Properties

Label 840.2.g.d.421.7
Level $840$
Weight $2$
Character 840.421
Analytic conductor $6.707$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [840,2,Mod(421,840)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(840, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("840.421"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 840 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 840.g (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.70743376979\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 2 x^{15} + 2 x^{14} - 2 x^{13} + x^{12} - 8 x^{10} + 24 x^{9} - 32 x^{8} + 48 x^{7} + \cdots + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{9} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 421.7
Root \(1.37218 - 0.342246i\) of defining polynomial
Character \(\chi\) \(=\) 840.421
Dual form 840.2.g.d.421.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.342246 - 1.37218i) q^{2} -1.00000i q^{3} +(-1.76574 + 0.939244i) q^{4} +1.00000i q^{5} +(-1.37218 + 0.342246i) q^{6} -1.00000 q^{7} +(1.89312 + 2.10145i) q^{8} -1.00000 q^{9} +(1.37218 - 0.342246i) q^{10} -4.47074i q^{11} +(0.939244 + 1.76574i) q^{12} -4.04157i q^{13} +(0.342246 + 1.37218i) q^{14} +1.00000 q^{15} +(2.23564 - 3.31691i) q^{16} +0.406877 q^{17} +(0.342246 + 1.37218i) q^{18} +1.45854i q^{19} +(-0.939244 - 1.76574i) q^{20} +1.00000i q^{21} +(-6.13464 + 1.53009i) q^{22} -7.46982 q^{23} +(2.10145 - 1.89312i) q^{24} -1.00000 q^{25} +(-5.54575 + 1.38321i) q^{26} +1.00000i q^{27} +(1.76574 - 0.939244i) q^{28} +10.3578i q^{29} +(-0.342246 - 1.37218i) q^{30} -8.18358 q^{31} +(-5.31653 - 1.93250i) q^{32} -4.47074 q^{33} +(-0.139252 - 0.558307i) q^{34} -1.00000i q^{35} +(1.76574 - 0.939244i) q^{36} -3.35010i q^{37} +(2.00138 - 0.499181i) q^{38} -4.04157 q^{39} +(-2.10145 + 1.89312i) q^{40} -8.85021 q^{41} +(1.37218 - 0.342246i) q^{42} +0.733692i q^{43} +(4.19911 + 7.89414i) q^{44} -1.00000i q^{45} +(2.55652 + 10.2499i) q^{46} -1.71284 q^{47} +(-3.31691 - 2.23564i) q^{48} +1.00000 q^{49} +(0.342246 + 1.37218i) q^{50} -0.406877i q^{51} +(3.79602 + 7.13634i) q^{52} -1.37002i q^{53} +(1.37218 - 0.342246i) q^{54} +4.47074 q^{55} +(-1.89312 - 2.10145i) q^{56} +1.45854 q^{57} +(14.2127 - 3.54492i) q^{58} -8.61466i q^{59} +(-1.76574 + 0.939244i) q^{60} +6.60083i q^{61} +(2.80080 + 11.2293i) q^{62} +1.00000 q^{63} +(-0.832167 + 7.95660i) q^{64} +4.04157 q^{65} +(1.53009 + 6.13464i) q^{66} -14.5631i q^{67} +(-0.718437 + 0.382156i) q^{68} +7.46982i q^{69} +(-1.37218 + 0.342246i) q^{70} -15.1696 q^{71} +(-1.89312 - 2.10145i) q^{72} +7.02763 q^{73} +(-4.59692 + 1.14656i) q^{74} +1.00000i q^{75} +(-1.36993 - 2.57540i) q^{76} +4.47074i q^{77} +(1.38321 + 5.54575i) q^{78} +11.0077 q^{79} +(3.31691 + 2.23564i) q^{80} +1.00000 q^{81} +(3.02895 + 12.1440i) q^{82} -5.72787i q^{83} +(-0.939244 - 1.76574i) q^{84} +0.406877i q^{85} +(1.00675 - 0.251103i) q^{86} +10.3578 q^{87} +(9.39503 - 8.46366i) q^{88} -12.6985 q^{89} +(-1.37218 + 0.342246i) q^{90} +4.04157i q^{91} +(13.1897 - 7.01598i) q^{92} +8.18358i q^{93} +(0.586214 + 2.35032i) q^{94} -1.45854 q^{95} +(-1.93250 + 5.31653i) q^{96} -3.29679 q^{97} +(-0.342246 - 1.37218i) q^{98} +4.47074i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 2 q^{2} - 2 q^{6} - 16 q^{7} - 2 q^{8} - 16 q^{9} + 2 q^{10} + 2 q^{14} + 16 q^{15} + 4 q^{16} + 2 q^{18} + 2 q^{24} - 16 q^{25} - 2 q^{30} - 2 q^{32} + 24 q^{34} - 28 q^{38} - 2 q^{40} + 2 q^{42}+ \cdots - 2 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/840\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(281\) \(337\) \(421\) \(631\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.342246 1.37218i −0.242004 0.970275i
\(3\) 1.00000i 0.577350i
\(4\) −1.76574 + 0.939244i −0.882868 + 0.469622i
\(5\) 1.00000i 0.447214i
\(6\) −1.37218 + 0.342246i −0.560189 + 0.139721i
\(7\) −1.00000 −0.377964
\(8\) 1.89312 + 2.10145i 0.669320 + 0.742974i
\(9\) −1.00000 −0.333333
\(10\) 1.37218 0.342246i 0.433920 0.108228i
\(11\) 4.47074i 1.34798i −0.738741 0.673989i \(-0.764579\pi\)
0.738741 0.673989i \(-0.235421\pi\)
\(12\) 0.939244 + 1.76574i 0.271136 + 0.509724i
\(13\) 4.04157i 1.12093i −0.828178 0.560465i \(-0.810622\pi\)
0.828178 0.560465i \(-0.189378\pi\)
\(14\) 0.342246 + 1.37218i 0.0914691 + 0.366730i
\(15\) 1.00000 0.258199
\(16\) 2.23564 3.31691i 0.558911 0.829228i
\(17\) 0.406877 0.0986821 0.0493411 0.998782i \(-0.484288\pi\)
0.0493411 + 0.998782i \(0.484288\pi\)
\(18\) 0.342246 + 1.37218i 0.0806681 + 0.323425i
\(19\) 1.45854i 0.334613i 0.985905 + 0.167306i \(0.0535069\pi\)
−0.985905 + 0.167306i \(0.946493\pi\)
\(20\) −0.939244 1.76574i −0.210021 0.394830i
\(21\) 1.00000i 0.218218i
\(22\) −6.13464 + 1.53009i −1.30791 + 0.326217i
\(23\) −7.46982 −1.55756 −0.778782 0.627294i \(-0.784162\pi\)
−0.778782 + 0.627294i \(0.784162\pi\)
\(24\) 2.10145 1.89312i 0.428956 0.386432i
\(25\) −1.00000 −0.200000
\(26\) −5.54575 + 1.38321i −1.08761 + 0.271270i
\(27\) 1.00000i 0.192450i
\(28\) 1.76574 0.939244i 0.333693 0.177500i
\(29\) 10.3578i 1.92340i 0.274112 + 0.961698i \(0.411616\pi\)
−0.274112 + 0.961698i \(0.588384\pi\)
\(30\) −0.342246 1.37218i −0.0624853 0.250524i
\(31\) −8.18358 −1.46981 −0.734907 0.678167i \(-0.762774\pi\)
−0.734907 + 0.678167i \(0.762774\pi\)
\(32\) −5.31653 1.93250i −0.939838 0.341620i
\(33\) −4.47074 −0.778256
\(34\) −0.139252 0.558307i −0.0238815 0.0957488i
\(35\) 1.00000i 0.169031i
\(36\) 1.76574 0.939244i 0.294289 0.156541i
\(37\) 3.35010i 0.550753i −0.961337 0.275376i \(-0.911198\pi\)
0.961337 0.275376i \(-0.0888024\pi\)
\(38\) 2.00138 0.499181i 0.324666 0.0809778i
\(39\) −4.04157 −0.647169
\(40\) −2.10145 + 1.89312i −0.332268 + 0.299329i
\(41\) −8.85021 −1.38217 −0.691085 0.722773i \(-0.742867\pi\)
−0.691085 + 0.722773i \(0.742867\pi\)
\(42\) 1.37218 0.342246i 0.211731 0.0528097i
\(43\) 0.733692i 0.111887i 0.998434 + 0.0559435i \(0.0178167\pi\)
−0.998434 + 0.0559435i \(0.982183\pi\)
\(44\) 4.19911 + 7.89414i 0.633040 + 1.19009i
\(45\) 1.00000i 0.149071i
\(46\) 2.55652 + 10.2499i 0.376938 + 1.51127i
\(47\) −1.71284 −0.249844 −0.124922 0.992167i \(-0.539868\pi\)
−0.124922 + 0.992167i \(0.539868\pi\)
\(48\) −3.31691 2.23564i −0.478755 0.322687i
\(49\) 1.00000 0.142857
\(50\) 0.342246 + 1.37218i 0.0484009 + 0.194055i
\(51\) 0.406877i 0.0569742i
\(52\) 3.79602 + 7.13634i 0.526413 + 0.989633i
\(53\) 1.37002i 0.188187i −0.995563 0.0940936i \(-0.970005\pi\)
0.995563 0.0940936i \(-0.0299953\pi\)
\(54\) 1.37218 0.342246i 0.186730 0.0465738i
\(55\) 4.47074 0.602834
\(56\) −1.89312 2.10145i −0.252979 0.280818i
\(57\) 1.45854 0.193189
\(58\) 14.2127 3.54492i 1.86622 0.465470i
\(59\) 8.61466i 1.12153i −0.827974 0.560767i \(-0.810506\pi\)
