Properties

Label 840.2.w
Level $840$
Weight $2$
Character orbit 840.w
Rep. character $\chi_{840}(139,\cdot)$
Character field $\Q$
Dimension $96$
Newform subspaces $2$
Sturm bound $384$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 840 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 840.w (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 280 \)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(384\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(17\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(840, [\chi])\).

Total New Old
Modular forms 200 96 104
Cusp forms 184 96 88
Eisenstein series 16 0 16

Trace form

\( 96 q + 96 q^{9} - 4 q^{14} + 16 q^{16} + 16 q^{30} + 24 q^{35} + 8 q^{44} - 16 q^{46} - 24 q^{50} - 28 q^{56} + 8 q^{60} + 48 q^{64} - 48 q^{70} - 112 q^{74} + 96 q^{81} + 28 q^{84} - 40 q^{86} - 32 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(840, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
840.2.w.a 840.w 280.n $48$ $6.707$ None 840.2.w.a \(0\) \(-48\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$
840.2.w.b 840.w 280.n $48$ $6.707$ None 840.2.w.a \(0\) \(48\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$

Decomposition of \(S_{2}^{\mathrm{old}}(840, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(840, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(280, [\chi])\)\(^{\oplus 2}\)