Properties

Label 840.2.w.b.139.14
Level $840$
Weight $2$
Character 840.139
Analytic conductor $6.707$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [840,2,Mod(139,840)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("840.139"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(840, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 0, 1, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 840 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 840.w (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0,48] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.70743376979\)
Analytic rank: \(0\)
Dimension: \(48\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 139.14
Character \(\chi\) \(=\) 840.139
Dual form 840.2.w.b.139.13

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.911149 + 1.08158i) q^{2} +1.00000 q^{3} +(-0.339615 - 1.97095i) q^{4} +(-2.20852 + 0.349934i) q^{5} +(-0.911149 + 1.08158i) q^{6} +(0.795986 - 2.52317i) q^{7} +(2.44118 + 1.42851i) q^{8} +1.00000 q^{9} +(1.63381 - 2.70752i) q^{10} -1.30035 q^{11} +(-0.339615 - 1.97095i) q^{12} -1.98020i q^{13} +(2.00374 + 3.15991i) q^{14} +(-2.20852 + 0.349934i) q^{15} +(-3.76932 + 1.33873i) q^{16} -5.61979 q^{17} +(-0.911149 + 1.08158i) q^{18} +3.69919i q^{19} +(1.43975 + 4.23404i) q^{20} +(0.795986 - 2.52317i) q^{21} +(1.18481 - 1.40643i) q^{22} -7.46227 q^{23} +(2.44118 + 1.42851i) q^{24} +(4.75509 - 1.54567i) q^{25} +(2.14174 + 1.80426i) q^{26} +1.00000 q^{27} +(-5.24339 - 0.711945i) q^{28} +6.71456i q^{29} +(1.63381 - 2.70752i) q^{30} -10.3088 q^{31} +(1.98648 - 5.29659i) q^{32} -1.30035 q^{33} +(5.12046 - 6.07823i) q^{34} +(-0.875004 + 5.85101i) q^{35} +(-0.339615 - 1.97095i) q^{36} +1.94433 q^{37} +(-4.00095 - 3.37051i) q^{38} -1.98020i q^{39} +(-5.89127 - 2.30065i) q^{40} -2.70453i q^{41} +(2.00374 + 3.15991i) q^{42} -5.78886i q^{43} +(0.441619 + 2.56293i) q^{44} +(-2.20852 + 0.349934i) q^{45} +(6.79924 - 8.07102i) q^{46} -9.66070i q^{47} +(-3.76932 + 1.33873i) q^{48} +(-5.73281 - 4.01682i) q^{49} +(-2.66084 + 6.55133i) q^{50} -5.61979 q^{51} +(-3.90288 + 0.672505i) q^{52} -1.66702 q^{53} +(-0.911149 + 1.08158i) q^{54} +(2.87185 - 0.455037i) q^{55} +(5.54753 - 5.02244i) q^{56} +3.69919i q^{57} +(-7.26231 - 6.11796i) q^{58} -3.59059i q^{59} +(1.43975 + 4.23404i) q^{60} -5.08563 q^{61} +(9.39281 - 11.1497i) q^{62} +(0.795986 - 2.52317i) q^{63} +(3.91870 + 6.97451i) q^{64} +(0.692939 + 4.37330i) q^{65} +(1.18481 - 1.40643i) q^{66} +2.27909i q^{67} +(1.90856 + 11.0763i) q^{68} -7.46227 q^{69} +(-5.53106 - 6.27753i) q^{70} +7.30396i q^{71} +(2.44118 + 1.42851i) q^{72} -8.44901 q^{73} +(-1.77157 + 2.10294i) q^{74} +(4.75509 - 1.54567i) q^{75} +(7.29093 - 1.25630i) q^{76} +(-1.03506 + 3.28101i) q^{77} +(2.14174 + 1.80426i) q^{78} +7.73532i q^{79} +(7.85615 - 4.27562i) q^{80} +1.00000 q^{81} +(2.92516 + 2.46423i) q^{82} +6.73907 q^{83} +(-5.24339 - 0.711945i) q^{84} +(12.4114 - 1.96655i) q^{85} +(6.26109 + 5.27451i) q^{86} +6.71456i q^{87} +(-3.17439 - 1.85757i) q^{88} -2.02588i q^{89} +(1.63381 - 2.70752i) q^{90} +(-4.99639 - 1.57621i) q^{91} +(2.53430 + 14.7078i) q^{92} -10.3088 q^{93} +(10.4488 + 8.80233i) q^{94} +(-1.29447 - 8.16972i) q^{95} +(1.98648 - 5.29659i) q^{96} -1.76197 q^{97} +(9.56795 - 2.54055i) q^{98} -1.30035 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 48 q^{3} + 48 q^{9} + 8 q^{10} - 2 q^{14} + 8 q^{16} + 4 q^{20} + 48 q^{27} + 14 q^{28} + 8 q^{30} + 8 q^{35} - 12 q^{38} + 8 q^{40} - 2 q^{42} + 4 q^{44} - 8 q^{46} + 8 q^{48} - 12 q^{50} - 36 q^{52}+ \cdots + 40 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/840\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(281\) \(337\) \(421\) \(631\)
\(\chi(n)\) \(-1\) \(1\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.911149 + 1.08158i −0.644280 + 0.764790i
\(3\) 1.00000 0.577350
\(4\) −0.339615 1.97095i −0.169807 0.985477i
\(5\) −2.20852 + 0.349934i −0.987679 + 0.156495i
\(6\) −0.911149 + 1.08158i −0.371975 + 0.441552i
\(7\) 0.795986 2.52317i 0.300854 0.953670i
\(8\) 2.44118 + 1.42851i 0.863087 + 0.505056i
\(9\) 1.00000 0.333333
\(10\) 1.63381 2.70752i 0.516655 0.856193i
\(11\) −1.30035 −0.392071 −0.196035 0.980597i \(-0.562807\pi\)
−0.196035 + 0.980597i \(0.562807\pi\)
\(12\) −0.339615 1.97095i −0.0980384 0.568966i
\(13\) 1.98020i 0.549208i −0.961557 0.274604i \(-0.911453\pi\)
0.961557 0.274604i \(-0.0885468\pi\)
\(14\) 2.00374 + 3.15991i 0.535523 + 0.844521i
\(15\) −2.20852 + 0.349934i −0.570237 + 0.0903526i
\(16\) −3.76932 + 1.33873i −0.942331 + 0.334683i
\(17\) −5.61979 −1.36300 −0.681499 0.731819i \(-0.738672\pi\)
−0.681499 + 0.731819i \(0.738672\pi\)
\(18\) −0.911149 + 1.08158i −0.214760 + 0.254930i
\(19\) 3.69919i 0.848652i 0.905510 + 0.424326i \(0.139489\pi\)
−0.905510 + 0.424326i \(0.860511\pi\)
\(20\) 1.43975 + 4.23404i 0.321938 + 0.946761i
\(21\) 0.795986 2.52317i 0.173698 0.550602i
\(22\) 1.18481 1.40643i 0.252603 0.299852i
\(23\) −7.46227 −1.55599 −0.777996 0.628270i \(-0.783763\pi\)
−0.777996 + 0.628270i \(0.783763\pi\)
\(24\) 2.44118 + 1.42851i 0.498303 + 0.291594i
\(25\) 4.75509 1.54567i 0.951018 0.309134i
\(26\) 2.14174 + 1.80426i 0.420029 + 0.353844i
\(27\) 1.00000 0.192450
\(28\) −5.24339 0.711945i −0.990907 0.134545i
\(29\) 6.71456i 1.24686i 0.781878 + 0.623431i \(0.214262\pi\)
−0.781878 + 0.623431i \(0.785738\pi\)
\(30\) 1.63381 2.70752i 0.298291 0.494324i
\(31\) −10.3088 −1.85151 −0.925754 0.378128i \(-0.876568\pi\)
−0.925754 + 0.378128i \(0.876568\pi\)
\(32\) 1.98648 5.29659i 0.351163 0.936315i
\(33\) −1.30035 −0.226362
\(34\) 5.12046 6.07823i 0.878152 1.04241i
\(35\) −0.875004 + 5.85101i −0.147903 + 0.989002i
\(36\) −0.339615 1.97095i −0.0566025 0.328492i
\(37\) 1.94433 0.319645 0.159823 0.987146i \(-0.448908\pi\)
0.159823 + 0.987146i \(0.448908\pi\)
\(38\) −4.00095 3.37051i −0.649040 0.546769i
\(39\) 1.98020i 0.317086i
\(40\) −5.89127 2.30065i −0.931491 0.363764i
\(41\) 2.70453i 0.422377i −0.977445 0.211189i \(-0.932267\pi\)
0.977445 0.211189i \(-0.0677335\pi\)
\(42\) 2.00374 + 3.15991i 0.309184 + 0.487584i
\(43\) 5.78886i 0.882792i −0.897312 0.441396i \(-0.854483\pi\)
0.897312 0.441396i \(-0.145517\pi\)
\(44\) 0.441619 + 2.56293i 0.0665765 + 0.386377i
\(45\) −2.20852 + 0.349934i −0.329226 + 0.0521651i
\(46\) 6.79924 8.07102i 1.00249 1.19001i
\(47\) 9.66070i 1.40916i −0.709626 0.704579i \(-0.751136\pi\)
0.709626 0.704579i \(-0.248864\pi\)
\(48\) −3.76932 + 1.33873i −0.544055 + 0.193229i
\(49\) −5.73281 4.01682i −0.818973 0.573832i
\(50\) −2.66084 + 6.55133i −0.376299 + 0.926498i
\(51\) −5.61979 −0.786927
\(52\) −3.90288 + 0.672505i −0.541232 + 0.0932597i
\(53\) −1.66702 −0.228983 −0.114492 0.993424i \(-0.536524\pi\)
−0.114492 + 0.993424i \(0.536524\pi\)
\(54\) −0.911149 + 1.08158i −0.123992 + 0.147184i
\(55\) 2.87185 0.455037i 0.387240 0.0613572i
\(56\) 5.54753 5.02244i 0.741320 0.671152i
\(57\) 3.69919i 0.489969i
\(58\) −7.26231 6.11796i −0.953588 0.803328i
\(59\) 3.59059i 0.467455i −0.972302 0.233727i \(-0.924908\pi\)
0.972302 0.233727i \(-0.0750924\pi\)
\(60\) 1.43975 + 4.23404i 0.185871 + 0.546613i
\(61\) −5.08563 −0.651149 −0.325574 0.945516i \(-0.605558\pi\)
−0.325574 + 0.945516i \(0.605558\pi\)
