Properties

Label 840.2.w.a.139.36
Level $840$
Weight $2$
Character 840.139
Analytic conductor $6.707$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [840,2,Mod(139,840)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("840.139"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(840, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 0, 1, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 840 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 840.w (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0,-48] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.70743376979\)
Analytic rank: \(0\)
Dimension: \(48\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 139.36
Character \(\chi\) \(=\) 840.139
Dual form 840.2.w.a.139.35

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.911149 + 1.08158i) q^{2} -1.00000 q^{3} +(-0.339615 + 1.97095i) q^{4} +(-2.20852 + 0.349934i) q^{5} +(-0.911149 - 1.08158i) q^{6} +(-0.795986 - 2.52317i) q^{7} +(-2.44118 + 1.42851i) q^{8} +1.00000 q^{9} +(-2.39077 - 2.06984i) q^{10} -1.30035 q^{11} +(0.339615 - 1.97095i) q^{12} -1.98020i q^{13} +(2.00374 - 3.15991i) q^{14} +(2.20852 - 0.349934i) q^{15} +(-3.76932 - 1.33873i) q^{16} +5.61979 q^{17} +(0.911149 + 1.08158i) q^{18} -3.69919i q^{19} +(0.0603414 - 4.47173i) q^{20} +(0.795986 + 2.52317i) q^{21} +(-1.18481 - 1.40643i) q^{22} +7.46227 q^{23} +(2.44118 - 1.42851i) q^{24} +(4.75509 - 1.54567i) q^{25} +(2.14174 - 1.80426i) q^{26} -1.00000 q^{27} +(5.24339 - 0.711945i) q^{28} -6.71456i q^{29} +(2.39077 + 2.06984i) q^{30} -10.3088 q^{31} +(-1.98648 - 5.29659i) q^{32} +1.30035 q^{33} +(5.12046 + 6.07823i) q^{34} +(2.64089 + 5.29393i) q^{35} +(-0.339615 + 1.97095i) q^{36} -1.94433 q^{37} +(4.00095 - 3.37051i) q^{38} +1.98020i q^{39} +(4.89150 - 4.00915i) q^{40} +2.70453i q^{41} +(-2.00374 + 3.15991i) q^{42} -5.78886i q^{43} +(0.441619 - 2.56293i) q^{44} +(-2.20852 + 0.349934i) q^{45} +(6.79924 + 8.07102i) q^{46} -9.66070i q^{47} +(3.76932 + 1.33873i) q^{48} +(-5.73281 + 4.01682i) q^{49} +(6.00436 + 3.73466i) q^{50} -5.61979 q^{51} +(3.90288 + 0.672505i) q^{52} +1.66702 q^{53} +(-0.911149 - 1.08158i) q^{54} +(2.87185 - 0.455037i) q^{55} +(5.54753 + 5.02244i) q^{56} +3.69919i q^{57} +(7.26231 - 6.11796i) q^{58} +3.59059i q^{59} +(-0.0603414 + 4.47173i) q^{60} -5.08563 q^{61} +(-9.39281 - 11.1497i) q^{62} +(-0.795986 - 2.52317i) q^{63} +(3.91870 - 6.97451i) q^{64} +(0.692939 + 4.37330i) q^{65} +(1.18481 + 1.40643i) q^{66} +2.27909i q^{67} +(-1.90856 + 11.0763i) q^{68} -7.46227 q^{69} +(-3.31954 + 7.67989i) q^{70} -7.30396i q^{71} +(-2.44118 + 1.42851i) q^{72} +8.44901 q^{73} +(-1.77157 - 2.10294i) q^{74} +(-4.75509 + 1.54567i) q^{75} +(7.29093 + 1.25630i) q^{76} +(1.03506 + 3.28101i) q^{77} +(-2.14174 + 1.80426i) q^{78} -7.73532i q^{79} +(8.79308 + 1.63760i) q^{80} +1.00000 q^{81} +(-2.92516 + 2.46423i) q^{82} -6.73907 q^{83} +(-5.24339 + 0.711945i) q^{84} +(-12.4114 + 1.96655i) q^{85} +(6.26109 - 5.27451i) q^{86} +6.71456i q^{87} +(3.17439 - 1.85757i) q^{88} +2.02588i q^{89} +(-2.39077 - 2.06984i) q^{90} +(-4.99639 + 1.57621i) q^{91} +(-2.53430 + 14.7078i) q^{92} +10.3088 q^{93} +(10.4488 - 8.80233i) q^{94} +(1.29447 + 8.16972i) q^{95} +(1.98648 + 5.29659i) q^{96} +1.76197 q^{97} +(-9.56795 - 2.54055i) q^{98} -1.30035 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 48 q^{3} + 48 q^{9} - 8 q^{10} - 2 q^{14} + 8 q^{16} - 4 q^{20} - 48 q^{27} - 14 q^{28} + 8 q^{30} + 16 q^{35} + 12 q^{38} - 8 q^{40} + 2 q^{42} + 4 q^{44} - 8 q^{46} - 8 q^{48} - 12 q^{50} + 36 q^{52}+ \cdots - 40 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/840\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(281\) \(337\) \(421\) \(631\)
\(\chi(n)\) \(-1\) \(1\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.911149 + 1.08158i 0.644280 + 0.764790i
\(3\) −1.00000 −0.577350
\(4\) −0.339615 + 1.97095i −0.169807 + 0.985477i
\(5\) −2.20852 + 0.349934i −0.987679 + 0.156495i
\(6\) −0.911149 1.08158i −0.371975 0.441552i
\(7\) −0.795986 2.52317i −0.300854 0.953670i
\(8\) −2.44118 + 1.42851i −0.863087 + 0.505056i
\(9\) 1.00000 0.333333
\(10\) −2.39077 2.06984i −0.756027 0.654540i
\(11\) −1.30035 −0.392071 −0.196035 0.980597i \(-0.562807\pi\)
−0.196035 + 0.980597i \(0.562807\pi\)
\(12\) 0.339615 1.97095i 0.0980384 0.568966i
\(13\) 1.98020i 0.549208i −0.961557 0.274604i \(-0.911453\pi\)
0.961557 0.274604i \(-0.0885468\pi\)
\(14\) 2.00374 3.15991i 0.535523 0.844521i
\(15\) 2.20852 0.349934i 0.570237 0.0903526i
\(16\) −3.76932 1.33873i −0.942331 0.334683i
\(17\) 5.61979 1.36300 0.681499 0.731819i \(-0.261328\pi\)
0.681499 + 0.731819i \(0.261328\pi\)
\(18\) 0.911149 + 1.08158i 0.214760 + 0.254930i
\(19\) 3.69919i 0.848652i −0.905510 0.424326i \(-0.860511\pi\)
0.905510 0.424326i \(-0.139489\pi\)
\(20\) 0.0603414 4.47173i 0.0134927 0.999909i
\(21\) 0.795986 + 2.52317i 0.173698 + 0.550602i
\(22\) −1.18481 1.40643i −0.252603 0.299852i
\(23\) 7.46227 1.55599 0.777996 0.628270i \(-0.216237\pi\)
0.777996 + 0.628270i \(0.216237\pi\)
\(24\) 2.44118 1.42851i 0.498303 0.291594i
\(25\) 4.75509 1.54567i 0.951018 0.309134i
\(26\) 2.14174 1.80426i 0.420029 0.353844i
\(27\) −1.00000 −0.192450
\(28\) 5.24339 0.711945i 0.990907 0.134545i
\(29\) 6.71456i 1.24686i −0.781878 0.623431i \(-0.785738\pi\)
0.781878 0.623431i \(-0.214262\pi\)
\(30\) 2.39077 + 2.06984i 0.436493 + 0.377899i
\(31\) −10.3088 −1.85151 −0.925754 0.378128i \(-0.876568\pi\)
−0.925754 + 0.378128i \(0.876568\pi\)
\(32\) −1.98648 5.29659i −0.351163 0.936315i
\(33\) 1.30035 0.226362
\(34\) 5.12046 + 6.07823i 0.878152 + 1.04241i
\(35\) 2.64089 + 5.29393i 0.446392 + 0.894837i
\(36\) −0.339615 + 1.97095i −0.0566025 + 0.328492i
\(37\) −1.94433 −0.319645 −0.159823 0.987146i \(-0.551092\pi\)
−0.159823 + 0.987146i \(0.551092\pi\)
\(38\) 4.00095 3.37051i 0.649040 0.546769i
\(39\) 1.98020i 0.317086i
\(40\) 4.89150 4.00915i 0.773413 0.633902i
\(41\) 2.70453i 0.422377i 0.977445 + 0.211189i \(0.0677335\pi\)
−0.977445 + 0.211189i \(0.932267\pi\)
\(42\) −2.00374 + 3.15991i −0.309184 + 0.487584i
\(43\) 5.78886i 0.882792i −0.897312 0.441396i \(-0.854483\pi\)
0.897312 0.441396i \(-0.145517\pi\)
\(44\) 0.441619 2.56293i 0.0665765 0.386377i
\(45\) −2.20852 + 0.349934i −0.329226 + 0.0521651i
\(46\) 6.79924 + 8.07102i 1.00249 + 1.19001i
\(47\) 9.66070i 1.40916i −0.709626 0.704579i \(-0.751136\pi\)
0.709626 0.704579i \(-0.248864\pi\)
\(48\) 3.76932 + 1.33873i 0.544055 + 0.193229i
\(49\) −5.73281 + 4.01682i −0.818973 + 0.573832i
\(50\) 6.00436 + 3.73466i 0.849144 + 0.528161i
\(51\) −5.61979 −0.786927
\(52\) 3.90288 + 0.672505i 0.541232 + 0.0932597i
\(53\) 1.66702 0.228983 0.114492 0.993424i \(-0.463476\pi\)
0.114492 + 0.993424i \(0.463476\pi\)
\(54\) −0.911149 1.08158i −0.123992 0.147184i
\(55\) 2.87185 0.455037i 0.387240 0.0613572i
\(56\) 5.54753 + 5.02244i 0.741320 + 0.671152i
\(57\) 3.69919i 0.489969i
\(58\) 7.26231 6.11796i 0.953588 0.803328i
\(59\) 3.59059i 0.467455i 0.972302 + 0.233727i \(0.0750924\pi\)
−0.972302 + 0.233727i \(0.924908\pi\)
\(60\) −0.0603414 + 4.47173i −0.00779004 + 0.577298i
\(61\) −5.08563 −0.651149 −0.325574 0.945516i \(-0.605558\pi\)
−0.325574 + 0.945516i \(0.605558\pi\)
