.840168 + 0.840168i
\(35\) −1.00000 2.44949i −0.169031 0.414039i
\(36\) 2.00000i 0.333333i
\(37\) 11.7980i 1.93957i −0.243956 0.969786i \(-0.578445\pi\)
0.243956 0.969786i \(-0.421555\pi\)
\(38\) −2.89898 2.89898i −0.470277 0.470277i
\(39\) 2.89898i 0.464208i
\(40\) 2.00000 + 2.00000i 0.316228 + 0.316228i
\(41\) 6.89898i 1.07744i −0.842485 0.538720i \(-0.818908\pi\)
0.842485 0.538720i \(-0.181092\pi\)
\(42\) −1.44949 + 3.44949i −0.223661 + 0.532268i
\(43\) 0.898979 0.137093 0.0685465 0.997648i \(-0.478164\pi\)
0.0685465 + 0.997648i \(0.478164\pi\)
\(44\) 4.00000i 0.603023i
\(45\) −1.00000 −0.149071
\(46\) 6.00000 + 6.00000i 0.884652 + 0.884652i
\(47\) 1.10102 0.160600 0.0803002 0.996771i \(-0.474412\pi\)
0.0803002 + 0.996771i \(0.474412\pi\)
\(48\) 4.00000i 0.577350i
\(49\) −5.00000 + 4.89898i −0.714286 + 0.699854i
\(50\) −1.00000 + 1.00000i −0.141421 + 0.141421i
\(51\) 4.89898 0.685994
\(52\) 5.79796i 0.804032i
\(53\) 9.79796i 1.34585i −0.739709 0.672927i \(-0.765037\pi\)
0.739709 0.672927i \(-0.234963\pi\)
\(54\) 1.00000 + 1.00000i 0.136083 + 0.136083i
\(55\) 2.00000 0.269680
\(56\) 2.89898 6.89898i 0.387392 0.921915i
\(57\) −2.89898 −0.383979
\(58\) 0.898979 + 0.898979i 0.118042 + 0.118042i
\(59\) 12.8990i 1.67930i 0.543125 + 0.839652i \(0.317241\pi\)
−0.543125 + 0.839652i \(0.682759\pi\)
\(60\) 2.00000 0.258199
\(61\) 8.89898 1.13940 0.569699 0.821854i \(-0.307060\pi\)
0.569699 + 0.821854i \(0.307060\pi\)
\(62\) −2.00000 + 2.00000i −0.254000 + 0.254000i
\(63\) 1.00000 + 2.44949i 0.125988 + 0.308607i
\(64\) 8.00000i 1.00000i
\(65\) −2.89898 −0.359574
\(66\) −2.00000 2.00000i −0.246183 0.246183i
\(67\) 4.89898 0.598506 0.299253 0.954174i \(-0.403263\pi\)
0.299253 + 0.954174i \(0.403263\pi\)
\(68\) −9.79796 −1.18818
\(69\) 6.00000 0.722315
\(70\) 3.44949 + 1.44949i 0.412293 + 0.173247i
\(71\) 3.10102i 0.368023i 0.982924 + 0.184012i \(0.0589084\pi\)
−0.982924 + 0.184012i \(0.941092\pi\)
\(72\) −2.00000 2.00000i −0.235702 0.235702i
\(73\) 0.898979i 0.105218i 0.998615 + 0.0526088i \(0.0167536\pi\)
−0.998615 + 0.0526088i \(0.983246\pi\)
\(74\) 11.7980 + 11.7980i 1.37148 + 1.37148i
\(75\) 1.00000i 0.115470i
\(76\) 5.79796 0.665072
\(77\) −2.00000 4.89898i −0.227921 0.558291i
\(78\) 2.89898 + 2.89898i 0.328245 + 0.328245i
\(79\) 4.00000i 0.450035i −0.974355 0.225018i \(-0.927756\pi\)
0.974355 0.225018i \(-0.0722440\pi\)
\(80\) −4.00000 −0.447214
\(81\) 1.00000 0.111111
\(82\) 6.89898 + 6.89898i 0.761865 + 0.761865i
\(83\) 4.00000i 0.439057i 0.975606 + 0.219529i \(0.0704519\pi\)
−0.975606 + 0.219529i \(0.929548\pi\)
\(84\) −2.00000 4.89898i −0.218218 0.534522i
\(85\) 4.89898i 0.531369i
\(86\) −0.898979 + 0.898979i −0.0969395 + 0.0969395i
\(87\) 0.898979 0.0963807
\(88\) 4.00000 + 4.00000i 0.426401 + 0.426401i
\(89\) 10.8990i 1.15529i −0.816288 0.577645i \(-0.803972\pi\)
0.816288 0.577645i \(-0.196028\pi\)
\(90\) 1.00000 1.00000i 0.105409 0.105409i
\(91\) 2.89898 + 7.10102i 0.303896 + 0.744389i
\(92\) −12.0000 −1.25109
\(93\) 2.00000i 0.207390i
\(94\) −1.10102 + 1.10102i −0.113562 + 0.113562i
\(95\) 2.89898i 0.297429i
\(96\) 4.00000 + 4.00000i 0.408248 + 0.408248i
\(97\) 8.89898i 0.903554i 0.892131 + 0.451777i \(0.149210\pi\)
−0.892131 + 0.451777i \(0.850790\pi\)
\(98\) 0.101021 9.89898i 0.0102046 0.999948i
\(99\) −2.00000 −0.201008
\(100\) 2.00000i 0.200000i
\(101\) 15.7980 1.57196 0.785978 0.618255i \(-0.212160\pi\)
0.785978 + 0.618255i \(0.212160\pi\)
\(102\) −4.89898 + 4.89898i −0.485071 + 0.485071i
\(103\) −19.7980 −1.95075 −0.975375 0.220551i \(-0.929214\pi\)
−0.975375 + 0.220551i \(0.929214\pi\)
\(104\) −5.79796 5.79796i −0.568537 0.568537i
\(105\) 2.44949 1.00000i 0.239046 0.0975900i
\(106\) 9.79796 + 9.79796i 0.951662 + 0.951662i
\(107\) 11.7980 1.14055 0.570276 0.821453i \(-0.306836\pi\)
0.570276 + 0.821453i \(0.306836\pi\)
\(108\) −2.00000 −0.192450
\(109\) 4.00000i 0.383131i −0.981480 0.191565i \(-0.938644\pi\)
0.981480 0.191565i \(-0.0613564\pi\)
\(110\) −2.00000 + 2.00000i −0.190693 + 0.190693i
\(111\) 11.7980 1.11981
\(112\) 4.00000 + 9.79796i 0.377964 + 0.925820i
\(113\) 17.7980 1.67429 0.837146 0.546980i \(-0.184223\pi\)
0.837146 + 0.546980i \(0.184223\pi\)
\(114\) 2.89898 2.89898i 0.271514 0.271514i
\(115\) 6.00000i 0.559503i
\(116\) −1.79796 −0.166936
\(117\) 2.89898 0.268011
\(118\) −12.8990 12.8990i −1.18745 1.18745i
\(119\) −12.0000 + 4.89898i −1.10004 + 0.449089i
\(120\) −2.00000 + 2.00000i −0.182574 + 0.182574i
\(121\) −7.00000 −0.636364
\(122\) −8.89898 + 8.89898i −0.805676 + 0.805676i
\(123\) 6.89898 0.622060
\(124\) 4.00000i 0.359211i
\(125\) 1.00000 0.0894427
\(126\) −3.44949 1.44949i −0.307305 0.129131i
\(127\) 8.89898i 0.789657i 0.918755 + 0.394828i \(0.129196\pi\)
−0.918755 + 0.394828i \(0.870804\pi\)
\(128\) −8.00000 8.00000i −0.707107 0.707107i
\(129\) 0.898979i 0.0791507i
\(130\) 2.89898 2.89898i 0.254257 0.254257i
\(131\) 16.8990i 1.47647i −0.674543 0.738235i \(-0.735659\pi\)
0.674543 0.738235i \(-0.264341\pi\)
\(132\) 4.00000 0.348155
\(133\) 7.10102 2.89898i 0.615737 0.251373i
\(134\) −4.89898 + 4.89898i −0.423207 + 0.423207i
\(135\) 1.00000i 0.0860663i
\(136\) 9.79796 9.79796i 0.840168 0.840168i
\(137\) −5.79796 −0.495353 −0.247677 0.968843i \(-0.579667\pi\)
−0.247677 + 0.968843i \(0.579667\pi\)
\(138\) −6.00000 + 6.00000i −0.510754 + 0.510754i
\(139\) 2.89898i 0.245888i 0.992414 + 0.122944i \(0.0392336\pi\)
−0.992414 + 0.122944i \(0.960766\pi\)
\(140\) −4.89898 + 2.00000i −0.414039 + 0.169031i
\(141\) 1.10102i 0.0927227i
\(142\) −3.10102 3.10102i −0.260232 0.260232i
\(143\) −5.79796 −0.484850
\(144\) 4.00000 0.333333
\(145\) 0.898979i 0.0746562i
\(146\) −0.898979 0.898979i −0.0744001 0.0744001i
\(147\) −4.89898 5.00000i −0.404061 0.412393i
\(148\) −23.5959 −1.93957
\(149\) 7.10102i 0.581738i −0.956763 0.290869i \(-0.906056\pi\)
0.956763 0.290869i \(-0.0939444\pi\)
