Properties

Label 3360.2.z.a.1231.1
Level $3360$
Weight $2$
Character 3360.1231
Analytic conductor $26.830$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3360,2,Mod(1231,3360)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3360.1231"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3360, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 3360 = 2^{5} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3360.z (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(26.8297350792\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 840)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1231.1
Root \(-1.22474 + 1.22474i\) of defining polynomial
Character \(\chi\) \(=\) 3360.1231
Dual form 3360.2.z.a.1231.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{3} -1.00000 q^{5} +(-1.00000 - 2.44949i) q^{7} -1.00000 q^{9} -2.00000 q^{11} +2.89898 q^{13} +1.00000i q^{15} -4.89898i q^{17} -2.89898i q^{19} +(-2.44949 + 1.00000i) q^{21} -6.00000i q^{23} +1.00000 q^{25} +1.00000i q^{27} +0.898979i q^{29} +2.00000 q^{31} +2.00000i q^{33} +(1.00000 + 2.44949i) q^{35} +11.7980i q^{37} -2.89898i q^{39} -6.89898i q^{41} -0.898979 q^{43} +1.00000 q^{45} +1.10102 q^{47} +(-5.00000 + 4.89898i) q^{49} -4.89898 q^{51} +9.79796i q^{53} +2.00000 q^{55} -2.89898 q^{57} -12.8990i q^{59} -8.89898 q^{61} +(1.00000 + 2.44949i) q^{63} -2.89898 q^{65} -4.89898 q^{67} -6.00000 q^{69} +3.10102i q^{71} +0.898979i q^{73} -1.00000i q^{75} +(2.00000 + 4.89898i) q^{77} -4.00000i q^{79} +1.00000 q^{81} -4.00000i q^{83} +4.89898i q^{85} +0.898979 q^{87} -10.8990i q^{89} +(-2.89898 - 7.10102i) q^{91} -2.00000i q^{93} +2.89898i q^{95} +8.89898i q^{97} +2.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{5} - 4 q^{7} - 4 q^{9} - 8 q^{11} - 8 q^{13} + 4 q^{25} + 8 q^{31} + 4 q^{35} + 16 q^{43} + 4 q^{45} + 24 q^{47} - 20 q^{49} + 8 q^{55} + 8 q^{57} - 16 q^{61} + 4 q^{63} + 8 q^{65} - 24 q^{69}+ \cdots + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3360\mathbb{Z}\right)^\times\).

\(n\) \(421\) \(1121\) \(1471\) \(1921\) \(2017\)
\(\chi(n)\) \(-1\) \(1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000i 0.577350i
\(4\) 0 0
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) −1.00000 2.44949i −0.377964 0.925820i
\(8\) 0 0
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) −2.00000 −0.603023 −0.301511 0.953463i \(-0.597491\pi\)
−0.301511 + 0.953463i \(0.597491\pi\)
\(12\) 0 0
\(13\) 2.89898 0.804032 0.402016 0.915633i \(-0.368310\pi\)
0.402016 + 0.915633i \(0.368310\pi\)
\(14\) 0 0
\(15\) 1.00000i 0.258199i
\(16\) 0 0
\(17\) 4.89898i 1.18818i −0.804400 0.594089i \(-0.797513\pi\)
0.804400 0.594089i \(-0.202487\pi\)
\(18\) 0 0
\(19\) 2.89898i 0.665072i −0.943091 0.332536i \(-0.892096\pi\)
0.943091 0.332536i \(-0.107904\pi\)
\(20\) 0 0
\(21\) −2.44949 + 1.00000i −0.534522 + 0.218218i
\(22\) 0 0
\(23\) 6.00000i 1.25109i −0.780189 0.625543i \(-0.784877\pi\)
0.780189 0.625543i \(-0.215123\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 1.00000i 0.192450i
\(28\) 0 0
\(29\) 0.898979i 0.166936i 0.996510 + 0.0834681i \(0.0265997\pi\)
−0.996510 + 0.0834681i \(0.973400\pi\)
\(30\) 0 0
\(31\) 2.00000 0.359211 0.179605 0.983739i \(-0.442518\pi\)
0.179605 + 0.983739i \(0.442518\pi\)
\(32\) 0 0
\(33\) 2.00000i 0.348155i
\(34\) 0 0
\(35\) 1.00000 + 2.44949i 0.169031 + 0.414039i
\(36\) 0 0
\(37\) 11.7980i 1.93957i 0.243956 + 0.969786i \(0.421555\pi\)
−0.243956 + 0.969786i \(0.578445\pi\)
\(38\) 0 0
\(39\) 2.89898i 0.464208i
\(40\) 0 0
\(41\) 6.89898i 1.07744i −0.842485 0.538720i \(-0.818908\pi\)
0.842485 0.538720i \(-0.181092\pi\)
\(42\) 0 0
\(43\) −0.898979 −0.137093 −0.0685465 0.997648i \(-0.521836\pi\)
−0.0685465 + 0.997648i \(0.521836\pi\)
\(44\) 0 0
\(45\) 1.00000 0.149071
\(46\) 0 0
\(47\) 1.10102 0.160600 0.0803002 0.996771i \(-0.474412\pi\)
0.0803002 + 0.996771i \(0.474412\pi\)
\(48\) 0 0
\(49\) −5.00000 + 4.89898i −0.714286 + 0.699854i
\(50\) 0 0
\(51\) −4.89898 −0.685994
\(52\) 0 0
\(53\) 9.79796i 1.34585i 0.739709 + 0.672927i \(0.234963\pi\)
−0.739709 + 0.672927i \(0.765037\pi\)
\(54\) 0 0
\(55\) 2.00000 0.269680
\(56\) 0 0
\(57\) −2.89898 −0.383979
\(58\) 0 0
\(59\) 12.8990i 1.67930i −0.543125 0.839652i \(-0.682759\pi\)
0.543125 0.839652i \(-0.317241\pi\)
\(60\) 0 0
\(61\) −8.89898 −1.13940 −0.569699 0.821854i \(-0.692940\pi\)
−0.569699 + 0.821854i \(0.692940\pi\)
\(62\) 0 0
\(63\) 1.00000 + 2.44949i 0.125988 + 0.308607i
\(64\) 0 0
\(65\) −2.89898 −0.359574