\(62\) 9.39281 11.1497i 1.19289 1.41601i
\(63\) 0.795986 2.52317i 0.100285 0.317890i
\(64\) 3.91870 + 6.97451i 0.489837 + 0.871814i
\(65\) 0.692939 + 4.37330i 0.0859485 + 0.542441i
\(66\) 1.18481 1.40643i 0.145840 0.173119i
\(67\) 2.27909i 0.278435i 0.990262 + 0.139218i \(0.0444588\pi\)
−0.990262 + 0.139218i \(0.955541\pi\)
\(68\) 1.90856 + 11.0763i 0.231447 + 1.34320i
\(69\) −7.46227 −0.898352
\(70\) −5.53106 6.27753i −0.661088 0.750308i
\(71\) 7.30396i 0.866821i 0.901197 + 0.433410i \(0.142690\pi\)
−0.901197 + 0.433410i \(0.857310\pi\)
\(72\) 2.44118 + 1.42851i 0.287696 + 0.168352i
\(73\) −8.44901 −0.988882 −0.494441 0.869211i \(-0.664627\pi\)
−0.494441 + 0.869211i \(0.664627\pi\)
\(74\) −1.77157 + 2.10294i −0.205941 + 0.244461i
\(75\) 4.75509 1.54567i 0.549071 0.178479i
\(76\) 7.29093 1.25630i 0.836327 0.144107i
\(77\) −1.03506 + 3.28101i −0.117956 + 0.373906i
\(78\) 2.14174 + 1.80426i 0.242504 + 0.204292i
\(79\) 7.73532i 0.870292i 0.900360 + 0.435146i \(0.143303\pi\)
−0.900360 + 0.435146i \(0.856697\pi\)
\(80\) 7.85615 4.27562i 0.878344 0.478029i
\(81\) 1.00000 0.111111
\(82\) 2.92516 + 2.46423i 0.323030 + 0.272129i
\(83\) 6.73907 0.739709 0.369854 0.929090i \(-0.379408\pi\)
0.369854 + 0.929090i \(0.379408\pi\)
\(84\) −5.24339 0.711945i −0.572101 0.0776795i
\(85\) 12.4114 1.96655i 1.34620 0.213303i
\(86\) 6.26109 + 5.27451i 0.675151 + 0.568765i
\(87\) 6.71456i 0.719876i
\(88\) −3.17439 1.85757i −0.338391 0.198018i
\(89\) 2.02588i 0.214743i −0.994219 0.107371i \(-0.965757\pi\)
0.994219 0.107371i \(-0.0342434\pi\)
\(90\) 1.63381 2.70752i 0.172218 0.285398i
\(91\) −4.99639 1.57621i −0.523763 0.165232i
\(92\) 2.53430 + 14.7078i 0.264219 + 1.53339i
\(93\) −10.3088 −1.06897
\(94\) 10.4488 + 8.80233i 1.07771 + 0.907891i
\(95\) −1.29447 8.16972i −0.132810 0.838195i
\(96\) 1.98648 5.29659i 0.202744 0.540581i
\(97\) −1.76197 −0.178901 −0.0894506 0.995991i \(-0.528511\pi\)
−0.0894506 + 0.995991i \(0.528511\pi\)
\(98\) 9.56795 2.54055i 0.966509 0.256634i
\(99\) −1.30035 −0.130690
\(100\) −4.66135 8.84714i −0.466135 0.884714i
\(101\) −2.52420 −0.251168 −0.125584 0.992083i \(-0.540080\pi\)
−0.125584 + 0.992083i \(0.540080\pi\)
\(102\) 5.12046 6.07823i 0.507001 0.601834i
\(103\) 13.8685i 1.36651i −0.730181 0.683254i \(-0.760564\pi\)
0.730181 0.683254i \(-0.239436\pi\)
\(104\) 2.82874 4.83402i 0.277381 0.474014i
\(105\) −0.875004 + 5.85101i −0.0853917 + 0.571001i
\(106\) 1.51891 1.80301i 0.147529 0.175124i
\(107\) 8.20915i 0.793609i −0.917903 0.396804i \(-0.870119\pi\)
0.917903 0.396804i \(-0.129881\pi\)
\(108\) −0.339615 1.97095i −0.0326795 0.189655i
\(109\) 9.34566i 0.895152i −0.894246 0.447576i \(-0.852287\pi\)
0.894246 0.447576i \(-0.147713\pi\)
\(110\) −2.12452 + 3.52073i −0.202565 + 0.335688i
\(111\) 1.94433 0.184547
\(112\) 0.377523 + 10.5763i 0.0356726 + 0.999364i
\(113\) 12.5374i 1.17942i −0.807614 0.589711i \(-0.799242\pi\)
0.807614 0.589711i \(-0.200758\pi\)
\(114\) −4.00095 3.37051i −0.374724 0.315677i
\(115\) 16.4806 2.61130i 1.53682 0.243505i
\(116\) 13.2341 2.28036i 1.22875 0.211727i
\(117\) 1.98020i 0.183069i
\(118\) 3.88350 + 3.27156i 0.357505 + 0.301172i
\(119\) −4.47327 + 14.1797i −0.410064 + 1.29985i
\(120\) −5.89127 2.30065i −0.537797 0.210019i
\(121\) −9.30909 −0.846281
\(122\) 4.63377 5.50050i 0.419522 0.497992i
\(123\) 2.70453i 0.243860i
\(124\) 3.50101 + 20.3181i 0.314400 + 1.82462i
\(125\) −9.96082 + 5.07761i −0.890923 + 0.454155i
\(126\) 2.00374 + 3.15991i 0.178508 + 0.281507i
\(127\) 17.2027 1.52649 0.763247 0.646107i \(-0.223604\pi\)
0.763247 + 0.646107i \(0.223604\pi\)
\(128\) −11.1140 2.11645i −0.982347 0.187070i
\(129\) 5.78886i 0.509680i
\(130\) −5.36143 3.23526i −0.470229 0.283751i
\(131\) 14.1750i 1.23847i −0.785205 0.619236i \(-0.787442\pi\)
0.785205 0.619236i \(-0.212558\pi\)
\(132\) 0.441619 + 2.56293i 0.0384380 + 0.223075i
\(133\) 9.33369 + 2.94450i 0.809334 + 0.255321i
\(134\) −2.46501 2.07659i −0.212945 0.179390i
\(135\) −2.20852 + 0.349934i −0.190079 + 0.0301175i
\(136\) −13.7189 8.02794i −1.17639 0.688390i
\(137\) 18.5295i 1.58308i 0.611116 + 0.791541i \(0.290721\pi\)
−0.611116 + 0.791541i \(0.709279\pi\)
\(138\) 6.79924 8.07102i 0.578790 0.687051i
\(139\) 14.7223i 1.24873i 0.781134 + 0.624363i \(0.214641\pi\)
−0.781134 + 0.624363i \(0.785359\pi\)
\(140\) 11.8292 0.262498i 0.999754 0.0221852i
\(141\) 9.66070i 0.813577i
\(142\) −7.89979 6.65500i −0.662936 0.558475i
\(143\) 2.57495i 0.215328i
\(144\) −3.76932 + 1.33873i −0.314110 + 0.111561i
\(145\) −2.34965 14.8292i −0.195128 1.23150i
\(146\) 7.69831 9.13825i 0.637117 0.756287i
\(147\) −5.73281 4.01682i −0.472834 0.331302i
\(148\) −0.660322 3.83218i −0.0542781 0.315003i
\(149\) 17.4926i 1.43305i 0.697560 + 0.716526i \(0.254269\pi\)
−0.697560 + 0.716526i \(0.745731\pi\)
\(150\) −2.66084 + 6.55133i −0.217256 + 0.534914i
\(151\) 1.12118i 0.0912400i 0.998959 + 0.0456200i \(0.0145263\pi\)
−0.998959 + 0.0456200i \(0.985474\pi\)
\(152\) −5.28434 + 9.03037i −0.428616 + 0.732460i
\(153\) −5.61979 −0.454333
\(154\) −2.60557 4.10899i −0.209963 0.331112i
\(155\) 22.7671 3.60738i 1.82869 0.289752i
\(156\) −3.90288 + 0.672505i −0.312481 + 0.0538435i
\(157\) 14.8336i 1.18385i 0.805994 + 0.591923i \(0.201631\pi\)
−0.805994 + 0.591923i \(0.798369\pi\)
\(158\) −8.36634 7.04803i −0.665590 0.560711i
\(159\) −1.66702 −0.132203
\(160\) −2.53371 + 12.3928i −0.200307 + 0.979733i
\(161\) −5.93986 + 18.8286i −0.468127 + 1.48390i
\(162\) −0.911149 + 1.08158i −0.0715866 + 0.0849767i
\(163\) 12.8788i 1.00874i −0.863486 0.504372i \(-0.831724\pi\)
0.863486 0.504372i \(-0.168276\pi\)
\(164\) −5.33052 + 0.918500i −0.416243 + 0.0717228i
\(165\) 2.87185 0.455037i 0.223573 0.0354246i
\(166\) −6.14029 + 7.28881i −0.476579 + 0.565722i
\(167\) 8.12780i 0.628948i −0.949266 0.314474i \(-0.898172\pi\)
0.949266 0.314474i \(-0.101828\pi\)
\(168\) 5.54753 5.02244i 0.428001 0.387490i
\(169\) 9.07881 0.698370
\(170\) −9.18165 + 15.2157i −0.704200 + 1.16699i
\(171\) 3.69919i 0.282884i
\(172\) −11.4096 + 1.96598i −0.869972 + 0.149905i
\(173\) 23.5073i 1.78723i 0.448835 + 0.893615i \(0.351839\pi\)
−0.448835 + 0.893615i \(0.648161\pi\)
\(174\) −7.26231 6.11796i −0.550554 0.463802i
\(175\) −0.115007 13.2283i −0.00869372 0.999962i
\(176\) 4.90144 1.74082i 0.369460 0.131219i
\(177\) 3.59059i 0.269885i
\(178\) 2.19114 + 1.84588i 0.164233 + 0.138354i
\(179\) 21.4655 1.60441 0.802204 0.597050i \(-0.203661\pi\)
0.802204 + 0.597050i \(0.203661\pi\)
\(180\) 1.43975 + 4.23404i 0.107313 + 0.315587i
\(181\) −1.03564 −0.0769787 −0.0384893 0.999259i \(-0.512255\pi\)
−0.0384893 + 0.999259i \(0.512255\pi\)
\(182\) 6.25724 3.96781i 0.463818 0.294114i
\(183\) −5.08563 −0.375941
\(184\) −18.2167 10.6600i −1.34296 0.785862i
\(185\) −4.29408 + 0.680385i −0.315707 + 0.0500229i
\(186\) 9.39281 11.1497i 0.688714 0.817536i
\(187\) 7.30769 0.534392
\(188\) −19.0408 + 3.28092i −1.38869 + 0.239285i
\(189\) 0.795986 2.52317i 0.0578995 0.183534i
\(190\) 10.0156 + 6.04376i 0.726610 + 0.438460i
\(191\) 25.2875i 1.82974i −0.403748 0.914870i \(-0.632293\pi\)
0.403748 0.914870i \(-0.367707\pi\)
\(192\) 3.91870 + 6.97451i 0.282808 + 0.503342i
\(193\) 8.75697i 0.630341i 0.949035 + 0.315170i \(0.102062\pi\)
