Properties

Label 840.2.g
Level $840$
Weight $2$
Character orbit 840.g
Rep. character $\chi_{840}(421,\cdot)$
Character field $\Q$
Dimension $48$
Newform subspaces $4$
Sturm bound $384$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 840 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 840.g (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 8 \)
Character field: \(\Q\)
Newform subspaces: \( 4 \)
Sturm bound: \(384\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(11\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(840, [\chi])\).

Total New Old
Modular forms 200 48 152
Cusp forms 184 48 136
Eisenstein series 16 0 16

Trace form

\( 48 q - 4 q^{2} - 4 q^{6} - 8 q^{7} - 4 q^{8} - 48 q^{9} + 4 q^{10} + 4 q^{14} + 8 q^{15} + 8 q^{16} + 4 q^{18} + 16 q^{23} + 4 q^{24} - 48 q^{25} - 4 q^{28} - 16 q^{31} + 36 q^{32} + 40 q^{34} - 40 q^{38}+ \cdots - 4 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(840, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
840.2.g.a 840.g 8.b $8$ $6.707$ \(\Q(\zeta_{16})\) None 840.2.g.a \(0\) \(0\) \(0\) \(8\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta_{5} q^{2}+\beta_{2} q^{3}-\beta_1 q^{4}+\beta_{2} q^{5}+\cdots\)
840.2.g.b 840.g 8.b $12$ $6.707$ 12.0.\(\cdots\).1 None 840.2.g.b \(-2\) \(0\) \(0\) \(-12\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{2}q^{2}-\beta _{4}q^{3}-\beta _{7}q^{4}-\beta _{4}q^{5}+\cdots\)
840.2.g.c 840.g 8.b $12$ $6.707$ 12.0.\(\cdots\).1 None 840.2.g.c \(0\) \(0\) \(0\) \(12\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{5}q^{2}+\beta _{4}q^{3}+\beta _{7}q^{4}-\beta _{4}q^{5}+\cdots\)
840.2.g.d 840.g 8.b $16$ $6.707$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 840.2.g.d \(-2\) \(0\) \(0\) \(-16\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{4}q^{2}-\beta _{5}q^{3}-\beta _{2}q^{4}+\beta _{5}q^{5}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(840, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(840, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(24, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(40, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(56, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(120, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(168, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(280, [\chi])\)\(^{\oplus 2}\)