\(150\) −1.00000 1.00000i −0.0816497 0.0816497i
\(151\) 13.7980i 1.12286i 0.827524 + 0.561431i \(0.189749\pi\)
−0.827524 + 0.561431i \(0.810251\pi\)
\(152\) −5.79796 + 5.79796i −0.470277 + 0.470277i
\(153\) 4.89898i 0.396059i
\(154\) 6.89898 + 2.89898i 0.555936 + 0.233606i
\(155\) 2.00000 0.160644
\(156\) −5.79796 −0.464208
\(157\) −12.6969 −1.01333 −0.506663 0.862144i \(-0.669121\pi\)
−0.506663 + 0.862144i \(0.669121\pi\)
\(158\) 4.00000 + 4.00000i 0.318223 + 0.318223i
\(159\) 9.79796 0.777029
\(160\) 4.00000 4.00000i 0.316228 0.316228i
\(161\) −14.6969 + 6.00000i −1.15828 + 0.472866i
\(162\) −1.00000 + 1.00000i −0.0785674 + 0.0785674i
\(163\) −6.69694 −0.524545 −0.262272 0.964994i \(-0.584472\pi\)
−0.262272 + 0.964994i \(0.584472\pi\)
\(164\) −13.7980 −1.07744
\(165\) 2.00000i 0.155700i
\(166\) −4.00000 4.00000i −0.310460 0.310460i
\(167\) 1.10102 0.0851995 0.0425998 0.999092i \(-0.486436\pi\)
0.0425998 + 0.999092i \(0.486436\pi\)
\(168\) 6.89898 + 2.89898i 0.532268 + 0.223661i
\(169\) −4.59592 −0.353532
\(170\) 4.89898 + 4.89898i 0.375735 + 0.375735i
\(171\) 2.89898i 0.221691i
\(172\) 1.79796i 0.137093i
\(173\) 7.79796 0.592868 0.296434 0.955053i \(-0.404203\pi\)
0.296434 + 0.955053i \(0.404203\pi\)
\(174\) −0.898979 + 0.898979i −0.0681515 + 0.0681515i
\(175\) −1.00000 2.44949i −0.0755929 0.185164i
\(176\) −8.00000 −0.603023
\(177\) −12.8990 −0.969547
\(178\) 10.8990 + 10.8990i 0.816913 + 0.816913i
\(179\) −10.0000 −0.747435 −0.373718 0.927543i \(-0.621917\pi\)
−0.373718 + 0.927543i \(0.621917\pi\)
\(180\) 2.00000i 0.149071i
\(181\) −11.1010 −0.825132 −0.412566 0.910928i \(-0.635367\pi\)
−0.412566 + 0.910928i \(0.635367\pi\)
\(182\) −10.0000 4.20204i −0.741249 0.311476i
\(183\) 8.89898i 0.657831i
\(184\) 12.0000 12.0000i 0.884652 0.884652i
\(185\) 11.7980i 0.867403i
\(186\) −2.00000 2.00000i −0.146647 0.146647i
\(187\) 9.79796i 0.716498i
\(188\) 2.20204i 0.160600i
\(189\) −2.44949 + 1.00000i −0.178174 + 0.0727393i
\(190\) −2.89898 2.89898i −0.210314 0.210314i
\(191\) 16.8990i 1.22277i −0.791334 0.611384i \(-0.790613\pi\)
0.791334 0.611384i \(-0.209387\pi\)
\(192\) −8.00000 −0.577350
\(193\) −19.7980 −1.42509 −0.712544 0.701627i \(-0.752457\pi\)
−0.712544 + 0.701627i \(0.752457\pi\)
\(194\) −8.89898 8.89898i −0.638909 0.638909i
\(195\) 2.89898i 0.207600i
\(196\) 9.79796 + 10.0000i 0.699854 + 0.714286i
\(197\) 5.79796i 0.413087i 0.978437 + 0.206544i \(0.0662216\pi\)
−0.978437 + 0.206544i \(0.933778\pi\)
\(198\) 2.00000 2.00000i 0.142134 0.142134i
\(199\) 10.0000 0.708881 0.354441 0.935079i \(-0.384671\pi\)
0.354441 + 0.935079i \(0.384671\pi\)
\(200\) 2.00000 + 2.00000i 0.141421 + 0.141421i
\(201\) 4.89898i 0.345547i
\(202\) −15.7980 + 15.7980i −1.11154 + 1.11154i
\(203\) −2.20204 + 0.898979i −0.154553 + 0.0630960i
\(204\) 9.79796i 0.685994i
\(205\) 6.89898i 0.481846i
\(206\) 19.7980 19.7980i 1.37939 1.37939i
\(207\) 6.00000i 0.417029i
\(208\) 11.5959 0.804032
\(209\) 5.79796i 0.401053i
\(210\) −1.44949 + 3.44949i −0.100024 + 0.238037i
\(211\) 22.0000 1.51454 0.757271 0.653101i \(-0.226532\pi\)
0.757271 + 0.653101i \(0.226532\pi\)
\(212\) −19.5959 −1.34585
\(213\) −3.10102 −0.212478
\(214\) −11.7980 + 11.7980i −0.806492 + 0.806492i
\(215\) 0.898979 0.0613099
\(216\) 2.00000 2.00000i 0.136083 0.136083i
\(217\) −2.00000 4.89898i −0.135769 0.332564i
\(218\) 4.00000 + 4.00000i 0.270914 + 0.270914i
\(219\) −0.898979 −0.0607474
\(220\) 4.00000i 0.269680i
\(221\) 14.2020i 0.955333i
\(222\) −11.7980 + 11.7980i −0.791827 + 0.791827i
\(223\) −6.00000 −0.401790 −0.200895 0.979613i \(-0.564385\pi\)
−0.200895 + 0.979613i \(0.564385\pi\)
\(224\) −13.7980 5.79796i −0.921915 0.387392i
\(225\) −1.00000 −0.0666667
\(226\) −17.7980 + 17.7980i −1.18390 + 1.18390i
\(227\) 12.0000i 0.796468i 0.917284 + 0.398234i \(0.130377\pi\)
−0.917284 + 0.398234i \(0.869623\pi\)
\(228\) 5.79796i 0.383979i
\(229\) −24.4949 −1.61867 −0.809334 0.587348i \(-0.800172\pi\)
−0.809334 + 0.587348i \(0.800172\pi\)
\(230\) 6.00000 + 6.00000i 0.395628 + 0.395628i
\(231\) 4.89898 2.00000i 0.322329 0.131590i
\(232\) 1.79796 1.79796i 0.118042 0.118042i
\(233\) −16.0000 −1.04819 −0.524097 0.851658i \(-0.675597\pi\)
−0.524097 + 0.851658i \(0.675597\pi\)
\(234\) −2.89898 + 2.89898i −0.189512 + 0.189512i
\(235\) 1.10102 0.0718227
\(236\) 25.7980 1.67930
\(237\) 4.00000 0.259828
\(238\) 7.10102 16.8990i 0.460291 1.09540i
\(239\) 26.6969i 1.72688i 0.504450 + 0.863441i \(0.331695\pi\)
−0.504450 + 0.863441i \(0.668305\pi\)
\(240\) 4.00000i 0.258199i
\(241\) 20.0000i 1.28831i −0.764894 0.644157i \(-0.777208\pi\)
0.764894 0.644157i \(-0.222792\pi\)
\(242\) 7.00000 7.00000i 0.449977 0.449977i
\(243\) 1.00000i 0.0641500i
\(244\) 17.7980i 1.13940i
\(245\) −5.00000 + 4.89898i −0.319438 + 0.312984i
\(246\) −6.89898 + 6.89898i −0.439863 + 0.439863i
\(247\) 8.40408i 0.534739i
\(248\) 4.00000 + 4.00000i 0.254000 + 0.254000i
\(249\) −4.00000 −0.253490
\(250\) −1.00000 + 1.00000i −0.0632456 + 0.0632456i
\(251\) 3.10102i 0.195735i 0.995199 + 0.0978673i \(0.0312021\pi\)
−0.995199 + 0.0978673i \(0.968798\pi\)
\(252\) 4.89898 2.00000i 0.308607 0.125988i
\(253\) 12.0000i 0.754434i
\(254\) −8.89898 8.89898i −0.558372 0.558372i
\(255\) 4.89898 0.306786
\(256\) 16.0000 1.00000
\(257\) 24.8990i 1.55316i −0.630021 0.776578i \(-0.716954\pi\)
0.630021 0.776578i \(-0.283046\pi\)
\(258\) −0.898979 0.898979i −0.0559680 0.0559680i
\(259\) −28.8990 + 11.7980i −1.79570 + 0.733090i
\(260\) 5.79796i 0.359574i
\(261\) 0.898979i 0.0556454i
\(262\) 16.8990 + 16.8990i 1.04402 + 1.04402i
\(263\) 7.79796i 0.480843i 0.970669 + 0.240421i \(0.0772856\pi\)
−0.970669 + 0.240421i \(0.922714\pi\)
\(264\) −4.00000 + 4.00000i −0.246183 + 0.246183i
\(265\) 9.79796i 0.601884i
\(266\) −4.20204 + 10.0000i −0.257644 + 0.613139i
\(267\) 10.8990 0.667007
\(268\) 9.79796i 0.598506i
