L(s) = 1 | + (−1 + i)2-s + i·3-s − 2i·4-s + 5-s + (−1 − i)6-s + (−1 − 2.44i)7-s + (2 + 2i)8-s − 9-s + (−1 + i)10-s + 2·11-s + 2·12-s − 2.89·13-s + (3.44 + 1.44i)14-s + i·15-s − 4·16-s − 4.89i·17-s + ⋯ |
L(s) = 1 | + (−0.707 + 0.707i)2-s + 0.577i·3-s − i·4-s + 0.447·5-s + (−0.408 − 0.408i)6-s + (−0.377 − 0.925i)7-s + (0.707 + 0.707i)8-s − 0.333·9-s + (−0.316 + 0.316i)10-s + 0.603·11-s + 0.577·12-s − 0.804·13-s + (0.921 + 0.387i)14-s + 0.258i·15-s − 16-s − 1.18i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.921 + 0.387i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 840 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.921 + 0.387i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.895276 - 0.180457i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.895276 - 0.180457i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1 - i)T \) |
| 3 | \( 1 - iT \) |
| 5 | \( 1 - T \) |
| 7 | \( 1 + (1 + 2.44i)T \) |
good | 11 | \( 1 - 2T + 11T^{2} \) |
| 13 | \( 1 + 2.89T + 13T^{2} \) |
| 17 | \( 1 + 4.89iT - 17T^{2} \) |
| 19 | \( 1 - 2.89iT - 19T^{2} \) |
| 23 | \( 1 + 6iT - 23T^{2} \) |
| 29 | \( 1 + 0.898iT - 29T^{2} \) |
| 31 | \( 1 - 2T + 31T^{2} \) |
| 37 | \( 1 + 11.7iT - 37T^{2} \) |
| 41 | \( 1 + 6.89iT - 41T^{2} \) |
| 43 | \( 1 - 0.898T + 43T^{2} \) |
| 47 | \( 1 - 1.10T + 47T^{2} \) |
| 53 | \( 1 + 9.79iT - 53T^{2} \) |
| 59 | \( 1 - 12.8iT - 59T^{2} \) |
| 61 | \( 1 - 8.89T + 61T^{2} \) |
| 67 | \( 1 - 4.89T + 67T^{2} \) |
| 71 | \( 1 - 3.10iT - 71T^{2} \) |
| 73 | \( 1 - 0.898iT - 73T^{2} \) |
| 79 | \( 1 + 4iT - 79T^{2} \) |
| 83 | \( 1 - 4iT - 83T^{2} \) |
| 89 | \( 1 + 10.8iT - 89T^{2} \) |
| 97 | \( 1 - 8.89iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.01334679790182874997890569062, −9.380059128025472333430717326864, −8.611314447227260605385258934628, −7.44749998112824114440881250954, −6.86872095485982432403570699224, −5.88691031075885493192251905792, −4.92343089475012949743248018228, −3.96956994945516123206626827927, −2.36396885729539513429862654446, −0.59119632415861262998445627595,
1.41726052762611646801032314501, 2.44206766401627630794556078687, 3.41564682262453430423449328815, 4.87519505601573175090450087739, 6.13249242941476659268998784643, 6.86423710454969580252818381229, 7.938703482161444650372782190128, 8.685888663202085524847203988647, 9.496535415856454750703669779110, 10.02543453668307822277404045297