0.827974 0.560767i \(-0.189494\pi\)
\(60\) −1.76574 + 0.939244i −0.227955 + 0.121256i
\(61\) 6.60083i 0.845149i 0.906328 + 0.422575i \(0.138874\pi\)
−0.906328 + 0.422575i \(0.861126\pi\)
\(62\) 2.80080 + 11.2293i 0.355702 + 1.42612i
\(63\) 1.00000 0.125988
\(64\) −0.832167 + 7.95660i −0.104021 + 0.994575i
\(65\) 4.04157 0.501295
\(66\) 1.53009 + 6.13464i 0.188341 + 0.755122i
\(67\) 14.5631i 1.77916i −0.456779 0.889580i \(-0.650997\pi\)
0.456779 0.889580i \(-0.349003\pi\)
\(68\) −0.718437 + 0.382156i −0.0871233 + 0.0463433i
\(69\) 7.46982i 0.899260i
\(70\) −1.37218 + 0.342246i −0.164006 + 0.0409062i
\(71\) −15.1696 −1.80031 −0.900153 0.435574i \(-0.856545\pi\)
−0.900153 + 0.435574i \(0.856545\pi\)
\(72\) −1.89312 2.10145i −0.223107 0.247658i
\(73\) 7.02763 0.822522 0.411261 0.911518i \(-0.365088\pi\)
0.411261 + 0.911518i \(0.365088\pi\)
\(74\) −4.59692 + 1.14656i −0.534382 + 0.133285i
\(75\) 1.00000i 0.115470i
\(76\) −1.36993 2.57540i −0.157141 0.295419i
\(77\) 4.47074i 0.509488i
\(78\) 1.38321 + 5.54575i 0.156618 + 0.627932i
\(79\) 11.0077 1.23846 0.619232 0.785208i \(-0.287444\pi\)
0.619232 + 0.785208i \(0.287444\pi\)
\(80\) 3.31691 + 2.23564i 0.370842 + 0.249953i
\(81\) 1.00000 0.111111
\(82\) 3.02895 + 12.1440i 0.334491 + 1.34109i
\(83\) 5.72787i 0.628716i −0.949305 0.314358i \(-0.898211\pi\)
0.949305 0.314358i \(-0.101789\pi\)
\(84\) −0.939244 1.76574i −0.102480 0.192658i
\(85\) 0.406877i 0.0441320i
\(86\) 1.00675 0.251103i 0.108561 0.0270771i
\(87\) 10.3578 1.11047
\(88\) 9.39503 8.46366i 1.00151 0.902229i
\(89\) −12.6985 −1.34603 −0.673017 0.739627i \(-0.735002\pi\)
−0.673017 + 0.739627i \(0.735002\pi\)
\(90\) −1.37218 + 0.342246i −0.144640 + 0.0360759i
\(91\) 4.04157i 0.423672i
\(92\) 13.1897 7.01598i 1.37512 0.731466i
\(93\) 8.18358i 0.848598i
\(94\) 0.586214 + 2.35032i 0.0604634 + 0.242417i
\(95\) −1.45854 −0.149643
\(96\) −1.93250 + 5.31653i −0.197235 + 0.542616i
\(97\) −3.29679 −0.334739 −0.167369 0.985894i \(-0.553527\pi\)
−0.167369 + 0.985894i \(0.553527\pi\)
\(98\) −0.342246 1.37218i −0.0345721 0.138611i
\(99\) 4.47074i 0.449326i
\(100\) 1.76574 0.939244i 0.176574 0.0939244i
\(101\) 10.1105i 1.00603i −0.864277 0.503016i \(-0.832224\pi\)
0.864277 0.503016i \(-0.167776\pi\)
\(102\) −0.558307 + 0.139252i −0.0552806 + 0.0137880i
\(103\) 6.82111 0.672104 0.336052 0.941843i \(-0.390908\pi\)
0.336052 + 0.941843i \(0.390908\pi\)
\(104\) 8.49315 7.65119i 0.832822 0.750261i
\(105\) −1.00000 −0.0975900
\(106\) −1.87991 + 0.468885i −0.182593 + 0.0455422i
\(107\) 3.55654i 0.343824i 0.985112 + 0.171912i \(0.0549945\pi\)
−0.985112 + 0.171912i \(0.945006\pi\)
\(108\) −0.939244 1.76574i −0.0903788 0.169908i
\(109\) 5.86714i 0.561970i −0.959712 0.280985i \(-0.909339\pi\)
0.959712 0.280985i \(-0.0906611\pi\)
\(110\) −1.53009 6.13464i −0.145889 0.584915i
\(111\) −3.35010 −0.317977
\(112\) −2.23564 + 3.31691i −0.211248 + 0.313419i
\(113\) −1.09580 −0.103084 −0.0515419 0.998671i \(-0.516414\pi\)
−0.0515419 + 0.998671i \(0.516414\pi\)
\(114\) −0.499181 2.00138i −0.0467525 0.187446i
\(115\) 7.46982i 0.696564i
\(116\) −9.72850 18.2891i −0.903268 1.69810i
\(117\) 4.04157i 0.373643i
\(118\) −11.8208 + 2.94833i −1.08820 + 0.271416i
\(119\) −0.406877 −0.0372983
\(120\) 1.89312 + 2.10145i 0.172818 + 0.191835i
\(121\) −8.98751 −0.817046
\(122\) 9.05750 2.25911i 0.820028 0.204530i
\(123\) 8.85021i 0.797997i
\(124\) 14.4500 7.68638i 1.29765 0.690257i
\(125\) 1.00000i 0.0894427i
\(126\) −0.342246 1.37218i −0.0304897 0.122243i
\(127\) 19.5015 1.73047 0.865237 0.501363i \(-0.167168\pi\)
0.865237 + 0.501363i \(0.167168\pi\)
\(128\) 11.2027 1.58123i 0.990185 0.139763i
\(129\) 0.733692 0.0645979
\(130\) −1.38321 5.54575i −0.121316 0.486394i
\(131\) 3.87854i 0.338869i −0.985541 0.169435i \(-0.945806\pi\)
0.985541 0.169435i \(-0.0541942\pi\)
\(132\) 7.89414 4.19911i 0.687097 0.365486i
\(133\) 1.45854i 0.126472i
\(134\) −19.9831 + 4.98415i −1.72628 + 0.430565i
\(135\) −1.00000 −0.0860663
\(136\) 0.770268 + 0.855031i 0.0660500 + 0.0733183i
\(137\) 4.38222 0.374398 0.187199 0.982322i \(-0.440059\pi\)
0.187199 + 0.982322i \(0.440059\pi\)
\(138\) 10.2499 2.55652i 0.872530 0.217625i
\(139\) 6.01555i 0.510232i 0.966910 + 0.255116i \(0.0821137\pi\)
−0.966910 + 0.255116i \(0.917886\pi\)
\(140\) 0.939244 + 1.76574i 0.0793806 + 0.149232i
\(141\) 1.71284i 0.144248i
\(142\) 5.19175 + 20.8154i 0.435682 + 1.74679i
\(143\) −18.0688 −1.51099
\(144\) −2.23564 + 3.31691i −0.186304 + 0.276409i
\(145\) −10.3578 −0.860169
\(146\) −2.40518 9.64315i −0.199054 0.798073i
\(147\) 1.00000i 0.0824786i
\(148\) 3.14656 + 5.91539i 0.258645 + 0.486242i
\(149\) 22.8286i 1.87019i 0.354391 + 0.935097i \(0.384688\pi\)
−0.354391 + 0.935097i \(0.615312\pi\)
\(150\) 1.37218 0.342246i 0.112038 0.0279443i
\(151\) −4.76642 −0.387886 −0.193943 0.981013i \(-0.562128\pi\)
−0.193943 + 0.981013i \(0.562128\pi\)
\(152\) −3.06505 + 2.76120i −0.248609 + 0.223963i
\(153\) −0.406877 −0.0328940
\(154\) 6.13464 1.53009i 0.494344 0.123298i
\(155\) 8.18358i 0.657321i
\(156\) 7.13634 3.79602i 0.571365 0.303925i
\(157\) 6.28285i 0.501426i 0.968061 + 0.250713i \(0.0806651\pi\)
−0.968061 + 0.250713i \(0.919335\pi\)
\(158\) −3.76734 15.1045i −0.299714 1.20165i
\(159\) −1.37002 −0.108650
\(160\) 1.93250 5.31653i 0.152777 0.420308i
\(161\) 7.46982 0.588704
\(162\) −0.342246 1.37218i −0.0268894 0.107808i
\(163\) 23.3643i 1.83003i −0.403415 0.915017i \(-0.632177\pi\)
0.403415 0.915017i \(-0.367823\pi\)
\(164\) 15.6271 8.31250i 1.22027 0.649097i
\(165\) 4.47074i 0.348047i
\(166\) −7.85965 + 1.96034i −0.610027 + 0.152152i
\(167\) −18.1409 −1.40379 −0.701893 0.712282i \(-0.747661\pi\)
−0.701893 + 0.712282i \(0.747661\pi\)
\(168\) −2.10145 + 1.89312i −0.162130 + 0.146058i
\(169\) −3.33429 −0.256484
\(170\) 0.558307 0.139252i 0.0428202 0.0106801i
\(171\) 1.45854i 0.111538i
\(172\) −0.689115 1.29551i −0.0525445 0.0987813i
\(173\) 0.894269i 0.0679900i 0.999422 + 0.0339950i \(0.0108230\pi\)
−0.999422 + 0.0339950i \(0.989177\pi\)
\(174\) −3.54492 14.2127i −0.268739 1.07746i
\(175\) 1.00000 0.0755929
\(176\) −14.8290 9.99498i −1.11778 0.753400i
\(177\) −8.61466 −0.647518
\(178\) 4.34599 + 17.4245i 0.325746 + 1.30602i
\(179\) 8.25385i 0.616921i 0.951237 + 0.308461i \(0.0998138\pi\)
−0.951237 + 0.308461i \(0.900186\pi\)
\(180\) 0.939244 + 1.76574i 0.0700071 + 0.131610i
\(181\) 8.50431i 0.632120i −0.948739 0.316060i \(-0.897640\pi\)
0.948739 0.316060i \(-0.102360\pi\)
\(182\) 5.54575 1.38321i 0.411078 0.102530i
\(183\) 6.60083 0.487947
\(184\) −14.1413 15.6974i −1.04251 1.15723i
\(185\) 3.35010 0.246304
\(186\) 11.2293 2.80080i 0.823374 0.205364i
\(187\) 1.81904i 0.133021i
\(188\) 3.02443 1.60878i 0.220579 0.117332i