\(62\) −9.39281 11.1497i −1.19289 1.41601i
\(63\) −0.795986 2.52317i −0.100285 0.317890i
\(64\) 3.91870 6.97451i 0.489837 0.871814i
\(65\) 0.692939 + 4.37330i 0.0859485 + 0.542441i
\(66\) 1.18481 + 1.40643i 0.145840 + 0.173119i
\(67\) 2.27909i 0.278435i 0.990262 + 0.139218i \(0.0444588\pi\)
−0.990262 + 0.139218i \(0.955541\pi\)
\(68\) −1.90856 + 11.0763i −0.231447 + 1.34320i
\(69\) −7.46227 −0.898352
\(70\) −3.31954 + 7.67989i −0.396761 + 0.917922i
\(71\) 7.30396i 0.866821i −0.901197 0.433410i \(-0.857310\pi\)
0.901197 0.433410i \(-0.142690\pi\)
\(72\) −2.44118 + 1.42851i −0.287696 + 0.168352i
\(73\) 8.44901 0.988882 0.494441 0.869211i \(-0.335373\pi\)
0.494441 + 0.869211i \(0.335373\pi\)
\(74\) −1.77157 2.10294i −0.205941 0.244461i
\(75\) −4.75509 + 1.54567i −0.549071 + 0.178479i
\(76\) 7.29093 + 1.25630i 0.836327 + 0.144107i
\(77\) 1.03506 + 3.28101i 0.117956 + 0.373906i
\(78\) −2.14174 + 1.80426i −0.242504 + 0.204292i
\(79\) 7.73532i 0.870292i −0.900360 0.435146i \(-0.856697\pi\)
0.900360 0.435146i \(-0.143303\pi\)
\(80\) 8.79308 + 1.63760i 0.983096 + 0.183089i
\(81\) 1.00000 0.111111
\(82\) −2.92516 + 2.46423i −0.323030 + 0.272129i
\(83\) −6.73907 −0.739709 −0.369854 0.929090i \(-0.620592\pi\)
−0.369854 + 0.929090i \(0.620592\pi\)
\(84\) −5.24339 + 0.711945i −0.572101 + 0.0776795i
\(85\) −12.4114 + 1.96655i −1.34620 + 0.213303i
\(86\) 6.26109 5.27451i 0.675151 0.568765i
\(87\) 6.71456i 0.719876i
\(88\) 3.17439 1.85757i 0.338391 0.198018i
\(89\) 2.02588i 0.214743i 0.994219 + 0.107371i \(0.0342434\pi\)
−0.994219 + 0.107371i \(0.965757\pi\)
\(90\) −2.39077 2.06984i −0.252009 0.218180i
\(91\) −4.99639 + 1.57621i −0.523763 + 0.165232i
\(92\) −2.53430 + 14.7078i −0.264219 + 1.53339i
\(93\) 10.3088 1.06897
\(94\) 10.4488 8.80233i 1.07771 0.907891i
\(95\) 1.29447 + 8.16972i 0.132810 + 0.838195i
\(96\) 1.98648 + 5.29659i 0.202744 + 0.540581i
\(97\) 1.76197 0.178901 0.0894506 0.995991i \(-0.471489\pi\)
0.0894506 + 0.995991i \(0.471489\pi\)
\(98\) −9.56795 2.54055i −0.966509 0.256634i
\(99\) −1.30035 −0.130690
\(100\) 1.43154 + 9.89700i 0.143154 + 0.989700i
\(101\) −2.52420 −0.251168 −0.125584 0.992083i \(-0.540080\pi\)
−0.125584 + 0.992083i \(0.540080\pi\)
\(102\) −5.12046 6.07823i −0.507001 0.601834i
\(103\) 13.8685i 1.36651i −0.730181 0.683254i \(-0.760564\pi\)
0.730181 0.683254i \(-0.239436\pi\)
\(104\) 2.82874 + 4.83402i 0.277381 + 0.474014i
\(105\) −2.64089 5.29393i −0.257725 0.516635i
\(106\) 1.51891 + 1.80301i 0.147529 + 0.175124i
\(107\) 8.20915i 0.793609i −0.917903 0.396804i \(-0.870119\pi\)
0.917903 0.396804i \(-0.129881\pi\)
\(108\) 0.339615 1.97095i 0.0326795 0.189655i
\(109\) 9.34566i 0.895152i 0.894246 + 0.447576i \(0.147713\pi\)
−0.894246 + 0.447576i \(0.852287\pi\)
\(110\) 3.10884 + 2.69152i 0.296416 + 0.256626i
\(111\) 1.94433 0.184547
\(112\) −0.377523 + 10.5763i −0.0356726 + 0.999364i
\(113\) 12.5374i 1.17942i −0.807614 0.589711i \(-0.799242\pi\)
0.807614 0.589711i \(-0.200758\pi\)
\(114\) −4.00095 + 3.37051i −0.374724 + 0.315677i
\(115\) −16.4806 + 2.61130i −1.53682 + 0.243505i
\(116\) 13.2341 + 2.28036i 1.22875 + 0.211727i
\(117\) 1.98020i 0.183069i
\(118\) −3.88350 + 3.27156i −0.357505 + 0.301172i
\(119\) −4.47327 14.1797i −0.410064 1.29985i
\(120\) −4.89150 + 4.00915i −0.446530 + 0.365983i
\(121\) −9.30909 −0.846281
\(122\) −4.63377 5.50050i −0.419522 0.497992i
\(123\) 2.70453i 0.243860i
\(124\) 3.50101 20.3181i 0.314400 1.82462i
\(125\) −9.96082 + 5.07761i −0.890923 + 0.454155i
\(126\) 2.00374 3.15991i 0.178508 0.281507i
\(127\) −17.2027 −1.52649 −0.763247 0.646107i \(-0.776396\pi\)
−0.763247 + 0.646107i \(0.776396\pi\)
\(128\) 11.1140 2.11645i 0.982347 0.187070i
\(129\) 5.78886i 0.509680i
\(130\) −4.09869 + 4.73420i −0.359479 + 0.415216i
\(131\) 14.1750i 1.23847i 0.785205 + 0.619236i \(0.212558\pi\)
−0.785205 + 0.619236i \(0.787442\pi\)
\(132\) −0.441619 + 2.56293i −0.0384380 + 0.223075i
\(133\) −9.33369 + 2.94450i −0.809334 + 0.255321i
\(134\) −2.46501 + 2.07659i −0.212945 + 0.179390i
\(135\) 2.20852 0.349934i 0.190079 0.0301175i
\(136\) −13.7189 + 8.02794i −1.17639 + 0.688390i
\(137\) 18.5295i 1.58308i 0.611116 + 0.791541i \(0.290721\pi\)
−0.611116 + 0.791541i \(0.709279\pi\)
\(138\) −6.79924 8.07102i −0.578790 0.687051i
\(139\) 14.7223i 1.24873i −0.781134 0.624363i \(-0.785359\pi\)
0.781134 0.624363i \(-0.214641\pi\)
\(140\) −11.3310 + 3.40718i −0.957643 + 0.287959i
\(141\) 9.66070i 0.813577i
\(142\) 7.89979 6.65500i 0.662936 0.558475i
\(143\) 2.57495i 0.215328i
\(144\) −3.76932 1.33873i −0.314110 0.111561i
\(145\) 2.34965 + 14.8292i 0.195128 + 1.23150i
\(146\) 7.69831 + 9.13825i 0.637117 + 0.756287i
\(147\) 5.73281 4.01682i 0.472834 0.331302i
\(148\) 0.660322 3.83218i 0.0542781 0.315003i
\(149\) 17.4926i 1.43305i −0.697560 0.716526i \(-0.745731\pi\)
0.697560 0.716526i \(-0.254269\pi\)
\(150\) −6.00436 3.73466i −0.490254 0.304934i
\(151\) 1.12118i 0.0912400i −0.998959 0.0456200i \(-0.985474\pi\)
0.998959 0.0456200i \(-0.0145263\pi\)
\(152\) 5.28434 + 9.03037i 0.428616 + 0.732460i
\(153\) 5.61979 0.454333
\(154\) −2.60557 + 4.10899i −0.209963 + 0.331112i
\(155\) 22.7671 3.60738i 1.82869 0.289752i
\(156\) −3.90288 0.672505i −0.312481 0.0538435i
\(157\) 14.8336i 1.18385i 0.805994 + 0.591923i \(0.201631\pi\)
−0.805994 + 0.591923i \(0.798369\pi\)
\(158\) 8.36634 7.04803i 0.665590 0.560711i
\(159\) −1.66702 −0.132203
\(160\) 6.24062 + 11.0025i 0.493365 + 0.869823i
\(161\) −5.93986 18.8286i −0.468127 1.48390i
\(162\) 0.911149 + 1.08158i 0.0715866 + 0.0849767i
\(163\) 12.8788i 1.00874i −0.863486 0.504372i \(-0.831724\pi\)
0.863486 0.504372i \(-0.168276\pi\)
\(164\) −5.33052 0.918500i −0.416243 0.0717228i
\(165\) −2.87185 + 0.455037i −0.223573 + 0.0354246i
\(166\) −6.14029 7.28881i −0.476579 0.565722i
\(167\) 8.12780i 0.628948i −0.949266 0.314474i \(-0.898172\pi\)
0.949266 0.314474i \(-0.101828\pi\)
\(168\) −5.54753 5.02244i −0.428001 0.387490i
\(169\) 9.07881 0.698370
\(170\) −13.4356 11.6320i −1.03046 0.892137i
\(171\) 3.69919i 0.282884i
\(172\) 11.4096 + 1.96598i 0.869972 + 0.149905i
\(173\) 23.5073i 1.78723i 0.448835 + 0.893615i \(0.351839\pi\)
−0.448835 + 0.893615i \(0.648161\pi\)
\(174\) −7.26231 + 6.11796i −0.550554 + 0.463802i
\(175\) −7.68498 10.7676i −0.580930 0.813954i
\(176\) 4.90144 + 1.74082i 0.369460 + 0.131219i
\(177\) 3.59059i 0.269885i
\(178\) −2.19114 + 1.84588i −0.164233 + 0.138354i
\(179\) 21.4655 1.60441 0.802204 0.597050i \(-0.203661\pi\)
0.802204 + 0.597050i \(0.203661\pi\)
\(180\) 0.0603414 4.47173i 0.00449758 0.333303i
\(181\) −1.03564 −0.0769787 −0.0384893 0.999259i \(-0.512255\pi\)
−0.0384893 + 0.999259i \(0.512255\pi\)
\(182\) −6.25724 3.96781i −0.463818 0.294114i
\(183\) 5.08563 0.375941
\(184\) −18.2167 + 10.6600i −1.34296 + 0.785862i
\(185\) 4.29408 0.680385i 0.315707 0.0500229i
\(186\) 9.39281 + 11.1497i 0.688714 + 0.817536i
\(187\) −7.30769 −0.534392
\(188\) 19.0408 + 3.28092i 1.38869 + 0.239285i
\(189\) 0.795986 + 2.52317i 0.0578995 + 0.183534i
\(190\) −7.65671 + 8.84390i −0.555476 + 0.641604i
\(191\) 25.2875i 1.82974i 0.403748 + 0.914870i \(0.367707\pi\)
−0.403748 + 0.914870i \(0.632293\pi\)
\(192\) −3.91870 + 6.97451i −0.282808 + 0.503342i