−0.949035 + 0.315170i \(0.897938\pi\)
\(194\) 1.60542 1.90571i 0.115262 0.136822i
\(195\) 0.692939 + 4.37330i 0.0496224 + 0.313179i
\(196\) −5.97002 + 12.6633i −0.426430 + 0.904520i
\(197\) −12.2406 −0.872109 −0.436054 0.899920i \(-0.643624\pi\)
−0.436054 + 0.899920i \(0.643624\pi\)
\(198\) 1.18481 1.40643i 0.0842010 0.0999506i
\(199\) −1.03389 −0.0732903 −0.0366452 0.999328i \(-0.511667\pi\)
−0.0366452 + 0.999328i \(0.511667\pi\)
\(200\) 13.8160 + 3.01946i 0.976941 + 0.213508i
\(201\) 2.27909i 0.160755i
\(202\) 2.29993 2.73012i 0.161822 0.192091i
\(203\) 16.9420 + 5.34470i 1.18910 + 0.375124i
\(204\) 1.90856 + 11.0763i 0.133626 + 0.775499i
\(205\) 0.946409 + 5.97301i 0.0661000 + 0.417173i
\(206\) 14.9999 + 12.6363i 1.04509 + 0.880413i
\(207\) −7.46227 −0.518664
\(208\) 2.65095 + 7.46401i 0.183811 + 0.517536i
\(209\) 4.81024i 0.332731i
\(210\) −5.53106 6.27753i −0.381679 0.433191i
\(211\) −15.6365 −1.07646 −0.538231 0.842797i \(-0.680907\pi\)
−0.538231 + 0.842797i \(0.680907\pi\)
\(212\) 0.566146 + 3.28563i 0.0388830 + 0.225658i
\(213\) 7.30396i 0.500459i
\(214\) 8.87883 + 7.47976i 0.606944 + 0.511306i
\(215\) 2.02572 + 12.7848i 0.138153 + 0.871915i
\(216\) 2.44118 + 1.42851i 0.166101 + 0.0971981i
\(217\) −8.20562 + 26.0108i −0.557034 + 1.76573i
\(218\) 10.1080 + 8.51529i 0.684603 + 0.576728i
\(219\) −8.44901 −0.570931
\(220\) −1.87218 5.50574i −0.126222 0.371197i
\(221\) 11.1283i 0.748570i
\(222\) −1.77157 + 2.10294i −0.118900 + 0.141140i
\(223\) 10.1557i 0.680077i 0.940412 + 0.340039i \(0.110440\pi\)
−0.940412 + 0.340039i \(0.889560\pi\)
\(224\) −11.7830 9.22824i −0.787286 0.616588i
\(225\) 4.75509 1.54567i 0.317006 0.103045i
\(226\) 13.5602 + 11.4235i 0.902011 + 0.759878i
\(227\) 12.4827 0.828509 0.414254 0.910161i \(-0.364042\pi\)
0.414254 + 0.910161i \(0.364042\pi\)
\(228\) 7.29093 1.25630i 0.482854 0.0832004i
\(229\) 9.62470 0.636018 0.318009 0.948088i \(-0.396986\pi\)
0.318009 + 0.948088i \(0.396986\pi\)
\(230\) −12.1919 + 20.2043i −0.803911 + 1.33223i
\(231\) −1.03506 + 3.28101i −0.0681020 + 0.215875i
\(232\) −9.59184 + 16.3914i −0.629735 + 1.07615i
\(233\) 21.1728i 1.38707i −0.720421 0.693537i \(-0.756051\pi\)
0.720421 0.693537i \(-0.243949\pi\)
\(234\) 2.14174 + 1.80426i 0.140010 + 0.117948i
\(235\) 3.38061 + 21.3358i 0.220526 + 1.39179i
\(236\) −7.07689 + 1.21942i −0.460666 + 0.0793773i
\(237\) 7.73532i 0.502463i
\(238\) −11.2606 17.7580i −0.729917 1.15108i
\(239\) 11.4510i 0.740703i −0.928892 0.370351i \(-0.879237\pi\)
0.928892 0.370351i \(-0.120763\pi\)
\(240\) 7.85615 4.27562i 0.507112 0.275990i
\(241\) 13.7870i 0.888101i 0.896002 + 0.444051i \(0.146459\pi\)
−0.896002 + 0.444051i \(0.853541\pi\)
\(242\) 8.48197 10.0685i 0.545241 0.647227i
\(243\) 1.00000 0.0641500
\(244\) 1.72716 + 10.0236i 0.110570 + 0.641692i
\(245\) 14.0666 + 6.86511i 0.898684 + 0.438596i
\(246\) 2.92516 + 2.46423i 0.186501 + 0.157114i
\(247\) 7.32512 0.466086
\(248\) −25.1655 14.7262i −1.59801 0.935115i
\(249\) 6.73907 0.427071
\(250\) 3.58397 15.3998i 0.226670 0.973972i
\(251\) 20.7067i 1.30700i 0.756927 + 0.653499i \(0.226700\pi\)
−0.756927 + 0.653499i \(0.773300\pi\)
\(252\) −5.24339 0.711945i −0.330302 0.0448483i
\(253\) 9.70357 0.610058
\(254\) −15.6742 + 18.6060i −0.983488 + 1.16745i
\(255\) 12.4114 1.96655i 0.777231 0.123150i
\(256\) 12.4156 10.0922i 0.775975 0.630764i
\(257\) −6.02637 −0.375915 −0.187957 0.982177i \(-0.560187\pi\)
−0.187957 + 0.982177i \(0.560187\pi\)
\(258\) 6.26109 + 5.27451i 0.389798 + 0.328377i
\(259\) 1.54766 4.90587i 0.0961666 0.304836i
\(260\) 8.38425 2.85099i 0.519969 0.176811i
\(261\) 6.71456i 0.415621i
\(262\) 15.3313 + 12.9155i 0.947172 + 0.797923i
\(263\) −3.54056 −0.218320 −0.109160 0.994024i \(-0.534816\pi\)
−0.109160 + 0.994024i \(0.534816\pi\)
\(264\) −3.17439 1.85757i −0.195370 0.114326i
\(265\) 3.68165 0.583348i 0.226162 0.0358348i
\(266\) −11.6891 + 7.41222i −0.716704 + 0.454472i
\(267\) 2.02588i 0.123982i
\(268\) 4.49199 0.774014i 0.274392 0.0472804i
\(269\) 21.7878 1.32842 0.664212 0.747544i \(-0.268767\pi\)
0.664212 + 0.747544i \(0.268767\pi\)
\(270\) 1.63381 2.70752i 0.0994304 0.164775i
\(271\) 13.3149 0.808824 0.404412 0.914577i \(-0.367476\pi\)
0.404412 + 0.914577i \(0.367476\pi\)
\(272\) 21.1828 7.52338i 1.28440 0.456172i
\(273\) −4.99639 1.57621i −0.302395 0.0953966i
\(274\) −20.0411 16.8831i −1.21073 1.01995i
\(275\) −6.18329 + 2.00991i −0.372866 + 0.121202i
\(276\) 2.53430 + 14.7078i 0.152547 + 0.885305i
\(277\) −1.46216 −0.0878528 −0.0439264 0.999035i \(-0.513987\pi\)
−0.0439264 + 0.999035i \(0.513987\pi\)
\(278\) −15.9232 13.4142i −0.955013 0.804529i
\(279\) −10.3088 −0.617169
\(280\) −10.4943 + 13.0334i −0.627154 + 0.778895i
\(281\) −27.3986 −1.63446 −0.817230 0.576311i \(-0.804492\pi\)
−0.817230 + 0.576311i \(0.804492\pi\)
\(282\) 10.4488 + 8.80233i 0.622216 + 0.524171i
\(283\) −13.3187 −0.791717 −0.395858 0.918312i \(-0.629553\pi\)
−0.395858 + 0.918312i \(0.629553\pi\)
\(284\) 14.3958 2.48053i 0.854232 0.147193i
\(285\) −1.29447 8.16972i −0.0766778 0.483932i
\(286\) −2.78501 2.34617i −0.164681 0.138732i
\(287\) −6.82401 2.15277i −0.402809 0.127074i
\(288\) 1.98648 5.29659i 0.117054 0.312105i
\(289\) 14.5820 0.857764
\(290\) 18.1798 + 10.9703i 1.06756 + 0.644198i
\(291\) −1.76197 −0.103289
\(292\) 2.86941 + 16.6526i 0.167920 + 0.974521i
\(293\) 8.59973i 0.502402i −0.967935 0.251201i \(-0.919175\pi\)
0.967935 0.251201i \(-0.0808255\pi\)
\(294\) 9.56795 2.54055i 0.558014 0.148168i
\(295\) 1.25647 + 7.92988i 0.0731545 + 0.461695i
\(296\) 4.74644 + 2.77750i 0.275881 + 0.161439i
\(297\) −1.30035 −0.0754540
\(298\) −18.9196 15.9384i −1.09598 0.923287i
\(299\) 14.7768i 0.854563i
\(300\) −4.66135 8.84714i −0.269123 0.510790i
\(301\) −14.6063 4.60785i −0.841893 0.265592i
\(302\) −1.21264 1.02156i −0.0697794 0.0587841i
\(303\) −2.52420 −0.145012
\(304\) −4.95222 13.9434i −0.284029 0.799711i
\(305\) 11.2317 1.77964i 0.643126 0.101902i
\(306\) 5.12046 6.07823i 0.292717 0.347469i
\(307\) 0.730484 0.0416909 0.0208455 0.999783i \(-0.493364\pi\)
0.0208455 + 0.999783i \(0.493364\pi\)
\(308\) 6.81825 + 0.925778i 0.388506 + 0.0527511i
\(309\) 13.8685i 0.788953i
\(310\) −16.8425 + 27.9112i −0.956591 + 1.58525i
\(311\) 3.97387 0.225337 0.112669 0.993633i \(-0.464060\pi\)
0.112669 + 0.993633i \(0.464060\pi\)
\(312\) 2.82874 4.83402i 0.160146 0.273672i
\(313\) 23.5606 1.33172 0.665861 0.746076i \(-0.268065\pi\)
0.665861 + 0.746076i \(0.268065\pi\)
\(314\) −16.0436 13.5156i −0.905394 0.762728i
\(315\) −0.875004 + 5.85101i −0.0493009 + 0.329667i
\(316\) 15.2460 2.62703i 0.857653 0.147782i
\(317\) −19.6502 −1.10367 −0.551833 0.833955i \(-0.686071\pi\)
−0.551833 + 0.833955i \(0.686071\pi\)
\(318\) 1.51891 1.80301i 0.0851760 0.101108i
\(319\) 8.73129i 0.488858i
\(320\) −11.0951 14.0320i −0.620236 0.784415i
\(321\) 8.20915i 0.458190i
\(322\) −14.9525 23.5801i −0.833269 1.31407i
\(323\) 20.7886i 1.15671i
\(324\) −0.339615 1.97095i −0.0188675 0.109497i
\(325\) −3.06073 9.41603i −0.169779 0.522307i
\(326\) 13.9294 + 11.7345i 0.771477 + 0.649913i
\(327\) 9.34566i 0.516816i
\(328\) 3.86347 6.60225i 0.213324 0.364548i
\(329\) −24.3756 7.68978i −1.34387 0.423951i