\(189\) 1.00000i 0.0727393i
\(190\) 0.499181 + 2.00138i 0.0362144 + 0.145195i
\(191\) 20.3803 1.47467 0.737333 0.675530i \(-0.236085\pi\)
0.737333 + 0.675530i \(0.236085\pi\)
\(192\) 7.95660 + 0.832167i 0.574218 + 0.0600565i
\(193\) 17.1450 1.23412 0.617062 0.786915i \(-0.288323\pi\)
0.617062 + 0.786915i \(0.288323\pi\)
\(194\) 1.12831 + 4.52378i 0.0810082 + 0.324788i
\(195\) 4.04157i 0.289423i
\(196\) −1.76574 + 0.939244i −0.126124 + 0.0670888i
\(197\) 15.6168i 1.11265i −0.830964 0.556326i \(-0.812210\pi\)
0.830964 0.556326i \(-0.187790\pi\)
\(198\) 6.13464 1.53009i 0.435970 0.108739i
\(199\) −3.08580 −0.218747 −0.109373 0.994001i \(-0.534884\pi\)
−0.109373 + 0.994001i \(0.534884\pi\)
\(200\) −1.89312 2.10145i −0.133864 0.148595i
\(201\) −14.5631 −1.02720
\(202\) −13.8734 + 3.46028i −0.976128 + 0.243464i
\(203\) 10.3578i 0.726975i
\(204\) 0.382156 + 0.718437i 0.0267563 + 0.0503006i
\(205\) 8.85021i 0.618126i
\(206\) −2.33450 9.35976i −0.162652 0.652126i
\(207\) 7.46982 0.519188
\(208\) −13.4055 9.03551i −0.929506 0.626500i
\(209\) 6.52077 0.451051
\(210\) 0.342246 + 1.37218i 0.0236172 + 0.0946892i
\(211\) 19.1140i 1.31587i −0.753077 0.657933i \(-0.771431\pi\)
0.753077 0.657933i \(-0.228569\pi\)
\(212\) 1.28679 + 2.41910i 0.0883768 + 0.166144i
\(213\) 15.1696i 1.03941i
\(214\) 4.88020 1.21721i 0.333604 0.0832069i
\(215\) −0.733692 −0.0500374
\(216\) −2.10145 + 1.89312i −0.142985 + 0.128811i
\(217\) 8.18358 0.555538
\(218\) −8.05075 + 2.00800i −0.545265 + 0.135999i
\(219\) 7.02763i 0.474883i
\(220\) −7.89414 + 4.19911i −0.532223 + 0.283104i
\(221\) 1.64442i 0.110616i
\(222\) 1.14656 + 4.59692i 0.0769519 + 0.308525i
\(223\) −0.120914 −0.00809701 −0.00404850 0.999992i \(-0.501289\pi\)
−0.00404850 + 0.999992i \(0.501289\pi\)
\(224\) 5.31653 + 1.93250i 0.355225 + 0.129120i
\(225\) 1.00000 0.0666667
\(226\) 0.375032 + 1.50363i 0.0249467 + 0.100020i
\(227\) 20.5673i 1.36510i −0.730838 0.682551i \(-0.760871\pi\)
0.730838 0.682551i \(-0.239129\pi\)
\(228\) −2.57540 + 1.36993i −0.170560 + 0.0907257i
\(229\) 10.7194i 0.708355i 0.935178 + 0.354178i \(0.115239\pi\)
−0.935178 + 0.354178i \(0.884761\pi\)
\(230\) −10.2499 + 2.55652i −0.675859 + 0.168572i
\(231\) 4.47074 0.294153
\(232\) −21.7664 + 19.6086i −1.42903 + 1.28737i
\(233\) −8.18606 −0.536287 −0.268143 0.963379i \(-0.586410\pi\)
−0.268143 + 0.963379i \(0.586410\pi\)
\(234\) 5.54575 1.38321i 0.362537 0.0904233i
\(235\) 1.71284i 0.111734i
\(236\) 8.09127 + 15.2112i 0.526697 + 0.990166i
\(237\) 11.0077i 0.715027i
\(238\) 0.139252 + 0.558307i 0.00902636 + 0.0361897i
\(239\) 20.0186 1.29490 0.647449 0.762109i \(-0.275836\pi\)
0.647449 + 0.762109i \(0.275836\pi\)
\(240\) 2.23564 3.31691i 0.144310 0.214106i
\(241\) −15.4729 −0.996697 −0.498348 0.866977i \(-0.666060\pi\)
−0.498348 + 0.866977i \(0.666060\pi\)
\(242\) 3.07594 + 12.3324i 0.197729 + 0.792759i
\(243\) 1.00000i 0.0641500i
\(244\) −6.19979 11.6553i −0.396901 0.746155i
\(245\) 1.00000i 0.0638877i
\(246\) 12.1440 3.02895i 0.774276 0.193119i
\(247\) 5.89481 0.375078
\(248\) −15.4925 17.1974i −0.983777 1.09203i
\(249\) −5.72787 −0.362989
\(250\) −1.37218 + 0.342246i −0.0867840 + 0.0216455i
\(251\) 10.6904i 0.674775i 0.941366 + 0.337388i \(0.109543\pi\)
−0.941366 + 0.337388i \(0.890457\pi\)
\(252\) −1.76574 + 0.939244i −0.111231 + 0.0591668i
\(253\) 33.3956i 2.09956i
\(254\) −6.67429 26.7594i −0.418782 1.67904i
\(255\) 0.406877 0.0254796
\(256\) −6.00380 14.8309i −0.375237 0.926929i
\(257\) 12.1810 0.759830 0.379915 0.925021i \(-0.375953\pi\)
0.379915 + 0.925021i \(0.375953\pi\)
\(258\) −0.251103 1.00675i −0.0156330 0.0626778i
\(259\) 3.35010i 0.208165i
\(260\) −7.13634 + 3.79602i −0.442577 + 0.235419i
\(261\) 10.3578i 0.641132i
\(262\) −5.32204 + 1.32741i −0.328796 + 0.0820079i
\(263\) 13.2080 0.814441 0.407221 0.913330i \(-0.366498\pi\)
0.407221 + 0.913330i \(0.366498\pi\)
\(264\) −8.46366 9.39503i −0.520902 0.578224i
\(265\) 1.37002 0.0841599
\(266\) −2.00138 + 0.499181i −0.122712 + 0.0306067i
\(267\) 12.6985i 0.777133i
\(268\) 13.6783 + 25.7145i 0.835532 + 1.57076i
\(269\) 24.8107i 1.51273i −0.654147 0.756367i \(-0.726972\pi\)
0.654147 0.756367i \(-0.273028\pi\)
\(270\) 0.342246 + 1.37218i 0.0208284 + 0.0835080i
\(271\) −10.3871 −0.630971 −0.315485 0.948930i \(-0.602167\pi\)
−0.315485 + 0.948930i \(0.602167\pi\)
\(272\) 0.909631 1.34957i 0.0551545 0.0818300i
\(273\) 4.04157 0.244607
\(274\) −1.49980 6.01318i −0.0906060 0.363269i
\(275\) 4.47074i 0.269596i
\(276\) −7.01598 13.1897i −0.422312 0.793928i
\(277\) 7.26184i 0.436322i −0.975913 0.218161i \(-0.929994\pi\)
0.975913 0.218161i \(-0.0700057\pi\)
\(278\) 8.25440 2.05880i 0.495066 0.123479i
\(279\) 8.18358 0.489938
\(280\) 2.10145 1.89312i 0.125586 0.113136i
\(281\) 23.4123 1.39666 0.698331 0.715775i \(-0.253927\pi\)
0.698331 + 0.715775i \(0.253927\pi\)
\(282\) 2.35032 0.586214i 0.139960 0.0349085i
\(283\) 21.6138i 1.28481i −0.766367 0.642403i \(-0.777937\pi\)
0.766367 0.642403i \(-0.222063\pi\)
\(284\) 26.7856 14.2480i 1.58943 0.845463i
\(285\) 1.45854i 0.0863967i
\(286\) 6.18398 + 24.7936i 0.365666 + 1.46608i
\(287\) 8.85021 0.522411
\(288\) 5.31653 + 1.93250i 0.313279 + 0.113873i
\(289\) −16.8345 −0.990262
\(290\) 3.54492 + 14.2127i 0.208165 + 0.834600i
\(291\) 3.29679i 0.193261i
\(292\) −12.4089 + 6.60066i −0.726178 + 0.386274i
\(293\) 31.3799i 1.83323i 0.399769 + 0.916616i \(0.369090\pi\)
−0.399769 + 0.916616i \(0.630910\pi\)
\(294\) −1.37218 + 0.342246i −0.0800269 + 0.0199602i
\(295\) 8.61466 0.501565
\(296\) 7.04006 6.34215i 0.409195 0.368630i
\(297\) 4.47074 0.259419
\(298\) 31.3249 7.81301i 1.81460 0.452595i
\(299\) 30.1898i 1.74592i
\(300\) −0.939244 1.76574i −0.0542273 0.101945i
\(301\) 0.733692i 0.0422893i
\(302\) 1.63129 + 6.54037i 0.0938701 + 0.376356i
\(303\) −10.1105 −0.580833
\(304\) 4.83786 + 3.26078i 0.277470 + 0.187019i
\(305\) −6.60083 −0.377962
\(306\) 0.139252 + 0.558307i 0.00796050 + 0.0319163i
\(307\) 28.3072i 1.61558i 0.589473 + 0.807788i \(0.299335\pi\)
−0.589473 + 0.807788i \(0.700665\pi\)
\(308\) −4.19911 7.89414i −0.239267 0.449810i
\(309\) 6.82111i 0.388039i
\(310\) −11.2293 + 2.80080i −0.637782 + 0.159075i
\(311\) −21.4064 −1.21384 −0.606922 0.794762i \(-0.707596\pi\)
−0.606922 + 0.794762i \(0.707596\pi\)
\(312\) −7.65119 8.49315i −0.433163 0.480830i
\(313\) 16.2120 0.916359 0.458179 0.888860i \(-0.348502\pi\)
0.458179 + 0.888860i \(0.348502\pi\)
\(314\) 8.62118 2.15028i 0.486521 0.121347i
\(315\) 1.00000i 0.0563436i
\(316\) −19.4367 + 10.3389i −1.09340 + 0.581609i
\(317\) 12.4683i 0.700292i 0.936695 + 0.350146i \(0.113868\pi\)
−0.936695 + 0.350146i \(0.886132\pi\)
\(318\) 0.468885 + 1.87991i 0.0262938 + 0.105420i
\(319\) 46.3070 2.59270