\(269\) −3.79796 −0.231566 −0.115783 0.993275i \(-0.536938\pi\)
−0.115783 + 0.993275i \(0.536938\pi\)
\(270\) 1.00000 + 1.00000i 0.0608581 + 0.0608581i
\(271\) −4.20204 −0.255256 −0.127628 0.991822i \(-0.540736\pi\)
−0.127628 + 0.991822i \(0.540736\pi\)
\(272\) 19.5959i 1.18818i
\(273\) −7.10102 + 2.89898i −0.429773 + 0.175454i
\(274\) 5.79796 5.79796i 0.350268 0.350268i
\(275\) 2.00000 0.120605
\(276\) 12.0000i 0.722315i
\(277\) 15.7980i 0.949207i 0.880200 + 0.474604i \(0.157409\pi\)
−0.880200 + 0.474604i \(0.842591\pi\)
\(278\) −2.89898 2.89898i −0.173869 0.173869i
\(279\) −2.00000 −0.119737
\(280\) 2.89898 6.89898i 0.173247 0.412293i
\(281\) 8.20204 0.489293 0.244646 0.969612i \(-0.421328\pi\)
0.244646 + 0.969612i \(0.421328\pi\)
\(282\) −1.10102 1.10102i −0.0655648 0.0655648i
\(283\) 9.79796i 0.582428i −0.956658 0.291214i \(-0.905941\pi\)
0.956658 0.291214i \(-0.0940592\pi\)
\(284\) 6.20204 0.368023
\(285\) −2.89898 −0.171721
\(286\) 5.79796 5.79796i 0.342841 0.342841i
\(287\) −16.8990 + 6.89898i −0.997515 + 0.407234i
\(288\) −4.00000 + 4.00000i −0.235702 + 0.235702i
\(289\) −7.00000 −0.411765
\(290\) 0.898979 + 0.898979i 0.0527899 + 0.0527899i
\(291\) −8.89898 −0.521667
\(292\) 1.79796 0.105218
\(293\) 21.5959 1.26165 0.630823 0.775926i \(-0.282717\pi\)
0.630823 + 0.775926i \(0.282717\pi\)
\(294\) 9.89898 + 0.101021i 0.577320 + 0.00589164i
\(295\) 12.8990i 0.751008i
\(296\) 23.5959 23.5959i 1.37148 1.37148i
\(297\) 2.00000i 0.116052i
\(298\) 7.10102 + 7.10102i 0.411351 + 0.411351i
\(299\) 17.3939i 1.00591i
\(300\) 2.00000 0.115470
\(301\) −0.898979 2.20204i −0.0518163 0.126924i
\(302\) −13.7980 13.7980i −0.793983 0.793983i
\(303\) 15.7980i 0.907569i
\(304\) 11.5959i 0.665072i
\(305\) 8.89898 0.509554
\(306\) −4.89898 4.89898i −0.280056 0.280056i
\(307\) 15.5959i 0.890106i −0.895504 0.445053i \(-0.853185\pi\)
0.895504 0.445053i \(-0.146815\pi\)
\(308\) −9.79796 + 4.00000i −0.558291 + 0.227921i
\(309\) 19.7980i 1.12627i
\(310\) −2.00000 + 2.00000i −0.113592 + 0.113592i
\(311\) −8.00000 −0.453638 −0.226819 0.973937i \(-0.572833\pi\)
−0.226819 + 0.973937i \(0.572833\pi\)
\(312\) 5.79796 5.79796i 0.328245 0.328245i
\(313\) 28.4949i 1.61063i 0.592849 + 0.805313i \(0.298003\pi\)
−0.592849 + 0.805313i \(0.701997\pi\)
\(314\) 12.6969 12.6969i 0.716530 0.716530i
\(315\) 1.00000 + 2.44949i 0.0563436 + 0.138013i
\(316\) −8.00000 −0.450035
\(317\) 12.0000i 0.673987i 0.941507 + 0.336994i \(0.109410\pi\)
−0.941507 + 0.336994i \(0.890590\pi\)
\(318\) −9.79796 + 9.79796i −0.549442 + 0.549442i
\(319\) 1.79796i 0.100666i
\(320\) 8.00000i 0.447214i
\(321\) 11.7980i 0.658498i
\(322\) 8.69694 20.6969i 0.484661 1.15340i
\(323\) 14.2020 0.790223
\(324\) 2.00000i 0.111111i
\(325\) −2.89898 −0.160806
\(326\) 6.69694 6.69694i 0.370909 0.370909i
\(327\) 4.00000 0.221201
\(328\) 13.7980 13.7980i 0.761865 0.761865i
\(329\) −1.10102 2.69694i −0.0607012 0.148687i
\(330\) −2.00000 2.00000i −0.110096 0.110096i
\(331\) 23.3939 1.28584 0.642922 0.765932i \(-0.277722\pi\)
0.642922 + 0.765932i \(0.277722\pi\)
\(332\) 8.00000 0.439057
\(333\) 11.7980i 0.646524i
\(334\) −1.10102 + 1.10102i −0.0602452 + 0.0602452i
\(335\) 4.89898 0.267660
\(336\) −9.79796 + 4.00000i −0.534522 + 0.218218i
\(337\) 31.7980 1.73215 0.866073 0.499918i \(-0.166637\pi\)
0.866073 + 0.499918i \(0.166637\pi\)
\(338\) 4.59592 4.59592i 0.249985 0.249985i
\(339\) 17.7980i 0.966652i
\(340\) −9.79796 −0.531369
\(341\) 4.00000 0.216612
\(342\) 2.89898 + 2.89898i 0.156759 + 0.156759i
\(343\) 17.0000 + 7.34847i 0.917914 + 0.396780i
\(344\) 1.79796 + 1.79796i 0.0969395 + 0.0969395i
\(345\) 6.00000 0.323029
\(346\) −7.79796 + 7.79796i −0.419221 + 0.419221i
\(347\) 25.5959 1.37406 0.687030 0.726629i \(-0.258914\pi\)
0.687030 + 0.726629i \(0.258914\pi\)
\(348\) 1.79796i 0.0963807i
\(349\) −30.6969 −1.64317 −0.821585 0.570086i \(-0.806910\pi\)
−0.821585 + 0.570086i \(0.806910\pi\)
\(350\) 3.44949 + 1.44949i 0.184383 + 0.0774785i
\(351\) 2.89898i 0.154736i
\(352\) 8.00000 8.00000i 0.426401 0.426401i
\(353\) 34.6969i 1.84673i 0.383921 + 0.923366i \(0.374573\pi\)
−0.383921 + 0.923366i \(0.625427\pi\)
\(354\) 12.8990 12.8990i 0.685573 0.685573i
\(355\) 3.10102i 0.164585i
\(356\) −21.7980 −1.15529
\(357\) −4.89898 12.0000i −0.259281 0.635107i
\(358\) 10.0000 10.0000i 0.528516 0.528516i
\(359\) 7.10102i 0.374778i −0.982286 0.187389i \(-0.939998\pi\)
0.982286 0.187389i \(-0.0600024\pi\)
\(360\) −2.00000 2.00000i −0.105409 0.105409i
\(361\) 10.5959 0.557680
\(362\) 11.1010 11.1010i 0.583457 0.583457i
\(363\) 7.00000i 0.367405i
\(364\) 14.2020 5.79796i 0.744389 0.303896i
\(365\) 0.898979i 0.0470547i
\(366\) −8.89898 8.89898i −0.465157 0.465157i
\(367\) −15.7980 −0.824647 −0.412323 0.911038i \(-0.635283\pi\)
−0.412323 + 0.911038i \(0.635283\pi\)
\(368\) 24.0000i 1.25109i
\(369\) 6.89898i 0.359147i
\(370\) 11.7980 + 11.7980i 0.613347 + 0.613347i
\(371\) −24.0000 + 9.79796i −1.24602 + 0.508685i
\(372\) 4.00000 0.207390
\(373\) 14.0000i 0.724893i 0.932005 + 0.362446i \(0.118058\pi\)
−0.932005 + 0.362446i \(0.881942\pi\)
\(374\) 9.79796 + 9.79796i 0.506640 + 0.506640i
\(375\) 1.00000i 0.0516398i
\(376\) 2.20204 + 2.20204i 0.113562 + 0.113562i
\(377\) 2.60612i 0.134222i
\(378\) 1.44949 3.44949i 0.0745537 0.177423i
\(379\) 31.3939 1.61260 0.806298 0.591510i \(-0.201468\pi\)
0.806298 + 0.591510i \(0.201468\pi\)
\(380\) 5.79796 0.297429
\(381\) −8.89898 −0.455909
\(382\) 16.8990 + 16.8990i 0.864627 + 0.864627i
\(383\) −9.10102 −0.465040 −0.232520 0.972592i \(-0.574697\pi\)
−0.232520 + 0.972592i \(0.574697\pi\)
\(384\) 8.00000 8.00000i 0.408248 0.408248i
\(385\) −2.00000 4.89898i −0.101929 0.249675i
\(386\) 19.7980 19.7980i 1.00769 1.00769i
\(387\) −0.898979 −0.0456977
\(388\) 17.7980 0.903554
\(389\) 26.6969i 1.35359i 0.736172 + 0.676794i \(0.236631\pi\)
−0.736172 + 0.676794i \(0.763369\pi\)
