L(s) = 1 | + (−0.342 − 1.37i)2-s − i·3-s + (−1.76 + 0.939i)4-s + i·5-s + (−1.37 + 0.342i)6-s − 7-s + (1.89 + 2.10i)8-s − 9-s + (1.37 − 0.342i)10-s − 4.47i·11-s + (0.939 + 1.76i)12-s − 4.04i·13-s + (0.342 + 1.37i)14-s + 15-s + (2.23 − 3.31i)16-s + 0.406·17-s + ⋯ |
L(s) = 1 | + (−0.242 − 0.970i)2-s − 0.577i·3-s + (−0.882 + 0.469i)4-s + 0.447i·5-s + (−0.560 + 0.139i)6-s − 0.377·7-s + (0.669 + 0.742i)8-s − 0.333·9-s + (0.433 − 0.108i)10-s − 1.34i·11-s + (0.271 + 0.509i)12-s − 1.12i·13-s + (0.0914 + 0.366i)14-s + 0.258·15-s + (0.558 − 0.829i)16-s + 0.0986·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.669 - 0.742i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 840 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.669 - 0.742i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.171618 + 0.385594i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.171618 + 0.385594i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.342 + 1.37i)T \) |
| 3 | \( 1 + iT \) |
| 5 | \( 1 - iT \) |
| 7 | \( 1 + T \) |
good | 11 | \( 1 + 4.47iT - 11T^{2} \) |
| 13 | \( 1 + 4.04iT - 13T^{2} \) |
| 17 | \( 1 - 0.406T + 17T^{2} \) |
| 19 | \( 1 - 1.45iT - 19T^{2} \) |
| 23 | \( 1 + 7.46T + 23T^{2} \) |
| 29 | \( 1 - 10.3iT - 29T^{2} \) |
| 31 | \( 1 + 8.18T + 31T^{2} \) |
| 37 | \( 1 + 3.35iT - 37T^{2} \) |
| 41 | \( 1 + 8.85T + 41T^{2} \) |
| 43 | \( 1 - 0.733iT - 43T^{2} \) |
| 47 | \( 1 + 1.71T + 47T^{2} \) |
| 53 | \( 1 + 1.37iT - 53T^{2} \) |
| 59 | \( 1 + 8.61iT - 59T^{2} \) |
| 61 | \( 1 - 6.60iT - 61T^{2} \) |
| 67 | \( 1 + 14.5iT - 67T^{2} \) |
| 71 | \( 1 + 15.1T + 71T^{2} \) |
| 73 | \( 1 - 7.02T + 73T^{2} \) |
| 79 | \( 1 - 11.0T + 79T^{2} \) |
| 83 | \( 1 + 5.72iT - 83T^{2} \) |
| 89 | \( 1 + 12.6T + 89T^{2} \) |
| 97 | \( 1 + 3.29T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.853869345197188651663543347290, −8.793242005486269806682847279301, −8.153012621977340413292700481265, −7.30085141322048181142531182102, −6.06180254524832233356077185044, −5.28767233094474261791017039812, −3.58733867289117908786107231692, −3.13229118540920223243706880721, −1.75817301203454028652427158608, −0.21893450936345267252537407537,
1.94430296340110374354680120554, 3.96365494741096106107410263702, 4.49399301358207876127956586158, 5.51610965161214976135398234898, 6.45516320454481528917164614050, 7.30252475987702915803376504352, 8.204669095673580684143811346021, 9.127416260390659239992644344294, 9.740504158285208025004810247947, 10.22055352700166213489835748090