\(320\) −7.95660 0.832167i −0.444788 0.0465195i
\(321\) 3.55654 0.198507
\(322\) −2.55652 10.2499i −0.142469 0.571205i
\(323\) 0.593448i 0.0330203i
\(324\) −1.76574 + 0.939244i −0.0980964 + 0.0521802i
\(325\) 4.04157i 0.224186i
\(326\) −32.0600 + 7.99634i −1.77564 + 0.442876i
\(327\) −5.86714 −0.324453
\(328\) −16.7545 18.5983i −0.925115 1.02692i
\(329\) 1.71284 0.0944322
\(330\) −6.13464 + 1.53009i −0.337701 + 0.0842288i
\(331\) 15.1175i 0.830935i −0.909608 0.415467i \(-0.863618\pi\)
0.909608 0.415467i \(-0.136382\pi\)
\(332\) 5.37987 + 10.1139i 0.295259 + 0.555073i
\(333\) 3.35010i 0.183584i
\(334\) 6.20865 + 24.8925i 0.339722 + 1.36206i
\(335\) 14.5631 0.795665
\(336\) 3.31691 + 2.23564i 0.180952 + 0.121964i
\(337\) −5.22053 −0.284381 −0.142190 0.989839i \(-0.545414\pi\)
−0.142190 + 0.989839i \(0.545414\pi\)
\(338\) 1.14115 + 4.57524i 0.0620703 + 0.248860i
\(339\) 1.09580i 0.0595155i
\(340\) −0.382156 0.718437i −0.0207253 0.0389627i
\(341\) 36.5867i 1.98128i
\(342\) −2.00138 + 0.499181i −0.108222 + 0.0269926i
\(343\) −1.00000 −0.0539949
\(344\) −1.54181 + 1.38897i −0.0831291 + 0.0748882i
\(345\) −7.46982 −0.402162
\(346\) 1.22709 0.306060i 0.0659690 0.0164539i
\(347\) 14.7015i 0.789220i −0.918849 0.394610i \(-0.870880\pi\)
0.918849 0.394610i \(-0.129120\pi\)
\(348\) −18.2891 + 9.72850i −0.980401 + 0.521502i
\(349\) 30.0714i 1.60969i −0.593487 0.804844i \(-0.702249\pi\)
0.593487 0.804844i \(-0.297751\pi\)
\(350\) −0.342246 1.37218i −0.0182938 0.0733459i
\(351\) 4.04157 0.215723
\(352\) −8.63969 + 23.7688i −0.460497 + 1.26688i
\(353\) −12.4365 −0.661928 −0.330964 0.943643i \(-0.607374\pi\)
−0.330964 + 0.943643i \(0.607374\pi\)
\(354\) 2.94833 + 11.8208i 0.156702 + 0.628270i
\(355\) 15.1696i 0.805121i
\(356\) 22.4221 11.9269i 1.18837 0.632126i
\(357\) 0.406877i 0.0215342i
\(358\) 11.3257 2.82485i 0.598584 0.149298i
\(359\) 1.74003 0.0918355 0.0459178 0.998945i \(-0.485379\pi\)
0.0459178 + 0.998945i \(0.485379\pi\)
\(360\) 2.10145 1.89312i 0.110756 0.0997764i
\(361\) 16.8727 0.888034
\(362\) −11.6694 + 2.91056i −0.613330 + 0.152976i
\(363\) 8.98751i 0.471722i
\(364\) −3.79602 7.13634i −0.198965 0.374046i
\(365\) 7.02763i 0.367843i
\(366\) −2.25911 9.05750i −0.118085 0.473443i
\(367\) 4.06059 0.211961 0.105981 0.994368i \(-0.466202\pi\)
0.105981 + 0.994368i \(0.466202\pi\)
\(368\) −16.6998 + 24.7767i −0.870540 + 1.29158i
\(369\) 8.85021 0.460724
\(370\) −1.14656 4.59692i −0.0596067 0.238983i
\(371\) 1.37002i 0.0711281i
\(372\) −7.68638 14.4500i −0.398520 0.749200i
\(373\) 17.2068i 0.890935i −0.895298 0.445468i \(-0.853037\pi\)
0.895298 0.445468i \(-0.146963\pi\)
\(374\) −2.49604 + 0.622559i −0.129067 + 0.0321918i
\(375\) −1.00000 −0.0516398
\(376\) −3.24263 3.59945i −0.167226 0.185628i
\(377\) 41.8618 2.15599
\(378\) −1.37218 + 0.342246i −0.0705771 + 0.0176032i
\(379\) 1.80158i 0.0925408i −0.998929 0.0462704i \(-0.985266\pi\)
0.998929 0.0462704i \(-0.0147336\pi\)
\(380\) 2.57540 1.36993i 0.132115 0.0702758i
\(381\) 19.5015i 0.999090i
\(382\) −6.97507 27.9653i −0.356876 1.43083i
\(383\) −21.2791 −1.08731 −0.543655 0.839309i \(-0.682960\pi\)
−0.543655 + 0.839309i \(0.682960\pi\)
\(384\) −1.58123 11.2027i −0.0806920 0.571684i
\(385\) −4.47074 −0.227850
\(386\) −5.86780 23.5259i −0.298663 1.19744i
\(387\) 0.733692i 0.0372956i
\(388\) 5.82126 3.09649i 0.295530 0.157200i
\(389\) 15.7874i 0.800454i 0.916416 + 0.400227i \(0.131069\pi\)
−0.916416 + 0.400227i \(0.868931\pi\)
\(390\) −5.54575 + 1.38321i −0.280820 + 0.0700416i
\(391\) −3.03930 −0.153704
\(392\) 1.89312 + 2.10145i 0.0956172 + 0.106139i
\(393\) −3.87854 −0.195646
\(394\) −21.4290 + 5.34479i −1.07958 + 0.269267i
\(395\) 11.0077i 0.553858i
\(396\) −4.19911 7.89414i −0.211013 0.396696i
\(397\) 0.380029i 0.0190731i 0.999955 + 0.00953655i \(0.00303562\pi\)
−0.999955 + 0.00953655i \(0.996964\pi\)
\(398\) 1.05610 + 4.23427i 0.0529377 + 0.212245i
\(399\) −1.45854 −0.0730185
\(400\) −2.23564 + 3.31691i −0.111782 + 0.165846i
\(401\) 23.2916 1.16313 0.581564 0.813501i \(-0.302441\pi\)
0.581564 + 0.813501i \(0.302441\pi\)
\(402\) 4.98415 + 19.9831i 0.248587 + 0.996665i
\(403\) 33.0745i 1.64756i
\(404\) 9.49622 + 17.8525i 0.472455 + 0.888194i
\(405\) 1.00000i 0.0496904i
\(406\) −14.2127 + 3.54492i −0.705366 + 0.175931i
\(407\) −14.9774 −0.742403
\(408\) 0.855031 0.770268i 0.0423303 0.0381340i
\(409\) −34.6481 −1.71324 −0.856620 0.515949i \(-0.827440\pi\)
−0.856620 + 0.515949i \(0.827440\pi\)
\(410\) −12.1440 + 3.02895i −0.599752 + 0.149589i
\(411\) 4.38222i 0.216159i
\(412\) −12.0443 + 6.40668i −0.593379 + 0.315635i
\(413\) 8.61466i 0.423900i
\(414\) −2.55652 10.2499i −0.125646 0.503755i
\(415\) 5.72787 0.281170
\(416\) −7.81032 + 21.4871i −0.382933 + 1.05349i
\(417\) 6.01555 0.294583
\(418\) −2.23171 8.94764i −0.109156 0.437643i
\(419\) 34.2871i 1.67504i 0.546409 + 0.837518i \(0.315994\pi\)
−0.546409 + 0.837518i \(0.684006\pi\)
\(420\) 1.76574 0.939244i 0.0861591 0.0458304i
\(421\) 13.9561i 0.680179i 0.940393 + 0.340090i \(0.110457\pi\)
−0.940393 + 0.340090i \(0.889543\pi\)
\(422\) −26.2278 + 6.54170i −1.27675 + 0.318445i
\(423\) 1.71284 0.0832813
\(424\) 2.87903 2.59362i 0.139818 0.125958i
\(425\) −0.406877 −0.0197364
\(426\) 20.8154 5.19175i 1.00851 0.251541i
\(427\) 6.60083i 0.319436i
\(428\) −3.34046 6.27991i −0.161467 0.303551i
\(429\) 18.0688i 0.872370i
\(430\) 0.251103 + 1.00675i 0.0121093 + 0.0485500i
\(431\) 9.25573 0.445833 0.222916 0.974838i \(-0.428442\pi\)
0.222916 + 0.974838i \(0.428442\pi\)
\(432\) 3.31691 + 2.23564i 0.159585 + 0.107562i
\(433\) −6.47062 −0.310958 −0.155479 0.987839i \(-0.549692\pi\)
−0.155479 + 0.987839i \(0.549692\pi\)
\(434\) −2.80080 11.2293i −0.134443 0.539025i
\(435\) 10.3578i 0.496619i
\(436\) 5.51067 + 10.3598i 0.263913 + 0.496145i
\(437\) 10.8951i 0.521181i
\(438\) −9.64315 + 2.40518i −0.460768 + 0.114924i
\(439\) −28.3172 −1.35151 −0.675753 0.737128i \(-0.736182\pi\)
−0.675753 + 0.737128i \(0.736182\pi\)
\(440\) 8.46366 + 9.39503i 0.403489 + 0.447890i
\(441\) −1.00000 −0.0476190
\(442\) −2.25644 + 0.562797i −0.107328 + 0.0267695i
\(443\) 16.8236i 0.799315i −0.916664 0.399658i \(-0.869129\pi\)
0.916664 0.399658i \(-0.130871\pi\)
\(444\) 5.91539 3.14656i 0.280732 0.149329i
\(445\) 12.6985i 0.601964i
\(446\) 0.0413824 + 0.165915i 0.00195951 + 0.00785633i
\(447\) 22.8286 1.07976
\(448\) 0.832167 7.95660i 0.0393162 0.375914i
\(449\) −9.97948 −0.470961 −0.235480 0.971879i \(-0.575666\pi\)
−0.235480 + 0.971879i \(0.575666\pi\)
\(450\) −0.342246 1.37218i −0.0161336 0.0646850i
\(451\) 39.5670i 1.86314i
\(452\) 1.93489 1.02922i 0.0910094 0.0484104i
\(453\) 4.76642i 0.223946i
\(454\) −28.2220 + 7.03909i −1.32452 + 0.330361i
\(455\) −4.04157 −0.189472