\(66\) 0 0
\(67\) −4.89898 −0.598506 −0.299253 0.954174i \(-0.596737\pi\)
−0.299253 + 0.954174i \(0.596737\pi\)
\(68\) 0 0
\(69\) −6.00000 −0.722315
\(70\) 0 0
\(71\) 3.10102i 0.368023i 0.982924 + 0.184012i \(0.0589084\pi\)
−0.982924 + 0.184012i \(0.941092\pi\)
\(72\) 0 0
\(73\) 0.898979i 0.105218i 0.998615 + 0.0526088i \(0.0167536\pi\)
−0.998615 + 0.0526088i \(0.983246\pi\)
\(74\) 0 0
\(75\) 1.00000i 0.115470i
\(76\) 0 0
\(77\) 2.00000 + 4.89898i 0.227921 + 0.558291i
\(78\) 0 0
\(79\) 4.00000i 0.450035i −0.974355 0.225018i \(-0.927756\pi\)
0.974355 0.225018i \(-0.0722440\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 4.00000i 0.439057i −0.975606 0.219529i \(-0.929548\pi\)
0.975606 0.219529i \(-0.0704519\pi\)
\(84\) 0 0
\(85\) 4.89898i 0.531369i
\(86\) 0 0
\(87\) 0.898979 0.0963807
\(88\) 0 0
\(89\) 10.8990i 1.15529i −0.816288 0.577645i \(-0.803972\pi\)
0.816288 0.577645i \(-0.196028\pi\)
\(90\) 0 0
\(91\) −2.89898 7.10102i −0.303896 0.744389i
\(92\) 0 0
\(93\) 2.00000i 0.207390i
\(94\) 0 0
\(95\) 2.89898i 0.297429i
\(96\) 0 0
\(97\) 8.89898i 0.903554i 0.892131 + 0.451777i \(0.149210\pi\)
−0.892131 + 0.451777i \(0.850790\pi\)
\(98\) 0 0
\(99\) 2.00000 0.201008
\(100\) 0 0
\(101\) −15.7980 −1.57196 −0.785978 0.618255i \(-0.787840\pi\)
−0.785978 + 0.618255i \(0.787840\pi\)
\(102\) 0 0
\(103\) −19.7980 −1.95075 −0.975375 0.220551i \(-0.929214\pi\)
−0.975375 + 0.220551i \(0.929214\pi\)
\(104\) 0 0
\(105\) 2.44949 1.00000i 0.239046 0.0975900i
\(106\) 0 0
\(107\) −11.7980 −1.14055 −0.570276 0.821453i \(-0.693164\pi\)
−0.570276 + 0.821453i \(0.693164\pi\)
\(108\) 0 0
\(109\) 4.00000i 0.383131i 0.981480 + 0.191565i \(0.0613564\pi\)
−0.981480 + 0.191565i \(0.938644\pi\)
\(110\) 0 0
\(111\) 11.7980 1.11981
\(112\) 0 0
\(113\) 17.7980 1.67429 0.837146 0.546980i \(-0.184223\pi\)
0.837146 + 0.546980i \(0.184223\pi\)
\(114\) 0 0
\(115\) 6.00000i 0.559503i
\(116\) 0 0
\(117\) −2.89898 −0.268011
\(118\) 0 0
\(119\) −12.0000 + 4.89898i −1.10004 + 0.449089i
\(120\) 0 0
\(121\) −7.00000 −0.636364
\(122\) 0 0
\(123\) −6.89898 −0.622060
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) 8.89898i 0.789657i 0.918755 + 0.394828i \(0.129196\pi\)
−0.918755 + 0.394828i \(0.870804\pi\)
\(128\) 0 0
\(129\) 0.898979i 0.0791507i
\(130\) 0 0
\(131\) 16.8990i 1.47647i 0.674543 + 0.738235i \(0.264341\pi\)
−0.674543 + 0.738235i \(0.735659\pi\)
\(132\) 0 0
\(133\) −7.10102 + 2.89898i −0.615737 + 0.251373i
\(134\) 0 0
\(135\) 1.00000i 0.0860663i
\(136\) 0 0
\(137\) −5.79796 −0.495353 −0.247677 0.968843i \(-0.579667\pi\)
−0.247677 + 0.968843i \(0.579667\pi\)
\(138\) 0 0
\(139\) 2.89898i 0.245888i −0.992414 0.122944i \(-0.960766\pi\)
0.992414 0.122944i \(-0.0392336\pi\)
\(140\) 0 0
\(141\) 1.10102i 0.0927227i
\(142\) 0 0
\(143\) −5.79796 −0.484850
\(144\) 0 0
\(145\) 0.898979i 0.0746562i
\(146\) 0 0
\(147\) 4.89898 + 5.00000i 0.404061 + 0.412393i
\(148\) 0 0
\(149\) 7.10102i 0.581738i 0.956763 + 0.290869i \(0.0939444\pi\)
−0.956763 + 0.290869i \(0.906056\pi\)
\(150\) 0 0
\(151\) 13.7980i 1.12286i 0.827524 + 0.561431i \(0.189749\pi\)
−0.827524 + 0.561431i \(0.810251\pi\)
\(152\) 0 0
\(153\) 4.89898i 0.396059i
\(154\) 0 0
\(155\) −2.00000 −0.160644
\(156\) 0 0
\(157\) 12.6969 1.01333 0.506663 0.862144i \(-0.330879\pi\)
0.506663 + 0.862144i \(0.330879\pi\)
\(158\) 0 0
\(159\) 9.79796 0.777029
\(160\) 0 0
\(161\) −14.6969 + 6.00000i −1.15828 + 0.472866i
\(162\) 0 0
\(163\) 6.69694 0.524545 0.262272 0.964994i \(-0.415528\pi\)
0.262272 + 0.964994i \(0.415528\pi\)
\(164\) 0 0
\(165\) 2.00000i 0.155700i
\(166\) 0 0
\(167\) 1.10102 0.0851995 0.0425998 0.999092i \(-0.486436\pi\)
0.0425998 + 0.999092i \(0.486436\pi\)
\(168\) 0 0
\(169\) −4.59592 −0.353532
\(170\) 0 0
\(171\) 2.89898i 0.221691i
\(172\) 0 0
\(173\) −7.79796 −0.592868 −0.296434 0.955053i \(-0.595797\pi\)
−0.296434 + 0.955053i \(0.595797\pi\)
\(174\) 0 0
\(175\) −1.00000 2.44949i −0.0755929 0.185164i
\(176\) 0 0
\(177\) −12.8990 −0.969547
\(178\) 0 0
\(179\) 10.0000 0.747435 0.373718 0.927543i \(-0.378083\pi\)
0.373718 + 0.927543i \(0.378083\pi\)
\(180\) 0 0
\(181\) 11.1010 0.825132 0.412566 0.910928i \(-0.364633\pi\)
0.412566 + 0.910928i \(0.364633\pi\)
\(182\) 0 0
\(183\) 8.89898i 0.657831i
\(184\) 0 0
\(185\) 11.7980i 0.867403i
\(186\) 0 0
\(187\) 9.79796i 0.716498i
\(188\) 0 0
\(189\) 2.44949 1.00000i 0.178174 0.0727393i
\(190\) 0 0
\(191\) 16.8990i 1.22277i −0.791334 0.611384i \(-0.790613\pi\)
0.791334 0.611384i \(-0.209387\pi\)