\(390\) 2.89898 + 2.89898i 0.146796 + 0.146796i
\(391\) −29.3939 −1.48651
\(392\) −19.7980 0.202041i −0.999948 0.0102046i
\(393\) 16.8990 0.852441
\(394\) −5.79796 5.79796i −0.292097 0.292097i
\(395\) 4.00000i 0.201262i
\(396\) 4.00000i 0.201008i
\(397\) −12.6969 −0.637241 −0.318621 0.947882i \(-0.603220\pi\)
−0.318621 + 0.947882i \(0.603220\pi\)
\(398\) −10.0000 + 10.0000i −0.501255 + 0.501255i
\(399\) 2.89898 + 7.10102i 0.145131 + 0.355496i
\(400\) −4.00000 −0.200000
\(401\) −11.7980 −0.589162 −0.294581 0.955627i \(-0.595180\pi\)
−0.294581 + 0.955627i \(0.595180\pi\)
\(402\) −4.89898 4.89898i −0.244339 0.244339i
\(403\) −5.79796 −0.288817
\(404\) 31.5959i 1.57196i
\(405\) 1.00000 0.0496904
\(406\) 1.30306 3.10102i 0.0646699 0.153901i
\(407\) 23.5959i 1.16961i
\(408\) 9.79796 + 9.79796i 0.485071 + 0.485071i
\(409\) 4.00000i 0.197787i −0.995098 0.0988936i \(-0.968470\pi\)
0.995098 0.0988936i \(-0.0315304\pi\)
\(410\) 6.89898 + 6.89898i 0.340716 + 0.340716i
\(411\) 5.79796i 0.285992i
\(412\) 39.5959i 1.95075i
\(413\) 31.5959 12.8990i 1.55473 0.634717i
\(414\) −6.00000 6.00000i −0.294884 0.294884i
\(415\) 4.00000i 0.196352i
\(416\) −11.5959 + 11.5959i −0.568537 + 0.568537i
\(417\) −2.89898 −0.141964
\(418\) −5.79796 5.79796i −0.283587 0.283587i
\(419\) 34.2929i 1.67532i 0.546195 + 0.837658i \(0.316076\pi\)
−0.546195 + 0.837658i \(0.683924\pi\)
\(420\) −2.00000 4.89898i −0.0975900 0.239046i
\(421\) 6.20204i 0.302269i −0.988513 0.151134i \(-0.951707\pi\)
0.988513 0.151134i \(-0.0482927\pi\)
\(422\) −22.0000 + 22.0000i −1.07094 + 1.07094i
\(423\) −1.10102 −0.0535334
\(424\) 19.5959 19.5959i 0.951662 0.951662i
\(425\) 4.89898i 0.237635i
\(426\) 3.10102 3.10102i 0.150245 0.150245i
\(427\) −8.89898 21.7980i −0.430652 1.05488i
\(428\) 23.5959i 1.14055i
\(429\) 5.79796i 0.279928i
\(430\) −0.898979 + 0.898979i −0.0433526 + 0.0433526i
\(431\) 3.10102i 0.149371i −0.997207 0.0746855i \(-0.976205\pi\)
0.997207 0.0746855i \(-0.0237953\pi\)
\(432\) 4.00000i 0.192450i
\(433\) 5.30306i 0.254849i −0.991848 0.127424i \(-0.959329\pi\)
0.991848 0.127424i \(-0.0406710\pi\)
\(434\) 6.89898 + 2.89898i 0.331162 + 0.139155i
\(435\) 0.898979 0.0431028
\(436\) −8.00000 −0.383131
\(437\) 17.3939 0.832062
\(438\) 0.898979 0.898979i 0.0429549 0.0429549i
\(439\) 23.7980 1.13581 0.567907 0.823093i \(-0.307753\pi\)
0.567907 + 0.823093i \(0.307753\pi\)
\(440\) 4.00000 + 4.00000i 0.190693 + 0.190693i
\(441\) 5.00000 4.89898i 0.238095 0.233285i
\(442\) −14.2020 14.2020i −0.675522 0.675522i
\(443\) −6.00000 −0.285069 −0.142534 0.989790i \(-0.545525\pi\)
−0.142534 + 0.989790i \(0.545525\pi\)
\(444\) 23.5959i 1.11981i
\(445\) 10.8990i 0.516661i
\(446\) 6.00000 6.00000i 0.284108 0.284108i
\(447\) 7.10102 0.335867
\(448\) 19.5959 8.00000i 0.925820 0.377964i
\(449\) 23.7980 1.12310 0.561548 0.827444i \(-0.310206\pi\)
0.561548 + 0.827444i \(0.310206\pi\)
\(450\) 1.00000 1.00000i 0.0471405 0.0471405i
\(451\) 13.7980i 0.649721i
\(452\) 35.5959i 1.67429i
\(453\) −13.7980 −0.648285
\(454\) −12.0000 12.0000i −0.563188 0.563188i
\(455\) 2.89898 + 7.10102i 0.135906 + 0.332901i
\(456\) −5.79796 5.79796i −0.271514 0.271514i
\(457\) 11.7980 0.551885 0.275943 0.961174i \(-0.411010\pi\)
0.275943 + 0.961174i \(0.411010\pi\)
\(458\) 24.4949 24.4949i 1.14457 1.14457i
\(459\) −4.89898 −0.228665
\(460\) −12.0000 −0.559503
\(461\) −4.20204 −0.195709 −0.0978543 0.995201i \(-0.531198\pi\)
−0.0978543 + 0.995201i \(0.531198\pi\)
\(462\) −2.89898 + 6.89898i −0.134873 + 0.320970i
\(463\) 26.6969i 1.24071i −0.784320 0.620356i \(-0.786988\pi\)
0.784320 0.620356i \(-0.213012\pi\)
\(464\) 3.59592i 0.166936i
\(465\) 2.00000i 0.0927478i
\(466\) 16.0000 16.0000i 0.741186 0.741186i
\(467\) 21.7980i 1.00869i −0.863502 0.504345i \(-0.831734\pi\)
0.863502 0.504345i \(-0.168266\pi\)
\(468\) 5.79796i 0.268011i
\(469\) −4.89898 12.0000i −0.226214 0.554109i
\(470\) −1.10102 + 1.10102i −0.0507863 + 0.0507863i
\(471\) 12.6969i 0.585044i
\(472\) −25.7980 + 25.7980i −1.18745 + 1.18745i
\(473\) 1.79796 0.0826702
\(474\) −4.00000 + 4.00000i −0.183726 + 0.183726i
\(475\) 2.89898i 0.133014i
\(476\) 9.79796 + 24.0000i 0.449089 + 1.10004i
\(477\) 9.79796i 0.448618i
\(478\) −26.6969 26.6969i −1.22109 1.22109i
\(479\) 27.5959 1.26089 0.630445 0.776234i \(-0.282873\pi\)
0.630445 + 0.776234i \(0.282873\pi\)
\(480\) 4.00000 + 4.00000i 0.182574 + 0.182574i
\(481\) 34.2020i 1.55948i
\(482\) 20.0000 + 20.0000i 0.910975 + 0.910975i
\(483\) −6.00000 14.6969i −0.273009 0.668734i
\(484\) 14.0000i 0.636364i
\(485\) 8.89898i 0.404082i
\(486\) −1.00000 1.00000i −0.0453609 0.0453609i
\(487\) 15.1010i 0.684293i 0.939647 + 0.342146i \(0.111154\pi\)
−0.939647 + 0.342146i \(0.888846\pi\)
\(488\) 17.7980 + 17.7980i 0.805676 + 0.805676i
\(489\) 6.69694i 0.302846i
\(490\) 0.101021 9.89898i 0.00456364 0.447190i
\(491\) −25.5959 −1.15513 −0.577564 0.816346i \(-0.695997\pi\)
−0.577564 + 0.816346i \(0.695997\pi\)
\(492\) 13.7980i 0.622060i
\(493\) −4.40408 −0.198350
\(494\) 8.40408 + 8.40408i 0.378118 + 0.378118i
\(495\) −2.00000 −0.0898933
\(496\) −8.00000 −0.359211
\(497\) 7.59592 3.10102i 0.340723 0.139100i
\(498\) 4.00000 4.00000i 0.179244 0.179244i
\(499\) 10.0000 0.447661 0.223831 0.974628i \(-0.428144\pi\)
0.223831 + 0.974628i \(0.428144\pi\)
\(500\) 2.00000i 0.0894427i
\(501\) 1.10102i 0.0491900i
\(502\) −3.10102 3.10102i −0.138405 0.138405i
\(503\) −10.4949 −0.467944 −0.233972 0.972243i \(-0.575172\pi\)
−0.233972 + 0.972243i \(0.575172\pi\)
\(504\) −2.89898 + 6.89898i −0.129131 + 0.307305i
\(505\) 15.7980 0.703000
\(506\) 12.0000 + 12.0000i 0.533465 + 0.533465i
\(507\) 4.59592i 0.204112i
\(508\) 17.7980 0.789657
\(509\) 37.5959 1.66641 0.833205 0.552964i \(-0.186503\pi\)
0.833205 + 0.552964i \(0.186503\pi\)
\(510\) −4.89898 + 4.89898i −0.216930 + 0.216930i
\(511\) 2.20204 0.898979i 0.0974126 0.0397685i