\(193\) 8.75697i 0.630341i 0.949035 + 0.315170i \(0.102062\pi\)
−0.949035 + 0.315170i \(0.897938\pi\)
\(194\) 1.60542 + 1.90571i 0.115262 + 0.136822i
\(195\) −0.692939 4.37330i −0.0496224 0.313179i
\(196\) −5.97002 12.6633i −0.426430 0.904520i
\(197\) 12.2406 0.872109 0.436054 0.899920i \(-0.356376\pi\)
0.436054 + 0.899920i \(0.356376\pi\)
\(198\) −1.18481 1.40643i −0.0842010 0.0999506i
\(199\) −1.03389 −0.0732903 −0.0366452 0.999328i \(-0.511667\pi\)
−0.0366452 + 0.999328i \(0.511667\pi\)
\(200\) −9.40001 + 10.5660i −0.664681 + 0.747127i
\(201\) 2.27909i 0.160755i
\(202\) −2.29993 2.73012i −0.161822 0.192091i
\(203\) −16.9420 + 5.34470i −1.18910 + 0.375124i
\(204\) 1.90856 11.0763i 0.133626 0.775499i
\(205\) −0.946409 5.97301i −0.0661000 0.417173i
\(206\) 14.9999 12.6363i 1.04509 0.880413i
\(207\) 7.46227 0.518664
\(208\) −2.65095 + 7.46401i −0.183811 + 0.517536i
\(209\) 4.81024i 0.332731i
\(210\) 3.31954 7.67989i 0.229070 0.529962i
\(211\) −15.6365 −1.07646 −0.538231 0.842797i \(-0.680907\pi\)
−0.538231 + 0.842797i \(0.680907\pi\)
\(212\) −0.566146 + 3.28563i −0.0388830 + 0.225658i
\(213\) 7.30396i 0.500459i
\(214\) 8.87883 7.47976i 0.606944 0.511306i
\(215\) 2.02572 + 12.7848i 0.138153 + 0.871915i
\(216\) 2.44118 1.42851i 0.166101 0.0971981i
\(217\) 8.20562 + 26.0108i 0.557034 + 1.76573i
\(218\) −10.1080 + 8.51529i −0.684603 + 0.576728i
\(219\) −8.44901 −0.570931
\(220\) −0.0784650 + 5.81482i −0.00529011 + 0.392035i
\(221\) 11.1283i 0.748570i
\(222\) 1.77157 + 2.10294i 0.118900 + 0.141140i
\(223\) 10.1557i 0.680077i 0.940412 + 0.340039i \(0.110440\pi\)
−0.940412 + 0.340039i \(0.889560\pi\)
\(224\) −11.7830 + 9.22824i −0.787286 + 0.616588i
\(225\) 4.75509 1.54567i 0.317006 0.103045i
\(226\) 13.5602 11.4235i 0.902011 0.759878i
\(227\) −12.4827 −0.828509 −0.414254 0.910161i \(-0.635958\pi\)
−0.414254 + 0.910161i \(0.635958\pi\)
\(228\) −7.29093 1.25630i −0.482854 0.0832004i
\(229\) 9.62470 0.636018 0.318009 0.948088i \(-0.396986\pi\)
0.318009 + 0.948088i \(0.396986\pi\)
\(230\) −17.8406 15.4457i −1.17637 1.01846i
\(231\) −1.03506 3.28101i −0.0681020 0.215875i
\(232\) 9.59184 + 16.3914i 0.629735 + 1.07615i
\(233\) 21.1728i 1.38707i −0.720421 0.693537i \(-0.756051\pi\)
0.720421 0.693537i \(-0.243949\pi\)
\(234\) 2.14174 1.80426i 0.140010 0.117948i
\(235\) 3.38061 + 21.3358i 0.220526 + 1.39179i
\(236\) −7.07689 1.21942i −0.460666 0.0793773i
\(237\) 7.73532i 0.502463i
\(238\) 11.2606 17.7580i 0.729917 1.15108i
\(239\) 11.4510i 0.740703i 0.928892 + 0.370351i \(0.120763\pi\)
−0.928892 + 0.370351i \(0.879237\pi\)
\(240\) −8.79308 1.63760i −0.567591 0.105706i
\(241\) 13.7870i 0.888101i −0.896002 0.444051i \(-0.853541\pi\)
0.896002 0.444051i \(-0.146459\pi\)
\(242\) −8.48197 10.0685i −0.545241 0.647227i
\(243\) −1.00000 −0.0641500
\(244\) 1.72716 10.0236i 0.110570 0.641692i
\(245\) 11.2554 10.8773i 0.719081 0.694927i
\(246\) 2.92516 2.46423i 0.186501 0.157114i
\(247\) −7.32512 −0.466086
\(248\) 25.1655 14.7262i 1.59801 0.935115i
\(249\) 6.73907 0.427071
\(250\) −14.5676 6.14693i −0.921337 0.388766i
\(251\) 20.7067i 1.30700i −0.756927 0.653499i \(-0.773300\pi\)
0.756927 0.653499i \(-0.226700\pi\)
\(252\) 5.24339 0.711945i 0.330302 0.0448483i
\(253\) −9.70357 −0.610058
\(254\) −15.6742 18.6060i −0.983488 1.16745i
\(255\) 12.4114 1.96655i 0.777231 0.123150i
\(256\) 12.4156 + 10.0922i 0.775975 + 0.630764i
\(257\) 6.02637 0.375915 0.187957 0.982177i \(-0.439813\pi\)
0.187957 + 0.982177i \(0.439813\pi\)
\(258\) −6.26109 + 5.27451i −0.389798 + 0.328377i
\(259\) 1.54766 + 4.90587i 0.0961666 + 0.304836i
\(260\) −8.85491 0.119488i −0.549158 0.00741032i
\(261\) 6.71456i 0.415621i
\(262\) −15.3313 + 12.9155i −0.947172 + 0.797923i
\(263\) 3.54056 0.218320 0.109160 0.994024i \(-0.465184\pi\)
0.109160 + 0.994024i \(0.465184\pi\)
\(264\) −3.17439 + 1.85757i −0.195370 + 0.114326i
\(265\) −3.68165 + 0.583348i −0.226162 + 0.0358348i
\(266\) −11.6891 7.41222i −0.716704 0.454472i
\(267\) 2.02588i 0.123982i
\(268\) −4.49199 0.774014i −0.274392 0.0472804i
\(269\) 21.7878 1.32842 0.664212 0.747544i \(-0.268767\pi\)
0.664212 + 0.747544i \(0.268767\pi\)
\(270\) 2.39077 + 2.06984i 0.145498 + 0.125966i
\(271\) 13.3149 0.808824 0.404412 0.914577i \(-0.367476\pi\)
0.404412 + 0.914577i \(0.367476\pi\)
\(272\) −21.1828 7.52338i −1.28440 0.456172i
\(273\) 4.99639 1.57621i 0.302395 0.0953966i
\(274\) −20.0411 + 16.8831i −1.21073 + 1.01995i
\(275\) −6.18329 + 2.00991i −0.372866 + 0.121202i
\(276\) 2.53430 14.7078i 0.152547 0.885305i
\(277\) 1.46216 0.0878528 0.0439264 0.999035i \(-0.486013\pi\)
0.0439264 + 0.999035i \(0.486013\pi\)
\(278\) 15.9232 13.4142i 0.955013 0.804529i
\(279\) −10.3088 −0.617169
\(280\) −14.0093 9.15087i −0.837218 0.546869i
\(281\) −27.3986 −1.63446 −0.817230 0.576311i \(-0.804492\pi\)
−0.817230 + 0.576311i \(0.804492\pi\)
\(282\) −10.4488 + 8.80233i −0.622216 + 0.524171i
\(283\) 13.3187 0.791717 0.395858 0.918312i \(-0.370447\pi\)
0.395858 + 0.918312i \(0.370447\pi\)
\(284\) 14.3958 + 2.48053i 0.854232 + 0.147193i
\(285\) −1.29447 8.16972i −0.0766778 0.483932i
\(286\) −2.78501 + 2.34617i −0.164681 + 0.138732i
\(287\) 6.82401 2.15277i 0.402809 0.127074i
\(288\) −1.98648 5.29659i −0.117054 0.312105i
\(289\) 14.5820 0.857764
\(290\) −13.8980 + 16.0530i −0.816122 + 0.942662i
\(291\) −1.76197 −0.103289
\(292\) −2.86941 + 16.6526i −0.167920 + 0.974521i
\(293\) 8.59973i 0.502402i −0.967935 0.251201i \(-0.919175\pi\)
0.967935 0.251201i \(-0.0808255\pi\)
\(294\) 9.56795 + 2.54055i 0.558014 + 0.148168i
\(295\) −1.25647 7.92988i −0.0731545 0.461695i
\(296\) 4.74644 2.77750i 0.275881 0.161439i
\(297\) 1.30035 0.0754540
\(298\) 18.9196 15.9384i 1.09598 0.923287i
\(299\) 14.7768i 0.854563i
\(300\) −1.43154 9.89700i −0.0826503 0.571404i
\(301\) −14.6063 + 4.60785i −0.841893 + 0.265592i
\(302\) 1.21264 1.02156i 0.0697794 0.0587841i
\(303\) 2.52420 0.145012
\(304\) −4.95222 + 13.9434i −0.284029 + 0.799711i
\(305\) 11.2317 1.77964i 0.643126 0.101902i
\(306\) 5.12046 + 6.07823i 0.292717 + 0.347469i
\(307\) −0.730484 −0.0416909 −0.0208455 0.999783i \(-0.506636\pi\)
−0.0208455 + 0.999783i \(0.506636\pi\)
\(308\) −6.81825 + 0.925778i −0.388506 + 0.0527511i
\(309\) 13.8685i 0.788953i
\(310\) 24.6458 + 21.3374i 1.39979 + 1.21189i
\(311\) 3.97387 0.225337 0.112669 0.993633i \(-0.464060\pi\)
0.112669 + 0.993633i \(0.464060\pi\)
\(312\) −2.82874 4.83402i −0.160146 0.273672i
\(313\) −23.5606 −1.33172 −0.665861 0.746076i \(-0.731935\pi\)
−0.665861 + 0.746076i \(0.731935\pi\)
\(314\) −16.0436 + 13.5156i −0.905394 + 0.762728i
\(315\) 2.64089 + 5.29393i 0.148797 + 0.298279i
\(316\) 15.2460 + 2.62703i 0.857653 + 0.147782i
\(317\) 19.6502 1.10367 0.551833 0.833955i \(-0.313929\pi\)
0.551833 + 0.833955i \(0.313929\pi\)
\(318\) −1.51891 1.80301i −0.0851760 0.101108i
\(319\) 8.73129i 0.488858i
\(320\) −6.21389 + 16.7746i −0.347367 + 0.937729i
\(321\) 8.20915i 0.458190i
\(322\) 14.9525 23.5801i 0.833269 1.31407i
\(323\) 20.7886i 1.15671i
\(324\) −0.339615 + 1.97095i −0.0188675 + 0.109497i
\(325\) −3.06073 9.41603i −0.169779 0.522307i
\(326\) 13.9294 11.7345i 0.771477 0.649913i
\(327\) 9.34566i 0.516816i
\(328\) −3.86347 6.60225i −0.213324 0.364548i