\(192\) 0 0
\(193\) −19.7980 −1.42509 −0.712544 0.701627i \(-0.752457\pi\)
−0.712544 + 0.701627i \(0.752457\pi\)
\(194\) 0 0
\(195\) 2.89898i 0.207600i
\(196\) 0 0
\(197\) 5.79796i 0.413087i −0.978437 0.206544i \(-0.933778\pi\)
0.978437 0.206544i \(-0.0662216\pi\)
\(198\) 0 0
\(199\) 10.0000 0.708881 0.354441 0.935079i \(-0.384671\pi\)
0.354441 + 0.935079i \(0.384671\pi\)
\(200\) 0 0
\(201\) 4.89898i 0.345547i
\(202\) 0 0
\(203\) 2.20204 0.898979i 0.154553 0.0630960i
\(204\) 0 0
\(205\) 6.89898i 0.481846i
\(206\) 0 0
\(207\) 6.00000i 0.417029i
\(208\) 0 0
\(209\) 5.79796i 0.401053i
\(210\) 0 0
\(211\) −22.0000 −1.51454 −0.757271 0.653101i \(-0.773468\pi\)
−0.757271 + 0.653101i \(0.773468\pi\)
\(212\) 0 0
\(213\) 3.10102 0.212478
\(214\) 0 0
\(215\) 0.898979 0.0613099
\(216\) 0 0
\(217\) −2.00000 4.89898i −0.135769 0.332564i
\(218\) 0 0
\(219\) 0.898979 0.0607474
\(220\) 0 0
\(221\) 14.2020i 0.955333i
\(222\) 0 0
\(223\) −6.00000 −0.401790 −0.200895 0.979613i \(-0.564385\pi\)
−0.200895 + 0.979613i \(0.564385\pi\)
\(224\) 0 0
\(225\) −1.00000 −0.0666667
\(226\) 0 0
\(227\) 12.0000i 0.796468i −0.917284 0.398234i \(-0.869623\pi\)
0.917284 0.398234i \(-0.130377\pi\)
\(228\) 0 0
\(229\) 24.4949 1.61867 0.809334 0.587348i \(-0.199828\pi\)
0.809334 + 0.587348i \(0.199828\pi\)
\(230\) 0 0
\(231\) 4.89898 2.00000i 0.322329 0.131590i
\(232\) 0 0
\(233\) −16.0000 −1.04819 −0.524097 0.851658i \(-0.675597\pi\)
−0.524097 + 0.851658i \(0.675597\pi\)
\(234\) 0 0
\(235\) −1.10102 −0.0718227
\(236\) 0 0
\(237\) −4.00000 −0.259828
\(238\) 0 0
\(239\) 26.6969i 1.72688i 0.504450 + 0.863441i \(0.331695\pi\)
−0.504450 + 0.863441i \(0.668305\pi\)
\(240\) 0 0
\(241\) 20.0000i 1.28831i −0.764894 0.644157i \(-0.777208\pi\)
0.764894 0.644157i \(-0.222792\pi\)
\(242\) 0 0
\(243\) 1.00000i 0.0641500i
\(244\) 0 0
\(245\) 5.00000 4.89898i 0.319438 0.312984i
\(246\) 0 0
\(247\) 8.40408i 0.534739i
\(248\) 0 0
\(249\) −4.00000 −0.253490
\(250\) 0 0
\(251\) 3.10102i 0.195735i −0.995199 0.0978673i \(-0.968798\pi\)
0.995199 0.0978673i \(-0.0312021\pi\)
\(252\) 0 0
\(253\) 12.0000i 0.754434i
\(254\) 0 0
\(255\) 4.89898 0.306786
\(256\) 0 0
\(257\) 24.8990i 1.55316i −0.630021 0.776578i \(-0.716954\pi\)
0.630021 0.776578i \(-0.283046\pi\)
\(258\) 0 0
\(259\) 28.8990 11.7980i 1.79570 0.733090i
\(260\) 0 0
\(261\) 0.898979i 0.0556454i
\(262\) 0 0
\(263\) 7.79796i 0.480843i 0.970669 + 0.240421i \(0.0772856\pi\)
−0.970669 + 0.240421i \(0.922714\pi\)
\(264\) 0 0
\(265\) 9.79796i 0.601884i
\(266\) 0 0
\(267\) −10.8990 −0.667007
\(268\) 0 0
\(269\) 3.79796 0.231566 0.115783 0.993275i \(-0.463062\pi\)
0.115783 + 0.993275i \(0.463062\pi\)
\(270\) 0 0
\(271\) −4.20204 −0.255256 −0.127628 0.991822i \(-0.540736\pi\)
−0.127628 + 0.991822i \(0.540736\pi\)
\(272\) 0 0
\(273\) −7.10102 + 2.89898i −0.429773 + 0.175454i
\(274\) 0 0
\(275\) −2.00000 −0.120605
\(276\) 0 0
\(277\) 15.7980i 0.949207i −0.880200 0.474604i \(-0.842591\pi\)
0.880200 0.474604i \(-0.157409\pi\)
\(278\) 0 0
\(279\) −2.00000 −0.119737
\(280\) 0 0
\(281\) 8.20204 0.489293 0.244646 0.969612i \(-0.421328\pi\)
0.244646 + 0.969612i \(0.421328\pi\)
\(282\) 0 0
\(283\) 9.79796i 0.582428i 0.956658 + 0.291214i \(0.0940592\pi\)
−0.956658 + 0.291214i \(0.905941\pi\)
\(284\) 0 0
\(285\) 2.89898 0.171721
\(286\) 0 0
\(287\) −16.8990 + 6.89898i −0.997515 + 0.407234i
\(288\) 0 0
\(289\) −7.00000 −0.411765
\(290\) 0 0
\(291\) 8.89898 0.521667
\(292\) 0 0
\(293\) −21.5959 −1.26165 −0.630823 0.775926i \(-0.717283\pi\)
−0.630823 + 0.775926i \(0.717283\pi\)
\(294\) 0 0
\(295\) 12.8990i 0.751008i
\(296\) 0 0
\(297\) 2.00000i 0.116052i
\(298\) 0 0
\(299\) 17.3939i 1.00591i
\(300\) 0 0
\(301\) 0.898979 + 2.20204i 0.0518163 + 0.126924i
\(302\) 0 0
\(303\) 15.7980i 0.907569i
\(304\) 0 0
\(305\) 8.89898 0.509554
\(306\) 0 0
\(307\) 15.5959i 0.890106i 0.895504 + 0.445053i \(0.146815\pi\)
−0.895504 + 0.445053i \(0.853185\pi\)
\(308\) 0 0
\(309\) 19.7980i 1.12627i
\(310\) 0 0
\(311\) −8.00000 −0.453638 −0.226819 0.973937i \(-0.572833\pi\)
−0.226819 + 0.973937i \(0.572833\pi\)
\(312\) 0 0
\(313\) 28.4949i 1.61063i 0.592849 + 0.805313i \(0.298003\pi\)
−0.592849 + 0.805313i \(0.701997\pi\)
\(314\) 0 0
\(315\) −1.00000 2.44949i −0.0563436 0.138013i
\(316\) 0 0
\(317\) 12.0000i 0.673987i −0.941507 0.336994i \(-0.890590\pi\)
0.941507 0.336994i \(-0.109410\pi\)
\(318\) 0 0
\(319\) 1.79796i 0.100666i
\(320\) 0 0
\(321\) 11.7980i 0.658498i
\(322\) 0 0
\(323\) −14.2020 −0.790223