\(512\) −16.0000 + 16.0000i −0.707107 + 0.707107i
\(513\) 2.89898 0.127993
\(514\) 24.8990 + 24.8990i 1.09825 + 1.09825i
\(515\) −19.7980 −0.872402
\(516\) 1.79796 0.0791507
\(517\) 2.20204 0.0968457
\(518\) 17.1010 40.6969i 0.751376 1.78812i
\(519\) 7.79796i 0.342292i
\(520\) −5.79796 5.79796i −0.254257 0.254257i
\(521\) 33.1010i 1.45018i −0.688653 0.725091i \(-0.741798\pi\)
0.688653 0.725091i \(-0.258202\pi\)
\(522\) −0.898979 0.898979i −0.0393473 0.0393473i
\(523\) 3.59592i 0.157239i −0.996905 0.0786193i \(-0.974949\pi\)
0.996905 0.0786193i \(-0.0250511\pi\)
\(524\) −33.7980 −1.47647
\(525\) 2.44949 1.00000i 0.106904 0.0436436i
\(526\) −7.79796 7.79796i −0.340007 0.340007i
\(527\) 9.79796i 0.426806i
\(528\) 8.00000i 0.348155i
\(529\) −13.0000 −0.565217
\(530\) 9.79796 + 9.79796i 0.425596 + 0.425596i
\(531\) 12.8990i 0.559768i
\(532\) −5.79796 14.2020i −0.251373 0.615737i
\(533\) 20.0000i 0.866296i
\(534\) −10.8990 + 10.8990i −0.471645 + 0.471645i
\(535\) 11.7980 0.510070
\(536\) 9.79796 + 9.79796i 0.423207 + 0.423207i
\(537\) 10.0000i 0.431532i
\(538\) 3.79796 3.79796i 0.163742 0.163742i
\(539\) −10.0000 + 9.79796i −0.430730 + 0.422028i
\(540\) −2.00000 −0.0860663
\(541\) 41.3939i 1.77966i 0.456290 + 0.889831i \(0.349178\pi\)
−0.456290 + 0.889831i \(0.650822\pi\)
\(542\) 4.20204 4.20204i 0.180493 0.180493i
\(543\) 11.1010i 0.476390i
\(544\) −19.5959 19.5959i −0.840168 0.840168i
\(545\) 4.00000i 0.171341i
\(546\) 4.20204 10.0000i 0.179831 0.427960i
\(547\) −30.2929 −1.29523 −0.647615 0.761968i \(-0.724233\pi\)
−0.647615 + 0.761968i \(0.724233\pi\)
\(548\) 11.5959i 0.495353i
\(549\) −8.89898 −0.379799
\(550\) −2.00000 + 2.00000i −0.0852803 + 0.0852803i
\(551\) 2.60612 0.111025
\(552\) 12.0000 + 12.0000i 0.510754 + 0.510754i
\(553\) −9.79796 + 4.00000i −0.416652 + 0.170097i
\(554\) −15.7980 15.7980i −0.671191 0.671191i
\(555\) 11.7980 0.500795
\(556\) 5.79796 0.245888
\(557\) 5.79796i 0.245667i 0.992427 + 0.122834i \(0.0391982\pi\)
−0.992427 + 0.122834i \(0.960802\pi\)
\(558\) 2.00000 2.00000i 0.0846668 0.0846668i
\(559\) −2.60612 −0.110227
\(560\) 4.00000 + 9.79796i 0.169031 + 0.414039i
\(561\) 9.79796 0.413670
\(562\) −8.20204 + 8.20204i −0.345982 + 0.345982i
\(563\) 2.20204i 0.0928050i −0.998923 0.0464025i \(-0.985224\pi\)
0.998923 0.0464025i \(-0.0147757\pi\)
\(564\) 2.20204 0.0927227
\(565\) 17.7980 0.748766
\(566\) 9.79796 + 9.79796i 0.411839 + 0.411839i
\(567\) −1.00000 2.44949i −0.0419961 0.102869i
\(568\) −6.20204 + 6.20204i −0.260232 + 0.260232i
\(569\) 17.5959 0.737659 0.368830 0.929497i \(-0.379759\pi\)
0.368830 + 0.929497i \(0.379759\pi\)
\(570\) 2.89898 2.89898i 0.121425 0.121425i
\(571\) 15.7980 0.661124 0.330562 0.943784i \(-0.392762\pi\)
0.330562 + 0.943784i \(0.392762\pi\)
\(572\) 11.5959i 0.484850i
\(573\) 16.8990 0.705965
\(574\) 10.0000 23.7980i 0.417392 0.993308i
\(575\) 6.00000i 0.250217i
\(576\) 8.00000i 0.333333i
\(577\) 24.8990i 1.03656i −0.855212 0.518279i \(-0.826573\pi\)
0.855212 0.518279i \(-0.173427\pi\)
\(578\) 7.00000 7.00000i 0.291162 0.291162i
\(579\) 19.7980i 0.822775i
\(580\) −1.79796 −0.0746562
\(581\) 9.79796 4.00000i 0.406488 0.165948i
\(582\) 8.89898 8.89898i 0.368875 0.368875i
\(583\) 19.5959i 0.811580i
\(584\) −1.79796 + 1.79796i −0.0744001 + 0.0744001i
\(585\) 2.89898 0.119858
\(586\) −21.5959 + 21.5959i −0.892119 + 0.892119i
\(587\) 45.7980i 1.89028i 0.326660 + 0.945142i \(0.394077\pi\)
−0.326660 + 0.945142i \(0.605923\pi\)
\(588\) −10.0000 + 9.79796i −0.412393 + 0.404061i
\(589\) 5.79796i 0.238901i
\(590\) −12.8990 12.8990i −0.531043 0.531043i
\(591\) −5.79796 −0.238496
\(592\) 47.1918i 1.93957i
\(593\) 12.8990i 0.529698i −0.964290 0.264849i \(-0.914678\pi\)
0.964290 0.264849i \(-0.0853220\pi\)
\(594\) 2.00000 + 2.00000i 0.0820610 + 0.0820610i
\(595\) −12.0000 + 4.89898i −0.491952 + 0.200839i
\(596\) −14.2020 −0.581738
\(597\) 10.0000i 0.409273i
\(598\) −17.3939 17.3939i −0.711289 0.711289i
\(599\) 0.898979i 0.0367313i −0.999831 0.0183657i \(-0.994154\pi\)
0.999831 0.0183657i \(-0.00584630\pi\)
\(600\) −2.00000 + 2.00000i −0.0816497 + 0.0816497i
\(601\) 13.7980i 0.562830i 0.959586 + 0.281415i \(0.0908038\pi\)
−0.959586 + 0.281415i \(0.909196\pi\)
\(602\) 3.10102 + 1.30306i 0.126388 + 0.0531088i
\(603\) −4.89898 −0.199502
\(604\) 27.5959 1.12286
\(605\) −7.00000 −0.284590
\(606\) −15.7980 15.7980i −0.641748 0.641748i
\(607\) −22.0000 −0.892952 −0.446476 0.894795i \(-0.647321\pi\)
−0.446476 + 0.894795i \(0.647321\pi\)
\(608\) 11.5959 + 11.5959i 0.470277 + 0.470277i
\(609\) −0.898979 2.20204i −0.0364285 0.0892312i
\(610\) −8.89898 + 8.89898i −0.360309 + 0.360309i
\(611\) −3.19184 −0.129128
\(612\) 9.79796 0.396059
\(613\) 0.202041i 0.00816036i 0.999992 + 0.00408018i \(0.00129877\pi\)
−0.999992 + 0.00408018i \(0.998701\pi\)
\(614\) 15.5959 + 15.5959i 0.629400 + 0.629400i
\(615\) 6.89898 0.278194
\(616\) 5.79796 13.7980i 0.233606 0.555936i
\(617\) 41.7980 1.68272 0.841361 0.540473i \(-0.181755\pi\)
0.841361 + 0.540473i \(0.181755\pi\)
\(618\) 19.7980 + 19.7980i 0.796391 + 0.796391i
\(619\) 44.2929i 1.78028i 0.455687 + 0.890140i \(0.349394\pi\)
−0.455687 + 0.890140i \(0.650606\pi\)
\(620\) 4.00000i 0.160644i
\(621\) −6.00000 −0.240772
\(622\) 8.00000 8.00000i 0.320771 0.320771i
\(623\) −26.6969 + 10.8990i −1.06959 + 0.436658i
\(624\) 11.5959i 0.464208i
\(625\) 1.00000 0.0400000
\(626\) −28.4949 28.4949i −1.13889 1.13889i
\(627\) −5.79796 −0.231548
\(628\) 25.3939i 1.01333i
\(629\) −57.7980 −2.30456
\(630\) −3.44949 1.44949i −0.137431 0.0577491i
\(631\) 13.7980i 0.549288i 0.961546 + 0.274644i \(0.0885600\pi\)
−0.961546 + 0.274644i \(0.911440\pi\)
\(632\) 8.00000 8.00000i 0.318223 0.318223i
\(633\) 22.0000i 0.874421i
\(634\) −12.0000 12.0000i −0.476581 0.476581i
\(635\) 8.89898i 0.353145i
\(636\) 19.5959i 0.777029i