\(329\) −24.3756 + 7.68978i −1.34387 + 0.423951i
\(330\) −3.10884 2.69152i −0.171136 0.148163i
\(331\) −23.9573 −1.31681 −0.658406 0.752663i \(-0.728769\pi\)
−0.658406 + 0.752663i \(0.728769\pi\)
\(332\) 2.28869 13.2824i 0.125608 0.728966i
\(333\) −1.94433 −0.106548
\(334\) 8.79084 7.40564i 0.481013 0.405218i
\(335\) −0.797532 5.03341i −0.0435738 0.275005i
\(336\) 0.377523 10.5763i 0.0205956 0.576983i
\(337\) 29.3836i 1.60063i −0.599583 0.800313i \(-0.704667\pi\)
0.599583 0.800313i \(-0.295333\pi\)
\(338\) 8.27215 + 9.81943i 0.449946 + 0.534107i
\(339\) 12.5374i 0.680940i
\(340\) 0.339105 25.1302i 0.0183906 1.36287i
\(341\) 13.4050 0.725922
\(342\) 4.00095 3.37051i 0.216347 0.182256i
\(343\) 14.6984 + 11.2675i 0.793638 + 0.608390i
\(344\) 8.26946 + 14.1316i 0.445859 + 0.761926i
\(345\) 16.4806 2.61130i 0.887283 0.140588i
\(346\) −25.4250 + 21.4187i −1.36686 + 1.15148i
\(347\) 8.16924i 0.438548i −0.975663 0.219274i \(-0.929631\pi\)
0.975663 0.219274i \(-0.0703688\pi\)
\(348\) −13.2341 2.28036i −0.709422 0.122240i
\(349\) 16.5595 0.886408 0.443204 0.896421i \(-0.353842\pi\)
0.443204 + 0.896421i \(0.353842\pi\)
\(350\) 4.64381 18.1228i 0.248222 0.968703i
\(351\) 1.98020i 0.105695i
\(352\) 2.58312 + 6.88743i 0.137681 + 0.367101i
\(353\) 16.7033 0.889026 0.444513 0.895772i \(-0.353377\pi\)
0.444513 + 0.895772i \(0.353377\pi\)
\(354\) 3.88350 3.27156i 0.206406 0.173882i
\(355\) 2.55590 + 16.1309i 0.135653 + 0.856141i
\(356\) −3.99292 0.688019i −0.211624 0.0364649i
\(357\) 4.47327 + 14.1797i 0.236751 + 0.750469i
\(358\) 19.5583 + 23.2166i 1.03369 + 1.22704i
\(359\) 20.8523i 1.10054i 0.834985 + 0.550272i \(0.185476\pi\)
−0.834985 + 0.550272i \(0.814524\pi\)
\(360\) 4.89150 4.00915i 0.257804 0.211301i
\(361\) 5.31602 0.279791
\(362\) −0.943624 1.12013i −0.0495958 0.0588725i
\(363\) 9.30909 0.488600
\(364\) −1.40979 10.3830i −0.0738932 0.544215i
\(365\) −18.6598 + 2.95660i −0.976698 + 0.154755i
\(366\) 4.63377 + 5.50050i 0.242211 + 0.287516i
\(367\) 17.8487i 0.931693i −0.884866 0.465847i \(-0.845750\pi\)
0.884866 0.465847i \(-0.154250\pi\)
\(368\) −28.1277 9.98997i −1.46626 0.520763i
\(369\) 2.70453i 0.140792i
\(370\) 4.64843 + 4.02444i 0.241660 + 0.209221i
\(371\) −1.32693 4.20619i −0.0688906 0.218374i
\(372\) −3.50101 + 20.3181i −0.181519 + 1.05344i
\(373\) −20.3709 −1.05477 −0.527384 0.849627i \(-0.676827\pi\)
−0.527384 + 0.849627i \(0.676827\pi\)
\(374\) −6.65840 7.90383i −0.344298 0.408697i
\(375\) 9.96082 5.07761i 0.514374 0.262206i
\(376\) 13.8004 + 23.5835i 0.711703 + 1.21622i
\(377\) −13.2962 −0.684787
\(378\) −2.00374 + 3.15991i −0.103061 + 0.162528i
\(379\) 33.2524 1.70806 0.854032 0.520221i \(-0.174150\pi\)
0.854032 + 0.520221i \(0.174150\pi\)
\(380\) −16.5418 0.223214i −0.848574 0.0114506i
\(381\) 17.2027 0.881321
\(382\) −27.3504 + 23.0407i −1.39937 + 1.17886i
\(383\) 22.1178i 1.13017i 0.825034 + 0.565083i \(0.191156\pi\)
−0.825034 + 0.565083i \(0.808844\pi\)
\(384\) −11.1140 + 2.11645i −0.567158 + 0.108005i
\(385\) −3.43409 6.88397i −0.175017 0.350839i
\(386\) −9.47134 + 7.97891i −0.482078 + 0.406116i
\(387\) 5.78886i 0.294264i
\(388\) −0.598392 + 3.47277i −0.0303788 + 0.176303i
\(389\) 16.9019i 0.856959i 0.903551 + 0.428480i \(0.140951\pi\)
−0.903551 + 0.428480i \(0.859049\pi\)
\(390\) 4.09869 4.73420i 0.207545 0.239725i
\(391\) 41.9364 2.12081
\(392\) 8.25673 17.9952i 0.417028 0.908894i
\(393\) 14.1750i 0.715033i
\(394\) 11.1530 + 13.2392i 0.561882 + 0.666980i
\(395\) 2.70685 + 17.0836i 0.136197 + 0.859569i
\(396\) 0.441619 2.56293i 0.0221922 0.128792i
\(397\) 13.6211i 0.683625i −0.939768 0.341813i \(-0.888959\pi\)
0.939768 0.341813i \(-0.111041\pi\)
\(398\) −0.942025 1.11823i −0.0472195 0.0560517i
\(399\) 9.33369 2.94450i 0.467269 0.147409i
\(400\) −19.9927 0.539660i −0.999636 0.0269830i
\(401\) −17.0852 −0.853196 −0.426598 0.904441i \(-0.640288\pi\)
−0.426598 + 0.904441i \(0.640288\pi\)
\(402\) 2.46501 2.07659i 0.122944 0.103571i
\(403\) 20.4134i 1.01686i
\(404\) 0.857257 4.97509i 0.0426502 0.247520i
\(405\) −2.20852 + 0.349934i −0.109742 + 0.0173884i
\(406\) −21.2174 13.4543i −1.05300 0.667723i
\(407\) 2.52831 0.125323
\(408\) 13.7189 8.02794i 0.679186 0.397442i
\(409\) 19.1043i 0.944646i −0.881426 0.472323i \(-0.843416\pi\)
0.881426 0.472323i \(-0.156584\pi\)
\(410\) 5.59795 6.46592i 0.276463 0.319329i
\(411\) 18.5295i 0.913993i
\(412\) 27.3342 + 4.70996i 1.34666 + 0.232043i
\(413\) 9.05968 2.85806i 0.445798 0.140636i
\(414\) 6.79924 + 8.07102i 0.334164 + 0.396669i
\(415\) 14.8833 2.35823i 0.730594 0.115761i
\(416\) −10.4883 + 3.93362i −0.514232 + 0.192861i
\(417\) 14.7223i 0.720952i
\(418\) −5.20264 + 4.38285i −0.254470 + 0.214372i
\(419\) 35.4795i 1.73329i 0.498926 + 0.866645i \(0.333728\pi\)
−0.498926 + 0.866645i \(0.666272\pi\)
\(420\) 11.3310 3.40718i 0.552895 0.166253i
\(421\) 17.0251i 0.829751i 0.909878 + 0.414875i \(0.136175\pi\)
−0.909878 + 0.414875i \(0.863825\pi\)
\(422\) −14.2472 16.9121i −0.693542 0.823267i
\(423\) 9.66070i 0.469719i
\(424\) −4.06950 + 2.38136i −0.197632 + 0.115649i
\(425\) 26.7226 8.68633i 1.29624 0.421349i
\(426\) −7.89979 + 6.65500i −0.382746 + 0.322436i
\(427\) 4.04809 + 12.8319i 0.195901 + 0.620981i
\(428\) 16.1799 + 2.78795i 0.782083 + 0.134761i
\(429\) 2.57495i 0.124320i
\(430\) −11.9820 + 13.8398i −0.577823 + 0.667415i
\(431\) 21.6127i 1.04105i 0.853847 + 0.520524i \(0.174263\pi\)
−0.853847 + 0.520524i \(0.825737\pi\)
\(432\) 3.76932 + 1.33873i 0.181352 + 0.0644097i
\(433\) 39.1417 1.88103 0.940515 0.339753i \(-0.110343\pi\)
0.940515 + 0.339753i \(0.110343\pi\)
\(434\) −20.6561 + 32.5747i −0.991524 + 1.56364i
\(435\) −2.34965 14.8292i −0.112657 0.711007i
\(436\) −18.4199 3.17393i −0.882152 0.152004i
\(437\) 27.6043i 1.32049i
\(438\) −7.69831 9.13825i −0.367839 0.436643i
\(439\) 21.5089 1.02656 0.513282 0.858220i \(-0.328429\pi\)
0.513282 + 0.858220i \(0.328429\pi\)
\(440\) −6.36066 + 5.21330i −0.303233 + 0.248534i
\(441\) −5.73281 + 4.01682i −0.272991 + 0.191277i
\(442\) 12.0361 10.1395i 0.572499 0.482288i
\(443\) 19.5800i 0.930275i 0.885238 + 0.465138i \(0.153995\pi\)
−0.885238 + 0.465138i \(0.846005\pi\)
\(444\) −0.660322 + 3.83218i −0.0313375 + 0.181867i
\(445\) −0.708924 4.47419i −0.0336062 0.212097i
\(446\) −10.9842 + 9.25337i −0.520116 + 0.438160i
\(447\) 17.4926i 0.827373i
\(448\) −20.7171 4.33594i −0.978793 0.204854i
\(449\) −13.9204 −0.656945 −0.328473 0.944513i \(-0.606534\pi\)
−0.328473 + 0.944513i \(0.606534\pi\)
\(450\) 6.00436 + 3.73466i 0.283048 + 0.176054i
\(451\) 3.51685i 0.165602i
\(452\) 24.7107 + 4.25790i 1.16229 + 0.200275i
\(453\) 1.12118i 0.0526774i
\(454\) −11.3736 13.5010i −0.533791 0.633635i
\(455\) 10.4830 5.22949i 0.491452 0.245162i
\(456\) −5.28434 9.03037i −0.247462 0.422886i
\(457\) 24.9640i 1.16776i 0.811838 + 0.583882i \(0.198467\pi\)
−0.811838 + 0.583882i \(0.801533\pi\)
\(458\) 8.76954 + 10.4099i 0.409774 + 0.486420i
\(459\) −5.61979 −0.262309
\(460\) 0.450284 33.3693i 0.0209946 1.55585i
\(461\) 11.7567 0.547563 0.273781 0.961792i \(-0.411726\pi\)
0.273781 + 0.961792i \(0.411726\pi\)
\(462\) 2.60557 4.10899i 0.121222 0.191167i
\(463\) 6.94099 0.322575 0.161288 0.986907i \(-0.448435\pi\)
0.161288 + 0.986907i \(0.448435\pi\)
