Properties

Label 840.2.g.b.421.5
Level $840$
Weight $2$
Character 840.421
Analytic conductor $6.707$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [840,2,Mod(421,840)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(840, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("840.421"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 840 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 840.g (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.70743376979\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: 12.0.3058043990573056.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + x^{10} - 8x^{7} - 16x^{5} + 16x^{2} + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 421.5
Root \(-1.23149 - 0.695292i\) of defining polynomial
Character \(\chi\) \(=\) 840.421
Dual form 840.2.g.b.421.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.695292 - 1.23149i) q^{2} -1.00000i q^{3} +(-1.03314 + 1.71249i) q^{4} -1.00000i q^{5} +(-1.23149 + 0.695292i) q^{6} -1.00000 q^{7} +(2.82725 + 0.0816198i) q^{8} -1.00000 q^{9} +(-1.23149 + 0.695292i) q^{10} +3.45686i q^{11} +(1.71249 + 1.03314i) q^{12} +3.45686i q^{13} +(0.695292 + 1.23149i) q^{14} -1.00000 q^{15} +(-1.86525 - 3.53848i) q^{16} +1.15712 q^{17} +(0.695292 + 1.23149i) q^{18} +5.88796i q^{19} +(1.71249 + 1.03314i) q^{20} +1.00000i q^{21} +(4.25709 - 2.40353i) q^{22} +2.37595 q^{23} +(0.0816198 - 2.82725i) q^{24} -1.00000 q^{25} +(4.25709 - 2.40353i) q^{26} +1.00000i q^{27} +(1.03314 - 1.71249i) q^{28} +3.63769i q^{29} +(0.695292 + 1.23149i) q^{30} -5.40739 q^{31} +(-3.06071 + 4.75731i) q^{32} +3.45686 q^{33} +(-0.804535 - 1.42498i) q^{34} +1.00000i q^{35} +(1.03314 - 1.71249i) q^{36} -4.15908i q^{37} +(7.25097 - 4.09385i) q^{38} +3.45686 q^{39} +(0.0816198 - 2.82725i) q^{40} +3.26174 q^{41} +(1.23149 - 0.695292i) q^{42} +4.97544i q^{43} +(-5.91984 - 3.57142i) q^{44} +1.00000i q^{45} +(-1.65198 - 2.92596i) q^{46} +13.0778 q^{47} +(-3.53848 + 1.86525i) q^{48} +1.00000 q^{49} +(0.695292 + 1.23149i) q^{50} -1.15712i q^{51} +(-5.91984 - 3.57142i) q^{52} +5.92814i q^{53} +(1.23149 - 0.695292i) q^{54} +3.45686 q^{55} +(-2.82725 - 0.0816198i) q^{56} +5.88796 q^{57} +(4.47979 - 2.52926i) q^{58} +12.5571i q^{59} +(1.03314 - 1.71249i) q^{60} -13.8161i q^{61} +(3.75971 + 6.65915i) q^{62} +1.00000 q^{63} +(7.98668 + 0.461519i) q^{64} +3.45686 q^{65} +(-2.40353 - 4.25709i) q^{66} +3.21227i q^{67} +(-1.19546 + 1.98156i) q^{68} -2.37595i q^{69} +(1.23149 - 0.695292i) q^{70} +2.33991 q^{71} +(-2.82725 - 0.0816198i) q^{72} +5.95172 q^{73} +(-5.12187 + 2.89178i) q^{74} +1.00000i q^{75} +(-10.0831 - 6.08308i) q^{76} -3.45686i q^{77} +(-2.40353 - 4.25709i) q^{78} -14.2934 q^{79} +(-3.53848 + 1.86525i) q^{80} +1.00000 q^{81} +(-2.26786 - 4.01680i) q^{82} -8.18770i q^{83} +(-1.71249 - 1.03314i) q^{84} -1.15712i q^{85} +(6.12720 - 3.45938i) q^{86} +3.63769 q^{87} +(-0.282148 + 9.77341i) q^{88} -2.61172 q^{89} +(1.23149 - 0.695292i) q^{90} -3.45686i q^{91} +(-2.45469 + 4.06880i) q^{92} +5.40739i q^{93} +(-9.09292 - 16.1052i) q^{94} +5.88796 q^{95} +(4.75731 + 