Defining parameters
Level: | \( N \) | \(=\) | \( 840 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 840.g (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 8 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(384\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(11\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(840, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 200 | 48 | 152 |
Cusp forms | 184 | 48 | 136 |
Eisenstein series | 16 | 0 | 16 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(840, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
840.2.g.a | $8$ | $6.707$ | \(\Q(\zeta_{16})\) | None | \(0\) | \(0\) | \(0\) | \(8\) | \(q+\beta_{5} q^{2}+\beta_{2} q^{3}-\beta_1 q^{4}+\beta_{2} q^{5}+\cdots\) |
840.2.g.b | $12$ | $6.707$ | 12.0.\(\cdots\).1 | None | \(-2\) | \(0\) | \(0\) | \(-12\) | \(q+\beta _{2}q^{2}-\beta _{4}q^{3}-\beta _{7}q^{4}-\beta _{4}q^{5}+\cdots\) |
840.2.g.c | $12$ | $6.707$ | 12.0.\(\cdots\).1 | None | \(0\) | \(0\) | \(0\) | \(12\) | \(q+\beta _{5}q^{2}+\beta _{4}q^{3}+\beta _{7}q^{4}-\beta _{4}q^{5}+\cdots\) |
840.2.g.d | $16$ | $6.707$ | \(\mathbb{Q}[x]/(x^{16} - \cdots)\) | None | \(-2\) | \(0\) | \(0\) | \(-16\) | \(q-\beta _{4}q^{2}-\beta _{5}q^{3}-\beta _{2}q^{4}+\beta _{5}q^{5}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(840, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(840, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(24, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(40, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(56, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(120, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(168, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(280, [\chi])\)\(^{\oplus 2}\)