\(330\) −2.12452 + 3.52073i −0.116951 + 0.193810i
\(331\) −23.9573 −1.31681 −0.658406 0.752663i \(-0.728769\pi\)
−0.658406 + 0.752663i \(0.728769\pi\)
\(332\) −2.28869 13.2824i −0.125608 0.728966i
\(333\) 1.94433 0.106548
\(334\) 8.79084 + 7.40564i 0.481013 + 0.405218i
\(335\) −0.797532 5.03341i −0.0435738 0.275005i
\(336\) 0.377523 + 10.5763i 0.0205956 + 0.576983i
\(337\) 29.3836i 1.60063i −0.599583 0.800313i \(-0.704667\pi\)
0.599583 0.800313i \(-0.295333\pi\)
\(338\) −8.27215 + 9.81943i −0.449946 + 0.534107i
\(339\) 12.5374i 0.680940i
\(340\) −8.09108 23.7944i −0.438800 1.29043i
\(341\) 13.4050 0.725922
\(342\) −4.00095 3.37051i −0.216347 0.182256i
\(343\) −14.6984 + 11.2675i −0.793638 + 0.608390i
\(344\) 8.26946 14.1316i 0.445859 0.761926i
\(345\) 16.4806 2.61130i 0.887283 0.140588i
\(346\) −25.4250 21.4187i −1.36686 1.15148i
\(347\) 8.16924i 0.438548i −0.975663 0.219274i \(-0.929631\pi\)
0.975663 0.219274i \(-0.0703688\pi\)
\(348\) 13.2341 2.28036i 0.709422 0.122240i
\(349\) 16.5595 0.886408 0.443204 0.896421i \(-0.353842\pi\)
0.443204 + 0.896421i \(0.353842\pi\)
\(350\) 14.4122 + 11.9285i 0.770362 + 0.637606i
\(351\) 1.98020i 0.105695i
\(352\) −2.58312 + 6.88743i −0.137681 + 0.367101i
\(353\) −16.7033 −0.889026 −0.444513 0.895772i \(-0.646623\pi\)
−0.444513 + 0.895772i \(0.646623\pi\)
\(354\) 3.88350 + 3.27156i 0.206406 + 0.173882i
\(355\) −2.55590 16.1309i −0.135653 0.856141i
\(356\) −3.99292 + 0.688019i −0.211624 + 0.0364649i
\(357\) −4.47327 + 14.1797i −0.236751 + 0.750469i
\(358\) −19.5583 + 23.2166i −1.03369 + 1.22704i
\(359\) 20.8523i 1.10054i −0.834985 0.550272i \(-0.814524\pi\)
0.834985 0.550272i \(-0.185476\pi\)
\(360\) −5.89127 2.30065i −0.310497 0.121255i
\(361\) 5.31602 0.279791
\(362\) 0.943624 1.12013i 0.0495958 0.0588725i
\(363\) −9.30909 −0.488600
\(364\) −1.40979 + 10.3830i −0.0738932 + 0.544215i
\(365\) 18.6598 2.95660i 0.976698 0.154755i
\(366\) 4.63377 5.50050i 0.242211 0.287516i
\(367\) 17.8487i 0.931693i −0.884866 0.465847i \(-0.845750\pi\)
0.884866 0.465847i \(-0.154250\pi\)
\(368\) 28.1277 9.98997i 1.46626 0.520763i
\(369\) 2.70453i 0.140792i
\(370\) 3.17665 5.26430i 0.165146 0.273678i
\(371\) −1.32693 + 4.20619i −0.0688906 + 0.218374i
\(372\) 3.50101 + 20.3181i 0.181519 + 1.05344i
\(373\) 20.3709 1.05477 0.527384 0.849627i \(-0.323173\pi\)
0.527384 + 0.849627i \(0.323173\pi\)
\(374\) −6.65840 + 7.90383i −0.344298 + 0.408697i
\(375\) −9.96082 + 5.07761i −0.514374 + 0.262206i
\(376\) 13.8004 23.5835i 0.711703 1.21622i
\(377\) 13.2962 0.684787
\(378\) 2.00374 + 3.15991i 0.103061 + 0.162528i
\(379\) 33.2524 1.70806 0.854032 0.520221i \(-0.174150\pi\)
0.854032 + 0.520221i \(0.174150\pi\)
\(380\) −15.6625 + 5.32590i −0.803470 + 0.273213i
\(381\) 17.2027 0.881321
\(382\) 27.3504 + 23.0407i 1.39937 + 1.17886i
\(383\) 22.1178i 1.13017i 0.825034 + 0.565083i \(0.191156\pi\)
−0.825034 + 0.565083i \(0.808844\pi\)
\(384\) −11.1140 2.11645i −0.567158 0.108005i
\(385\) 1.13781 7.60837i 0.0579883 0.387759i
\(386\) −9.47134 7.97891i −0.482078 0.406116i
\(387\) 5.78886i 0.294264i
\(388\) 0.598392 + 3.47277i 0.0303788 + 0.176303i
\(389\) 16.9019i 0.856959i −0.903551 0.428480i \(-0.859049\pi\)
0.903551 0.428480i \(-0.140951\pi\)
\(390\) −5.36143 3.23526i −0.271487 0.163824i
\(391\) 41.9364 2.12081
\(392\) −8.25673 17.9952i −0.417028 0.908894i
\(393\) 14.1750i 0.715033i
\(394\) 11.1530 13.2392i 0.561882 0.666980i
\(395\) −2.70685 17.0836i −0.136197 0.859569i
\(396\) 0.441619 + 2.56293i 0.0221922 + 0.128792i
\(397\) 13.6211i 0.683625i −0.939768 0.341813i \(-0.888959\pi\)
0.939768 0.341813i \(-0.111041\pi\)
\(398\) 0.942025 1.11823i 0.0472195 0.0560517i
\(399\) 9.33369 + 2.94450i 0.467269 + 0.147409i
\(400\) −15.8542 + 12.1919i −0.792712 + 0.609596i
\(401\) −17.0852 −0.853196 −0.426598 0.904441i \(-0.640288\pi\)
−0.426598 + 0.904441i \(0.640288\pi\)
\(402\) −2.46501 2.07659i −0.122944 0.103571i
\(403\) 20.4134i 1.01686i
\(404\) 0.857257 + 4.97509i 0.0426502 + 0.247520i
\(405\) −2.20852 + 0.349934i −0.109742 + 0.0173884i
\(406\) −21.2174 + 13.4543i −1.05300 + 0.667723i
\(407\) −2.52831 −0.125323
\(408\) −13.7189 8.02794i −0.679186 0.397442i
\(409\) 19.1043i 0.944646i 0.881426 + 0.472323i \(0.156584\pi\)
−0.881426 + 0.472323i \(0.843416\pi\)
\(410\) −7.32259 4.41869i −0.361637 0.218224i
\(411\) 18.5295i 0.913993i
\(412\) −27.3342 + 4.70996i −1.34666 + 0.232043i
\(413\) −9.05968 2.85806i −0.445798 0.140636i
\(414\) 6.79924 8.07102i 0.334164 0.396669i
\(415\) −14.8833 + 2.35823i −0.730594 + 0.115761i
\(416\) −10.4883 3.93362i −0.514232 0.192861i
\(417\) 14.7223i 0.720952i
\(418\) 5.20264 + 4.38285i 0.254470 + 0.214372i
\(419\) 35.4795i 1.73329i −0.498926 0.866645i \(-0.666272\pi\)
0.498926 0.866645i \(-0.333728\pi\)
\(420\) 11.8292 0.262498i 0.577208 0.0128086i
\(421\) 17.0251i 0.829751i −0.909878 0.414875i \(-0.863825\pi\)
0.909878 0.414875i \(-0.136175\pi\)
\(422\) 14.2472 16.9121i 0.693542 0.823267i
\(423\) 9.66070i 0.469719i
\(424\) −4.06950 2.38136i −0.197632 0.115649i
\(425\) −26.7226 + 8.68633i −1.29624 + 0.421349i
\(426\) −7.89979 6.65500i −0.382746 0.322436i
\(427\) −4.04809 + 12.8319i −0.195901 + 0.620981i
\(428\) −16.1799 + 2.78795i −0.782083 + 0.134761i
\(429\) 2.57495i 0.124320i
\(430\) −15.6735 9.45788i −0.755841 0.456099i
\(431\) 21.6127i 1.04105i −0.853847 0.520524i \(-0.825737\pi\)
0.853847 0.520524i \(-0.174263\pi\)
\(432\) −3.76932 + 1.33873i −0.181352 + 0.0644097i
\(433\) −39.1417 −1.88103 −0.940515 0.339753i \(-0.889657\pi\)
−0.940515 + 0.339753i \(0.889657\pi\)
\(434\) −20.6561 32.5747i −0.991524 1.56364i
\(435\) −2.34965 14.8292i −0.112657 0.711007i
\(436\) −18.4199 + 3.17393i −0.882152 + 0.152004i
\(437\) 27.6043i 1.32049i
\(438\) 7.69831 9.13825i 0.367839 0.436643i
\(439\) 21.5089 1.02656 0.513282 0.858220i \(-0.328429\pi\)
0.513282 + 0.858220i \(0.328429\pi\)
\(440\) 7.66072 + 2.99165i 0.365210 + 0.142621i
\(441\) −5.73281 4.01682i −0.272991 0.191277i
\(442\) −12.0361 10.1395i −0.572499 0.482288i
\(443\) 19.5800i 0.930275i 0.885238 + 0.465138i \(0.153995\pi\)
−0.885238 + 0.465138i \(0.846005\pi\)
\(444\) −0.660322 3.83218i −0.0313375 0.181867i
\(445\) 0.708924 + 4.47419i 0.0336062 + 0.212097i
\(446\) −10.9842 9.25337i −0.520116 0.438160i
\(447\) 17.4926i 0.827373i
\(448\) 20.7171 4.33594i 0.978793 0.204854i
\(449\) −13.9204 −0.656945 −0.328473 0.944513i \(-0.606534\pi\)
−0.328473 + 0.944513i \(0.606534\pi\)
\(450\) −2.66084 + 6.55133i −0.125433 + 0.308833i
\(451\) 3.51685i 0.165602i
\(452\) −24.7107 + 4.25790i −1.16229 + 0.200275i
\(453\) 1.12118i 0.0526774i
\(454\) −11.3736 + 13.5010i −0.533791 + 0.633635i
\(455\) 11.5862 + 1.73268i 0.543168 + 0.0812294i
\(456\) −5.28434 + 9.03037i −0.247462 + 0.422886i
\(457\) 24.9640i 1.16776i 0.811838 + 0.583882i \(0.198467\pi\)
−0.811838 + 0.583882i \(0.801533\pi\)
\(458\) −8.76954 + 10.4099i −0.409774 + 0.486420i
\(459\) −5.61979 −0.262309
\(460\) −10.7438 31.5956i −0.500932 1.47315i
\(461\) 11.7567 0.547563 0.273781 0.961792i \(-0.411726\pi\)
0.273781 + 0.961792i \(0.411726\pi\)
\(462\) −2.60557 4.10899i −0.121222 0.191167i
\(463\) −6.94099 −0.322575 −0.161288 0.986907i \(-0.551565\pi\)
−0.161288 + 0.986907i \(0.551565\pi\)