3.06071i) q^{96} +0.962000 q^{97} +(-0.695292 - 1.23149i) q^{98} -3.45686i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 2 q^{2} + 2 q^{4} - 12 q^{7} - 2 q^{8} - 12 q^{9} + 2 q^{14} - 12 q^{15} + 2 q^{16} + 2 q^{18} + 40 q^{23} - 12 q^{25} - 2 q^{28} + 2 q^{30} - 8 q^{31} - 2 q^{32} - 20 q^{34} - 2 q^{36} + 24 q^{38}+ \cdots - 2 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/840\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(281\) \(337\) \(421\) \(631\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.695292 1.23149i −0.491646 0.870795i
\(3\) 1.00000i 0.577350i
\(4\) −1.03314 + 1.71249i −0.516569 + 0.856245i
\(5\) 1.00000i 0.447214i
\(6\) −1.23149 + 0.695292i −0.502754 + 0.283852i
\(7\) −1.00000 −0.377964
\(8\) 2.82725 + 0.0816198i 0.999584 + 0.0288570i
\(9\) −1.00000 −0.333333
\(10\) −1.23149 + 0.695292i −0.389432 + 0.219871i
\(11\) 3.45686i 1.04228i 0.853470 + 0.521141i \(0.174494\pi\)
−0.853470 + 0.521141i \(0.825506\pi\)
\(12\) 1.71249 + 1.03314i 0.494353 + 0.298241i
\(13\) 3.45686i 0.958761i 0.877607 + 0.479380i \(0.159139\pi\)
−0.877607 + 0.479380i \(0.840861\pi\)
\(14\) 0.695292 + 1.23149i 0.185825 + 0.329130i
\(15\) −1.00000 −0.258199
\(16\) −1.86525 3.53848i −0.466312 0.884620i
\(17\) 1.15712 0.280643 0.140321 0.990106i \(-0.455186\pi\)
0.140321 + 0.990106i \(0.455186\pi\)
\(18\) 0.695292 + 1.23149i 0.163882 + 0.290265i
\(19\) 5.88796i 1.35079i 0.737456 + 0.675396i \(0.236027\pi\)
−0.737456 + 0.675396i \(0.763973\pi\)
\(20\) 1.71249 + 1.03314i 0.382925 + 0.231017i
\(21\) 1.00000i 0.218218i
\(22\) 4.25709 2.40353i 0.907615 0.512434i
\(23\) 2.37595 0.495420 0.247710 0.968834i \(-0.420322\pi\)
0.247710 + 0.968834i \(0.420322\pi\)
\(24\) 0.0816198 2.82725i 0.0166606 0.577110i
\(25\) −1.00000 −0.200000
\(26\) 4.25709 2.40353i 0.834884 0.471370i
\(27\) 1.00000i 0.192450i
\(28\) 1.03314 1.71249i 0.195245 0.323630i
\(29\) 3.63769i 0.675503i 0.941235 + 0.337751i \(0.109666\pi\)
−0.941235 + 0.337751i \(0.890334\pi\)
\(30\) 0.695292 + 1.23149i 0.126942 + 0.224838i
\(31\) −5.40739 −0.971196 −0.485598 0.874182i \(-0.661398\pi\)
−0.485598 + 0.874182i \(0.661398\pi\)
\(32\) −3.06071 + 4.75731i −0.541063 + 0.840982i
\(33\) 3.45686 0.601762
\(34\) −0.804535 1.42498i −0.137977 0.244382i
\(35\) 1.00000i 0.169031i
\(36\) 1.03314 1.71249i 0.172190 0.285415i
\(37\) 4.15908i 0.683749i −0.939746 0.341874i \(-0.888938\pi\)
0.939746 0.341874i \(-0.111062\pi\)
\(38\) 7.25097 4.09385i 1.17626 0.664111i
\(39\) 3.45686 0.553541
\(40\) 0.0816198 2.82725i 0.0129052 0.447027i
\(41\) 3.26174 0.509398 0.254699 0.967020i \(-0.418024\pi\)
0.254699 + 0.967020i \(0.418024\pi\)
\(42\) 1.23149 0.695292i 0.190023 0.107286i
\(43\) 4.97544i 0.758747i 0.925244 + 0.379373i \(0.123860\pi\)
−0.925244 + 0.379373i \(0.876140\pi\)
\(44\) −5.91984 3.57142i −0.892450 0.538411i
\(45\) 1.00000i 0.149071i
\(46\) −1.65198 2.92596i −0.243571 0.431410i
\(47\) 13.0778 1.90760 0.953800 0.300444i \(-0.0971348\pi\)
0.953800 + 0.300444i \(0.0971348\pi\)
\(48\) −3.53848 + 1.86525i −0.510736 + 0.269226i
\(49\) 1.00000 0.142857