\(324\) 0 0
\(325\) 2.89898 0.160806
\(326\) 0 0
\(327\) 4.00000 0.221201
\(328\) 0 0
\(329\) −1.10102 2.69694i −0.0607012 0.148687i
\(330\) 0 0
\(331\) −23.3939 −1.28584 −0.642922 0.765932i \(-0.722278\pi\)
−0.642922 + 0.765932i \(0.722278\pi\)
\(332\) 0 0
\(333\) 11.7980i 0.646524i
\(334\) 0 0
\(335\) 4.89898 0.267660
\(336\) 0 0
\(337\) 31.7980 1.73215 0.866073 0.499918i \(-0.166637\pi\)
0.866073 + 0.499918i \(0.166637\pi\)
\(338\) 0 0
\(339\) 17.7980i 0.966652i
\(340\) 0 0
\(341\) −4.00000 −0.216612
\(342\) 0 0
\(343\) 17.0000 + 7.34847i 0.917914 + 0.396780i
\(344\) 0 0
\(345\) 6.00000 0.323029
\(346\) 0 0
\(347\) −25.5959 −1.37406 −0.687030 0.726629i \(-0.741086\pi\)
−0.687030 + 0.726629i \(0.741086\pi\)
\(348\) 0 0
\(349\) 30.6969 1.64317 0.821585 0.570086i \(-0.193090\pi\)
0.821585 + 0.570086i \(0.193090\pi\)
\(350\) 0 0
\(351\) 2.89898i 0.154736i
\(352\) 0 0
\(353\) 34.6969i 1.84673i 0.383921 + 0.923366i \(0.374573\pi\)
−0.383921 + 0.923366i \(0.625427\pi\)
\(354\) 0 0
\(355\) 3.10102i 0.164585i
\(356\) 0 0
\(357\) 4.89898 + 12.0000i 0.259281 + 0.635107i
\(358\) 0 0
\(359\) 7.10102i 0.374778i −0.982286 0.187389i \(-0.939998\pi\)
0.982286 0.187389i \(-0.0600024\pi\)
\(360\) 0 0
\(361\) 10.5959 0.557680
\(362\) 0 0
\(363\) 7.00000i 0.367405i
\(364\) 0 0
\(365\) 0.898979i 0.0470547i
\(366\) 0 0
\(367\) −15.7980 −0.824647 −0.412323 0.911038i \(-0.635283\pi\)
−0.412323 + 0.911038i \(0.635283\pi\)
\(368\) 0 0
\(369\) 6.89898i 0.359147i
\(370\) 0 0
\(371\) 24.0000 9.79796i 1.24602 0.508685i
\(372\) 0 0
\(373\) 14.0000i 0.724893i −0.932005 0.362446i \(-0.881942\pi\)
0.932005 0.362446i \(-0.118058\pi\)
\(374\) 0 0
\(375\) 1.00000i 0.0516398i
\(376\) 0 0
\(377\) 2.60612i 0.134222i
\(378\) 0 0
\(379\) −31.3939 −1.61260 −0.806298 0.591510i \(-0.798532\pi\)
−0.806298 + 0.591510i \(0.798532\pi\)
\(380\) 0 0
\(381\) 8.89898 0.455909
\(382\) 0 0
\(383\) −9.10102 −0.465040 −0.232520 0.972592i \(-0.574697\pi\)
−0.232520 + 0.972592i \(0.574697\pi\)
\(384\) 0 0
\(385\) −2.00000 4.89898i −0.101929 0.249675i
\(386\) 0 0
\(387\) 0.898979 0.0456977
\(388\) 0 0
\(389\) 26.6969i 1.35359i −0.736172 0.676794i \(-0.763369\pi\)
0.736172 0.676794i \(-0.236631\pi\)
\(390\) 0 0
\(391\) −29.3939 −1.48651
\(392\) 0 0
\(393\) 16.8990 0.852441
\(394\) 0 0
\(395\) 4.00000i 0.201262i
\(396\) 0 0
\(397\) 12.6969 0.637241 0.318621 0.947882i \(-0.396780\pi\)
0.318621 + 0.947882i \(0.396780\pi\)
\(398\) 0 0
\(399\) 2.89898 + 7.10102i 0.145131 + 0.355496i
\(400\) 0 0
\(401\) −11.7980 −0.589162 −0.294581 0.955627i \(-0.595180\pi\)
−0.294581 + 0.955627i \(0.595180\pi\)
\(402\) 0 0
\(403\) 5.79796 0.288817
\(404\) 0 0
\(405\) −1.00000 −0.0496904
\(406\) 0 0
\(407\) 23.5959i 1.16961i
\(408\) 0 0
\(409\) 4.00000i 0.197787i −0.995098 0.0988936i \(-0.968470\pi\)
0.995098 0.0988936i \(-0.0315304\pi\)
\(410\) 0 0
\(411\) 5.79796i 0.285992i
\(412\) 0 0
\(413\) −31.5959 + 12.8990i −1.55473 + 0.634717i
\(414\) 0 0
\(415\) 4.00000i 0.196352i
\(416\) 0 0
\(417\) −2.89898 −0.141964
\(418\) 0 0
\(419\) 34.2929i 1.67532i −0.546195 0.837658i \(-0.683924\pi\)
0.546195 0.837658i \(-0.316076\pi\)
\(420\) 0 0
\(421\) 6.20204i 0.302269i 0.988513 + 0.151134i \(0.0482927\pi\)
−0.988513 + 0.151134i \(0.951707\pi\)
\(422\) 0 0
\(423\) −1.10102 −0.0535334
\(424\) 0 0
\(425\) 4.89898i 0.237635i
\(426\) 0 0
\(427\) 8.89898 + 21.7980i 0.430652 + 1.05488i
\(428\) 0 0
\(429\) 5.79796i 0.279928i
\(430\) 0 0
\(431\) 3.10102i 0.149371i −0.997207 0.0746855i \(-0.976205\pi\)
0.997207 0.0746855i \(-0.0237953\pi\)
\(432\) 0 0
\(433\) 5.30306i 0.254849i −0.991848 0.127424i \(-0.959329\pi\)
0.991848 0.127424i \(-0.0406710\pi\)
\(434\) 0 0
\(435\) −0.898979 −0.0431028
\(436\) 0 0
\(437\) −17.3939 −0.832062
\(438\) 0 0
\(439\) 23.7980 1.13581 0.567907 0.823093i \(-0.307753\pi\)
0.567907 + 0.823093i \(0.307753\pi\)
\(440\) 0 0
\(441\) 5.00000 4.89898i 0.238095 0.233285i
\(442\) 0 0
\(443\) 6.00000 0.285069 0.142534 0.989790i \(-0.454475\pi\)
0.142534 + 0.989790i \(0.454475\pi\)
\(444\) 0 0
\(445\) 10.8990i 0.516661i
\(446\) 0 0
\(447\) 7.10102 0.335867
\(448\) 0 0
\(449\) 23.7980 1.12310 0.561548 0.827444i \(-0.310206\pi\)
0.561548 + 0.827444i \(0.310206\pi\)
\(450\) 0 0
\(451\) 13.7980i 0.649721i
\(452\) 0 0
\(453\) 13.7980 0.648285
\(454\) 0 0
\(455\) 2.89898 + 7.10102i 0.135906 + 0.332901i
\(456\) 0 0
\(457\) 11.7980 0.551885 0.275943 0.961174i \(-0.411010\pi\)
0.275943 + 0.961174i \(0.411010\pi\)
\(458\) 0 0
\(459\) 4.89898 0.228665