\(456\) 2.76120 + 3.06505i 0.129305 + 0.143534i
\(457\) 12.5312 0.586185 0.293093 0.956084i \(-0.405316\pi\)
0.293093 + 0.956084i \(0.405316\pi\)
\(458\) 14.7088 3.66866i 0.687299 0.171425i
\(459\) 0.406877i 0.0189914i
\(460\) 7.01598 + 13.1897i 0.327122 + 0.614974i
\(461\) 25.4244i 1.18413i −0.805889 0.592066i \(-0.798312\pi\)
0.805889 0.592066i \(-0.201688\pi\)
\(462\) −1.53009 6.13464i −0.0711863 0.285409i
\(463\) −9.54185 −0.443448 −0.221724 0.975110i \(-0.571168\pi\)
−0.221724 + 0.975110i \(0.571168\pi\)
\(464\) 34.3559 + 23.1564i 1.59493 + 1.07501i
\(465\) −8.18358 −0.379505
\(466\) 2.80165 + 11.2327i 0.129784 + 0.520346i
\(467\) 24.4349i 1.13071i −0.824847 0.565356i \(-0.808739\pi\)
0.824847 0.565356i \(-0.191261\pi\)
\(468\) −3.79602 7.13634i −0.175471 0.329878i
\(469\) 14.5631i 0.672459i
\(470\) −2.35032 + 0.586214i −0.108412 + 0.0270400i
\(471\) 6.28285 0.289499
\(472\) 18.1033 16.3086i 0.833270 0.750665i
\(473\) 3.28014 0.150821
\(474\) −15.1045 + 3.76734i −0.693773 + 0.173040i
\(475\) 1.45854i 0.0669226i
\(476\) 0.718437 0.382156i 0.0329295 0.0175161i
\(477\) 1.37002i 0.0627291i
\(478\) −6.85130 27.4691i −0.313371 1.25641i
\(479\) −29.9239 −1.36726 −0.683628 0.729831i \(-0.739599\pi\)
−0.683628 + 0.729831i \(0.739599\pi\)
\(480\) −5.31653 1.93250i −0.242665 0.0882060i
\(481\) −13.5397 −0.617355
\(482\) 5.29554 + 21.2315i 0.241205 + 0.967070i
\(483\) 7.46982i 0.339889i
\(484\) 15.8696 8.44146i 0.721344 0.383703i
\(485\) 3.29679i 0.149700i
\(486\) −1.37218 + 0.342246i −0.0622432 + 0.0155246i
\(487\) 15.6113 0.707414 0.353707 0.935356i \(-0.384921\pi\)
0.353707 + 0.935356i \(0.384921\pi\)
\(488\) −13.8713 + 12.4962i −0.627924 + 0.565676i
\(489\) −23.3643 −1.05657
\(490\) 1.37218 0.342246i 0.0619886 0.0154611i
\(491\) 2.60503i 0.117564i −0.998271 0.0587818i \(-0.981278\pi\)
0.998271 0.0587818i \(-0.0187216\pi\)
\(492\) −8.31250 15.6271i −0.374757 0.704525i
\(493\) 4.21435i 0.189805i
\(494\) −2.01747 8.08871i −0.0907704 0.363928i
\(495\) −4.47074 −0.200945
\(496\) −18.2956 + 27.1442i −0.821495 + 1.21881i
\(497\) 15.1696 0.680452
\(498\) 1.96034 + 7.85965i 0.0878450 + 0.352199i
\(499\) 32.5674i 1.45792i 0.684557 + 0.728959i \(0.259996\pi\)
−0.684557 + 0.728959i \(0.740004\pi\)
\(500\) 0.939244 + 1.76574i 0.0420042 + 0.0789661i
\(501\) 18.1409i 0.810476i
\(502\) 14.6692 3.65876i 0.654718 0.163299i
\(503\) −31.1728 −1.38993 −0.694963 0.719045i \(-0.744579\pi\)
−0.694963 + 0.719045i \(0.744579\pi\)
\(504\) 1.89312 + 2.10145i 0.0843264 + 0.0936059i
\(505\) 10.1105 0.449911
\(506\) 45.8247 11.4295i 2.03715 0.508104i
\(507\) 3.33429i 0.148081i
\(508\) −34.4344 + 18.3166i −1.52778 + 0.812668i
\(509\) 19.4226i 0.860893i 0.902616 + 0.430446i \(0.141644\pi\)
−0.902616 + 0.430446i \(0.858356\pi\)
\(510\) −0.139252 0.558307i −0.00616618 0.0247222i
\(511\) −7.02763 −0.310884
\(512\) −18.2958 + 13.3141i −0.808567 + 0.588404i
\(513\) −1.45854 −0.0643963
\(514\) −4.16890 16.7145i −0.183882 0.737244i
\(515\) 6.82111i 0.300574i
\(516\) −1.29551 + 0.689115i −0.0570314 + 0.0303366i
\(517\) 7.65768i 0.336784i
\(518\) 4.59692 1.14656i 0.201977 0.0503768i
\(519\) 0.894269 0.0392541
\(520\) 7.65119 + 8.49315i 0.335527 + 0.372449i
\(521\) 33.5808 1.47120 0.735600 0.677416i \(-0.236900\pi\)
0.735600 + 0.677416i \(0.236900\pi\)
\(522\) −14.2127 + 3.54492i −0.622074 + 0.155157i
\(523\) 20.4177i 0.892802i 0.894833 + 0.446401i \(0.147294\pi\)
−0.894833 + 0.446401i \(0.852706\pi\)
\(524\) 3.64289 + 6.84847i 0.159140 + 0.299177i
\(525\) 1.00000i 0.0436436i
\(526\) −4.52039 18.1237i −0.197098 0.790232i
\(527\) −3.32971 −0.145044
\(528\) −9.99498 + 14.8290i −0.434976 + 0.645351i
\(529\) 32.7982 1.42601
\(530\) −0.468885 1.87991i −0.0203671 0.0816583i
\(531\) 8.61466i 0.373845i
\(532\) 1.36993 + 2.57540i 0.0593939 + 0.111658i
\(533\) 35.7688i 1.54932i
\(534\) 17.4245 4.34599i 0.754032 0.188070i
\(535\) −3.55654 −0.153763
\(536\) 30.6035 27.5697i 1.32187 1.19083i
\(537\) 8.25385 0.356180
\(538\) −34.0446 + 8.49136i −1.46777 + 0.366089i
\(539\) 4.47074i 0.192568i
\(540\) 1.76574 0.939244i 0.0759852 0.0404186i
\(541\) 28.7679i 1.23683i −0.785853 0.618414i \(-0.787776\pi\)
0.785853 0.618414i \(-0.212224\pi\)
\(542\) 3.55494 + 14.2529i 0.152698 + 0.612215i
\(543\) −8.50431 −0.364955
\(544\) −2.16317 0.786288i −0.0927452 0.0337118i
\(545\) 5.86714 0.251321
\(546\) −1.38321 5.54575i −0.0591960 0.237336i
\(547\) 4.86263i 0.207911i −0.994582 0.103956i \(-0.966850\pi\)
0.994582 0.103956i \(-0.0331500\pi\)
\(548\) −7.73784 + 4.11597i −0.330544 + 0.175826i
\(549\) 6.60083i 0.281716i
\(550\) 6.13464 1.53009i 0.261582 0.0652434i
\(551\) −15.1073 −0.643593
\(552\) −15.6974 + 14.1413i −0.668127 + 0.601893i
\(553\) −11.0077 −0.468095
\(554\) −9.96452 + 2.48533i −0.423352 + 0.105592i
\(555\) 3.35010i 0.142204i
\(556\) −5.65007 10.6219i −0.239616 0.450468i
\(557\) 26.1813i 1.10934i −0.832071 0.554669i \(-0.812845\pi\)
0.832071 0.554669i \(-0.187155\pi\)
\(558\) −2.80080 11.2293i −0.118567 0.475375i
\(559\) 2.96527 0.125417
\(560\) −3.31691 2.23564i −0.140165 0.0944732i
\(561\) −1.81904 −0.0767999
\(562\) −8.01277 32.1258i −0.337998 1.35515i
\(563\) 30.1734i 1.27166i 0.771830 + 0.635829i \(0.219342\pi\)
−0.771830 + 0.635829i \(0.780658\pi\)
\(564\) −1.60878 3.02443i −0.0677418 0.127351i
\(565\) 1.09580i 0.0461005i
\(566\) −29.6579 + 7.39723i −1.24662 + 0.310929i
\(567\) −1.00000 −0.0419961
\(568\) −28.7180 31.8782i −1.20498 1.33758i
\(569\) −31.7447 −1.33081 −0.665404 0.746483i \(-0.731741\pi\)
−0.665404 + 0.746483i \(0.731741\pi\)
\(570\) 2.00138 0.499181i 0.0838285 0.0209084i
\(571\) 18.7801i 0.785923i 0.919555 + 0.392961i \(0.128549\pi\)
−0.919555 + 0.392961i \(0.871451\pi\)
\(572\) 31.9047 16.9710i 1.33400 0.709594i
\(573\) 20.3803i 0.851399i
\(574\) −3.02895 12.1440i −0.126426 0.506883i
\(575\) 7.46982 0.311513
\(576\) 0.832167 7.95660i 0.0346736 0.331525i
\(577\) 5.94472 0.247482 0.123741 0.992315i \(-0.460511\pi\)
0.123741 + 0.992315i \(0.460511\pi\)
\(578\) 5.76152 + 23.0998i 0.239648 + 0.960826i
\(579\) 17.1450i 0.712521i
\(580\) 18.2891 9.72850i 0.759415 0.403954i
\(581\) 5.72787i 0.237632i
\(582\) 4.52378 1.12831i 0.187517 0.0467701i
\(583\) −6.12502 −0.253672
\(584\) 13.3042 + 14.7682i 0.550531 + 0.611113i
\(585\) −4.04157 −0.167098
\(586\) 43.0587 10.7396i 1.77874 0.443650i
\(587\) 15.8477i 0.654103i 0.945006 + 0.327052i \(0.106055\pi\)
−0.945006 + 0.327052i \(0.893945\pi\)
\(588\) 0.939244 + 1.76574i 0.0387338 + 0.0728177i
\(589\) 11.9361i 0.491819i
\(590\) −2.94833 11.8208i −0.121381 0.486656i
\(591\) −15.6168 −0.642390
\(592\) −11.1120 7.48962i −0.456699 0.307822i
\(593\) 31.5774 1.29673 0.648363 0.761331i \(-0.275454\pi\)
0.648363 + 0.761331i \(0.275454\pi\)