\(50\) 0.695292 + 1.23149i 0.0983291 + 0.174159i
\(51\) 1.15712i 0.162029i
\(52\) −5.91984 3.57142i −0.820934 0.495266i
\(53\) 5.92814i 0.814292i 0.913363 + 0.407146i \(0.133476\pi\)
−0.913363 + 0.407146i \(0.866524\pi\)
\(54\) 1.23149 0.695292i 0.167585 0.0946172i
\(55\) 3.45686 0.466123
\(56\) −2.82725 0.0816198i −0.377807 0.0109069i
\(57\) 5.88796 0.779880
\(58\) 4.47979 2.52926i 0.588225 0.332108i
\(59\) 12.5571i 1.63479i 0.576075 + 0.817397i \(0.304584\pi\)
−0.576075 + 0.817397i \(0.695416\pi\)
\(60\) 1.03314 1.71249i 0.133378 0.221082i
\(61\) 13.8161i 1.76897i −0.466568 0.884485i \(-0.654510\pi\)
0.466568 0.884485i \(-0.345490\pi\)
\(62\) 3.75971 + 6.65915i 0.477484 + 0.845713i
\(63\) 1.00000 0.125988
\(64\) 7.98668 + 0.461519i 0.998335 + 0.0576899i
\(65\) 3.45686 0.428771
\(66\) −2.40353 4.25709i −0.295854 0.524012i
\(67\) 3.21227i 0.392441i 0.980560 + 0.196221i \(0.0628669\pi\)
−0.980560 + 0.196221i \(0.937133\pi\)
\(68\) −1.19546 + 1.98156i −0.144971 + 0.240299i
\(69\) 2.37595i 0.286031i
\(70\) 1.23149 0.695292i 0.147191 0.0831033i
\(71\) 2.33991 0.277697 0.138848 0.990314i \(-0.455660\pi\)
0.138848 + 0.990314i \(0.455660\pi\)
\(72\) −2.82725 0.0816198i −0.333195 0.00961899i
\(73\) 5.95172 0.696596 0.348298 0.937384i \(-0.386760\pi\)
0.348298 + 0.937384i \(0.386760\pi\)
\(74\) −5.12187 + 2.89178i −0.595405 + 0.336162i
\(75\) 1.00000i 0.115470i
\(76\) −10.0831 6.08308i −1.15661 0.697777i
\(77\) 3.45686i 0.393946i
\(78\) −2.40353 4.25709i −0.272146 0.482021i
\(79\) −14.2934 −1.60813 −0.804066 0.594540i \(-0.797334\pi\)
−0.804066 + 0.594540i \(0.797334\pi\)
\(80\) −3.53848 + 1.86525i −0.395614 + 0.208541i
\(81\) 1.00000 0.111111
\(82\) −2.26786 4.01680i −0.250443 0.443582i
\(83\) 8.18770i 0.898717i −0.893351 0.449359i \(-0.851653\pi\)
0.893351 0.449359i \(-0.148347\pi\)
\(84\) −1.71249 1.03314i −0.186848 0.112725i
\(85\) 1.15712i 0.125507i
\(86\) 6.12720 3.45938i 0.660713 0.373034i
\(87\) 3.63769 0.390002
\(88\) −0.282148 + 9.77341i −0.0300771 + 1.04185i
\(89\) −2.61172 −0.276842 −0.138421 0.990373i \(-0.544203\pi\)
−0.138421 + 0.990373i \(0.544203\pi\)
\(90\) 1.23149 0.695292i 0.129811 0.0732902i
\(91\) 3.45686i 0.362377i
\(92\) −2.45469 + 4.06880i −0.255919 + 0.424201i
\(93\) 5.40739i 0.560720i
\(94\) −9.09292 16.1052i −0.937863 1.66113i
\(95\) 5.88796 0.604092
\(96\) 4.75731 + 3.06071i 0.485541 + 0.312383i
\(97\) 0.962000 0.0976763 0.0488382 0.998807i \(-0.484448\pi\)
0.0488382 + 0.998807i \(0.484448\pi\)
\(98\) −0.695292 1.23149i −0.0702351 0.124399i
\(99\) 3.45686i 0.347428i
\(100\) 1.03314 1.71249i 0.103314 0.171249i
\(101\) 8.65394i 0.861099i −0.902567 0.430550i \(-0.858320\pi\)
0.902567 0.430550i \(-0.141680\pi\)
\(102\) −1.42498 + 0.804535i −0.141094 + 0.0796609i
\(103\) 12.5278 1.23440 0.617202 0.786805i \(-0.288266\pi\)
0.617202 + 0.786805i \(0.288266\pi\)
\(104\) −0.282148 + 9.77341i −0.0276669 + 0.958361i
\(105\) 1.00000 0.0975900
\(106\) 7.30044 4.12178i 0.709082 0.400343i
\(107\) 13.7265i 1.32699i 0.748182 + 0.663493i \(0.230927\pi\)
−0.748182 + 0.663493i \(0.769073\pi\)
\(108\) −1.71249 1.03314i −0.164784 0.0994138i