\(637\) 14.4949 14.2020i 0.574309 0.562705i
\(638\) 1.79796 + 1.79796i 0.0711819 + 0.0711819i
\(639\) 3.10102i 0.122674i
\(640\) −8.00000 8.00000i −0.316228 0.316228i
\(641\) −45.5959 −1.80093 −0.900465 0.434928i \(-0.856774\pi\)
−0.900465 + 0.434928i \(0.856774\pi\)
\(642\) −11.7980 11.7980i −0.465628 0.465628i
\(643\) 36.0000i 1.41970i −0.704352 0.709851i \(-0.748762\pi\)
0.704352 0.709851i \(-0.251238\pi\)
\(644\) 12.0000 + 29.3939i 0.472866 + 1.15828i
\(645\) 0.898979i 0.0353973i
\(646\) −14.2020 + 14.2020i −0.558772 + 0.558772i
\(647\) −32.6969 −1.28545 −0.642725 0.766097i \(-0.722196\pi\)
−0.642725 + 0.766097i \(0.722196\pi\)
\(648\) 2.00000 + 2.00000i 0.0785674 + 0.0785674i
\(649\) 25.7980i 1.01266i
\(650\) 2.89898 2.89898i 0.113707 0.113707i
\(651\) 4.89898 2.00000i 0.192006 0.0783862i
\(652\) 13.3939i 0.524545i
\(653\) 44.0000i 1.72185i 0.508729 + 0.860927i \(0.330115\pi\)
−0.508729 + 0.860927i \(0.669885\pi\)
\(654\) −4.00000 + 4.00000i −0.156412 + 0.156412i
\(655\) 16.8990i 0.660298i
\(656\) 27.5959i 1.07744i
\(657\) 0.898979i 0.0350725i
\(658\) 3.79796 + 1.59592i 0.148060 + 0.0622154i
\(659\) −30.0000 −1.16863 −0.584317 0.811525i \(-0.698638\pi\)
−0.584317 + 0.811525i \(0.698638\pi\)
\(660\) 4.00000 0.155700
\(661\) 1.30306 0.0506832 0.0253416 0.999679i \(-0.491933\pi\)
0.0253416 + 0.999679i \(0.491933\pi\)
\(662\) −23.3939 + 23.3939i −0.909229 + 0.909229i
\(663\) −14.2020 −0.551562
\(664\) −8.00000 + 8.00000i −0.310460 + 0.310460i
\(665\) 7.10102 2.89898i 0.275366 0.112418i
\(666\) −11.7980 11.7980i −0.457162 0.457162i
\(667\) −5.39388 −0.208852
\(668\) 2.20204i 0.0851995i
\(669\) 6.00000i 0.231973i
\(670\) −4.89898 + 4.89898i −0.189264 + 0.189264i
\(671\) 17.7980 0.687083
\(672\) 5.79796 13.7980i 0.223661 0.532268i
\(673\) −13.5959 −0.524084 −0.262042 0.965056i \(-0.584396\pi\)
−0.262042 + 0.965056i \(0.584396\pi\)
\(674\) −31.7980 + 31.7980i −1.22481 + 1.22481i
\(675\) 1.00000i 0.0384900i
\(676\) 9.19184i 0.353532i
\(677\) 31.7980 1.22209 0.611047 0.791594i \(-0.290748\pi\)
0.611047 + 0.791594i \(0.290748\pi\)
\(678\) −17.7980 17.7980i −0.683526 0.683526i
\(679\) 21.7980 8.89898i 0.836529 0.341511i
\(680\) 9.79796 9.79796i 0.375735 0.375735i
\(681\) −12.0000 −0.459841
\(682\) −4.00000 + 4.00000i −0.153168 + 0.153168i
\(683\) −12.2020 −0.466898 −0.233449 0.972369i \(-0.575001\pi\)
−0.233449 + 0.972369i \(0.575001\pi\)
\(684\) −5.79796 −0.221691
\(685\) −5.79796 −0.221529
\(686\) −24.3485 + 9.65153i −0.929629 + 0.368497i
\(687\) 24.4949i 0.934539i
\(688\) −3.59592 −0.137093
\(689\) 28.4041i 1.08211i
\(690\) −6.00000 + 6.00000i −0.228416 + 0.228416i
\(691\) 34.4949i 1.31225i 0.754653 + 0.656124i \(0.227805\pi\)
−0.754653 + 0.656124i \(0.772195\pi\)
\(692\) 15.5959i 0.592868i
\(693\) 2.00000 + 4.89898i 0.0759737 + 0.186097i
\(694\) −25.5959 + 25.5959i −0.971608 + 0.971608i
\(695\) 2.89898i 0.109965i
\(696\) 1.79796 + 1.79796i 0.0681515 + 0.0681515i
\(697\) −33.7980 −1.28019
\(698\) 30.6969 30.6969i 1.16190 1.16190i
\(699\) 16.0000i 0.605176i
\(700\) −4.89898 + 2.00000i −0.185164 + 0.0755929i
\(701\) 23.1010i 0.872514i −0.899822 0.436257i \(-0.856304\pi\)
0.899822 0.436257i \(-0.143696\pi\)
\(702\) −2.89898 2.89898i −0.109415 0.109415i
\(703\) 34.2020 1.28995
\(704\) 16.0000i 0.603023i
\(705\) 1.10102i 0.0414668i
\(706\) −34.6969 34.6969i −1.30584 1.30584i
\(707\) −15.7980 38.6969i −0.594143 1.45535i
\(708\) 25.7980i 0.969547i
\(709\) 29.7980i 1.11909i 0.828801 + 0.559543i \(0.189023\pi\)
−0.828801 + 0.559543i \(0.810977\pi\)
\(710\) −3.10102 3.10102i −0.116379 0.116379i
\(711\) 4.00000i 0.150012i
\(712\) 21.7980 21.7980i 0.816913 0.816913i
\(713\) 12.0000i 0.449404i
\(714\) 16.8990 + 7.10102i 0.632428 + 0.265749i
\(715\) −5.79796 −0.216831
\(716\) 20.0000i 0.747435i
\(717\) −26.6969 −0.997015
\(718\) 7.10102 + 7.10102i 0.265008 + 0.265008i
\(719\) 26.2020 0.977171 0.488586 0.872516i \(-0.337513\pi\)
0.488586 + 0.872516i \(0.337513\pi\)
\(720\) 4.00000 0.149071
\(721\) 19.7980 + 48.4949i 0.737315 + 1.80604i
\(722\) −10.5959 + 10.5959i −0.394339 + 0.394339i
\(723\) 20.0000 0.743808
\(724\) 22.2020i 0.825132i
\(725\) 0.898979i 0.0333873i
\(726\) 7.00000 + 7.00000i 0.259794 + 0.259794i
\(727\) 39.3939 1.46104 0.730519 0.682892i \(-0.239278\pi\)
0.730519 + 0.682892i \(0.239278\pi\)
\(728\) −8.40408 + 20.0000i −0.311476 + 0.741249i
\(729\) −1.00000 −0.0370370
\(730\) −0.898979 0.898979i −0.0332727 0.0332727i
\(731\) 4.40408i 0.162891i
\(732\) 17.7980 0.657831
\(733\) −1.50510 −0.0555922 −0.0277961 0.999614i \(-0.508849\pi\)
−0.0277961 + 0.999614i \(0.508849\pi\)
\(734\) 15.7980 15.7980i 0.583113 0.583113i
\(735\) −4.89898 5.00000i −0.180702 0.184428i
\(736\) −24.0000 24.0000i −0.884652 0.884652i
\(737\) 9.79796 0.360912
\(738\) −6.89898 6.89898i −0.253955 0.253955i
\(739\) −10.0000 −0.367856 −0.183928 0.982940i \(-0.558881\pi\)
−0.183928 + 0.982940i \(0.558881\pi\)
\(740\) −23.5959 −0.867403
\(741\) 8.40408 0.308732
\(742\) 14.2020 33.7980i 0.521373 1.24076i
\(743\) 6.00000i 0.220119i −0.993925 0.110059i \(-0.964896\pi\)
0.993925 0.110059i \(-0.0351041\pi\)
\(744\) −4.00000 + 4.00000i −0.146647 + 0.146647i
\(745\) 7.10102i 0.260161i
\(746\) −14.0000 14.0000i −0.512576 0.512576i
\(747\) 4.00000i 0.146352i
\(748\) −19.5959 −0.716498
\(749\) −11.7980 28.8990i −0.431088 1.05595i
\(750\) −1.00000 1.00000i −0.0365148 0.0365148i
\(751\) 13.7980i 0.503495i −0.967793 0.251747i \(-0.918995\pi\)
0.967793 0.251747i \(-0.0810052\pi\)
\(752\) −4.40408 −0.160600
\(753\) −3.10102 −0.113007
\(754\) −2.60612 2.60612i −0.0949094 0.0949094i
\(755\) 13.7980i 0.502159i
\(756\) 2.00000 + 4.89898i 0.0727393 + 0.178174i
\(757\) 5.59592i 0.203387i −0.994816 0.101694i \(-0.967574\pi\)
0.994816 0.101694i \(-0.0324261\pi\)
\(758\) −31.3939 + 31.3939i −1.14028 + 1.14028i
\(759\) 12.0000 0.435572