\(464\) −8.98899 + 25.3093i −0.417303 + 1.17496i
\(465\) −22.7671 + 3.60738i −1.05580 + 0.167288i
\(466\) 22.9000 19.2915i 1.06082 0.893663i
\(467\) 33.2685 1.53948 0.769741 0.638356i \(-0.220385\pi\)
0.769741 + 0.638356i \(0.220385\pi\)
\(468\) 3.90288 + 0.672505i 0.180411 + 0.0310866i
\(469\) 5.75055 1.81413i 0.265536 0.0837685i
\(470\) −19.9961 + 23.0965i −0.922350 + 1.06536i
\(471\) 14.8336i 0.683494i
\(472\) −5.12921 8.76527i −0.236091 0.403454i
\(473\) 7.52755i 0.346117i
\(474\) −8.36634 + 7.04803i −0.384279 + 0.323727i
\(475\) −5.71772 17.5900i −0.262347 0.807083i
\(476\) 29.4667 4.00098i 1.35061 0.183384i
\(477\) 1.66702 0.0763277
\(478\) −12.3851 + 10.4336i −0.566482 + 0.477220i
\(479\) −10.8692 −0.496626 −0.248313 0.968680i \(-0.579876\pi\)
−0.248313 + 0.968680i \(0.579876\pi\)
\(480\) −6.24062 11.0025i −0.284844 0.502192i
\(481\) 3.85015i 0.175552i
\(482\) 14.9117 12.5620i 0.679211 0.572186i
\(483\) 5.93986 + 18.8286i 0.270273 + 0.856731i
\(484\) 3.16150 18.3478i 0.143705 0.833990i
\(485\) −3.89135 + 0.616574i −0.176697 + 0.0279972i
\(486\) −0.911149 1.08158i −0.0413306 0.0490613i
\(487\) −41.5766 −1.88402 −0.942008 0.335591i \(-0.891064\pi\)
−0.942008 + 0.335591i \(0.891064\pi\)
\(488\) 12.4149 7.26490i 0.561998 0.328866i
\(489\) 12.8788i 0.582399i
\(490\) 22.0200 + 2.26270i 0.994762 + 0.102218i
\(491\) 24.8987 1.12366 0.561831 0.827252i \(-0.310097\pi\)
0.561831 + 0.827252i \(0.310097\pi\)
\(492\) 5.33052 + 0.918500i 0.240318 + 0.0414092i
\(493\) 37.7344i 1.69947i
\(494\) −6.67428 7.92268i −0.300290 0.356458i
\(495\) 2.87185 0.455037i 0.129080 0.0204524i
\(496\) 38.8570 + 13.8007i 1.74473 + 0.619668i
\(497\) −18.4292 + 5.81385i −0.826661 + 0.260787i
\(498\) 6.14029 + 7.28881i 0.275153 + 0.326620i
\(499\) −21.7174 −0.972206 −0.486103 0.873902i \(-0.661582\pi\)
−0.486103 + 0.873902i \(0.661582\pi\)
\(500\) −6.62489 21.3568i −0.296274 0.955103i
\(501\) 8.12780i 0.363123i
\(502\) 22.3959 18.8669i 0.999579 0.842072i
\(503\) 21.1888i 0.944760i −0.881395 0.472380i \(-0.843395\pi\)
0.881395 0.472380i \(-0.156605\pi\)
\(504\) 5.54753 + 5.02244i 0.247107 + 0.223717i
\(505\) 5.57475 0.883305i 0.248073 0.0393065i
\(506\) −8.84140 10.4952i −0.393048 0.466567i
\(507\) −9.07881 −0.403204
\(508\) 5.84229 33.9057i 0.259210 1.50432i
\(509\) −19.4366 −0.861512 −0.430756 0.902468i \(-0.641753\pi\)
−0.430756 + 0.902468i \(0.641753\pi\)
\(510\) 13.4356 + 11.6320i 0.594939 + 0.515076i
\(511\) −6.72530 21.3183i −0.297510 0.943067i
\(512\) 0.396952 + 22.6239i 0.0175430 + 0.999846i
\(513\) 3.69919i 0.163323i
\(514\) 5.49092 + 6.51798i 0.242194 + 0.287496i
\(515\) 4.85307 + 30.6289i 0.213852 + 1.34967i
\(516\) −11.4096 1.96598i −0.502278 0.0865475i
\(517\) 12.5623i 0.552489i
\(518\) −3.89593 + 6.14389i −0.171177 + 0.269947i
\(519\) 23.5073i 1.03186i
\(520\) −7.93891 9.68613i −0.348144 0.424765i
\(521\) 13.2081i 0.578659i 0.957230 + 0.289329i \(0.0934323\pi\)
−0.957230 + 0.289329i \(0.906568\pi\)
\(522\) 7.26231 6.11796i 0.317863 0.267776i
\(523\) 1.05251 0.0460232 0.0230116 0.999735i \(-0.492675\pi\)
0.0230116 + 0.999735i \(0.492675\pi\)
\(524\) −27.9382 4.81403i −1.22049 0.210302i
\(525\) 7.68498 + 10.7676i 0.335400 + 0.469936i
\(526\) 3.22598 + 3.82939i 0.140659 + 0.166969i
\(527\) −57.9330 −2.52360
\(528\) −4.90144 1.74082i −0.213308 0.0757595i
\(529\) 32.6855 1.42111
\(530\) −3.98546 3.45047i −0.173118 0.149879i
\(531\) 3.59059i 0.155818i
\(532\) −2.63362 19.3963i −0.114182 0.840935i
\(533\) 5.35552 0.231973
\(534\) 2.19114 1.84588i 0.0948201 0.0798790i
\(535\) 2.87266 + 18.1301i 0.124196 + 0.783831i
\(536\) −3.25572 5.56367i −0.140625 0.240314i
\(537\) −21.4655 −0.926306
\(538\) 19.8519 + 23.5651i 0.855877 + 1.01597i
\(539\) 7.45467 5.22328i 0.321095 0.224983i
\(540\) −0.0603414 + 4.47173i −0.00259668 + 0.192433i
\(541\) 34.3179i 1.47544i −0.675107 0.737720i \(-0.735902\pi\)
0.675107 0.737720i \(-0.264098\pi\)
\(542\) 12.1319 + 14.4011i 0.521109 + 0.618580i
\(543\) 1.03564 0.0444437
\(544\) −11.1636 29.7657i −0.478634 1.27619i
\(545\) −3.27036 20.6401i −0.140087 0.884123i
\(546\) 6.25724 + 3.96781i 0.267785 + 0.169807i
\(547\) 39.5446i 1.69080i −0.534131 0.845402i \(-0.679361\pi\)
0.534131 0.845402i \(-0.320639\pi\)
\(548\) −36.5208 6.29289i −1.56009 0.268819i
\(549\) −5.08563 −0.217050
\(550\) −7.80777 4.85637i −0.332925 0.207076i
\(551\) −24.8384 −1.05815
\(552\) 18.2167 10.6600i 0.775356 0.453718i
\(553\) −19.5176 + 6.15721i −0.829971 + 0.261831i
\(554\) 1.33225 + 1.58144i 0.0566018 + 0.0671890i
\(555\) −4.29408 + 0.680385i −0.182273 + 0.0288808i
\(556\) 29.0169 + 4.99990i 1.23059 + 0.212043i
\(557\) 12.2418 0.518703 0.259351 0.965783i \(-0.416491\pi\)
0.259351 + 0.965783i \(0.416491\pi\)
\(558\) −9.39281 11.1497i −0.397629 0.472005i
\(559\) −11.4631 −0.484837
\(560\) −2.86723 23.4900i −0.121163 0.992633i
\(561\) 7.30769 0.308531
\(562\) −24.9642 29.6336i −1.05305 1.25002i
\(563\) −9.18710 −0.387190 −0.193595 0.981082i \(-0.562015\pi\)
−0.193595 + 0.981082i \(0.562015\pi\)
\(564\) −19.0408 3.28092i −0.801762 0.138152i
\(565\) 4.38727 + 27.6891i 0.184574 + 1.16489i
\(566\) 12.1354 + 14.4052i 0.510087 + 0.605497i
\(567\) −0.795986 2.52317i −0.0334283 0.105963i
\(568\) 10.4338 + 17.8303i 0.437793 + 0.748142i
\(569\) 25.2164 1.05713 0.528564 0.848893i \(-0.322731\pi\)
0.528564 + 0.848893i \(0.322731\pi\)
\(570\) 7.65671 8.84390i 0.320704 0.370430i
\(571\) −16.5882 −0.694193 −0.347096 0.937829i \(-0.612832\pi\)
−0.347096 + 0.937829i \(0.612832\pi\)
\(572\) −5.07512 0.874493i −0.212201 0.0365644i
\(573\) 25.2875i 1.05640i
\(574\) 8.54608 + 5.41919i 0.356706 + 0.226193i
\(575\) 35.4838 11.5342i 1.47978 0.481010i
\(576\) 3.91870 6.97451i 0.163279 0.290605i
\(577\) −33.0170 −1.37451 −0.687257 0.726414i \(-0.741186\pi\)
−0.687257 + 0.726414i \(0.741186\pi\)
\(578\) 13.2864 + 15.7715i 0.552640 + 0.656009i
\(579\) 8.75697i 0.363927i
\(580\) −30.0257 0.405166i −1.24675 0.0168236i
\(581\) 5.36420 + 17.0038i 0.222545 + 0.705438i
\(582\) −1.60542 1.90571i −0.0665468 0.0789942i
\(583\) −2.16771 −0.0897776
\(584\) −20.6255 + 12.0695i −0.853491 + 0.499441i
\(585\) 0.692939 + 4.37330i 0.0286495 + 0.180814i
\(586\) 9.30127 7.83564i 0.384232 0.323687i
\(587\) 22.4990 0.928633 0.464316 0.885669i \(-0.346300\pi\)
0.464316 + 0.885669i \(0.346300\pi\)
\(588\) 5.97002 + 12.6633i 0.246200 + 0.522225i
\(589\) 38.1340i 1.57128i
\(590\) 7.43194 8.58427i 0.305968 0.353409i
\(591\) −12.2406 −0.503512
\(592\) 7.32879 + 2.60293i 0.301211 + 0.106980i
\(593\) −17.3914 −0.714177 −0.357089 0.934071i \(-0.616231\pi\)
−0.357089 + 0.934071i \(0.616231\pi\)
\(594\) 1.18481 + 1.40643i 0.0486135 + 0.0577065i
\(595\) 14.8412 + 29.7507i 0.608432 + 1.21966i
\(596\) 34.4772 + 5.94076i 1.41224 + 0.243343i
\(597\) 1.03389 0.0423142
\(598\) 15.9822 13.4638i 0.653561 0.550578i
\(599\) 25.1318i 1.02686i 0.858133 + 0.513428i \(0.171625\pi\)
−0.858133 + 0.513428i \(0.828375\pi\)
\(600\) 9.40001 10.5660i 0.383754 0.431354i
\(601\) 3.67626i 0.149958i −0.997185 0.0749789i \(-0.976111\pi\)
0.997185 0.0749789i \(-0.0238889\pi\)
\(602\) −18.2922 11.5994i −0.745536 0.472756i
\(603\) 2.27909i 0.0928118i
\(604\) 2.20979 + 0.380768i 0.0899149 + 0.0154932i
\(605\) 20.5593 3.25757i 0.835853 0.132439i