\(460\) 0 0
\(461\) 4.20204 0.195709 0.0978543 0.995201i \(-0.468802\pi\)
0.0978543 + 0.995201i \(0.468802\pi\)
\(462\) 0 0
\(463\) 26.6969i 1.24071i −0.784320 0.620356i \(-0.786988\pi\)
0.784320 0.620356i \(-0.213012\pi\)
\(464\) 0 0
\(465\) 2.00000i 0.0927478i
\(466\) 0 0
\(467\) 21.7980i 1.00869i 0.863502 + 0.504345i \(0.168266\pi\)
−0.863502 + 0.504345i \(0.831734\pi\)
\(468\) 0 0
\(469\) 4.89898 + 12.0000i 0.226214 + 0.554109i
\(470\) 0 0
\(471\) 12.6969i 0.585044i
\(472\) 0 0
\(473\) 1.79796 0.0826702
\(474\) 0 0
\(475\) 2.89898i 0.133014i
\(476\) 0 0
\(477\) 9.79796i 0.448618i
\(478\) 0 0
\(479\) 27.5959 1.26089 0.630445 0.776234i \(-0.282873\pi\)
0.630445 + 0.776234i \(0.282873\pi\)
\(480\) 0 0
\(481\) 34.2020i 1.55948i
\(482\) 0 0
\(483\) 6.00000 + 14.6969i 0.273009 + 0.668734i
\(484\) 0 0
\(485\) 8.89898i 0.404082i
\(486\) 0 0
\(487\) 15.1010i 0.684293i 0.939647 + 0.342146i \(0.111154\pi\)
−0.939647 + 0.342146i \(0.888846\pi\)
\(488\) 0 0
\(489\) 6.69694i 0.302846i
\(490\) 0 0
\(491\) 25.5959 1.15513 0.577564 0.816346i \(-0.304003\pi\)
0.577564 + 0.816346i \(0.304003\pi\)
\(492\) 0 0
\(493\) 4.40408 0.198350
\(494\) 0 0
\(495\) −2.00000 −0.0898933
\(496\) 0 0
\(497\) 7.59592 3.10102i 0.340723 0.139100i
\(498\) 0 0
\(499\) −10.0000 −0.447661 −0.223831 0.974628i \(-0.571856\pi\)
−0.223831 + 0.974628i \(0.571856\pi\)
\(500\) 0 0
\(501\) 1.10102i 0.0491900i
\(502\) 0 0
\(503\) −10.4949 −0.467944 −0.233972 0.972243i \(-0.575172\pi\)
−0.233972 + 0.972243i \(0.575172\pi\)
\(504\) 0 0
\(505\) 15.7980 0.703000
\(506\) 0 0
\(507\) 4.59592i 0.204112i
\(508\) 0 0
\(509\) −37.5959 −1.66641 −0.833205 0.552964i \(-0.813497\pi\)
−0.833205 + 0.552964i \(0.813497\pi\)
\(510\) 0 0
\(511\) 2.20204 0.898979i 0.0974126 0.0397685i
\(512\) 0 0
\(513\) 2.89898 0.127993
\(514\) 0 0
\(515\) 19.7980 0.872402
\(516\) 0 0
\(517\) −2.20204 −0.0968457
\(518\) 0 0
\(519\) 7.79796i 0.342292i
\(520\) 0 0
\(521\) 33.1010i 1.45018i −0.688653 0.725091i \(-0.741798\pi\)
0.688653 0.725091i \(-0.258202\pi\)
\(522\) 0 0
\(523\) 3.59592i 0.157239i 0.996905 + 0.0786193i \(0.0250511\pi\)
−0.996905 + 0.0786193i \(0.974949\pi\)
\(524\) 0 0
\(525\) −2.44949 + 1.00000i −0.106904 + 0.0436436i
\(526\) 0 0
\(527\) 9.79796i 0.426806i
\(528\) 0 0
\(529\) −13.0000 −0.565217
\(530\) 0 0
\(531\) 12.8990i 0.559768i
\(532\) 0 0
\(533\) 20.0000i 0.866296i
\(534\) 0 0
\(535\) 11.7980 0.510070
\(536\) 0 0
\(537\) 10.0000i 0.431532i
\(538\) 0 0
\(539\) 10.0000 9.79796i 0.430730 0.422028i
\(540\) 0 0
\(541\) 41.3939i 1.77966i −0.456290 0.889831i \(-0.650822\pi\)
0.456290 0.889831i \(-0.349178\pi\)
\(542\) 0 0
\(543\) 11.1010i 0.476390i
\(544\) 0 0
\(545\) 4.00000i 0.171341i
\(546\) 0 0
\(547\) 30.2929 1.29523 0.647615 0.761968i \(-0.275767\pi\)
0.647615 + 0.761968i \(0.275767\pi\)
\(548\) 0 0
\(549\) 8.89898 0.379799
\(550\) 0 0
\(551\) 2.60612 0.111025
\(552\) 0 0
\(553\) −9.79796 + 4.00000i −0.416652 + 0.170097i
\(554\) 0 0
\(555\) −11.7980 −0.500795
\(556\) 0 0
\(557\) 5.79796i 0.245667i −0.992427 0.122834i \(-0.960802\pi\)
0.992427 0.122834i \(-0.0391982\pi\)
\(558\) 0 0
\(559\) −2.60612 −0.110227
\(560\) 0 0
\(561\) 9.79796 0.413670
\(562\) 0 0
\(563\) 2.20204i 0.0928050i 0.998923 + 0.0464025i \(0.0147757\pi\)
−0.998923 + 0.0464025i \(0.985224\pi\)
\(564\) 0 0
\(565\) −17.7980 −0.748766
\(566\) 0 0
\(567\) −1.00000 2.44949i −0.0419961 0.102869i
\(568\) 0 0
\(569\) 17.5959 0.737659 0.368830 0.929497i \(-0.379759\pi\)
0.368830 + 0.929497i \(0.379759\pi\)
\(570\) 0 0
\(571\) −15.7980 −0.661124 −0.330562 0.943784i \(-0.607238\pi\)
−0.330562 + 0.943784i \(0.607238\pi\)
\(572\) 0 0
\(573\) −16.8990 −0.705965
\(574\) 0 0
\(575\) 6.00000i 0.250217i
\(576\) 0 0
\(577\) 24.8990i 1.03656i −0.855212 0.518279i \(-0.826573\pi\)
0.855212 0.518279i \(-0.173427\pi\)
\(578\) 0 0
\(579\) 19.7980i 0.822775i
\(580\) 0 0
\(581\) −9.79796 + 4.00000i −0.406488 + 0.165948i
\(582\) 0 0
\(583\) 19.5959i 0.811580i
\(584\) 0 0
\(585\) 2.89898 0.119858
\(586\) 0 0
\(587\) 45.7980i 1.89028i −0.326660 0.945142i \(-0.605923\pi\)
0.326660 0.945142i \(-0.394077\pi\)
\(588\) 0 0
\(589\) 5.79796i 0.238901i
\(590\) 0 0
\(591\) −5.79796 −0.238496
\(592\) 0 0
\(593\) 12.8990i 0.529698i −0.964290 0.264849i \(-0.914678\pi\)
0.964290 0.264849i \(-0.0853220\pi\)
\(594\) 0 0
\(595\) 12.0000 4.89898i 0.491952 0.200839i
\(596\) 0 0
\(597\) 10.0000i 0.409273i
\(598\) 0 0
\(599\) 0.898979i 0.0367313i −0.999831 0.0183657i \(-0.994154\pi\)