\(464\) −8.98899 25.3093i −0.417303 1.17496i
\(465\) 22.7671 3.60738i 1.05580 0.167288i
\(466\) 22.9000 + 19.2915i 1.06082 + 0.893663i
\(467\) −33.2685 −1.53948 −0.769741 0.638356i \(-0.779615\pi\)
−0.769741 + 0.638356i \(0.779615\pi\)
\(468\) −3.90288 + 0.672505i −0.180411 + 0.0310866i
\(469\) 5.75055 + 1.81413i 0.265536 + 0.0837685i
\(470\) −26.1565 15.7837i −1.20651 0.728049i
\(471\) 14.8336i 0.683494i
\(472\) 5.12921 8.76527i 0.236091 0.403454i
\(473\) 7.52755i 0.346117i
\(474\) −8.36634 7.04803i −0.384279 0.323727i
\(475\) 5.71772 + 17.5900i 0.262347 + 0.807083i
\(476\) 29.4667 + 4.00098i 1.35061 + 0.183384i
\(477\) −1.66702 −0.0763277
\(478\) 12.3851 + 10.4336i 0.566482 + 0.477220i
\(479\) −10.8692 −0.496626 −0.248313 0.968680i \(-0.579876\pi\)
−0.248313 + 0.968680i \(0.579876\pi\)
\(480\) −2.53371 + 12.3928i −0.115647 + 0.565649i
\(481\) 3.85015i 0.175552i
\(482\) −14.9117 12.5620i −0.679211 0.572186i
\(483\) −5.93986 + 18.8286i −0.270273 + 0.856731i
\(484\) 3.16150 + 18.3478i 0.143705 + 0.833990i
\(485\) 3.89135 0.616574i 0.176697 0.0279972i
\(486\) −0.911149 + 1.08158i −0.0413306 + 0.0490613i
\(487\) 41.5766 1.88402 0.942008 0.335591i \(-0.108936\pi\)
0.942008 + 0.335591i \(0.108936\pi\)
\(488\) −12.4149 7.26490i −0.561998 0.328866i
\(489\) 12.8788i 0.582399i
\(490\) −20.2419 + 8.95900i −0.914438 + 0.404726i
\(491\) 24.8987 1.12366 0.561831 0.827252i \(-0.310097\pi\)
0.561831 + 0.827252i \(0.310097\pi\)
\(492\) −5.33052 + 0.918500i −0.240318 + 0.0414092i
\(493\) 37.7344i 1.69947i
\(494\) −6.67428 + 7.92268i −0.300290 + 0.356458i
\(495\) 2.87185 0.455037i 0.129080 0.0204524i
\(496\) 38.8570 13.8007i 1.74473 0.619668i
\(497\) 18.4292 + 5.81385i 0.826661 + 0.260787i
\(498\) −6.14029 + 7.28881i −0.275153 + 0.326620i
\(499\) −21.7174 −0.972206 −0.486103 0.873902i \(-0.661582\pi\)
−0.486103 + 0.873902i \(0.661582\pi\)
\(500\) 13.3906 + 17.9079i 0.598845 + 0.800865i
\(501\) 8.12780i 0.363123i
\(502\) −22.3959 18.8669i −0.999579 0.842072i
\(503\) 21.1888i 0.944760i −0.881395 0.472380i \(-0.843395\pi\)
0.881395 0.472380i \(-0.156605\pi\)
\(504\) 5.54753 5.02244i 0.247107 0.223717i
\(505\) 5.57475 0.883305i 0.248073 0.0393065i
\(506\) −8.84140 + 10.4952i −0.393048 + 0.466567i
\(507\) 9.07881 0.403204
\(508\) −5.84229 33.9057i −0.259210 1.50432i
\(509\) −19.4366 −0.861512 −0.430756 0.902468i \(-0.641753\pi\)
−0.430756 + 0.902468i \(0.641753\pi\)
\(510\) −9.18165 + 15.2157i −0.406570 + 0.673762i
\(511\) −6.72530 + 21.3183i −0.297510 + 0.943067i
\(512\) −0.396952 + 22.6239i −0.0175430 + 0.999846i
\(513\) 3.69919i 0.163323i
\(514\) 5.49092 6.51798i 0.242194 0.287496i
\(515\) 4.85307 + 30.6289i 0.213852 + 1.34967i
\(516\) −11.4096 + 1.96598i −0.502278 + 0.0865475i
\(517\) 12.5623i 0.552489i
\(518\) 3.89593 + 6.14389i 0.171177 + 0.269947i
\(519\) 23.5073i 1.03186i
\(520\) −4.55574 + 11.6659i −0.199782 + 0.511583i
\(521\) 13.2081i 0.578659i −0.957230 0.289329i \(-0.906568\pi\)
0.957230 0.289329i \(-0.0934323\pi\)
\(522\) −7.26231 6.11796i −0.317863 0.267776i
\(523\) −1.05251 −0.0460232 −0.0230116 0.999735i \(-0.507325\pi\)
−0.0230116 + 0.999735i \(0.507325\pi\)
\(524\) −27.9382 + 4.81403i −1.22049 + 0.210302i
\(525\) −0.115007 13.2283i −0.00501932 0.577328i
\(526\) 3.22598 3.82939i 0.140659 0.166969i
\(527\) 57.9330 2.52360
\(528\) 4.90144 1.74082i 0.213308 0.0757595i
\(529\) 32.6855 1.42111
\(530\) −2.72359 + 4.51350i −0.118305 + 0.196054i
\(531\) 3.59059i 0.155818i
\(532\) 2.63362 19.3963i 0.114182 0.840935i
\(533\) −5.35552 −0.231973
\(534\) 2.19114 + 1.84588i 0.0948201 + 0.0798790i
\(535\) 2.87266 + 18.1301i 0.124196 + 0.783831i
\(536\) −3.25572 + 5.56367i −0.140625 + 0.240314i
\(537\) 21.4655 0.926306
\(538\) −19.8519 + 23.5651i −0.855877 + 1.01597i
\(539\) 7.45467 + 5.22328i 0.321095 + 0.224983i
\(540\) 1.43975 + 4.23404i 0.0619569 + 0.182204i
\(541\) 34.3179i 1.47544i 0.675107 + 0.737720i \(0.264098\pi\)
−0.675107 + 0.737720i \(0.735902\pi\)
\(542\) −12.1319 + 14.4011i −0.521109 + 0.618580i
\(543\) −1.03564 −0.0444437
\(544\) −11.1636 + 29.7657i −0.478634 + 1.27619i
\(545\) 3.27036 + 20.6401i 0.140087 + 0.884123i
\(546\) 6.25724 3.96781i 0.267785 0.169807i
\(547\) 39.5446i 1.69080i −0.534131 0.845402i \(-0.679361\pi\)
0.534131 0.845402i \(-0.320639\pi\)
\(548\) 36.5208 6.29289i 1.56009 0.268819i
\(549\) −5.08563 −0.217050
\(550\) 3.46002 8.51903i 0.147536 0.363253i
\(551\) −24.8384 −1.05815
\(552\) −18.2167 10.6600i −0.775356 0.453718i
\(553\) 19.5176 + 6.15721i 0.829971 + 0.261831i
\(554\) 1.33225 1.58144i 0.0566018 0.0671890i
\(555\) −4.29408 + 0.680385i −0.182273 + 0.0288808i
\(556\) 29.0169 4.99990i 1.23059 0.212043i
\(557\) −12.2418 −0.518703 −0.259351 0.965783i \(-0.583509\pi\)
−0.259351 + 0.965783i \(0.583509\pi\)
\(558\) 9.39281 11.1497i 0.397629 0.472005i
\(559\) −11.4631 −0.484837
\(560\) −4.53476 23.2258i −0.191629 0.981468i
\(561\) 7.30769 0.308531
\(562\) 24.9642 29.6336i 1.05305 1.25002i
\(563\) 9.18710 0.387190 0.193595 0.981082i \(-0.437985\pi\)
0.193595 + 0.981082i \(0.437985\pi\)
\(564\) −19.0408 + 3.28092i −0.801762 + 0.138152i
\(565\) 4.38727 + 27.6891i 0.184574 + 1.16489i
\(566\) 12.1354 14.4052i 0.510087 0.605497i
\(567\) 0.795986 2.52317i 0.0334283 0.105963i
\(568\) −10.4338 + 17.8303i −0.437793 + 0.748142i
\(569\) 25.2164 1.05713 0.528564 0.848893i \(-0.322731\pi\)
0.528564 + 0.848893i \(0.322731\pi\)
\(570\) 10.0156 + 6.04376i 0.419508 + 0.253145i
\(571\) −16.5882 −0.694193 −0.347096 0.937829i \(-0.612832\pi\)
−0.347096 + 0.937829i \(0.612832\pi\)
\(572\) 5.07512 0.874493i 0.212201 0.0365644i
\(573\) 25.2875i 1.05640i
\(574\) 8.54608 5.41919i 0.356706 0.226193i
\(575\) −35.4838 + 11.5342i −1.47978 + 0.481010i
\(576\) 3.91870 + 6.97451i 0.163279 + 0.290605i
\(577\) 33.0170 1.37451 0.687257 0.726414i \(-0.258814\pi\)
0.687257 + 0.726414i \(0.258814\pi\)
\(578\) −13.2864 + 15.7715i −0.552640 + 0.656009i
\(579\) 8.75697i 0.363927i
\(580\) −28.4297 + 9.66728i −1.18048 + 0.401412i
\(581\) 5.36420 17.0038i 0.222545 0.705438i
\(582\) 1.60542 1.90571i 0.0665468 0.0789942i
\(583\) 2.16771 0.0897776
\(584\) −20.6255 12.0695i −0.853491 0.499441i
\(585\) 0.692939 + 4.37330i 0.0286495 + 0.180814i
\(586\) 9.30127 + 7.83564i 0.384232 + 0.323687i
\(587\) −22.4990 −0.928633 −0.464316 0.885669i \(-0.653700\pi\)
−0.464316 + 0.885669i \(0.653700\pi\)
\(588\) −5.97002 + 12.6633i −0.246200 + 0.522225i
\(589\) 38.1340i 1.57128i
\(590\) −9.72160 5.86633i −0.400232 0.241513i
\(591\) −12.2406 −0.503512
\(592\) −7.32879 + 2.60293i −0.301211 + 0.106980i
\(593\) 17.3914 0.714177 0.357089 0.934071i \(-0.383769\pi\)
0.357089 + 0.934071i \(0.383769\pi\)
\(594\) 1.18481 1.40643i 0.0486135 0.0577065i
\(595\) 4.91734 32.8814i 0.201591 1.34801i
\(596\) 34.4772 5.94076i 1.41224 0.243343i
\(597\) −1.03389 −0.0423142
\(598\) −15.9822 13.4638i −0.653561 0.550578i
\(599\) 25.1318i 1.02686i −0.858133 0.513428i \(-0.828375\pi\)
0.858133 0.513428i \(-0.171625\pi\)
\(600\) 13.8160 + 3.01946i 0.564037 + 0.123269i
\(601\) 3.67626i 0.149958i 0.997185 + 0.0749789i \(0.0238889\pi\)
−0.997185 + 0.0749789i \(0.976111\pi\)
\(602\) 18.2922 11.5994i 0.745536 0.472756i
\(603\) 2.27909i 0.0928118i
\(604\) 2.20979 0.380768i 0.0899149 0.0154932i