\(606\) 2.29993 + 2.73012i 0.0934281 + 0.110904i
\(607\) 8.13992i 0.330389i −0.986261 0.165195i \(-0.947175\pi\)
0.986261 0.165195i \(-0.0528252\pi\)
\(608\) −19.5931 + 7.34834i −0.794605 + 0.298015i
\(609\) 16.9420 5.34470i 0.686525 0.216578i
\(610\) 12.1586 + 10.5264i 0.492286 + 0.426203i
\(611\) −19.1301 −0.773921
\(612\) −1.90856 + 11.0763i −0.0771491 + 0.447735i
\(613\) 20.2573 0.818185 0.409093 0.912493i \(-0.365845\pi\)
0.409093 + 0.912493i \(0.365845\pi\)
\(614\) −0.665580 0.790074i −0.0268606 0.0318848i
\(615\) 0.946409 + 5.97301i 0.0381629 + 0.240855i
\(616\) −7.21374 6.53093i −0.290650 0.263139i
\(617\) 4.00904i 0.161398i −0.996739 0.0806989i \(-0.974285\pi\)
0.996739 0.0806989i \(-0.0257152\pi\)
\(618\) −14.9999 + 12.6363i −0.603384 + 0.508307i
\(619\) 46.0413i 1.85056i −0.379289 0.925278i \(-0.623831\pi\)
0.379289 0.925278i \(-0.376169\pi\)
\(620\) −0.622044 + 46.0980i −0.0249819 + 1.85134i
\(621\) −7.46227 −0.299451
\(622\) 3.62079 + 4.29804i 0.145180 + 0.172336i
\(623\) 5.11165 1.61257i 0.204794 0.0646063i
\(624\) 2.65095 7.46401i 0.106123 0.298799i
\(625\) 20.2218 14.6996i 0.808872 0.587984i
\(626\) −21.4672 25.4825i −0.858001 1.01849i
\(627\) 4.81024i 0.192103i
\(628\) −29.2363 5.03770i −1.16665 0.201026i
\(629\) −10.9267 −0.435676
\(630\) −3.31954 + 7.67989i −0.132254 + 0.305974i
\(631\) 10.7739i 0.428900i −0.976735 0.214450i \(-0.931204\pi\)
0.976735 0.214450i \(-0.0687959\pi\)
\(632\) 11.0500 + 18.8833i 0.439546 + 0.751137i
\(633\) 15.6365 0.621496
\(634\) 17.9043 + 21.2532i 0.711069 + 0.844072i
\(635\) 37.9925 6.01981i 1.50768 0.238889i
\(636\) 0.566146 3.28563i 0.0224491 0.130284i
\(637\) 7.95410 + 11.3521i 0.315153 + 0.449787i
\(638\) −9.44355 + 7.95550i −0.373874 + 0.314961i
\(639\) 7.30396i 0.288940i
\(640\) −23.8048 + 8.56338i −0.940967 + 0.338497i
\(641\) −32.5201 −1.28447 −0.642233 0.766509i \(-0.721992\pi\)
−0.642233 + 0.766509i \(0.721992\pi\)
\(642\) −8.87883 + 7.47976i −0.350419 + 0.295203i
\(643\) 7.14506 0.281774 0.140887 0.990026i \(-0.455005\pi\)
0.140887 + 0.990026i \(0.455005\pi\)
\(644\) 39.1276 5.31272i 1.54184 0.209351i
\(645\) −2.02572 12.7848i −0.0797625 0.503400i
\(646\) 22.4845 18.9415i 0.884641 0.745245i
\(647\) 23.1371i 0.909614i 0.890590 + 0.454807i \(0.150292\pi\)
−0.890590 + 0.454807i \(0.849708\pi\)
\(648\) −2.44118 + 1.42851i −0.0958985 + 0.0561173i
\(649\) 4.66903i 0.183275i
\(650\) 7.39537 11.8898i 0.290070 0.466357i
\(651\) −8.20562 26.0108i −0.321604 1.01944i
\(652\) 25.3835 + 4.37383i 0.994094 + 0.171292i
\(653\) −12.6552 −0.495238 −0.247619 0.968857i \(-0.579648\pi\)
−0.247619 + 0.968857i \(0.579648\pi\)
\(654\) 10.1080 8.51529i 0.395256 0.332974i
\(655\) −4.96030 31.3057i −0.193815 1.22321i
\(656\) 3.62064 10.1943i 0.141362 0.398019i
\(657\) 8.44901 0.329627
\(658\) −30.5269 19.3576i −1.19006 0.754636i
\(659\) 6.16566 0.240180 0.120090 0.992763i \(-0.461682\pi\)
0.120090 + 0.992763i \(0.461682\pi\)
\(660\) 0.0784650 5.81482i 0.00305424 0.226341i
\(661\) −47.7018 −1.85538 −0.927692 0.373347i \(-0.878210\pi\)
−0.927692 + 0.373347i \(0.878210\pi\)
\(662\) −21.8287 25.9116i −0.848395 1.00708i
\(663\) 11.1283i 0.432187i
\(664\) 16.4513 9.62685i 0.638433 0.373594i
\(665\) 19.5832 9.76915i 0.759405 0.378832i
\(666\) −1.77157 2.10294i −0.0686469 0.0814871i
\(667\) 50.1059i 1.94011i
\(668\) 16.0195 + 2.76032i 0.619814 + 0.106800i
\(669\) 10.1557i 0.392643i
\(670\) 4.71735 5.44878i 0.182247 0.210505i
\(671\) 6.61311 0.255296
\(672\) 11.7830 9.22824i 0.454540 0.355987i
\(673\) 28.8374i 1.11160i −0.831315 0.555801i \(-0.812412\pi\)
0.831315 0.555801i \(-0.187588\pi\)
\(674\) 31.7806 26.7728i 1.22414 1.03125i
\(675\) −4.75509 + 1.54567i −0.183024 + 0.0594929i
\(676\) −3.08330 + 17.8939i −0.118588 + 0.688228i
\(677\) 1.72096i 0.0661417i −0.999453 0.0330708i \(-0.989471\pi\)
0.999453 0.0330708i \(-0.0105287\pi\)
\(678\) −13.5602 + 11.4235i −0.520776 + 0.438716i
\(679\) −1.40251 4.44576i −0.0538232 0.170613i
\(680\) 27.4892 22.5305i 1.05416 0.864007i
\(681\) 12.4827 0.478340
\(682\) 12.2140 + 14.4985i 0.467696 + 0.555178i
\(683\) 7.04600i 0.269608i 0.990872 + 0.134804i \(0.0430405\pi\)
−0.990872 + 0.134804i \(0.956960\pi\)
\(684\) 7.29093 + 1.25630i 0.278776 + 0.0480358i
\(685\) −6.48410 40.9227i −0.247745 1.56358i
\(686\) 1.20570 + 26.1638i 0.0460338 + 0.998940i
\(687\) −9.62470 −0.367205
\(688\) −7.74972 + 21.8201i −0.295455 + 0.831882i
\(689\) 3.30104i 0.125759i
\(690\) 17.8406 + 15.4457i 0.679179 + 0.588007i
\(691\) 37.9396i 1.44329i 0.692264 + 0.721644i \(0.256613\pi\)
−0.692264 + 0.721644i \(0.743387\pi\)
\(692\) −46.3319 7.98344i −1.76127 0.303485i
\(693\) 1.03506 + 3.28101i 0.0393187 + 0.124635i
\(694\) 8.83565 7.44339i 0.335397 0.282547i
\(695\) 5.15182 + 32.5144i 0.195420 + 1.23334i
\(696\) −9.59184 16.3914i −0.363578 0.621316i
\(697\) 15.1989i 0.575700i
\(698\) 15.0881 + 17.9103i 0.571095 + 0.677916i
\(699\) 21.1728i 0.800827i
\(700\) 23.8324 11.4899i 0.900779 0.434278i
\(701\) 4.82214i 0.182130i −0.995845 0.0910649i \(-0.970973\pi\)
0.995845 0.0910649i \(-0.0290271\pi\)
\(702\) −2.14174 + 1.80426i −0.0808346 + 0.0680973i
\(703\) 7.19242i 0.271267i
\(704\) −5.09568 + 9.06931i −0.192051 + 0.341813i
\(705\) −3.38061 21.3358i −0.127321 0.803553i
\(706\) 15.2192 + 18.0659i 0.572781 + 0.679918i
\(707\) 2.00923 + 6.36901i 0.0755649 + 0.239531i
\(708\) 7.07689 + 1.21942i 0.265966 + 0.0458285i
\(709\) 29.7215i 1.11621i −0.829769 0.558107i \(-0.811528\pi\)
0.829769 0.558107i \(-0.188472\pi\)
\(710\) −15.1180 + 17.4621i −0.567369 + 0.655340i
\(711\) 7.73532i 0.290097i
\(712\) −2.89400 4.94553i −0.108457 0.185342i
\(713\) −76.9267 −2.88093
\(714\) −11.2606 + 17.7580i −0.421418 + 0.664576i
\(715\) −0.901064 5.68683i −0.0336979 0.212675i
\(716\) −7.29001 + 42.3076i −0.272441 + 1.58111i
\(717\) 11.4510i 0.427645i
\(718\) −22.5534 + 18.9996i −0.841686 + 0.709059i
\(719\) −12.6120 −0.470348 −0.235174 0.971953i \(-0.575566\pi\)
−0.235174 + 0.971953i \(0.575566\pi\)
\(720\) 8.79308 + 1.63760i 0.327699 + 0.0610296i
\(721\) −34.9927 + 11.0392i −1.30320 + 0.411120i
\(722\) 4.84369 + 5.74968i 0.180263 + 0.213981i
\(723\) 13.7870i 0.512746i
\(724\) 0.351719 2.04120i 0.0130716 0.0758607i
\(725\) −10.3785 31.9284i −0.385448 1.18579i
\(726\) 8.48197 + 10.0685i 0.314795 + 0.373677i
\(727\) 38.1524i 1.41500i 0.706716 + 0.707498i \(0.250176\pi\)
−0.706716 + 0.707498i \(0.749824\pi\)
\(728\) 9.94543 10.9852i 0.368602 0.407139i
\(729\) 1.00000 0.0370370
\(730\) −20.1996 17.4881i −0.747622 0.647263i
\(731\) 32.5321i 1.20324i
\(732\) −1.72716 + 10.0236i −0.0638376 + 0.370481i
\(733\) 8.51250i 0.314416i −0.987565 0.157208i \(-0.949751\pi\)
0.987565 0.157208i \(-0.0502493\pi\)
\(734\) 19.3047 16.2628i 0.712550 0.600271i
\(735\) −11.2554 + 10.8773i −0.415161 + 0.401216i
\(736\) −14.8236 39.5246i −0.546406 1.45690i
\(737\) 2.96362i 0.109166i
\(738\) −2.92516 + 2.46423i −0.107677 + 0.0907097i
\(739\) −29.1631 −1.07278 −0.536390 0.843970i \(-0.680213\pi\)
−0.536390 + 0.843970i \(0.680213\pi\)
\(740\) −0.117323 + 8.69450i −0.00431289 + 0.319616i
\(741\) 7.32512 0.269095
\(742\) 3.34029 5.26764i 0.122626 0.193381i
\(743\) −39.8537 −1.46209 −0.731045 0.682329i \(-0.760967\pi\)