0.999831 0.0183657i \(-0.00584630\pi\)
\(600\) 0 0
\(601\) 13.7980i 0.562830i 0.959586 + 0.281415i \(0.0908038\pi\)
−0.959586 + 0.281415i \(0.909196\pi\)
\(602\) 0 0
\(603\) 4.89898 0.199502
\(604\) 0 0
\(605\) 7.00000 0.284590
\(606\) 0 0
\(607\) −22.0000 −0.892952 −0.446476 0.894795i \(-0.647321\pi\)
−0.446476 + 0.894795i \(0.647321\pi\)
\(608\) 0 0
\(609\) −0.898979 2.20204i −0.0364285 0.0892312i
\(610\) 0 0
\(611\) 3.19184 0.129128
\(612\) 0 0
\(613\) 0.202041i 0.00816036i −0.999992 0.00408018i \(-0.998701\pi\)
0.999992 0.00408018i \(-0.00129877\pi\)
\(614\) 0 0
\(615\) 6.89898 0.278194
\(616\) 0 0
\(617\) 41.7980 1.68272 0.841361 0.540473i \(-0.181755\pi\)
0.841361 + 0.540473i \(0.181755\pi\)
\(618\) 0 0
\(619\) 44.2929i 1.78028i −0.455687 0.890140i \(-0.650606\pi\)
0.455687 0.890140i \(-0.349394\pi\)
\(620\) 0 0
\(621\) 6.00000 0.240772
\(622\) 0 0
\(623\) −26.6969 + 10.8990i −1.06959 + 0.436658i
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 5.79796 0.231548
\(628\) 0 0
\(629\) 57.7980 2.30456
\(630\) 0 0
\(631\) 13.7980i 0.549288i 0.961546 + 0.274644i \(0.0885600\pi\)
−0.961546 + 0.274644i \(0.911440\pi\)
\(632\) 0 0
\(633\) 22.0000i 0.874421i
\(634\) 0 0
\(635\) 8.89898i 0.353145i
\(636\) 0 0
\(637\) −14.4949 + 14.2020i −0.574309 + 0.562705i
\(638\) 0 0
\(639\) 3.10102i 0.122674i
\(640\) 0 0
\(641\) −45.5959 −1.80093 −0.900465 0.434928i \(-0.856774\pi\)
−0.900465 + 0.434928i \(0.856774\pi\)
\(642\) 0 0
\(643\) 36.0000i 1.41970i 0.704352 + 0.709851i \(0.251238\pi\)
−0.704352 + 0.709851i \(0.748762\pi\)
\(644\) 0 0
\(645\) 0.898979i 0.0353973i
\(646\) 0 0
\(647\) −32.6969 −1.28545 −0.642725 0.766097i \(-0.722196\pi\)
−0.642725 + 0.766097i \(0.722196\pi\)
\(648\) 0 0
\(649\) 25.7980i 1.01266i
\(650\) 0 0
\(651\) −4.89898 + 2.00000i −0.192006 + 0.0783862i
\(652\) 0 0
\(653\) 44.0000i 1.72185i −0.508729 0.860927i \(-0.669885\pi\)
0.508729 0.860927i \(-0.330115\pi\)
\(654\) 0 0
\(655\) 16.8990i 0.660298i
\(656\) 0 0
\(657\) 0.898979i 0.0350725i
\(658\) 0 0
\(659\) 30.0000 1.16863 0.584317 0.811525i \(-0.301362\pi\)
0.584317 + 0.811525i \(0.301362\pi\)
\(660\) 0 0
\(661\) −1.30306 −0.0506832 −0.0253416 0.999679i \(-0.508067\pi\)
−0.0253416 + 0.999679i \(0.508067\pi\)
\(662\) 0 0
\(663\) −14.2020 −0.551562
\(664\) 0 0
\(665\) 7.10102 2.89898i 0.275366 0.112418i
\(666\) 0 0
\(667\) 5.39388 0.208852
\(668\) 0 0
\(669\) 6.00000i 0.231973i
\(670\) 0 0
\(671\) 17.7980 0.687083
\(672\) 0 0
\(673\) −13.5959 −0.524084 −0.262042 0.965056i \(-0.584396\pi\)
−0.262042 + 0.965056i \(0.584396\pi\)
\(674\) 0 0
\(675\) 1.00000i 0.0384900i
\(676\) 0 0
\(677\) −31.7980 −1.22209 −0.611047 0.791594i \(-0.709252\pi\)
−0.611047 + 0.791594i \(0.709252\pi\)
\(678\) 0 0
\(679\) 21.7980 8.89898i 0.836529 0.341511i
\(680\) 0 0
\(681\) −12.0000 −0.459841
\(682\) 0 0
\(683\) 12.2020 0.466898 0.233449 0.972369i \(-0.424999\pi\)
0.233449 + 0.972369i \(0.424999\pi\)
\(684\) 0 0
\(685\) 5.79796 0.221529
\(686\) 0 0
\(687\) 24.4949i 0.934539i
\(688\) 0 0
\(689\) 28.4041i 1.08211i
\(690\) 0 0
\(691\) 34.4949i 1.31225i −0.754653 0.656124i \(-0.772195\pi\)
0.754653 0.656124i \(-0.227805\pi\)
\(692\) 0 0
\(693\) −2.00000 4.89898i −0.0759737 0.186097i
\(694\) 0 0
\(695\) 2.89898i 0.109965i
\(696\) 0 0
\(697\) −33.7980 −1.28019
\(698\) 0 0
\(699\) 16.0000i 0.605176i
\(700\) 0 0
\(701\) 23.1010i 0.872514i 0.899822 + 0.436257i \(0.143696\pi\)
−0.899822 + 0.436257i \(0.856304\pi\)
\(702\) 0 0
\(703\) 34.2020 1.28995
\(704\) 0 0
\(705\) 1.10102i 0.0414668i
\(706\) 0 0
\(707\) 15.7980 + 38.6969i 0.594143 + 1.45535i
\(708\) 0 0
\(709\) 29.7980i 1.11909i −0.828801 0.559543i \(-0.810977\pi\)
0.828801 0.559543i \(-0.189023\pi\)
\(710\) 0 0
\(711\) 4.00000i 0.150012i
\(712\) 0 0
\(713\) 12.0000i 0.449404i
\(714\) 0 0
\(715\) 5.79796 0.216831
\(716\) 0 0
\(717\) 26.6969 0.997015
\(718\) 0 0
\(719\) 26.2020 0.977171 0.488586 0.872516i \(-0.337513\pi\)
0.488586 + 0.872516i \(0.337513\pi\)
\(720\) 0 0
\(721\) 19.7980 + 48.4949i 0.737315 + 1.80604i
\(722\) 0 0
\(723\) −20.0000 −0.743808
\(724\) 0 0
\(725\) 0.898979i 0.0333873i
\(726\) 0 0
\(727\) 39.3939 1.46104 0.730519 0.682892i \(-0.239278\pi\)
0.730519 + 0.682892i \(0.239278\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) 4.40408i 0.162891i
\(732\) 0 0
\(733\) 1.50510 0.0555922 0.0277961 0.999614i \(-0.491151\pi\)
0.0277961 + 0.999614i \(0.491151\pi\)
\(734\) 0 0
\(735\) −4.89898 5.00000i −0.180702 0.184428i
\(736\) 0 0
\(737\) 9.79796 0.360912
\(738\) 0 0