\(605\) 20.5593 3.25757i 0.835853 0.132439i
\(606\) 2.29993 2.73012i 0.0934281 0.110904i
\(607\) 8.13992i 0.330389i −0.986261 0.165195i \(-0.947175\pi\)
0.986261 0.165195i \(-0.0528252\pi\)
\(608\) 19.5931 + 7.34834i 0.794605 + 0.298015i
\(609\) 16.9420 + 5.34470i 0.686525 + 0.216578i
\(610\) −8.30895 + 13.7695i −0.336419 + 0.557509i
\(611\) −19.1301 −0.773921
\(612\) 1.90856 + 11.0763i 0.0771491 + 0.447735i
\(613\) −20.2573 −0.818185 −0.409093 0.912493i \(-0.634155\pi\)
−0.409093 + 0.912493i \(0.634155\pi\)
\(614\) −0.665580 + 0.790074i −0.0268606 + 0.0318848i
\(615\) 0.946409 + 5.97301i 0.0381629 + 0.240855i
\(616\) −7.21374 + 6.53093i −0.290650 + 0.263139i
\(617\) 4.00904i 0.161398i −0.996739 0.0806989i \(-0.974285\pi\)
0.996739 0.0806989i \(-0.0257152\pi\)
\(618\) 14.9999 + 12.6363i 0.603384 + 0.508307i
\(619\) 46.0413i 1.85056i 0.379289 + 0.925278i \(0.376169\pi\)
−0.379289 + 0.925278i \(0.623831\pi\)
\(620\) −14.8420 43.6477i −0.596070 1.75293i
\(621\) −7.46227 −0.299451
\(622\) −3.62079 + 4.29804i −0.145180 + 0.172336i
\(623\) −5.11165 1.61257i −0.204794 0.0646063i
\(624\) 2.65095 + 7.46401i 0.106123 + 0.298799i
\(625\) 20.2218 14.6996i 0.808872 0.587984i
\(626\) −21.4672 + 25.4825i −0.858001 + 1.01849i
\(627\) 4.81024i 0.192103i
\(628\) 29.2363 5.03770i 1.16665 0.201026i
\(629\) −10.9267 −0.435676
\(630\) −5.53106 6.27753i −0.220363 0.250103i
\(631\) 10.7739i 0.428900i 0.976735 + 0.214450i \(0.0687959\pi\)
−0.976735 + 0.214450i \(0.931204\pi\)
\(632\) −11.0500 + 18.8833i −0.439546 + 0.751137i
\(633\) −15.6365 −0.621496
\(634\) 17.9043 21.2532i 0.711069 0.844072i
\(635\) −37.9925 + 6.01981i −1.50768 + 0.238889i
\(636\) 0.566146 + 3.28563i 0.0224491 + 0.130284i
\(637\) −7.95410 + 11.3521i −0.315153 + 0.449787i
\(638\) 9.44355 + 7.95550i 0.373874 + 0.314961i
\(639\) 7.30396i 0.288940i
\(640\) 25.2860 + 0.785055i 0.999518 + 0.0310320i
\(641\) −32.5201 −1.28447 −0.642233 0.766509i \(-0.721992\pi\)
−0.642233 + 0.766509i \(0.721992\pi\)
\(642\) 8.87883 + 7.47976i 0.350419 + 0.295203i
\(643\) −7.14506 −0.281774 −0.140887 0.990026i \(-0.544995\pi\)
−0.140887 + 0.990026i \(0.544995\pi\)
\(644\) 39.1276 + 5.31272i 1.54184 + 0.209351i
\(645\) 2.02572 + 12.7848i 0.0797625 + 0.503400i
\(646\) 22.4845 + 18.9415i 0.884641 + 0.745245i
\(647\) 23.1371i 0.909614i 0.890590 + 0.454807i \(0.150292\pi\)
−0.890590 + 0.454807i \(0.849708\pi\)
\(648\) 2.44118 + 1.42851i 0.0958985 + 0.0561173i
\(649\) 4.66903i 0.183275i
\(650\) 12.9729 + 5.26899i 0.508840 + 0.206667i
\(651\) −8.20562 + 26.0108i −0.321604 + 1.01944i
\(652\) −25.3835 + 4.37383i −0.994094 + 0.171292i
\(653\) 12.6552 0.495238 0.247619 0.968857i \(-0.420352\pi\)
0.247619 + 0.968857i \(0.420352\pi\)
\(654\) 10.1080 + 8.51529i 0.395256 + 0.332974i
\(655\) 4.96030 + 31.3057i 0.193815 + 1.22321i
\(656\) 3.62064 + 10.1943i 0.141362 + 0.398019i
\(657\) −8.44901 −0.329627
\(658\) 30.5269 19.3576i 1.19006 0.754636i
\(659\) 6.16566 0.240180 0.120090 0.992763i \(-0.461682\pi\)
0.120090 + 0.992763i \(0.461682\pi\)
\(660\) −1.87218 5.50574i −0.0728745 0.214311i
\(661\) −47.7018 −1.85538 −0.927692 0.373347i \(-0.878210\pi\)
−0.927692 + 0.373347i \(0.878210\pi\)
\(662\) 21.8287 25.9116i 0.848395 1.00708i
\(663\) 11.1283i 0.432187i
\(664\) 16.4513 + 9.62685i 0.638433 + 0.373594i
\(665\) −21.6440 3.23680i −0.839318 0.125518i
\(666\) −1.77157 + 2.10294i −0.0686469 + 0.0814871i
\(667\) 50.1059i 1.94011i
\(668\) −16.0195 + 2.76032i −0.619814 + 0.106800i
\(669\) 10.1557i 0.392643i
\(670\) 6.17069 + 3.72360i 0.238395 + 0.143855i
\(671\) 6.61311 0.255296
\(672\) −11.7830 9.22824i −0.454540 0.355987i
\(673\) 28.8374i 1.11160i −0.831315 0.555801i \(-0.812412\pi\)
0.831315 0.555801i \(-0.187588\pi\)
\(674\) 31.7806 + 26.7728i 1.22414 + 1.03125i
\(675\) 4.75509 1.54567i 0.183024 0.0594929i
\(676\) −3.08330 17.8939i −0.118588 0.688228i
\(677\) 1.72096i 0.0661417i −0.999453 0.0330708i \(-0.989471\pi\)
0.999453 0.0330708i \(-0.0105287\pi\)
\(678\) 13.5602 + 11.4235i 0.520776 + 0.438716i
\(679\) −1.40251 + 4.44576i −0.0538232 + 0.170613i
\(680\) 33.1077 + 12.9291i 1.26962 + 0.495810i
\(681\) 12.4827 0.478340
\(682\) −12.2140 + 14.4985i −0.467696 + 0.555178i
\(683\) 7.04600i 0.269608i 0.990872 + 0.134804i \(0.0430405\pi\)
−0.990872 + 0.134804i \(0.956960\pi\)
\(684\) 7.29093 1.25630i 0.278776 0.0480358i
\(685\) −6.48410 40.9227i −0.247745 1.56358i
\(686\) 1.20570 26.1638i 0.0460338 0.998940i
\(687\) 9.62470 0.367205
\(688\) 7.74972 + 21.8201i 0.295455 + 0.831882i
\(689\) 3.30104i 0.125759i
\(690\) −12.1919 + 20.2043i −0.464138 + 0.769163i
\(691\) 37.9396i 1.44329i −0.692264 0.721644i \(-0.743387\pi\)
0.692264 0.721644i \(-0.256613\pi\)
\(692\) 46.3319 7.98344i 1.76127 0.303485i
\(693\) −1.03506 + 3.28101i −0.0393187 + 0.124635i
\(694\) 8.83565 + 7.44339i 0.335397 + 0.282547i
\(695\) −5.15182 32.5144i −0.195420 1.23334i
\(696\) −9.59184 + 16.3914i −0.363578 + 0.621316i
\(697\) 15.1989i 0.575700i
\(698\) −15.0881 + 17.9103i −0.571095 + 0.677916i
\(699\) 21.1728i 0.800827i
\(700\) −26.0332 + 4.71919i −0.983964 + 0.178369i
\(701\) 4.82214i 0.182130i 0.995845 + 0.0910649i \(0.0290271\pi\)
−0.995845 + 0.0910649i \(0.970973\pi\)
\(702\) 2.14174 + 1.80426i 0.0808346 + 0.0680973i
\(703\) 7.19242i 0.271267i
\(704\) −5.09568 9.06931i −0.192051 0.341813i
\(705\) 3.38061 + 21.3358i 0.127321 + 0.803553i
\(706\) 15.2192 18.0659i 0.572781 0.679918i
\(707\) −2.00923 + 6.36901i −0.0755649 + 0.239531i
\(708\) −7.07689 + 1.21942i −0.265966 + 0.0458285i
\(709\) 29.7215i 1.11621i 0.829769 + 0.558107i \(0.188472\pi\)
−0.829769 + 0.558107i \(0.811528\pi\)
\(710\) 19.7756 + 11.9333i 0.742166 + 0.447848i
\(711\) 7.73532i 0.290097i
\(712\) 2.89400 4.94553i 0.108457 0.185342i
\(713\) 76.9267 2.88093
\(714\) −11.2606 17.7580i −0.421418 0.664576i
\(715\) −0.901064 5.68683i −0.0336979 0.212675i
\(716\) −7.29001 42.3076i −0.272441 1.58111i
\(717\) 11.4510i 0.427645i
\(718\) 22.5534 + 18.9996i 0.841686 + 0.709059i
\(719\) −12.6120 −0.470348 −0.235174 0.971953i \(-0.575566\pi\)
−0.235174 + 0.971953i \(0.575566\pi\)
\(720\) 7.85615 4.27562i 0.292781 0.159343i
\(721\) −34.9927 11.0392i −1.30320 0.411120i
\(722\) −4.84369 + 5.74968i −0.180263 + 0.213981i
\(723\) 13.7870i 0.512746i
\(724\) 0.351719 + 2.04120i 0.0130716 + 0.0758607i
\(725\) 10.3785 + 31.9284i 0.385448 + 1.18579i
\(726\) 8.48197 10.0685i 0.314795 0.373677i
\(727\) 38.1524i 1.41500i 0.706716 + 0.707498i \(0.250176\pi\)
−0.706716 + 0.707498i \(0.749824\pi\)
\(728\) −9.94543 10.9852i −0.368602 0.407139i
\(729\) 1.00000 0.0370370
\(730\) −13.8041 + 22.8759i −0.510911 + 0.846675i
\(731\) 32.5321i 1.20324i
\(732\) 1.72716 + 10.0236i 0.0638376 + 0.370481i
\(733\) 8.51250i 0.314416i −0.987565 0.157208i \(-0.949751\pi\)
0.987565 0.157208i \(-0.0502493\pi\)
\(734\) 19.3047 + 16.2628i 0.712550 + 0.600271i
\(735\) 14.0666 + 6.86511i 0.518856 + 0.253224i
\(736\) −14.8236 + 39.5246i −0.546406 + 1.45690i
\(737\) 2.96362i 0.109166i
\(738\) 2.92516 + 2.46423i 0.107677 + 0.0907097i
\(739\) −29.1631 −1.07278 −0.536390 0.843970i \(-0.680213\pi\)
−0.536390 + 0.843970i \(0.680213\pi\)
\(740\) 2.79934 + 8.23236i 0.102906 + 0.302627i
\(741\) 7.32512 0.269095