\(760\) −5.79796 + 5.79796i −0.210314 + 0.210314i
\(761\) 0.696938i 0.0252640i 0.999920 + 0.0126320i \(0.00402100\pi\)
−0.999920 + 0.0126320i \(0.995979\pi\)
\(762\) 8.89898 8.89898i 0.322376 0.322376i
\(763\) −9.79796 + 4.00000i −0.354710 + 0.144810i
\(764\) −33.7980 −1.22277
\(765\) 4.89898i 0.177123i
\(766\) 9.10102 9.10102i 0.328833 0.328833i
\(767\) 37.3939i 1.35021i
\(768\) 16.0000i 0.577350i
\(769\) 51.5959i 1.86060i −0.366804 0.930298i \(-0.619548\pi\)
0.366804 0.930298i \(-0.380452\pi\)
\(770\) 6.89898 + 2.89898i 0.248622 + 0.104472i
\(771\) 24.8990 0.896715
\(772\) 39.5959i 1.42509i
\(773\) −19.7980 −0.712083 −0.356042 0.934470i \(-0.615874\pi\)
−0.356042 + 0.934470i \(0.615874\pi\)
\(774\) 0.898979 0.898979i 0.0323132 0.0323132i
\(775\) 2.00000 0.0718421
\(776\) −17.7980 + 17.7980i −0.638909 + 0.638909i
\(777\) −11.7980 28.8990i −0.423249 1.03675i
\(778\) −26.6969 26.6969i −0.957132 0.957132i
\(779\) 20.0000 0.716574
\(780\) −5.79796 −0.207600
\(781\) 6.20204i 0.221926i
\(782\) 29.3939 29.3939i 1.05112 1.05112i
\(783\) −0.898979 −0.0321269
\(784\) 20.0000 19.5959i 0.714286 0.699854i
\(785\) −12.6969 −0.453173
\(786\) −16.8990 + 16.8990i −0.602767 + 0.602767i
\(787\) 35.5959i 1.26886i −0.772981 0.634429i \(-0.781235\pi\)
0.772981 0.634429i \(-0.218765\pi\)
\(788\) 11.5959 0.413087
\(789\) −7.79796 −0.277615
\(790\) 4.00000 + 4.00000i 0.142314 + 0.142314i
\(791\) −17.7980 43.5959i −0.632823 1.55009i
\(792\) −4.00000 4.00000i −0.142134 0.142134i
\(793\) −25.7980 −0.916112
\(794\) 12.6969 12.6969i 0.450597 0.450597i
\(795\) 9.79796 0.347498
\(796\) 20.0000i 0.708881i
\(797\) 25.5959 0.906654 0.453327 0.891344i \(-0.350237\pi\)
0.453327 + 0.891344i \(0.350237\pi\)
\(798\) −10.0000 4.20204i −0.353996 0.148751i
\(799\) 5.39388i 0.190822i
\(800\) 4.00000 4.00000i 0.141421 0.141421i
\(801\) 10.8990i 0.385097i
\(802\) 11.7980 11.7980i 0.416600 0.416600i
\(803\) 1.79796i 0.0634486i
\(804\) 9.79796 0.345547
\(805\) −14.6969 + 6.00000i −0.517999 + 0.211472i
\(806\) 5.79796 5.79796i 0.204224 0.204224i
\(807\) 3.79796i 0.133694i
\(808\) 31.5959 + 31.5959i 1.11154 + 1.11154i
\(809\) 23.7980 0.836692 0.418346 0.908288i \(-0.362610\pi\)
0.418346 + 0.908288i \(0.362610\pi\)
\(810\) −1.00000 + 1.00000i −0.0351364 + 0.0351364i
\(811\) 13.1010i 0.460039i −0.973186 0.230020i \(-0.926121\pi\)
0.973186 0.230020i \(-0.0738790\pi\)
\(812\) 1.79796 + 4.40408i 0.0630960 + 0.154553i
\(813\) 4.20204i 0.147372i
\(814\) 23.5959 + 23.5959i 0.827036 + 0.827036i
\(815\) −6.69694 −0.234584
\(816\) −19.5959 −0.685994
\(817\) 2.60612i 0.0911767i
\(818\) 4.00000 + 4.00000i 0.139857 + 0.139857i
\(819\) −2.89898 7.10102i −0.101299 0.248130i
\(820\) −13.7980 −0.481846
\(821\) 10.6969i 0.373326i −0.982424 0.186663i \(-0.940233\pi\)
0.982424 0.186663i \(-0.0597672\pi\)
\(822\) 5.79796 + 5.79796i 0.202227 + 0.202227i
\(823\) 40.4949i 1.41156i −0.708429 0.705782i \(-0.750596\pi\)
0.708429 0.705782i \(-0.249404\pi\)
\(824\) −39.5959 39.5959i −1.37939 1.37939i
\(825\) 2.00000i 0.0696311i
\(826\) −18.6969 + 44.4949i −0.650550 + 1.54818i
\(827\) 33.1918 1.15419 0.577097 0.816676i \(-0.304186\pi\)
0.577097 + 0.816676i \(0.304186\pi\)
\(828\) 12.0000 0.417029
\(829\) 9.30306 0.323109 0.161554 0.986864i \(-0.448349\pi\)
0.161554 + 0.986864i \(0.448349\pi\)
\(830\) −4.00000 4.00000i −0.138842 0.138842i
\(831\) −15.7980 −0.548025
\(832\) 23.1918i 0.804032i
\(833\) 24.0000 + 24.4949i 0.831551 + 0.848698i
\(834\) 2.89898 2.89898i 0.100383 0.100383i
\(835\) 1.10102 0.0381024
\(836\) 11.5959 0.401053
\(837\) 2.00000i 0.0691301i
\(838\) −34.2929 34.2929i −1.18463 1.18463i
\(839\) −26.2020 −0.904595 −0.452297 0.891867i \(-0.649395\pi\)
−0.452297 + 0.891867i \(0.649395\pi\)
\(840\) 6.89898 + 2.89898i 0.238037 + 0.100024i
\(841\) 28.1918 0.972132
\(842\) 6.20204 + 6.20204i 0.213736 + 0.213736i
\(843\) 8.20204i 0.282493i
\(844\) 44.0000i 1.51454i
\(845\) −4.59592 −0.158104
\(846\) 1.10102 1.10102i 0.0378539 0.0378539i
\(847\) 7.00000 + 17.1464i 0.240523 + 0.589158i
\(848\) 39.1918i 1.34585i
\(849\) 9.79796 0.336265
\(850\) 4.89898 + 4.89898i 0.168034 + 0.168034i
\(851\) −70.7878 −2.42657
\(852\) 6.20204i 0.212478i
\(853\) 44.6969 1.53039 0.765197 0.643796i \(-0.222642\pi\)
0.765197 + 0.643796i \(0.222642\pi\)
\(854\) 30.6969 + 12.8990i 1.05043 + 0.441394i
\(855\) 2.89898i 0.0991430i
\(856\) 23.5959 + 23.5959i 0.806492 + 0.806492i
\(857\) 12.4949i 0.426818i −0.976963 0.213409i \(-0.931543\pi\)
0.976963 0.213409i \(-0.0684566\pi\)
\(858\) 5.79796 + 5.79796i 0.197939 + 0.197939i
\(859\) 9.10102i 0.310523i 0.987873 + 0.155261i \(0.0496220\pi\)
−0.987873 + 0.155261i \(0.950378\pi\)
\(860\) 1.79796i 0.0613099i
\(861\) −6.89898 16.8990i −0.235117 0.575916i
\(862\) 3.10102 + 3.10102i 0.105621 + 0.105621i
\(863\) 6.00000i 0.204242i −0.994772 0.102121i \(-0.967437\pi\)
0.994772 0.102121i \(-0.0325630\pi\)
\(864\) −4.00000 4.00000i −0.136083 0.136083i
\(865\) 7.79796 0.265139
\(866\) 5.30306 + 5.30306i 0.180205 + 0.180205i
\(867\) 7.00000i 0.237732i
\(868\) −9.79796 + 4.00000i −0.332564 + 0.135769i
\(869\) 8.00000i 0.271381i
\(870\) −0.898979 + 0.898979i −0.0304783 + 0.0304783i
\(871\) −14.2020 −0.481218
\(872\) 8.00000 8.00000i 0.270914 0.270914i
\(873\) 8.89898i 0.301185i
\(874\) −17.3939 + 17.3939i −0.588357 + 0.588357i
\(875\) −1.00000 2.44949i −0.0338062 0.0828079i
\(876\) 1.79796i 0.0607474i
\(877\) 22.0000i 0.742887i 0.928456 + 0.371444i \(0.121137\pi\)
−0.928456 + 0.371444i \(0.878863\pi\)
\(878\) −23.7980 + 23.7980i −0.803142 + 0.803142i
\(879\) 21.5959i 0.728412i
\(880\) −8.00000 −0.269680
\(881\) 0.696938i 0.0234805i 0.999931 + 0.0117402i \(0.00373712\pi\)
−0.999931 + 0.0117402i \(0.996263\pi\)
\(882\) −0.101021 + 9.89898i −0.00340154 + 0.333316i
\(883\) −40.4949 −1.36276 −0.681381 0.731929i \(-0.738620\pi\)
−0.681381 + 0.731929i \(0.738620\pi\)
\(884\) 28.4041 0.955333