\(739\) 10.0000 0.367856 0.183928 0.982940i \(-0.441119\pi\)
0.183928 + 0.982940i \(0.441119\pi\)
\(740\) 0 0
\(741\) −8.40408 −0.308732
\(742\) 0 0
\(743\) 6.00000i 0.220119i −0.993925 0.110059i \(-0.964896\pi\)
0.993925 0.110059i \(-0.0351041\pi\)
\(744\) 0 0
\(745\) 7.10102i 0.260161i
\(746\) 0 0
\(747\) 4.00000i 0.146352i
\(748\) 0 0
\(749\) 11.7980 + 28.8990i 0.431088 + 1.05595i
\(750\) 0 0
\(751\) 13.7980i 0.503495i −0.967793 0.251747i \(-0.918995\pi\)
0.967793 0.251747i \(-0.0810052\pi\)
\(752\) 0 0
\(753\) −3.10102 −0.113007
\(754\) 0 0
\(755\) 13.7980i 0.502159i
\(756\) 0 0
\(757\) 5.59592i 0.203387i 0.994816 + 0.101694i \(0.0324261\pi\)
−0.994816 + 0.101694i \(0.967574\pi\)
\(758\) 0 0
\(759\) 12.0000 0.435572
\(760\) 0 0
\(761\) 0.696938i 0.0252640i 0.999920 + 0.0126320i \(0.00402100\pi\)
−0.999920 + 0.0126320i \(0.995979\pi\)
\(762\) 0 0
\(763\) 9.79796 4.00000i 0.354710 0.144810i
\(764\) 0 0
\(765\) 4.89898i 0.177123i
\(766\) 0 0
\(767\) 37.3939i 1.35021i
\(768\) 0 0
\(769\) 51.5959i 1.86060i −0.366804 0.930298i \(-0.619548\pi\)
0.366804 0.930298i \(-0.380452\pi\)
\(770\) 0 0
\(771\) −24.8990 −0.896715
\(772\) 0 0
\(773\) 19.7980 0.712083 0.356042 0.934470i \(-0.384126\pi\)
0.356042 + 0.934470i \(0.384126\pi\)
\(774\) 0 0
\(775\) 2.00000 0.0718421
\(776\) 0 0
\(777\) −11.7980 28.8990i −0.423249 1.03675i
\(778\) 0 0
\(779\) −20.0000 −0.716574
\(780\) 0 0
\(781\) 6.20204i 0.221926i
\(782\) 0 0
\(783\) −0.898979 −0.0321269
\(784\) 0 0
\(785\) −12.6969 −0.453173
\(786\) 0 0
\(787\) 35.5959i 1.26886i 0.772981 + 0.634429i \(0.218765\pi\)
−0.772981 + 0.634429i \(0.781235\pi\)
\(788\) 0 0
\(789\) 7.79796 0.277615
\(790\) 0 0
\(791\) −17.7980 43.5959i −0.632823 1.55009i
\(792\) 0 0
\(793\) −25.7980 −0.916112
\(794\) 0 0
\(795\) −9.79796 −0.347498
\(796\) 0 0
\(797\) −25.5959 −0.906654 −0.453327 0.891344i \(-0.649763\pi\)
−0.453327 + 0.891344i \(0.649763\pi\)
\(798\) 0 0
\(799\) 5.39388i 0.190822i
\(800\) 0 0
\(801\) 10.8990i 0.385097i
\(802\) 0 0
\(803\) 1.79796i 0.0634486i
\(804\) 0 0
\(805\) 14.6969 6.00000i 0.517999 0.211472i
\(806\) 0 0
\(807\) 3.79796i 0.133694i
\(808\) 0 0
\(809\) 23.7980 0.836692 0.418346 0.908288i \(-0.362610\pi\)
0.418346 + 0.908288i \(0.362610\pi\)
\(810\) 0 0
\(811\) 13.1010i 0.460039i 0.973186 + 0.230020i \(0.0738790\pi\)
−0.973186 + 0.230020i \(0.926121\pi\)
\(812\) 0 0
\(813\) 4.20204i 0.147372i
\(814\) 0 0
\(815\) −6.69694 −0.234584
\(816\) 0 0
\(817\) 2.60612i 0.0911767i
\(818\) 0 0
\(819\) 2.89898 + 7.10102i 0.101299 + 0.248130i
\(820\) 0 0
\(821\) 10.6969i 0.373326i 0.982424 + 0.186663i \(0.0597672\pi\)
−0.982424 + 0.186663i \(0.940233\pi\)
\(822\) 0 0
\(823\) 40.4949i 1.41156i −0.708429 0.705782i \(-0.750596\pi\)
0.708429 0.705782i \(-0.249404\pi\)
\(824\) 0 0
\(825\) 2.00000i 0.0696311i
\(826\) 0 0
\(827\) −33.1918 −1.15419 −0.577097 0.816676i \(-0.695814\pi\)
−0.577097 + 0.816676i \(0.695814\pi\)
\(828\) 0 0
\(829\) −9.30306 −0.323109 −0.161554 0.986864i \(-0.551651\pi\)
−0.161554 + 0.986864i \(0.551651\pi\)
\(830\) 0 0
\(831\) −15.7980 −0.548025
\(832\) 0 0
\(833\) 24.0000 + 24.4949i 0.831551 + 0.848698i
\(834\) 0 0
\(835\) −1.10102 −0.0381024
\(836\) 0 0
\(837\) 2.00000i 0.0691301i
\(838\) 0 0
\(839\) −26.2020 −0.904595 −0.452297 0.891867i \(-0.649395\pi\)
−0.452297 + 0.891867i \(0.649395\pi\)
\(840\) 0 0
\(841\) 28.1918 0.972132
\(842\) 0 0
\(843\) 8.20204i 0.282493i
\(844\) 0 0
\(845\) 4.59592 0.158104
\(846\) 0 0
\(847\) 7.00000 + 17.1464i 0.240523 + 0.589158i
\(848\) 0 0
\(849\) 9.79796 0.336265
\(850\) 0 0
\(851\) 70.7878 2.42657
\(852\) 0 0
\(853\) −44.6969 −1.53039 −0.765197 0.643796i \(-0.777358\pi\)
−0.765197 + 0.643796i \(0.777358\pi\)
\(854\) 0 0
\(855\) 2.89898i 0.0991430i
\(856\) 0 0
\(857\) 12.4949i 0.426818i −0.976963 0.213409i \(-0.931543\pi\)
0.976963 0.213409i \(-0.0684566\pi\)
\(858\) 0 0
\(859\) 9.10102i 0.310523i −0.987873 0.155261i \(-0.950378\pi\)
0.987873 0.155261i \(-0.0496220\pi\)
\(860\) 0 0
\(861\) 6.89898 + 16.8990i 0.235117 + 0.575916i
\(862\) 0 0
\(863\) 6.00000i 0.204242i −0.994772 0.102121i \(-0.967437\pi\)
0.994772 0.102121i \(-0.0325630\pi\)
\(864\) 0 0
\(865\) 7.79796 0.265139
\(866\) 0 0
\(867\) 7.00000i 0.237732i
\(868\) 0 0
\(869\) 8.00000i 0.271381i
\(870\) 0 0
\(871\) −14.2020 −0.481218
\(872\) 0 0
\(873\) 8.89898i 0.301185i
\(874\) 0 0
\(875\) 1.00000 + 2.44949i 0.0338062 + 0.0828079i
\(876\) 0 0
\(877\) 22.0000i 0.742887i −0.928456 0.371444i \(-0.878863\pi\)