\(742\) −3.34029 5.26764i −0.122626 0.193381i
\(743\) 39.8537 1.46209 0.731045 0.682329i \(-0.239033\pi\)
0.731045 + 0.682329i \(0.239033\pi\)
\(744\) −25.1655 14.7262i −0.922612 0.539889i
\(745\) −6.12127 38.6328i −0.224266 1.41540i
\(746\) −18.5610 + 22.0327i −0.679565 + 0.806676i
\(747\) 6.73907 0.246570
\(748\) −2.48180 14.4031i −0.0907437 0.526631i
\(749\) −20.7131 6.53437i −0.756841 0.238761i
\(750\) 3.58397 15.3998i 0.130868 0.562323i
\(751\) 52.3872i 1.91164i −0.293959 0.955818i \(-0.594973\pi\)
0.293959 0.955818i \(-0.405027\pi\)
\(752\) 12.9331 + 36.4143i 0.471621 + 1.32789i
\(753\) 20.7067i 0.754596i
\(754\) −12.1148 + 14.3808i −0.441194 + 0.523718i
\(755\) −0.392337 2.47613i −0.0142786 0.0901158i
\(756\) −5.24339 0.711945i −0.190700 0.0258932i
\(757\) −54.1507 −1.96814 −0.984071 0.177778i \(-0.943109\pi\)
−0.984071 + 0.177778i \(0.943109\pi\)
\(758\) −30.2979 + 35.9651i −1.10047 + 1.30631i
\(759\) 9.70357 0.352217
\(760\) 8.51052 21.7929i 0.308709 0.790511i
\(761\) 29.1269i 1.05585i 0.849291 + 0.527925i \(0.177030\pi\)
−0.849291 + 0.527925i \(0.822970\pi\)
\(762\) −15.6742 + 18.6060i −0.567817 + 0.674026i
\(763\) −23.5807 7.43902i −0.853680 0.269310i
\(764\) −49.8405 + 8.58802i −1.80317 + 0.310704i
\(765\) 12.4114 1.96655i 0.448735 0.0711009i
\(766\) −23.9221 20.1526i −0.864340 0.728143i
\(767\) −7.11008 −0.256730
\(768\) 12.4156 10.0922i 0.448009 0.364172i
\(769\) 20.5536i 0.741183i 0.928796 + 0.370591i \(0.120845\pi\)
−0.928796 + 0.370591i \(0.879155\pi\)
\(770\) 7.19232 + 8.16299i 0.259193 + 0.294174i
\(771\) −6.02637 −0.217034
\(772\) 17.2596 2.97400i 0.621187 0.107037i
\(773\) 2.88830i 0.103885i −0.998650 0.0519425i \(-0.983459\pi\)
0.998650 0.0519425i \(-0.0165413\pi\)
\(774\) 6.26109 + 5.27451i 0.225050 + 0.189588i
\(775\) −49.0191 + 15.9339i −1.76082 + 0.572364i
\(776\) −4.30129 2.51700i −0.154407 0.0903551i
\(777\) 1.54766 4.90587i 0.0555218 0.175997i
\(778\) 18.2807 + 15.4001i 0.655394 + 0.552121i
\(779\) 10.0046 0.358451
\(780\) 8.38425 2.85099i 0.300204 0.102082i
\(781\) 9.49772i 0.339855i
\(782\) −38.2103 + 45.3574i −1.36640 + 1.62198i
\(783\) 6.71456i 0.239959i
\(784\) 26.9863 + 7.46601i 0.963795 + 0.266643i
\(785\) −5.19077 32.7602i −0.185266 1.16926i
\(786\) 15.3313 + 12.9155i 0.546850 + 0.460681i
\(787\) −22.4624 −0.800700 −0.400350 0.916362i \(-0.631111\pi\)
−0.400350 + 0.916362i \(0.631111\pi\)
\(788\) 4.15710 + 24.1257i 0.148091 + 0.859443i
\(789\) −3.54056 −0.126047
\(790\) 20.9436 + 12.6380i 0.745138 + 0.449641i
\(791\) −31.6341 9.97962i −1.12478 0.354835i
\(792\) −3.17439 1.85757i −0.112797 0.0660059i
\(793\) 10.0706i 0.357616i
\(794\) 14.7323 + 12.4109i 0.522830 + 0.440446i
\(795\) 3.68165 0.583348i 0.130575 0.0206892i
\(796\) 0.351124 + 2.03774i 0.0124452 + 0.0722260i
\(797\) 38.1473i 1.35125i 0.737247 + 0.675623i \(0.236125\pi\)
−0.737247 + 0.675623i \(0.763875\pi\)
\(798\) −11.6891 + 7.41222i −0.413789 + 0.262390i
\(799\) 54.2910i 1.92068i
\(800\) 1.25909 28.2562i 0.0445154 0.999009i
\(801\) 2.02588i 0.0715810i
\(802\) 15.5672 18.4790i 0.549697 0.652516i
\(803\) 10.9867 0.387712
\(804\) 4.49199 0.774014i 0.158420 0.0272974i
\(805\) 6.52952 43.6619i 0.230135 1.53888i
\(806\) −22.0786 18.5996i −0.777687 0.655144i
\(807\) 21.7878 0.766966
\(808\) −6.16203 3.60586i −0.216780 0.126854i
\(809\) −14.1010 −0.495763 −0.247882 0.968790i \(-0.579734\pi\)
−0.247882 + 0.968790i \(0.579734\pi\)
\(810\) 1.63381 2.70752i 0.0574061 0.0951326i
\(811\) 28.4482i 0.998953i −0.866327 0.499477i \(-0.833526\pi\)
0.866327 0.499477i \(-0.166474\pi\)
\(812\) 4.78040 35.2071i 0.167759 1.23553i
\(813\) 13.3149 0.466975
\(814\) 2.30366 2.73456i 0.0807434 0.0958461i
\(815\) 4.50672 + 28.4430i 0.157864 + 0.996315i
\(816\) 21.1828 7.52338i 0.741546 0.263371i
\(817\) 21.4141 0.749183
\(818\) −20.6627 17.4068i −0.722456 0.608616i
\(819\) −4.99639 1.57621i −0.174588 0.0550772i
\(820\) 11.4511 3.89385i 0.399890 0.135979i
\(821\) 25.3459i 0.884576i 0.896873 + 0.442288i \(0.145833\pi\)
−0.896873 + 0.442288i \(0.854167\pi\)
\(822\) −20.0411 16.8831i −0.699012 0.588867i
\(823\) −21.7824 −0.759287 −0.379643 0.925133i \(-0.623953\pi\)
−0.379643 + 0.925133i \(0.623953\pi\)
\(824\) 19.8114 33.8556i 0.690163 1.17941i
\(825\) −6.18329 + 2.00991i −0.215275 + 0.0699762i
\(826\) 11.3459 7.19462i 0.394775 0.250333i
\(827\) 23.4875i 0.816741i −0.912816 0.408371i \(-0.866097\pi\)
0.912816 0.408371i \(-0.133903\pi\)
\(828\) 2.53430 + 14.7078i 0.0880730 + 0.511131i
\(829\) 8.40558 0.291938 0.145969 0.989289i \(-0.453370\pi\)
0.145969 + 0.989289i \(0.453370\pi\)
\(830\) 11.0103 18.2462i 0.382174 0.633334i
\(831\) −1.46216 −0.0507219
\(832\) 13.8109 7.75980i 0.478807 0.269023i
\(833\) 32.2172 + 22.5737i 1.11626 + 0.782132i
\(834\) −15.9232 13.4142i −0.551377 0.464495i
\(835\) 2.84419 + 17.9504i 0.0984274 + 0.621199i
\(836\) −9.48077 + 1.63363i −0.327899 + 0.0565003i
\(837\) −10.3088 −0.356323
\(838\) 38.3738 + 32.3272i 1.32560 + 1.11672i
\(839\) −35.0477 −1.20998 −0.604991 0.796232i \(-0.706823\pi\)
−0.604991 + 0.796232i \(0.706823\pi\)
\(840\) −10.4943 + 13.0334i −0.362088 + 0.449695i
\(841\) −16.0853 −0.554666
\(842\) 18.4139 + 15.5124i 0.634585 + 0.534591i
\(843\) −27.3986 −0.943656
\(844\) 5.31039 + 30.8189i 0.182791 + 1.06083i
\(845\) −20.0507 + 3.17699i −0.689765 + 0.109292i
\(846\) 10.4488 + 8.80233i 0.359236 + 0.302630i
\(847\) −7.40990 + 23.4884i −0.254607 + 0.807073i
\(848\) 6.28355 2.23169i 0.215778 0.0766367i
\(849\) −13.3187 −0.457098
\(850\) 14.9533 36.8171i 0.512895 1.26282i
\(851\) −14.5091 −0.497365
\(852\) 14.3958 2.48053i 0.493191 0.0849817i
\(853\) 0.728369i 0.0249389i 0.999922 + 0.0124694i \(0.00396925\pi\)
−0.999922 + 0.0124694i \(0.996031\pi\)
\(854\) −10.1903 16.0701i −0.348705 0.549909i
\(855\) −1.29447 8.16972i −0.0442700 0.279398i
\(856\) 11.7269 20.0400i 0.400817 0.684953i
\(857\) 3.33966 0.114081 0.0570404 0.998372i \(-0.481834\pi\)
0.0570404 + 0.998372i \(0.481834\pi\)
\(858\) −2.78501 2.34617i −0.0950786 0.0800968i
\(859\) 9.72278i 0.331737i 0.986148 + 0.165869i \(0.0530427\pi\)
−0.986148 + 0.165869i \(0.946957\pi\)
\(860\) 24.5103 8.33450i 0.835793 0.284204i
\(861\) −6.82401 2.15277i −0.232562 0.0733663i
\(862\) 23.3758 + 19.6924i 0.796183 + 0.670726i
\(863\) 1.79337 0.0610472 0.0305236 0.999534i \(-0.490283\pi\)
0.0305236 + 0.999534i \(0.490283\pi\)
\(864\) 1.98648 5.29659i 0.0675813 0.180194i
\(865\) −8.22601 51.9163i −0.279693 1.76521i
\(866\) 35.6639 42.3347i 1.21191 1.43859i
\(867\) 14.5820 0.495230
\(868\) 54.0528 + 7.33926i 1.83467 + 0.249111i
\(869\) 10.0586i 0.341216i
\(870\) 18.1798 + 10.9703i 0.616353 + 0.371928i
\(871\) 4.51306 0.152919
\(872\) 13.3504 22.8144i 0.452102 0.772594i
\(873\) −1.76197 −0.0596337
\(874\) 29.8562 + 25.1517i 1.00990 + 0.850768i
\(875\) 4.88301 + 29.1746i 0.165076 + 0.986281i
\(876\) 2.86941 + 16.6526i 0.0969484 + 0.562640i
\(877\) −15.2950 −0.516476 −0.258238 0.966081i \(-0.583142\pi\)
−0.258238 + 0.966081i \(0.583142\pi\)
\(878\) −19.5978 + 23.2635i −0.661395 + 0.785106i
\(879\) 8.59973i 0.290062i
\(880\) −10.2157 + 5.55981i −0.344373 + 0.187421i
\(881\) 29.5279i 0.994820i −0.867516 0.497410i \(-0.834284\pi\)
0.867516 0.497410i \(-0.165716\pi\)