−0.731045 + 0.682329i \(0.760967\pi\)
\(744\) −25.1655 + 14.7262i −0.922612 + 0.539889i
\(745\) 6.12127 + 38.6328i 0.224266 + 1.41540i
\(746\) −18.5610 22.0327i −0.679565 0.806676i
\(747\) −6.73907 −0.246570
\(748\) 2.48180 14.4031i 0.0907437 0.526631i
\(749\) −20.7131 + 6.53437i −0.756841 + 0.238761i
\(750\) 14.5676 + 6.14693i 0.531934 + 0.224454i
\(751\) 52.3872i 1.91164i 0.293959 + 0.955818i \(0.405027\pi\)
−0.293959 + 0.955818i \(0.594973\pi\)
\(752\) −12.9331 + 36.4143i −0.471621 + 1.32789i
\(753\) 20.7067i 0.754596i
\(754\) −12.1148 14.3808i −0.441194 0.523718i
\(755\) 0.392337 + 2.47613i 0.0142786 + 0.0901158i
\(756\) −5.24339 + 0.711945i −0.190700 + 0.0258932i
\(757\) 54.1507 1.96814 0.984071 0.177778i \(-0.0568908\pi\)
0.984071 + 0.177778i \(0.0568908\pi\)
\(758\) 30.2979 + 35.9651i 1.10047 + 1.30631i
\(759\) 9.70357 0.352217
\(760\) −14.8306 18.0946i −0.537962 0.656359i
\(761\) 29.1269i 1.05585i −0.849291 0.527925i \(-0.822970\pi\)
0.849291 0.527925i \(-0.177030\pi\)
\(762\) 15.6742 + 18.6060i 0.567817 + 0.674026i
\(763\) 23.5807 7.43902i 0.853680 0.269310i
\(764\) −49.8405 8.58802i −1.80317 0.310704i
\(765\) −12.4114 + 1.96655i −0.448735 + 0.0711009i
\(766\) −23.9221 + 20.1526i −0.864340 + 0.728143i
\(767\) 7.11008 0.256730
\(768\) −12.4156 10.0922i −0.448009 0.364172i
\(769\) 20.5536i 0.741183i −0.928796 0.370591i \(-0.879155\pi\)
0.928796 0.370591i \(-0.120845\pi\)
\(770\) 4.31657 9.98655i 0.155558 0.359890i
\(771\) −6.02637 −0.217034
\(772\) −17.2596 2.97400i −0.621187 0.107037i
\(773\) 2.88830i 0.103885i −0.998650 0.0519425i \(-0.983459\pi\)
0.998650 0.0519425i \(-0.0165413\pi\)
\(774\) 6.26109 5.27451i 0.225050 0.189588i
\(775\) −49.0191 + 15.9339i −1.76082 + 0.572364i
\(776\) −4.30129 + 2.51700i −0.154407 + 0.0903551i
\(777\) −1.54766 4.90587i −0.0555218 0.175997i
\(778\) −18.2807 + 15.4001i −0.655394 + 0.552121i
\(779\) 10.0046 0.358451
\(780\) 8.85491 + 0.119488i 0.317057 + 0.00427835i
\(781\) 9.49772i 0.339855i
\(782\) 38.2103 + 45.3574i 1.36640 + 1.62198i
\(783\) 6.71456i 0.239959i
\(784\) 26.9863 7.46601i 0.963795 0.266643i
\(785\) −5.19077 32.7602i −0.185266 1.16926i
\(786\) 15.3313 12.9155i 0.546850 0.460681i
\(787\) 22.4624 0.800700 0.400350 0.916362i \(-0.368889\pi\)
0.400350 + 0.916362i \(0.368889\pi\)
\(788\) −4.15710 + 24.1257i −0.148091 + 0.859443i
\(789\) −3.54056 −0.126047
\(790\) −16.0109 + 18.4934i −0.569641 + 0.657964i
\(791\) −31.6341 + 9.97962i −1.12478 + 0.354835i
\(792\) 3.17439 1.85757i 0.112797 0.0660059i
\(793\) 10.0706i 0.357616i
\(794\) 14.7323 12.4109i 0.522830 0.440446i
\(795\) 3.68165 0.583348i 0.130575 0.0206892i
\(796\) 0.351124 2.03774i 0.0124452 0.0722260i
\(797\) 38.1473i 1.35125i 0.737247 + 0.675623i \(0.236125\pi\)
−0.737247 + 0.675623i \(0.763875\pi\)
\(798\) 11.6891 + 7.41222i 0.413789 + 0.262390i
\(799\) 54.2910i 1.92068i
\(800\) −17.6327 22.1154i −0.623409 0.781896i
\(801\) 2.02588i 0.0715810i
\(802\) −15.5672 18.4790i −0.549697 0.652516i
\(803\) −10.9867 −0.387712
\(804\) 4.49199 + 0.774014i 0.158420 + 0.0272974i
\(805\) 19.7071 + 39.5047i 0.694582 + 1.39236i
\(806\) −22.0786 + 18.5996i −0.777687 + 0.655144i
\(807\) −21.7878 −0.766966
\(808\) 6.16203 3.60586i 0.216780 0.126854i
\(809\) −14.1010 −0.495763 −0.247882 0.968790i \(-0.579734\pi\)
−0.247882 + 0.968790i \(0.579734\pi\)
\(810\) −2.39077 2.06984i −0.0840030 0.0727267i
\(811\) 28.4482i 0.998953i 0.866327 + 0.499477i \(0.166474\pi\)
−0.866327 + 0.499477i \(0.833526\pi\)
\(812\) −4.78040 35.2071i −0.167759 1.23553i
\(813\) −13.3149 −0.466975
\(814\) 2.30366 + 2.73456i 0.0807434 + 0.0958461i
\(815\) 4.50672 + 28.4430i 0.157864 + 0.996315i
\(816\) 21.1828 + 7.52338i 0.741546 + 0.263371i
\(817\) −21.4141 −0.749183
\(818\) 20.6627 17.4068i 0.722456 0.608616i
\(819\) −4.99639 + 1.57621i −0.174588 + 0.0550772i
\(820\) 12.0939 + 0.163195i 0.422339 + 0.00569903i
\(821\) 25.3459i 0.884576i −0.896873 0.442288i \(-0.854167\pi\)
0.896873 0.442288i \(-0.145833\pi\)
\(822\) 20.0411 16.8831i 0.699012 0.588867i
\(823\) 21.7824 0.759287 0.379643 0.925133i \(-0.376047\pi\)
0.379643 + 0.925133i \(0.376047\pi\)
\(824\) 19.8114 + 33.8556i 0.690163 + 1.17941i
\(825\) 6.18329 2.00991i 0.215275 0.0699762i
\(826\) 11.3459 + 7.19462i 0.394775 + 0.250333i
\(827\) 23.4875i 0.816741i −0.912816 0.408371i \(-0.866097\pi\)
0.912816 0.408371i \(-0.133903\pi\)
\(828\) −2.53430 + 14.7078i −0.0880730 + 0.511131i
\(829\) 8.40558 0.291938 0.145969 0.989289i \(-0.453370\pi\)
0.145969 + 0.989289i \(0.453370\pi\)
\(830\) 16.1115 + 13.9488i 0.559240 + 0.484169i
\(831\) −1.46216 −0.0507219
\(832\) −13.8109 7.75980i −0.478807 0.269023i
\(833\) −32.2172 + 22.5737i −1.11626 + 0.782132i
\(834\) −15.9232 + 13.4142i −0.551377 + 0.464495i
\(835\) 2.84419 + 17.9504i 0.0984274 + 0.621199i
\(836\) −9.48077 1.63363i −0.327899 0.0565003i
\(837\) 10.3088 0.356323
\(838\) −38.3738 + 32.3272i −1.32560 + 1.11672i
\(839\) −35.0477 −1.20998 −0.604991 0.796232i \(-0.706823\pi\)
−0.604991 + 0.796232i \(0.706823\pi\)
\(840\) 14.0093 + 9.15087i 0.483368 + 0.315735i
\(841\) −16.0853 −0.554666
\(842\) −18.4139 + 15.5124i −0.634585 + 0.534591i
\(843\) 27.3986 0.943656
\(844\) 5.31039 30.8189i 0.182791 1.06083i
\(845\) −20.0507 + 3.17699i −0.689765 + 0.109292i
\(846\) 10.4488 8.80233i 0.359236 0.302630i
\(847\) 7.40990 + 23.4884i 0.254607 + 0.807073i
\(848\) −6.28355 2.23169i −0.215778 0.0766367i
\(849\) −13.3187 −0.457098
\(850\) 33.7432 + 20.9880i 1.15738 + 0.719882i
\(851\) −14.5091 −0.497365
\(852\) −14.3958 2.48053i −0.493191 0.0849817i
\(853\) 0.728369i 0.0249389i 0.999922 + 0.0124694i \(0.00396925\pi\)
−0.999922 + 0.0124694i \(0.996031\pi\)
\(854\) −10.1903 + 16.0701i −0.348705 + 0.549909i
\(855\) 1.29447 + 8.16972i 0.0442700 + 0.279398i
\(856\) 11.7269 + 20.0400i 0.400817 + 0.684953i
\(857\) −3.33966 −0.114081 −0.0570404 0.998372i \(-0.518166\pi\)
−0.0570404 + 0.998372i \(0.518166\pi\)
\(858\) 2.78501 2.34617i 0.0950786 0.0800968i
\(859\) 9.72278i 0.331737i −0.986148 0.165869i \(-0.946957\pi\)
0.986148 0.165869i \(-0.0530427\pi\)
\(860\) −25.8862 0.349307i −0.882712 0.0119113i
\(861\) −6.82401 + 2.15277i −0.232562 + 0.0733663i
\(862\) −23.3758 + 19.6924i −0.796183 + 0.670726i
\(863\) −1.79337 −0.0610472 −0.0305236 0.999534i \(-0.509717\pi\)
−0.0305236 + 0.999534i \(0.509717\pi\)
\(864\) 1.98648 + 5.29659i 0.0675813 + 0.180194i
\(865\) −8.22601 51.9163i −0.279693 1.76521i
\(866\) 35.6639 + 42.3347i 1.21191 + 1.43859i
\(867\) −14.5820 −0.495230
\(868\) −54.0528 + 7.33926i −1.83467 + 0.249111i
\(869\) 10.0586i 0.341216i
\(870\) 13.8980 16.0530i 0.471188 0.544246i
\(871\) 4.51306 0.152919
\(872\) −13.3504 22.8144i −0.452102 0.772594i
\(873\) 1.76197 0.0596337
\(874\) 29.8562 25.1517i 1.00990 0.850768i
\(875\) 20.7404 + 21.0912i 0.701152 + 0.713012i
\(876\) 2.86941 16.6526i 0.0969484 0.562640i
\(877\) 15.2950 0.516476 0.258238 0.966081i \(-0.416858\pi\)
0.258238 + 0.966081i \(0.416858\pi\)
\(878\) 19.5978 + 23.2635i 0.661395 + 0.785106i
\(879\) 8.59973i 0.290062i
\(880\) −11.4341 2.12945i −0.385443 0.0717837i
\(881\) 29.5279i 0.994820i 0.867516 + 0.497410i \(0.165716\pi\)
−0.867516 + 0.497410i \(0.834284\pi\)
\(882\) −9.56795 2.54055i −0.322170 0.0855448i