\(594\) −1.53009 6.13464i −0.0627804 0.251707i
\(595\) 0.406877i 0.0166803i
\(596\) −21.4416 40.3093i −0.878284 1.65113i
\(597\) 3.08580i 0.126294i
\(598\) 41.4257 10.3323i 1.69402 0.422521i
\(599\) −7.81904 −0.319477 −0.159739 0.987159i \(-0.551065\pi\)
−0.159739 + 0.987159i \(0.551065\pi\)
\(600\) −2.10145 + 1.89312i −0.0857913 + 0.0772864i
\(601\) 18.7020 0.762872 0.381436 0.924395i \(-0.375430\pi\)
0.381436 + 0.924395i \(0.375430\pi\)
\(602\) −1.00675 + 0.251103i −0.0410322 + 0.0102342i
\(603\) 14.5631i 0.593053i
\(604\) 8.41624 4.47683i 0.342452 0.182160i
\(605\) 8.98751i 0.365394i
\(606\) 3.46028 + 13.8734i 0.140564 + 0.563568i
\(607\) −25.0133 −1.01526 −0.507628 0.861576i \(-0.669478\pi\)
−0.507628 + 0.861576i \(0.669478\pi\)
\(608\) 2.81863 7.75438i 0.114311 0.314482i
\(609\) −10.3578 −0.419719
\(610\) 2.25911 + 9.05750i 0.0914686 + 0.366727i
\(611\) 6.92258i 0.280058i
\(612\) 0.718437 0.382156i 0.0290411 0.0154478i
\(613\) 29.3209i 1.18426i −0.805842 0.592131i \(-0.798287\pi\)
0.805842 0.592131i \(-0.201713\pi\)
\(614\) 38.8424 9.68802i 1.56755 0.390977i
\(615\) −8.85021 −0.356875
\(616\) −9.39503 + 8.46366i −0.378536 + 0.341011i
\(617\) −15.5422 −0.625707 −0.312853 0.949801i \(-0.601285\pi\)
−0.312853 + 0.949801i \(0.601285\pi\)
\(618\) −9.35976 + 2.33450i −0.376505 + 0.0939072i
\(619\) 13.8407i 0.556303i 0.960537 + 0.278152i \(0.0897218\pi\)
−0.960537 + 0.278152i \(0.910278\pi\)
\(620\) 7.68638 + 14.4500i 0.308692 + 0.580328i
\(621\) 7.46982i 0.299753i
\(622\) 7.32624 + 29.3733i 0.293756 + 1.17776i
\(623\) 12.6985 0.508753
\(624\) −9.03551 + 13.4055i −0.361710 + 0.536651i
\(625\) 1.00000 0.0400000
\(626\) −5.54850 22.2458i −0.221763 0.889120i
\(627\) 6.52077i 0.260414i
\(628\) −5.90113 11.0939i −0.235481 0.442693i
\(629\) 1.36308i 0.0543494i
\(630\) 1.37218 0.342246i 0.0546688 0.0136354i
\(631\) 34.7681 1.38410 0.692049 0.721851i \(-0.256708\pi\)
0.692049 + 0.721851i \(0.256708\pi\)
\(632\) 20.8389 + 23.1321i 0.828929 + 0.920146i
\(633\) −19.1140 −0.759715
\(634\) 17.1088 4.26724i 0.679476 0.169474i
\(635\) 19.5015i 0.773892i
\(636\) 2.41910 1.28679i 0.0959236 0.0510244i
\(637\) 4.04157i 0.160133i
\(638\) −15.8484 63.5414i −0.627444 2.51563i
\(639\) 15.1696 0.600102
\(640\) 1.58123 + 11.2027i 0.0625038 + 0.442824i
\(641\) −1.92133 −0.0758878 −0.0379439 0.999280i \(-0.512081\pi\)
−0.0379439 + 0.999280i \(0.512081\pi\)
\(642\) −1.21721 4.88020i −0.0480395 0.192606i
\(643\) 16.2575i 0.641134i −0.947226 0.320567i \(-0.896127\pi\)
0.947226 0.320567i \(-0.103873\pi\)
\(644\) −13.1897 + 7.01598i −0.519748 + 0.276468i
\(645\) 0.733692i 0.0288891i
\(646\) 0.814315 0.203105i 0.0320388 0.00799106i
\(647\) −18.1864 −0.714981 −0.357491 0.933917i \(-0.616368\pi\)
−0.357491 + 0.933917i \(0.616368\pi\)
\(648\) 1.89312 + 2.10145i 0.0743689 + 0.0825527i
\(649\) −38.5139 −1.51180
\(650\) 5.54575 1.38321i 0.217522 0.0542540i
\(651\) 8.18358i 0.320740i
\(652\) 21.9448 + 41.2552i 0.859424 + 1.61568i
\(653\) 21.7325i 0.850457i −0.905086 0.425228i \(-0.860194\pi\)
0.905086 0.425228i \(-0.139806\pi\)
\(654\) 2.00800 + 8.05075i 0.0785192 + 0.314809i
\(655\) 3.87854 0.151547
\(656\) −19.7859 + 29.3554i −0.772510 + 1.14613i
\(657\) −7.02763 −0.274174
\(658\) −0.586214 2.35032i −0.0228530 0.0916252i
\(659\) 23.6212i 0.920153i −0.887879 0.460076i \(-0.847822\pi\)
0.887879 0.460076i \(-0.152178\pi\)
\(660\) 4.19911 + 7.89414i 0.163450 + 0.307279i
\(661\) 25.2301i 0.981339i −0.871346 0.490669i \(-0.836752\pi\)
0.871346 0.490669i \(-0.163248\pi\)
\(662\) −20.7439 + 5.17391i −0.806235 + 0.201090i
\(663\) −1.64442 −0.0638640
\(664\) 12.0368 10.8436i 0.467119 0.420812i
\(665\) 1.45854 0.0565599
\(666\) 4.59692 1.14656i 0.178127 0.0444282i
\(667\) 77.3709i 2.99581i
\(668\) 32.0320 17.0387i 1.23936 0.659248i
\(669\) 0.120914i 0.00467481i
\(670\) −4.98415 19.9831i −0.192554 0.772014i
\(671\) 29.5106 1.13924
\(672\) 1.93250 5.31653i 0.0745477 0.205089i
\(673\) 39.8528 1.53621 0.768107 0.640321i \(-0.221199\pi\)
0.768107 + 0.640321i \(0.221199\pi\)
\(674\) 1.78671 + 7.16349i 0.0688214 + 0.275927i
\(675\) 1.00000i 0.0384900i
\(676\) 5.88748 3.13171i 0.226441 0.120450i
\(677\) 45.7966i 1.76011i −0.474876 0.880053i \(-0.657507\pi\)
0.474876 0.880053i \(-0.342493\pi\)
\(678\) 1.50363 0.375032i 0.0577464 0.0144030i
\(679\) 3.29679 0.126519
\(680\) −0.855031 + 0.770268i −0.0327889 + 0.0295384i
\(681\) −20.5673 −0.788142
\(682\) 50.2034 12.5216i 1.92239 0.479478i
\(683\) 21.5512i 0.824634i 0.911040 + 0.412317i \(0.135280\pi\)
−0.911040 + 0.412317i \(0.864720\pi\)
\(684\) 1.36993 + 2.57540i 0.0523805 + 0.0984729i
\(685\) 4.38222i 0.167436i
\(686\) 0.342246 + 1.37218i 0.0130670 + 0.0523899i
\(687\) 10.7194 0.408969
\(688\) 2.43359 + 1.64027i 0.0927797 + 0.0625348i
\(689\) −5.53705 −0.210945
\(690\) 2.55652 + 10.2499i 0.0973249 + 0.390207i
\(691\) 24.5483i 0.933860i −0.884294 0.466930i \(-0.845360\pi\)
0.884294 0.466930i \(-0.154640\pi\)
\(692\) −0.839936 1.57904i −0.0319296 0.0600262i
\(693\) 4.47074i 0.169829i
\(694\) −20.1731 + 5.03154i −0.765760 + 0.190995i
\(695\) −6.01555 −0.228183
\(696\) 19.6086 + 21.7664i 0.743262 + 0.825053i
\(697\) −3.60095 −0.136396
\(698\) −41.2633 + 10.2918i −1.56184 + 0.389551i
\(699\) 8.18606i 0.309625i
\(700\) −1.76574 + 0.939244i −0.0667385 + 0.0355001i
\(701\) 1.97333i 0.0745318i 0.999305 + 0.0372659i \(0.0118648\pi\)
−0.999305 + 0.0372659i \(0.988135\pi\)
\(702\) −1.38321 5.54575i −0.0522059 0.209311i
\(703\) 4.88626 0.184289
\(704\) 35.5719 + 3.72040i 1.34067 + 0.140218i
\(705\) −1.71284 −0.0645095
\(706\) 4.25634 + 17.0651i 0.160190 + 0.642253i
\(707\) 10.1105i 0.380245i
\(708\) 15.2112 8.09127i 0.571672 0.304088i
\(709\) 10.8862i 0.408840i −0.978883 0.204420i \(-0.934469\pi\)
0.978883 0.204420i \(-0.0655309\pi\)
\(710\) −20.8154 + 5.19175i −0.781189 + 0.194843i
\(711\) −11.0077 −0.412821
\(712\) −24.0397 26.6851i −0.900927 1.00007i
\(713\) 61.1299 2.28933
\(714\) 0.558307 0.139252i 0.0208941 0.00521137i
\(715\) 18.0688i 0.675735i
\(716\) −7.75237 14.5741i −0.289720 0.544660i
\(717\) 20.0186i 0.747609i
\(718\) −0.595520 2.38763i −0.0222246 0.0891057i
\(719\) 52.7520 1.96732 0.983658 0.180045i \(-0.0576244\pi\)
0.983658 + 0.180045i \(0.0576244\pi\)
\(720\) −3.31691 2.23564i −0.123614 0.0833175i
\(721\) −6.82111 −0.254031
\(722\) −5.77460 23.1523i −0.214908 0.861638i
\(723\) 15.4729i 0.575443i
\(724\) 7.98761 + 15.0164i 0.296857 + 0.558078i
\(725\) 10.3578i 0.384679i
\(726\) 12.3324 3.07594i 0.457700 0.114159i
\(727\) 15.3463 0.569162 0.284581 0.958652i \(-0.408146\pi\)
0.284581 + 0.958652i \(0.408146\pi\)
\(728\) −8.49315 + 7.65119i −0.314777 + 0.283572i
\(729\) −1.00000 −0.0370370
\(730\) 9.64315 2.40518i 0.356909 0.0890197i