\(882\) 9.56795 2.54055i 0.322170 0.0855448i
\(883\) 49.8573i 1.67783i 0.544260 + 0.838917i \(0.316810\pi\)
−0.544260 + 0.838917i \(0.683190\pi\)
\(884\) 21.9334 3.77933i 0.737699 0.127113i
\(885\) 1.25647 + 7.92988i 0.0422358 + 0.266560i
\(886\) −21.1773 17.8403i −0.711465 0.599357i
\(887\) 40.5532i 1.36164i −0.732449 0.680822i \(-0.761623\pi\)
0.732449 0.680822i \(-0.238377\pi\)
\(888\) 4.74644 + 2.77750i 0.159280 + 0.0932066i
\(889\) 13.6931 43.4054i 0.459252 1.45577i
\(890\) −5.48511 3.30990i −0.183861 0.110948i
\(891\) −1.30035 −0.0435634
\(892\) 20.0165 3.44903i 0.670200 0.115482i
\(893\) 35.7367 1.19588
\(894\) −18.9196 15.9384i −0.632767 0.533060i
\(895\) −47.4070 + 7.51151i −1.58464 + 0.251082i
\(896\) −14.1867 + 26.3578i −0.473946 + 0.880554i
\(897\) 14.7768i 0.493382i
\(898\) 12.6836 15.0560i 0.423256 0.502425i
\(899\) 69.2188i 2.30857i
\(900\) −4.66135 8.84714i −0.155378 0.294905i
\(901\) 9.36831 0.312104
\(902\) −3.80374 3.20437i −0.126651 0.106694i
\(903\) −14.6063 4.60785i −0.486067 0.153340i
\(904\) 17.9099 30.6061i 0.595674 1.01794i
\(905\) 2.28723 0.362406i 0.0760302 0.0120468i
\(906\) −1.21264 1.02156i −0.0402872 0.0339390i
\(907\) 20.4289i 0.678330i 0.940727 + 0.339165i \(0.110144\pi\)
−0.940727 + 0.339165i \(0.889856\pi\)
\(908\) −4.23933 24.6029i −0.140687 0.816477i
\(909\) −2.52420 −0.0837226
\(910\) −12.4308 + 10.9526i −0.412076 + 0.363075i
\(911\) 36.7825i 1.21866i 0.792917 + 0.609330i \(0.208561\pi\)
−0.792917 + 0.609330i \(0.791439\pi\)
\(912\) −4.95222 13.9434i −0.163984 0.461713i
\(913\) −8.76315 −0.290018
\(914\) −27.0004 22.7459i −0.893095 0.752367i
\(915\) 11.2317 1.77964i 0.371309 0.0588329i
\(916\) −3.26869 18.9699i −0.108001 0.626782i
\(917\) −35.7659 11.2831i −1.18109 0.372600i
\(918\) 5.12046 6.07823i 0.169000 0.200611i
\(919\) 28.6461i 0.944947i −0.881345 0.472474i \(-0.843361\pi\)
0.881345 0.472474i \(-0.156639\pi\)
\(920\) 43.9622 + 17.1680i 1.44939 + 0.566014i
\(921\) 0.730484 0.0240703
\(922\) −10.7121 + 12.7157i −0.352783 + 0.418770i
\(923\) 14.4633 0.476065
\(924\) 6.81825 + 0.925778i 0.224304 + 0.0304559i
\(925\) 9.24545 3.00529i 0.303988 0.0988132i
\(926\) 6.32428 7.50721i 0.207829 0.246702i
\(927\) 13.8685i 0.455502i
\(928\) 35.5643 + 13.3383i 1.16746 + 0.437851i
\(929\) 5.58128i 0.183116i −0.995800 0.0915580i \(-0.970815\pi\)
0.995800 0.0915580i \(-0.0291847\pi\)
\(930\) −16.8425 + 27.9112i −0.552288 + 0.915243i
\(931\) 14.8590 21.2067i 0.486983 0.695023i
\(932\) −41.7306 + 7.19059i −1.36693 + 0.235535i
\(933\) 3.97387 0.130099
\(934\) 30.3125 35.9824i 0.991857 1.17738i
\(935\) −16.1392 + 2.55721i −0.527807 + 0.0836297i
\(936\) 2.82874 4.83402i 0.0924603 0.158005i
\(937\) 18.3328 0.598906 0.299453 0.954111i \(-0.403196\pi\)
0.299453 + 0.954111i \(0.403196\pi\)
\(938\) −7.20172 + 4.56672i −0.235145 + 0.149109i
\(939\) 23.5606 0.768870
\(940\) 40.9038 13.9090i 1.33414 0.453661i
\(941\) −44.1662 −1.43978 −0.719889 0.694089i \(-0.755807\pi\)
−0.719889 + 0.694089i \(0.755807\pi\)
\(942\) −16.0436 13.5156i −0.522730 0.440361i
\(943\) 20.1820i 0.657215i
\(944\) 4.80683 + 13.5341i 0.156449 + 0.440497i
\(945\) −0.875004 + 5.85101i −0.0284639 + 0.190334i
\(946\) −8.14162 6.85872i −0.264707 0.222996i
\(947\) 4.76205i 0.154746i −0.997002 0.0773729i \(-0.975347\pi\)
0.997002 0.0773729i \(-0.0246532\pi\)
\(948\) 15.2460 2.62703i 0.495166 0.0853220i
\(949\) 16.7307i 0.543102i
\(950\) −24.2346 9.84293i −0.786274 0.319347i
\(951\) −19.6502 −0.637202
\(952\) −31.1759 + 28.2250i −1.01042 + 0.914778i
\(953\) 49.4494i 1.60182i −0.598784 0.800911i \(-0.704349\pi\)
0.598784 0.800911i \(-0.295651\pi\)
\(954\) 1.51891 1.80301i 0.0491764 0.0583747i
\(955\) 8.84896 + 55.8479i 0.286346 + 1.80720i
\(956\) −22.5694 + 3.88893i −0.729946 + 0.125777i
\(957\) 8.73129i 0.282242i
\(958\) 9.90345 11.7559i 0.319966 0.379815i
\(959\) 46.7531 + 14.7492i 1.50974 + 0.476277i
\(960\) −11.0951 14.0320i −0.358094 0.452882i
\(961\) 75.2704 2.42808
\(962\) 4.16423 + 3.50806i 0.134260 + 0.113104i
\(963\) 8.20915i 0.264536i
\(964\) 27.1736 4.68228i 0.875204 0.150806i
\(965\) −3.06436 19.3399i −0.0986453 0.622574i
\(966\) −14.9525 23.5801i −0.481088 0.758677i
\(967\) −28.1884 −0.906479 −0.453239 0.891389i \(-0.649732\pi\)
−0.453239 + 0.891389i \(0.649732\pi\)
\(968\) −22.7251 13.2982i −0.730413 0.427419i
\(969\) 20.7886i 0.667827i
\(970\) −2.87872 + 4.77058i −0.0924303 + 0.153174i
\(971\) 22.9249i 0.735694i 0.929886 + 0.367847i \(0.119905\pi\)
−0.929886 + 0.367847i \(0.880095\pi\)
\(972\) −0.339615 1.97095i −0.0108932 0.0632184i
\(973\) 37.1468 + 11.7187i 1.19087 + 0.375685i
\(974\) −37.8825 + 44.9683i −1.21383 + 1.44088i
\(975\) −3.06073 9.41603i −0.0980219 0.301554i
\(976\) 19.1694 6.80830i 0.613598 0.217928i
\(977\) 21.9679i 0.702814i 0.936223 + 0.351407i \(0.114297\pi\)
−0.936223 + 0.351407i \(0.885703\pi\)
\(978\) 13.9294 + 11.7345i 0.445413 + 0.375228i
\(979\) 2.63436i 0.0841944i
\(980\) 8.75359 30.0562i 0.279623 0.960110i
\(981\) 9.34566i 0.298384i
\(982\) −22.6864 + 26.9298i −0.723952 + 0.859365i
\(983\) 34.5387i 1.10161i 0.834632 + 0.550807i \(0.185680\pi\)
−0.834632 + 0.550807i \(0.814320\pi\)
\(984\) 3.86347 6.60225i 0.123163 0.210472i
\(985\) 27.0336 4.28341i 0.861363 0.136481i
\(986\) 40.8126 + 34.3816i 1.29974 + 1.09493i
\(987\) −24.3756 7.68978i −0.775884 0.244768i
\(988\) −2.48772 14.4375i −0.0791450 0.459318i
\(989\) 43.1980i 1.37362i
\(990\) −2.12452 + 3.52073i −0.0675218 + 0.111896i
\(991\) 6.79294i 0.215785i −0.994163 0.107892i \(-0.965590\pi\)
0.994163 0.107892i \(-0.0344102\pi\)
\(992\) −20.4781 + 54.6013i −0.650180 + 1.73359i
\(993\) −23.9573 −0.760262
\(994\) −23.0798 + 14.6353i −0.732048 + 0.464203i
\(995\) 2.28336 0.361792i 0.0723873 0.0114696i
\(996\) −2.28869 13.2824i −0.0725198 0.420869i
\(997\) 3.84060i 0.121633i −0.998149 0.0608165i \(-0.980630\pi\)
0.998149 0.0608165i \(-0.0193704\pi\)
\(998\) 19.7878 23.4891i 0.626373 0.743533i
\(999\) 1.94433 0.0615157
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 840.2.w.b.139.14 yes 48
4.3 odd 2 3360.2.w.a.559.4 48
5.4 even 2 840.2.w.a.139.35 yes 48
7.6 odd 2 840.2.w.a.139.14 yes 48
8.3 odd 2 inner 840.2.w.b.139.36 yes 48
8.5 even 2 3360.2.w.a.559.45 48
20.19 odd 2 3360.2.w.b.559.3 48
28.27 even 2 3360.2.w.b.559.45 48
35.34 odd 2 inner 840.2.w.b.139.35 yes 48
40.19 odd 2 840.2.w.a.139.13 48
40.29 even 2 3360.2.w.b.559.46 48
56.13 odd 2 3360.2.w.b.559.4 48
56.27 even 2 840.2.w.a.139.36 yes 48
140.139 even 2 3360.2.w.a.559.46 48
280.69 odd 2 3360.2.w.a.559.3 48
280.139 even 2 inner 840.2.w.b.139.13 yes 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
840.2.w.a.139.13 48 40.19 odd 2
840.2.w.a.139.14 yes 48 7.6 odd 2
840.2.w.a.139.35 yes 48 5.4 even 2
840.2.w.a.139.36 yes 48 56.27 even 2
840.2.w.b.139.13 yes 48 280.139 even 2 inner
840.2.w.b.139.14 yes 48 1.1 even 1 trivial
840.2.w.b.139.35 yes 48 35.34 odd 2 inner
840.2.w.b.139.36 yes 48 8.3 odd 2 inner
3360.2.w.a.559.3 48 280.69 odd 2
3360.2.w.a.559.4 48 4.3 odd 2
3360.2.w.a.559.45 48 8.5 even 2
3360.2.w.a.559.46 48 140.139 even 2
3360.2.w.b.559.3 48 20.19 odd 2
3360.2.w.b.559.4 48 56.13 odd 2
3360.2.w.b.559.45 48 28.27 even 2
3360.2.w.b.559.46 48 40.29 even 2