\(883\) 49.8573i 1.67783i 0.544260 + 0.838917i \(0.316810\pi\)
−0.544260 + 0.838917i \(0.683190\pi\)
\(884\) 21.9334 + 3.77933i 0.737699 + 0.127113i
\(885\) 1.25647 + 7.92988i 0.0422358 + 0.266560i
\(886\) −21.1773 + 17.8403i −0.711465 + 0.599357i
\(887\) 40.5532i 1.36164i −0.732449 0.680822i \(-0.761623\pi\)
0.732449 0.680822i \(-0.238377\pi\)
\(888\) −4.74644 + 2.77750i −0.159280 + 0.0932066i
\(889\) 13.6931 + 43.4054i 0.459252 + 1.45577i
\(890\) 4.19324 4.84341i 0.140558 0.162351i
\(891\) −1.30035 −0.0435634
\(892\) −20.0165 3.44903i −0.670200 0.115482i
\(893\) −35.7367 −1.19588
\(894\) −18.9196 + 15.9384i −0.632767 + 0.533060i
\(895\) −47.4070 + 7.51151i −1.58464 + 0.251082i
\(896\) −14.1867 26.3578i −0.473946 0.880554i
\(897\) 14.7768i 0.493382i
\(898\) −12.6836 15.0560i −0.423256 0.502425i
\(899\) 69.2188i 2.30857i
\(900\) 1.43154 + 9.89700i 0.0477182 + 0.329900i
\(901\) 9.36831 0.312104
\(902\) 3.80374 3.20437i 0.126651 0.106694i
\(903\) 14.6063 4.60785i 0.486067 0.153340i
\(904\) 17.9099 + 30.6061i 0.595674 + 1.01794i
\(905\) 2.28723 0.362406i 0.0760302 0.0120468i
\(906\) −1.21264 + 1.02156i −0.0402872 + 0.0339390i
\(907\) 20.4289i 0.678330i 0.940727 + 0.339165i \(0.110144\pi\)
−0.940727 + 0.339165i \(0.889856\pi\)
\(908\) 4.23933 24.6029i 0.140687 0.816477i
\(909\) −2.52420 −0.0837226
\(910\) 15.2077 + 6.57335i 0.504130 + 0.217905i
\(911\) 36.7825i 1.21866i −0.792917 0.609330i \(-0.791439\pi\)
0.792917 0.609330i \(-0.208561\pi\)
\(912\) 4.95222 13.9434i 0.163984 0.461713i
\(913\) 8.76315 0.290018
\(914\) −27.0004 + 22.7459i −0.893095 + 0.752367i
\(915\) −11.2317 + 1.77964i −0.371309 + 0.0588329i
\(916\) −3.26869 + 18.9699i −0.108001 + 0.626782i
\(917\) 35.7659 11.2831i 1.18109 0.372600i
\(918\) −5.12046 6.07823i −0.169000 0.200611i
\(919\) 28.6461i 0.944947i 0.881345 + 0.472474i \(0.156639\pi\)
−0.881345 + 0.472474i \(0.843361\pi\)
\(920\) 36.5017 29.9173i 1.20342 0.986346i
\(921\) 0.730484 0.0240703
\(922\) 10.7121 + 12.7157i 0.352783 + 0.418770i
\(923\) −14.4633 −0.476065
\(924\) 6.81825 0.925778i 0.224304 0.0304559i
\(925\) −9.24545 + 3.00529i −0.303988 + 0.0988132i
\(926\) 6.32428 + 7.50721i 0.207829 + 0.246702i
\(927\) 13.8685i 0.455502i
\(928\) −35.5643 + 13.3383i −1.16746 + 0.437851i
\(929\) 5.58128i 0.183116i 0.995800 + 0.0915580i \(0.0291847\pi\)
−0.995800 + 0.0915580i \(0.970815\pi\)
\(930\) −24.6458 21.3374i −0.808169 0.699682i
\(931\) 14.8590 + 21.2067i 0.486983 + 0.695023i
\(932\) 41.7306 + 7.19059i 1.36693 + 0.235535i
\(933\) −3.97387 −0.130099
\(934\) 30.3125 + 35.9824i 0.991857 + 1.17738i
\(935\) 16.1392 2.55721i 0.527807 0.0836297i
\(936\) 2.82874 + 4.83402i 0.0924603 + 0.158005i
\(937\) −18.3328 −0.598906 −0.299453 0.954111i \(-0.596804\pi\)
−0.299453 + 0.954111i \(0.596804\pi\)
\(938\) 7.20172 + 4.56672i 0.235145 + 0.149109i
\(939\) 23.5606 0.768870
\(940\) −43.2000 0.582940i −1.40903 0.0190134i
\(941\) −44.1662 −1.43978 −0.719889 0.694089i \(-0.755807\pi\)
−0.719889 + 0.694089i \(0.755807\pi\)
\(942\) 16.0436 13.5156i 0.522730 0.440361i
\(943\) 20.1820i 0.657215i
\(944\) 4.80683 13.5341i 0.156449 0.440497i
\(945\) −2.64089 5.29393i −0.0859082 0.172212i
\(946\) −8.14162 + 6.85872i −0.264707 + 0.222996i
\(947\) 4.76205i 0.154746i −0.997002 0.0773729i \(-0.975347\pi\)
0.997002 0.0773729i \(-0.0246532\pi\)
\(948\) −15.2460 2.62703i −0.495166 0.0853220i
\(949\) 16.7307i 0.543102i
\(950\) 13.8152 22.2112i 0.448224 0.720628i
\(951\) −19.6502 −0.637202
\(952\) 31.1759 + 28.2250i 1.01042 + 0.914778i
\(953\) 49.4494i 1.60182i −0.598784 0.800911i \(-0.704349\pi\)
0.598784 0.800911i \(-0.295651\pi\)
\(954\) 1.51891 + 1.80301i 0.0491764 + 0.0583747i
\(955\) −8.84896 55.8479i −0.286346 1.80720i
\(956\) −22.5694 3.88893i −0.729946 0.125777i
\(957\) 8.73129i 0.282242i
\(958\) −9.90345 11.7559i −0.319966 0.379815i
\(959\) 46.7531 14.7492i 1.50974 0.476277i
\(960\) 6.21389 16.7746i 0.200552 0.541398i
\(961\) 75.2704 2.42808
\(962\) −4.16423 + 3.50806i −0.134260 + 0.113104i
\(963\) 8.20915i 0.264536i
\(964\) 27.1736 + 4.68228i 0.875204 + 0.150806i
\(965\) −3.06436 19.3399i −0.0986453 0.622574i
\(966\) −14.9525 + 23.5801i −0.481088 + 0.758677i
\(967\) 28.1884 0.906479 0.453239 0.891389i \(-0.350268\pi\)
0.453239 + 0.891389i \(0.350268\pi\)
\(968\) 22.7251 13.2982i 0.730413 0.427419i
\(969\) 20.7886i 0.667827i
\(970\) −4.21247 3.64700i −0.135254 0.117098i
\(971\) 22.9249i 0.735694i −0.929886 0.367847i \(-0.880095\pi\)
0.929886 0.367847i \(-0.119905\pi\)
\(972\) 0.339615 1.97095i 0.0108932 0.0632184i
\(973\) −37.1468 + 11.7187i −1.19087 + 0.375685i
\(974\) −37.8825 44.9683i −1.21383 1.44088i
\(975\) 3.06073 + 9.41603i 0.0980219 + 0.301554i
\(976\) 19.1694 + 6.80830i 0.613598 + 0.217928i
\(977\) 21.9679i 0.702814i 0.936223 + 0.351407i \(0.114297\pi\)
−0.936223 + 0.351407i \(0.885703\pi\)
\(978\) −13.9294 + 11.7345i −0.445413 + 0.375228i
\(979\) 2.63436i 0.0841944i
\(980\) 17.6162 + 25.8780i 0.562729 + 0.826641i
\(981\) 9.34566i 0.298384i
\(982\) 22.6864 + 26.9298i 0.723952 + 0.859365i
\(983\) 34.5387i 1.10161i 0.834632 + 0.550807i \(0.185680\pi\)
−0.834632 + 0.550807i \(0.814320\pi\)
\(984\) 3.86347 + 6.60225i 0.123163 + 0.210472i
\(985\) −27.0336 + 4.28341i −0.861363 + 0.136481i
\(986\) 40.8126 34.3816i 1.29974 1.09493i
\(987\) 24.3756 7.68978i 0.775884 0.244768i
\(988\) 2.48772 14.4375i 0.0791450 0.459318i
\(989\) 43.1980i 1.37362i
\(990\) 3.10884 + 2.69152i 0.0988054 + 0.0855420i
\(991\) 6.79294i 0.215785i 0.994163 + 0.107892i \(0.0344102\pi\)
−0.994163 + 0.107892i \(0.965590\pi\)
\(992\) 20.4781 + 54.6013i 0.650180 + 1.73359i
\(993\) 23.9573 0.760262
\(994\) −23.0798 14.6353i −0.732048 0.464203i
\(995\) 2.28336 0.361792i 0.0723873 0.0114696i
\(996\) −2.28869 + 13.2824i −0.0725198 + 0.420869i
\(997\) 3.84060i 0.121633i −0.998149 0.0608165i \(-0.980630\pi\)
0.998149 0.0608165i \(-0.0193704\pi\)
\(998\) −19.7878 23.4891i −0.626373 0.743533i
\(999\) 1.94433 0.0615157
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 840.2.w.a.139.36 yes 48
4.3 odd 2 3360.2.w.b.559.4 48
5.4 even 2 840.2.w.b.139.13 yes 48
7.6 odd 2 840.2.w.b.139.36 yes 48
8.3 odd 2 inner 840.2.w.a.139.14 yes 48
8.5 even 2 3360.2.w.b.559.45 48
20.19 odd 2 3360.2.w.a.559.3 48
28.27 even 2 3360.2.w.a.559.45 48
35.34 odd 2 inner 840.2.w.a.139.13 48
40.19 odd 2 840.2.w.b.139.35 yes 48
40.29 even 2 3360.2.w.a.559.46 48
56.13 odd 2 3360.2.w.a.559.4 48
56.27 even 2 840.2.w.b.139.14 yes 48
140.139 even 2 3360.2.w.b.559.46 48
280.69 odd 2 3360.2.w.b.559.3 48
280.139 even 2 inner 840.2.w.a.139.35 yes 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
840.2.w.a.139.13 48 35.34 odd 2 inner
840.2.w.a.139.14 yes 48 8.3 odd 2 inner
840.2.w.a.139.35 yes 48 280.139 even 2 inner
840.2.w.a.139.36 yes 48 1.1 even 1 trivial
840.2.w.b.139.13 yes 48 5.4 even 2
840.2.w.b.139.14 yes 48 56.27 even 2
840.2.w.b.139.35 yes 48 40.19 odd 2
840.2.w.b.139.36 yes 48 7.6 odd 2
3360.2.w.a.559.3 48 20.19 odd 2
3360.2.w.a.559.4 48 56.13 odd 2
3360.2.w.a.559.45 48 28.27 even 2
3360.2.w.a.559.46 48 40.29 even 2
3360.2.w.b.559.3 48 280.69 odd 2
3360.2.w.b.559.4 48 4.3 odd 2
3360.2.w.b.559.45 48 8.5 even 2
3360.2.w.b.559.46 48 140.139 even 2