\(731\) 0.298522i 0.0110412i
\(732\) −11.6553 + 6.19979i −0.430793 + 0.229151i
\(733\) 25.6724i 0.948233i −0.880462 0.474116i \(-0.842768\pi\)
0.880462 0.474116i \(-0.157232\pi\)
\(734\) −1.38972 5.57185i −0.0512955 0.205661i
\(735\) 1.00000 0.0368856
\(736\) 39.7135 + 14.4354i 1.46386 + 0.532096i
\(737\) −65.1076 −2.39827
\(738\) −3.02895 12.1440i −0.111497 0.447029i
\(739\) 26.3301i 0.968569i 0.874911 + 0.484284i \(0.160920\pi\)
−0.874911 + 0.484284i \(0.839080\pi\)
\(740\) −5.91539 + 3.14656i −0.217454 + 0.115670i
\(741\) 5.89481i 0.216551i
\(742\) 1.87991 0.468885i 0.0690138 0.0172133i
\(743\) −43.2626 −1.58715 −0.793576 0.608471i \(-0.791783\pi\)
−0.793576 + 0.608471i \(0.791783\pi\)
\(744\) −17.1974 + 15.4925i −0.630486 + 0.567984i
\(745\) −22.8286 −0.836376
\(746\) −23.6108 + 5.88896i −0.864452 + 0.215610i
\(747\) 5.72787i 0.209572i
\(748\) 1.70852 + 3.21194i 0.0624697 + 0.117440i
\(749\) 3.55654i 0.129953i
\(750\) 0.342246 + 1.37218i 0.0124971 + 0.0501048i
\(751\) 16.9442 0.618304 0.309152 0.951013i \(-0.399955\pi\)
0.309152 + 0.951013i \(0.399955\pi\)
\(752\) −3.82931 + 5.68135i −0.139641 + 0.207178i
\(753\) 10.6904 0.389582
\(754\) −14.3270 57.4418i −0.521760 2.09191i
\(755\) 4.76642i 0.173468i
\(756\) 0.939244 + 1.76574i 0.0341600 + 0.0642192i
\(757\) 24.7705i 0.900298i 0.892954 + 0.450149i \(0.148629\pi\)
−0.892954 + 0.450149i \(0.851371\pi\)
\(758\) −2.47208 + 0.616583i −0.0897901 + 0.0223953i
\(759\) 33.3956 1.21218
\(760\) −2.76120 3.06505i −0.100159 0.111181i
\(761\) 27.1182 0.983034 0.491517 0.870868i \(-0.336442\pi\)
0.491517 + 0.870868i \(0.336442\pi\)
\(762\) −26.7594 + 6.67429i −0.969392 + 0.241784i
\(763\) 5.86714i 0.212405i
\(764\) −35.9862 + 19.1420i −1.30193 + 0.692535i
\(765\) 0.406877i 0.0147107i
\(766\) 7.28268 + 29.1987i 0.263134 + 1.05499i
\(767\) −34.8168 −1.25716
\(768\) −14.8309 + 6.00380i −0.535163 + 0.216643i
\(769\) −25.0784 −0.904350 −0.452175 0.891929i \(-0.649352\pi\)
−0.452175 + 0.891929i \(0.649352\pi\)
\(770\) 1.53009 + 6.13464i 0.0551407 + 0.221077i
\(771\) 12.1810i 0.438688i
\(772\) −30.2735 + 16.1033i −1.08957 + 0.579571i
\(773\) 12.8187i 0.461057i −0.973066 0.230529i \(-0.925954\pi\)
0.973066 0.230529i \(-0.0740456\pi\)
\(774\) −1.00675 + 0.251103i −0.0361870 + 0.00902571i
\(775\) 8.18358 0.293963
\(776\) −6.24123 6.92804i −0.224047 0.248702i
\(777\) 3.35010 0.120184
\(778\) 21.6631 5.40318i 0.776660 0.193713i
\(779\) 12.9084i 0.462492i
\(780\) 3.79602 + 7.13634i 0.135919 + 0.255522i
\(781\) 67.8195i 2.42677i
\(782\) 1.04019 + 4.17045i 0.0371970 + 0.149135i
\(783\) −10.3578 −0.370158
\(784\) 2.23564 3.31691i 0.0798444 0.118461i
\(785\) −6.28285 −0.224245
\(786\) 1.32741 + 5.32204i 0.0473473 + 0.189831i
\(787\) 0.149492i 0.00532880i −0.999996 0.00266440i \(-0.999152\pi\)
0.999996 0.00266440i \(-0.000848106\pi\)
\(788\) 14.6680 + 27.5752i 0.522526 + 0.982325i
\(789\) 13.2080i 0.470218i
\(790\) 15.1045 3.76734i 0.537394 0.134036i
\(791\) 1.09580 0.0389620
\(792\) −9.39503 + 8.46366i −0.333838 + 0.300743i
\(793\) 26.6777 0.947353
\(794\) 0.521467 0.130063i 0.0185062 0.00461577i
\(795\) 1.37002i 0.0485897i
\(796\) 5.44871 2.89832i 0.193125 0.102728i
\(797\) 48.6497i 1.72326i −0.507537 0.861630i \(-0.669444\pi\)
0.507537 0.861630i \(-0.330556\pi\)
\(798\) 0.499181 + 2.00138i 0.0176708 + 0.0708480i
\(799\) −0.696917 −0.0246551
\(800\) 5.31653 + 1.93250i 0.187968 + 0.0683241i
\(801\) 12.6985 0.448678
\(802\) −7.97146 31.9602i −0.281482 1.12855i
\(803\) 31.4187i 1.10874i
\(804\) 25.7145 13.6783i 0.906881 0.482395i
\(805\) 7.46982i 0.263277i
\(806\) 45.3841 11.3196i 1.59859 0.398717i
\(807\) −24.8107 −0.873378
\(808\) 21.2467 19.1404i 0.747456 0.673358i
\(809\) 10.2614 0.360770 0.180385 0.983596i \(-0.442266\pi\)
0.180385 + 0.983596i \(0.442266\pi\)
\(810\) 1.37218 0.342246i 0.0482134 0.0120253i
\(811\) 12.9277i 0.453953i 0.973900 + 0.226977i \(0.0728841\pi\)
−0.973900 + 0.226977i \(0.927116\pi\)
\(812\) 9.72850 + 18.2891i 0.341403 + 0.641823i
\(813\) 10.3871i 0.364291i
\(814\) 5.12596 + 20.5516i 0.179665 + 0.720335i
\(815\) 23.3643 0.818416
\(816\) −1.34957 0.909631i −0.0472446 0.0318435i
\(817\) −1.07012 −0.0374388
\(818\) 11.8582 + 47.5433i 0.414611 + 1.66231i
\(819\) 4.04157i 0.141224i
\(820\) 8.31250 + 15.6271i 0.290285 + 0.545723i
\(821\) 27.8648i 0.972487i 0.873823 + 0.486244i \(0.161633\pi\)
−0.873823 + 0.486244i \(0.838367\pi\)
\(822\) −6.01318 + 1.49980i −0.209734 + 0.0523114i
\(823\) −54.7780 −1.90944 −0.954720 0.297505i \(-0.903846\pi\)
−0.954720 + 0.297505i \(0.903846\pi\)
\(824\) 12.9132 + 14.3342i 0.449853 + 0.499356i
\(825\) 4.47074 0.155651
\(826\) 11.8208 2.94833i 0.411299 0.102586i
\(827\) 21.2613i 0.739327i 0.929166 + 0.369664i \(0.120527\pi\)
−0.929166 + 0.369664i \(0.879473\pi\)
\(828\) −13.1897 + 7.01598i −0.458375 + 0.243822i
\(829\) 4.19360i 0.145650i −0.997345 0.0728249i \(-0.976799\pi\)
0.997345 0.0728249i \(-0.0232014\pi\)
\(830\) −1.96034 7.85965i −0.0680444 0.272812i
\(831\) −7.26184 −0.251910
\(832\) 32.1572 + 3.36326i 1.11485 + 0.116600i
\(833\) 0.406877 0.0140974
\(834\) −2.05880 8.25440i −0.0712903 0.285826i
\(835\) 18.1409i 0.627792i
\(836\) −11.5139 + 6.12459i −0.398218 + 0.211823i
\(837\) 8.18358i 0.282866i
\(838\) 47.0480 11.7346i 1.62525 0.405366i
\(839\) −8.00382 −0.276323 −0.138161 0.990410i \(-0.544119\pi\)
−0.138161 + 0.990410i \(0.544119\pi\)
\(840\) −1.89312 2.10145i −0.0653190 0.0725068i
\(841\) −78.2841 −2.69945
\(842\) 19.1503 4.77642i 0.659961 0.164606i
\(843\) 23.4123i 0.806363i
\(844\) 17.9527 + 33.7503i 0.617959 + 1.16173i
\(845\) 3.33429i 0.114703i
\(846\) −0.586214 2.35032i −0.0201545 0.0808058i
\(847\) 8.98751 0.308814
\(848\) −4.54425 3.06289i −0.156050 0.105180i
\(849\) −21.6138 −0.741784
\(850\) 0.139252 + 0.558307i 0.00477630 + 0.0191498i
\(851\) 25.0246i 0.857833i
\(852\) −14.2480 26.7856i −0.488128 0.917659i
\(853\) 49.3821i 1.69081i −0.534124 0.845406i \(-0.679359\pi\)
0.534124 0.845406i \(-0.320641\pi\)
\(854\) −9.05750 + 2.25911i −0.309941 + 0.0773050i
\(855\) 1.45854 0.0498811
\(856\) −7.47389 + 6.73297i −0.255452 + 0.230128i
\(857\) 27.8065 0.949853 0.474926 0.880025i \(-0.342475\pi\)
0.474926 + 0.880025i \(0.342475\pi\)
\(858\) 24.7936 6.18398i 0.846439 0.211117i
\(859\) 10.8688i 0.370838i 0.982660 + 0.185419i \(0.0593642\pi\)
−0.982660 + 0.185419i \(0.940636\pi\)
\(860\) 1.29551 0.689115i 0.0441764 0.0234986i
\(861\) 8.85021i 0.301614i
\(862\) −3.16773 12.7005i −0.107893 0.432580i
\(863\) −31.8489 −1.08415 −0.542075 0.840330i \(-0.682361\pi\)
−0.542075 + 0.840330i \(0.682361\pi\)
\(864\) 1.93250 5.31653i 0.0657449 0.180872i
\(865\) −0.894269 −0.0304061
\(866\) 2.21455 + 8.87884i 0.0752533 + 0.301715i