0.928456 0.371444i \(-0.121137\pi\)
\(878\) 0 0
\(879\) 21.5959i 0.728412i
\(880\) 0 0
\(881\) 0.696938i 0.0234805i 0.999931 + 0.0117402i \(0.00373712\pi\)
−0.999931 + 0.0117402i \(0.996263\pi\)
\(882\) 0 0
\(883\) 40.4949 1.36276 0.681381 0.731929i \(-0.261380\pi\)
0.681381 + 0.731929i \(0.261380\pi\)
\(884\) 0 0
\(885\) 12.8990 0.433594
\(886\) 0 0
\(887\) 42.4949 1.42684 0.713420 0.700737i \(-0.247145\pi\)
0.713420 + 0.700737i \(0.247145\pi\)
\(888\) 0 0
\(889\) 21.7980 8.89898i 0.731080 0.298462i
\(890\) 0 0
\(891\) −2.00000 −0.0670025
\(892\) 0 0
\(893\) 3.19184i 0.106811i
\(894\) 0 0
\(895\) −10.0000 −0.334263
\(896\) 0 0
\(897\) −17.3939 −0.580765
\(898\) 0 0
\(899\) 1.79796i 0.0599653i
\(900\) 0 0
\(901\) 48.0000 1.59911
\(902\) 0 0
\(903\) 2.20204 0.898979i 0.0732793 0.0299162i
\(904\) 0 0
\(905\) −11.1010 −0.369010
\(906\) 0 0
\(907\) 36.4949 1.21179 0.605897 0.795543i \(-0.292815\pi\)
0.605897 + 0.795543i \(0.292815\pi\)
\(908\) 0 0
\(909\) 15.7980 0.523985
\(910\) 0 0
\(911\) 23.1010i 0.765371i 0.923879 + 0.382685i \(0.125001\pi\)
−0.923879 + 0.382685i \(0.874999\pi\)
\(912\) 0 0
\(913\) 8.00000i 0.264761i
\(914\) 0 0
\(915\) 8.89898i 0.294191i
\(916\) 0 0
\(917\) 41.3939 16.8990i 1.36695 0.558053i
\(918\) 0 0
\(919\) 25.3939i 0.837667i −0.908063 0.418833i \(-0.862439\pi\)
0.908063 0.418833i \(-0.137561\pi\)
\(920\) 0 0
\(921\) 15.5959 0.513903
\(922\) 0 0
\(923\) 8.98979i 0.295903i
\(924\) 0 0
\(925\) 11.7980i 0.387915i
\(926\) 0 0
\(927\) 19.7980 0.650250
\(928\) 0 0
\(929\) 38.4949i 1.26298i −0.775385 0.631488i \(-0.782444\pi\)
0.775385 0.631488i \(-0.217556\pi\)
\(930\) 0 0
\(931\) 14.2020 + 14.4949i 0.465453 + 0.475051i
\(932\) 0 0
\(933\) 8.00000i 0.261908i
\(934\) 0 0
\(935\) 9.79796i 0.320428i
\(936\) 0 0
\(937\) 36.4949i 1.19224i 0.802897 + 0.596118i \(0.203291\pi\)
−0.802897 + 0.596118i \(0.796709\pi\)
\(938\) 0 0
\(939\) 28.4949 0.929896
\(940\) 0 0
\(941\) −15.7980 −0.514999 −0.257499 0.966278i \(-0.582899\pi\)
−0.257499 + 0.966278i \(0.582899\pi\)
\(942\) 0 0
\(943\) −41.3939 −1.34797
\(944\) 0 0
\(945\) −2.44949 + 1.00000i −0.0796819 + 0.0325300i
\(946\) 0 0
\(947\) −31.7980 −1.03329 −0.516647 0.856198i \(-0.672820\pi\)
−0.516647 + 0.856198i \(0.672820\pi\)
\(948\) 0 0
\(949\) 2.60612i 0.0845983i
\(950\) 0 0
\(951\) −12.0000 −0.389127
\(952\) 0 0
\(953\) 24.0000 0.777436 0.388718 0.921357i \(-0.372918\pi\)
0.388718 + 0.921357i \(0.372918\pi\)
\(954\) 0 0
\(955\) 16.8990i 0.546838i
\(956\) 0 0
\(957\) −1.79796 −0.0581198
\(958\) 0 0
\(959\) 5.79796 + 14.2020i 0.187226 + 0.458608i
\(960\) 0 0
\(961\) −27.0000 −0.870968
\(962\) 0 0
\(963\) 11.7980 0.380184
\(964\) 0 0
\(965\) 19.7980 0.637319
\(966\) 0 0
\(967\) 56.4949i 1.81675i 0.418153 + 0.908377i \(0.362678\pi\)
−0.418153 + 0.908377i \(0.637322\pi\)
\(968\) 0 0
\(969\) 14.2020i 0.456235i
\(970\) 0 0
\(971\) 3.10102i 0.0995165i −0.998761 0.0497582i \(-0.984155\pi\)
0.998761 0.0497582i \(-0.0158451\pi\)
\(972\) 0 0
\(973\) −7.10102 + 2.89898i −0.227648 + 0.0929370i
\(974\) 0 0
\(975\) 2.89898i 0.0928416i
\(976\) 0 0
\(977\) 23.1918 0.741973 0.370986 0.928638i \(-0.379020\pi\)
0.370986 + 0.928638i \(0.379020\pi\)
\(978\) 0 0
\(979\) 21.7980i 0.696666i
\(980\) 0 0
\(981\) 4.00000i 0.127710i
\(982\) 0 0
\(983\) −2.89898 −0.0924631 −0.0462315 0.998931i \(-0.514721\pi\)
−0.0462315 + 0.998931i \(0.514721\pi\)
\(984\) 0 0
\(985\) 5.79796i 0.184738i
\(986\) 0 0
\(987\) −2.69694 + 1.10102i −0.0858445 + 0.0350459i
\(988\) 0 0
\(989\) 5.39388i 0.171515i
\(990\) 0 0
\(991\) 20.0000i 0.635321i −0.948205 0.317660i \(-0.897103\pi\)
0.948205 0.317660i \(-0.102897\pi\)
\(992\) 0 0
\(993\) 23.3939i 0.742382i
\(994\) 0 0
\(995\) −10.0000 −0.317021
\(996\) 0 0
\(997\) −16.2929 −0.516000 −0.258000 0.966145i \(-0.583063\pi\)
−0.258000 + 0.966145i \(0.583063\pi\)
\(998\) 0 0
\(999\) −11.7980 −0.373271
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3360.2.z.a.1231.1 4
4.3 odd 2 840.2.z.a.811.2 4
7.6 odd 2 3360.2.z.b.1231.3 4
8.3 odd 2 3360.2.z.b.1231.2 4
8.5 even 2 840.2.z.b.811.3 yes 4
28.27 even 2 840.2.z.b.811.2 yes 4
56.13 odd 2 840.2.z.a.811.3 yes 4
56.27 even 2 inner 3360.2.z.a.1231.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
840.2.z.a.811.2 4 4.3 odd 2
840.2.z.a.811.3 yes 4 56.13 odd 2
840.2.z.b.811.2 yes 4 28.27 even 2
840.2.z.b.811.3 yes 4 8.5 even 2
3360.2.z.a.1231.1 4 1.1 even 1 trivial
3360.2.z.a.1231.4 4 56.27 even 2 inner
3360.2.z.b.1231.2 4 8.3 odd 2
3360.2.z.b.1231.3 4 7.6 odd 2