\(885\) −12.8990 −0.433594
\(886\) 6.00000 6.00000i 0.201574 0.201574i
\(887\) 42.4949 1.42684 0.713420 0.700737i \(-0.247145\pi\)
0.713420 + 0.700737i \(0.247145\pi\)
\(888\) 23.5959 + 23.5959i 0.791827 + 0.791827i
\(889\) 21.7980 8.89898i 0.731080 0.298462i
\(890\) 10.8990 + 10.8990i 0.365335 + 0.365335i
\(891\) 2.00000 0.0670025
\(892\) 12.0000i 0.401790i
\(893\) 3.19184i 0.106811i
\(894\) −7.10102 + 7.10102i −0.237494 + 0.237494i
\(895\) −10.0000 −0.334263
\(896\) −11.5959 + 27.5959i −0.387392 + 0.921915i
\(897\) −17.3939 −0.580765
\(898\) −23.7980 + 23.7980i −0.794148 + 0.794148i
\(899\) 1.79796i 0.0599653i
\(900\) 2.00000i 0.0666667i
\(901\) −48.0000 −1.59911
\(902\) 13.7980 + 13.7980i 0.459422 + 0.459422i
\(903\) 2.20204 0.898979i 0.0732793 0.0299162i
\(904\) 35.5959 + 35.5959i 1.18390 + 1.18390i
\(905\) −11.1010 −0.369010
\(906\) 13.7980 13.7980i 0.458406 0.458406i
\(907\) −36.4949 −1.21179 −0.605897 0.795543i \(-0.707185\pi\)
−0.605897 + 0.795543i \(0.707185\pi\)
\(908\) 24.0000 0.796468
\(909\) −15.7980 −0.523985
\(910\) −10.0000 4.20204i −0.331497 0.139296i
\(911\) 23.1010i 0.765371i 0.923879 + 0.382685i \(0.125001\pi\)
−0.923879 + 0.382685i \(0.874999\pi\)
\(912\) 11.5959 0.383979
\(913\) 8.00000i 0.264761i
\(914\) −11.7980 + 11.7980i −0.390242 + 0.390242i
\(915\) 8.89898i 0.294191i
\(916\) 48.9898i 1.61867i
\(917\) −41.3939 + 16.8990i −1.36695 + 0.558053i
\(918\) 4.89898 4.89898i 0.161690 0.161690i
\(919\) 25.3939i 0.837667i −0.908063 0.418833i \(-0.862439\pi\)
0.908063 0.418833i \(-0.137561\pi\)
\(920\) 12.0000 12.0000i 0.395628 0.395628i
\(921\) 15.5959 0.513903
\(922\) 4.20204 4.20204i 0.138387 0.138387i
\(923\) 8.98979i 0.295903i
\(924\) −4.00000 9.79796i −0.131590 0.322329i
\(925\) 11.7980i 0.387915i
\(926\) 26.6969 + 26.6969i 0.877316 + 0.877316i
\(927\) 19.7980 0.650250
\(928\) −3.59592 3.59592i −0.118042 0.118042i
\(929\) 38.4949i 1.26298i −0.775385 0.631488i \(-0.782444\pi\)
0.775385 0.631488i \(-0.217556\pi\)
\(930\) −2.00000 2.00000i −0.0655826 0.0655826i
\(931\) −14.2020 14.4949i −0.465453 0.475051i
\(932\) 32.0000i 1.04819i
\(933\) 8.00000i 0.261908i
\(934\) 21.7980 + 21.7980i 0.713251 + 0.713251i
\(935\) 9.79796i 0.320428i
\(936\) 5.79796 + 5.79796i 0.189512 + 0.189512i
\(937\) 36.4949i 1.19224i 0.802897 + 0.596118i \(0.203291\pi\)
−0.802897 + 0.596118i \(0.796709\pi\)
\(938\) 16.8990 + 7.10102i 0.551771 + 0.231857i
\(939\) −28.4949 −0.929896
\(940\) 2.20204i 0.0718227i
\(941\) 15.7980 0.514999 0.257499 0.966278i \(-0.417101\pi\)
0.257499 + 0.966278i \(0.417101\pi\)
\(942\) 12.6969 + 12.6969i 0.413689 + 0.413689i
\(943\) −41.3939 −1.34797
\(944\) 51.5959i 1.67930i
\(945\) −2.44949 + 1.00000i −0.0796819 + 0.0325300i
\(946\) −1.79796 + 1.79796i −0.0584567 + 0.0584567i
\(947\) 31.7980 1.03329 0.516647 0.856198i \(-0.327180\pi\)
0.516647 + 0.856198i \(0.327180\pi\)
\(948\) 8.00000i 0.259828i
\(949\) 2.60612i 0.0845983i
\(950\) −2.89898 2.89898i −0.0940553 0.0940553i
\(951\) −12.0000 −0.389127
\(952\) −33.7980 14.2020i −1.09540 0.460291i
\(953\) 24.0000 0.777436 0.388718 0.921357i \(-0.372918\pi\)
0.388718 + 0.921357i \(0.372918\pi\)
\(954\) −9.79796 9.79796i −0.317221 0.317221i
\(955\) 16.8990i 0.546838i
\(956\) 53.3939 1.72688
\(957\) 1.79796 0.0581198
\(958\) −27.5959 + 27.5959i −0.891584 + 0.891584i
\(959\) 5.79796 + 14.2020i 0.187226 + 0.458608i
\(960\) −8.00000 −0.258199
\(961\) −27.0000 −0.870968
\(962\) −34.2020 34.2020i −1.10272 1.10272i
\(963\) −11.7980 −0.380184
\(964\) −40.0000 −1.28831
\(965\) −19.7980 −0.637319
\(966\) 20.6969 + 8.69694i 0.665913 + 0.279819i
\(967\) 56.4949i 1.81675i 0.418153 + 0.908377i \(0.362678\pi\)
−0.418153 + 0.908377i \(0.637322\pi\)
\(968\) −14.0000 14.0000i −0.449977 0.449977i
\(969\) 14.2020i 0.456235i
\(970\) −8.89898 8.89898i −0.285729 0.285729i
\(971\) 3.10102i 0.0995165i 0.998761 + 0.0497582i \(0.0158451\pi\)
−0.998761 + 0.0497582i \(0.984155\pi\)
\(972\) 2.00000 0.0641500
\(973\) 7.10102 2.89898i 0.227648 0.0929370i
\(974\) −15.1010 15.1010i −0.483868 0.483868i
\(975\) 2.89898i 0.0928416i
\(976\) −35.5959 −1.13940
\(977\) 23.1918 0.741973 0.370986 0.928638i \(-0.379020\pi\)
0.370986 + 0.928638i \(0.379020\pi\)
\(978\) 6.69694 + 6.69694i 0.214144 + 0.214144i
\(979\) 21.7980i 0.696666i
\(980\) 9.79796 + 10.0000i 0.312984 + 0.319438i
\(981\) 4.00000i 0.127710i
\(982\) 25.5959 25.5959i 0.816799 0.816799i
\(983\) −2.89898 −0.0924631 −0.0462315 0.998931i \(-0.514721\pi\)
−0.0462315 + 0.998931i \(0.514721\pi\)
\(984\) 13.7980 + 13.7980i 0.439863 + 0.439863i
\(985\) 5.79796i 0.184738i
\(986\) 4.40408 4.40408i 0.140255 0.140255i
\(987\) 2.69694 1.10102i 0.0858445 0.0350459i
\(988\) −16.8082 −0.534739
\(989\) 5.39388i 0.171515i
\(990\) 2.00000 2.00000i 0.0635642 0.0635642i
\(991\) 20.0000i 0.635321i −0.948205 0.317660i \(-0.897103\pi\)
0.948205 0.317660i \(-0.102897\pi\)
\(992\) 8.00000 8.00000i 0.254000 0.254000i
\(993\) 23.3939i 0.742382i
\(994\) −4.49490 + 10.6969i −0.142569 + 0.339286i
\(995\) 10.0000 0.317021
\(996\) 8.00000i 0.253490i
\(997\) 16.2929 0.516000 0.258000 0.966145i \(-0.416937\pi\)
0.258000 + 0.966145i \(0.416937\pi\)
\(998\) −10.0000 + 10.0000i −0.316544 + 0.316544i
\(999\) −11.7980 −0.373271
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 840.2.z.b.811.3 yes 4
4.3 odd 2 3360.2.z.b.1231.2 4
7.6 odd 2 840.2.z.a.811.3 yes 4
8.3 odd 2 840.2.z.a.811.2 4
8.5 even 2 3360.2.z.a.1231.1 4
28.27 even 2 3360.2.z.a.1231.4 4
56.13 odd 2 3360.2.z.b.1231.3 4
56.27 even 2 inner 840.2.z.b.811.2 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
840.2.z.a.811.2 4 8.3 odd 2
840.2.z.a.811.3 yes 4 7.6 odd 2
840.2.z.b.811.2 yes 4 56.27 even 2 inner
840.2.z.b.811.3 yes 4 1.1 even 1 trivial
3360.2.z.a.1231.1 4 8.5 even 2
3360.2.z.a.1231.4 4 28.27 even 2
3360.2.z.b.1231.2 4 4.3 odd 2
3360.2.z.b.1231.3 4 56.13 odd 2