\(867\) 16.8345i 0.571728i
\(868\) −14.4500 + 7.68638i −0.490466 + 0.260893i
\(869\) 49.2126i 1.66942i
\(870\) 14.2127 3.54492i 0.481857 0.120184i
\(871\) −58.8576 −1.99431
\(872\) 12.3295 11.1072i 0.417529 0.376138i
\(873\) 3.29679 0.111580
\(874\) −14.9499 + 3.72879i −0.505689 + 0.126128i
\(875\) 1.00000i 0.0338062i
\(876\) 6.60066 + 12.4089i 0.223016 + 0.419259i
\(877\) 4.13771i 0.139720i 0.997557 + 0.0698602i \(0.0222553\pi\)
−0.997557 + 0.0698602i \(0.977745\pi\)
\(878\) 9.69145 + 38.8562i 0.327071 + 1.31133i
\(879\) 31.3799 1.05842
\(880\) 9.99498 14.8290i 0.336931 0.499887i
\(881\) 42.0704 1.41739 0.708693 0.705517i \(-0.249285\pi\)
0.708693 + 0.705517i \(0.249285\pi\)
\(882\) 0.342246 + 1.37218i 0.0115240 + 0.0462036i
\(883\) 19.2369i 0.647375i 0.946164 + 0.323687i \(0.104923\pi\)
−0.946164 + 0.323687i \(0.895077\pi\)
\(884\) 1.54451 + 2.90361i 0.0519476 + 0.0976591i
\(885\) 8.61466i 0.289579i
\(886\) −23.0850 + 5.75782i −0.775556 + 0.193438i
\(887\) −1.36403 −0.0457996 −0.0228998 0.999738i \(-0.507290\pi\)
−0.0228998 + 0.999738i \(0.507290\pi\)
\(888\) −6.34215 7.04006i −0.212829 0.236249i
\(889\) −19.5015 −0.654058
\(890\) −17.4245 + 4.34599i −0.584071 + 0.145678i
\(891\) 4.47074i 0.149775i
\(892\) 0.213502 0.113568i 0.00714859 0.00380253i
\(893\) 2.49826i 0.0836010i
\(894\) −7.81301 31.3249i −0.261306 1.04766i
\(895\) −8.25385 −0.275896
\(896\) −11.2027 + 1.58123i −0.374255 + 0.0528253i
\(897\) 30.1898 1.00801
\(898\) 3.41544 + 13.6936i 0.113975 + 0.456961i
\(899\) 84.7639i 2.82704i
\(900\) −1.76574 + 0.939244i −0.0588578 + 0.0313081i
\(901\) 0.557431i 0.0185707i
\(902\) 54.2929 13.5416i 1.80776 0.450887i
\(903\) −0.733692 −0.0244157
\(904\) −2.07448 2.30276i −0.0689961 0.0765886i
\(905\) 8.50431 0.282693
\(906\) 6.54037 1.63129i 0.217289 0.0541959i
\(907\) 28.2721i 0.938759i 0.882997 + 0.469379i \(0.155522\pi\)
−0.882997 + 0.469379i \(0.844478\pi\)
\(908\) 19.3177 + 36.3165i 0.641081 + 1.20520i
\(909\) 10.1105i 0.335344i
\(910\) 1.38321 + 5.54575i 0.0458530 + 0.183840i
\(911\) −3.67647 −0.121807 −0.0609034 0.998144i \(-0.519398\pi\)
−0.0609034 + 0.998144i \(0.519398\pi\)
\(912\) 3.26078 4.83786i 0.107975 0.160198i
\(913\) −25.6078 −0.847495
\(914\) −4.28876 17.1950i −0.141859 0.568761i
\(915\) 6.60083i 0.218217i
\(916\) −10.0681 18.9275i −0.332659 0.625384i
\(917\) 3.87854i 0.128081i
\(918\) 0.558307 0.139252i 0.0184269 0.00459600i
\(919\) −29.3172 −0.967084 −0.483542 0.875321i \(-0.660650\pi\)
−0.483542 + 0.875321i \(0.660650\pi\)
\(920\) 15.6974 14.1413i 0.517529 0.466224i
\(921\) 28.3072 0.932753
\(922\) −34.8867 + 8.70140i −1.14893 + 0.286565i
\(923\) 61.3092i 2.01802i
\(924\) −7.89414 + 4.19911i −0.259698 + 0.138141i
\(925\) 3.35010i 0.110151i
\(926\) 3.26566 + 13.0931i 0.107316 + 0.430266i
\(927\) −6.82111 −0.224035
\(928\) 20.0164 55.0675i 0.657071 1.80768i
\(929\) −19.8228 −0.650365 −0.325183 0.945651i \(-0.605426\pi\)
−0.325183 + 0.945651i \(0.605426\pi\)
\(930\) 2.80080 + 11.2293i 0.0918418 + 0.368224i
\(931\) 1.45854i 0.0478018i
\(932\) 14.4544 7.68871i 0.473470 0.251852i
\(933\) 21.4064i 0.700813i
\(934\) −33.5290 + 8.36274i −1.09710 + 0.273637i
\(935\) 1.81904 0.0594890
\(936\) −8.49315 + 7.65119i −0.277607 + 0.250087i
\(937\) −6.16351 −0.201353 −0.100677 0.994919i \(-0.532101\pi\)
−0.100677 + 0.994919i \(0.532101\pi\)
\(938\) 19.9831 4.98415i 0.652471 0.162738i
\(939\) 16.2120i 0.529060i
\(940\) 1.60878 + 3.02443i 0.0524726 + 0.0986460i
\(941\) 31.3628i 1.02240i 0.859462 + 0.511200i \(0.170799\pi\)
−0.859462 + 0.511200i \(0.829201\pi\)
\(942\) −2.15028 8.62118i −0.0700599 0.280893i
\(943\) 66.1095 2.15282
\(944\) −28.5741 19.2593i −0.930007 0.626837i
\(945\) 1.00000 0.0325300
\(946\) −1.12262 4.50094i −0.0364994 0.146338i
\(947\) 9.19892i 0.298925i −0.988767 0.149462i \(-0.952246\pi\)
0.988767 0.149462i \(-0.0477543\pi\)
\(948\) 10.3389 + 19.4367i 0.335792 + 0.631275i
\(949\) 28.4027i 0.921990i
\(950\) −2.00138 + 0.499181i −0.0649333 + 0.0161956i
\(951\) 12.4683 0.404314
\(952\) −0.770268 0.855031i −0.0249645 0.0277117i
\(953\) 31.9514 1.03501 0.517503 0.855681i \(-0.326862\pi\)
0.517503 + 0.855681i \(0.326862\pi\)
\(954\) 1.87991 0.468885i 0.0608645 0.0151807i
\(955\) 20.3803i 0.659490i
\(956\) −35.3476 + 18.8024i −1.14322 + 0.608112i
\(957\) 46.3070i 1.49689i
\(958\) 10.2413 + 41.0608i 0.330882 + 1.32661i
\(959\) −4.38222 −0.141509
\(960\) −0.832167 + 7.95660i −0.0268581 + 0.256798i
\(961\) 35.9710 1.16036
\(962\) 4.63389 + 18.5788i 0.149403 + 0.599004i
\(963\) 3.55654i 0.114608i
\(964\) 27.3210 14.5328i 0.879952 0.468071i
\(965\) 17.1450i 0.551917i
\(966\) −10.2499 + 2.55652i −0.329785 + 0.0822545i
\(967\) 1.32028 0.0424572 0.0212286 0.999775i \(-0.493242\pi\)
0.0212286 + 0.999775i \(0.493242\pi\)
\(968\) −17.0145 18.8868i −0.546865 0.607044i
\(969\) 0.593448 0.0190643
\(970\) −4.52378 + 1.12831i −0.145250 + 0.0362280i
\(971\) 24.6556i 0.791235i −0.918415 0.395617i \(-0.870531\pi\)
0.918415 0.395617i \(-0.129469\pi\)
\(972\) 0.939244 + 1.76574i 0.0301263 + 0.0566360i
\(973\) 6.01555i 0.192850i
\(974\) −5.34290 21.4214i −0.171197 0.686387i
\(975\) 4.04157 0.129434
\(976\) 21.8944 + 14.7571i 0.700821 + 0.472363i
\(977\) −36.4689 −1.16674 −0.583371 0.812206i \(-0.698267\pi\)
−0.583371 + 0.812206i \(0.698267\pi\)
\(978\) 7.99634 + 32.0600i 0.255695 + 1.02516i
\(979\) 56.7715i 1.81442i
\(980\) −0.939244 1.76574i −0.0300030 0.0564043i
\(981\) 5.86714i 0.187323i
\(982\) −3.57457 + 0.891563i −0.114069 + 0.0284509i
\(983\) −31.3938 −1.00131 −0.500653 0.865648i \(-0.666907\pi\)
−0.500653 + 0.865648i \(0.666907\pi\)
\(984\) −18.5983 + 16.7545i −0.592891 + 0.534115i
\(985\) 15.6168 0.497593
\(986\) 5.78283 1.44234i 0.184163 0.0459336i
\(987\) 1.71284i 0.0545204i
\(988\) −10.4087 + 5.53666i −0.331144 + 0.176145i
\(989\) 5.48054i 0.174271i
\(990\) 1.53009 + 6.13464i 0.0486295 + 0.194972i
\(991\) −50.5347 −1.60529 −0.802644 0.596459i \(-0.796574\pi\)
−0.802644 + 0.596459i \(0.796574\pi\)
\(992\) 43.5082 + 15.8148i 1.38139 + 0.502119i
\(993\) −15.1175 −0.479740
\(994\) −5.19175 20.8154i −0.164672 0.660225i
\(995\) 3.08580i 0.0978266i
\(996\) 10.1139 5.37987i 0.320471 0.170468i
\(997\) 12.1767i 0.385641i 0.981234 + 0.192821i \(0.0617636\pi\)
−0.981234 + 0.192821i \(0.938236\pi\)
\(998\) 44.6883 11.1461i 1.41458 0.352823i
\(999\) 3.35010 0.105992
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 840.2.g.d.421.7 16
4.3 odd 2 3360.2.g.d.1681.15 16
8.3 odd 2 3360.2.g.d.1681.2 16
8.5 even 2 inner 840.2.g.d.421.8 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
840.2.g.d.421.7 16 1.1 even 1 trivial
840.2.g.d.421.8 yes 16 8.5 even 2 inner
3360.2.g.d.1681.2 16 8.3 odd 2
3360.2.g.d.1681.15 16 4.3 odd 2