\(109\) 0.912317i 0.0873841i −0.999045 0.0436921i \(-0.986088\pi\)
0.999045 0.0436921i \(-0.0139120\pi\)
\(110\) −2.40353 4.25709i −0.229167 0.405898i
\(111\) −4.15908 −0.394763
\(112\) 1.86525 + 3.53848i 0.176249 + 0.334355i
\(113\) −1.85435 −0.174443 −0.0872215 0.996189i \(-0.527799\pi\)
−0.0872215 + 0.996189i \(0.527799\pi\)
\(114\) −4.09385 7.25097i −0.383424 0.679116i
\(115\) 2.37595i 0.221559i
\(116\) −6.22952 3.75824i −0.578396 0.348944i
\(117\) 3.45686i 0.319587i
\(118\) 15.4639 8.73084i 1.42357 0.803739i
\(119\) −1.15712 −0.106073
\(120\) −2.82725 0.0816198i −0.258091 0.00745084i
\(121\) −0.949887 −0.0863534
\(122\) −17.0144 + 9.60622i −1.54041 + 0.869706i
\(123\) 3.26174i 0.294101i
\(124\) 5.58658 9.26010i 0.501690 0.831582i
\(125\) 1.00000i 0.0894427i
\(126\) −0.695292 1.23149i −0.0619415 0.109710i
\(127\) −9.75004 −0.865176 −0.432588 0.901592i \(-0.642400\pi\)
−0.432588 + 0.901592i \(0.642400\pi\)
\(128\) −4.98471 10.1564i −0.440591 0.897708i
\(129\) 4.97544 0.438063
\(130\) −2.40353 4.25709i −0.210803 0.373372i
\(131\) 7.32913i 0.640349i 0.947359 + 0.320175i \(0.103742\pi\)
−0.947359 + 0.320175i \(0.896258\pi\)
\(132\) −3.57142 + 5.91984i −0.310852 + 0.515256i
\(133\) 5.88796i 0.510551i
\(134\) 3.95588 2.23346i 0.341736 0.192942i
\(135\) 1.00000 0.0860663
\(136\) 3.27146 + 0.0944439i 0.280526 + 0.00809850i
\(137\) −4.09652 −0.349989 −0.174995 0.984569i \(-0.555991\pi\)
−0.174995 + 0.984569i \(0.555991\pi\)
\(138\) −2.92596 + 1.65198i −0.249074 + 0.140626i
\(139\) 18.1531i 1.53972i 0.638211 + 0.769862i \(0.279675\pi\)
−0.638211 + 0.769862i \(0.720325\pi\)
\(140\) −1.71249 1.03314i −0.144732 0.0873162i
\(141\) 13.0778i 1.10135i
\(142\) −1.62692 2.88158i −0.136528 0.241817i
\(143\) −11.9499 −0.999300
\(144\) 1.86525 + 3.53848i 0.155437 + 0.294873i
\(145\) 3.63769 0.302094
\(146\) −4.13818 7.32949i −0.342478 0.606593i
\(147\) 1.00000i 0.0824786i
\(148\) 7.12239 + 4.29691i 0.585457 + 0.353204i
\(149\) 4.96179i 0.406486i −0.979128 0.203243i \(-0.934852\pi\)
0.979128 0.203243i \(-0.0651481\pi\)
\(150\) 1.23149 0.695292i 0.100551 0.0567703i
\(151\) −19.8109 −1.61219 −0.806096 0.591785i \(-0.798423\pi\)
−0.806096 + 0.591785i \(0.798423\pi\)
\(152\) −0.480575 + 16.6467i −0.0389797 + 1.35023i
\(153\) −1.15712 −0.0935475
\(154\) −4.25709 + 2.40353i −0.343046 + 0.193682i
\(155\) 5.40739i 0.434332i
\(156\) −3.57142 + 5.91984i −0.285942 + 0.473967i
\(157\) 22.7995i 1.81960i 0.415052 + 0.909798i \(0.363763\pi\)
−0.415052 + 0.909798i \(0.636237\pi\)
\(158\) 9.93808 + 17.6022i 0.790631 + 1.40035i
\(159\) 5.92814 0.470132
\(160\) 4.75731 + 3.06071i 0.376099 + 0.241971i
\(161\) −2.37595 −0.187251
\(162\) −0.695292 1.23149i −0.0546273 0.0967550i
\(163\) 7.57926i 0.593654i 0.954931 + 0.296827i \(0.0959284\pi\)
−0.954931 + 0.296827i \(0.904072\pi\)
\(164\) −3.36983 + 5.58570i −0.263140 + 0.436170i
\(165\) 3.45686i 0.269116i
\(166\) −10.0831 + 5.69284i −0.782599 + 0.441850i
\(167\) 7.14851 0.553168 0.276584 0.960990i \(-0.410798\pi\)
0.276584 + 0.960990i \(0.410798\pi\)
\(168\) −0.0816198 + 2.82725i −0.00629711 + 0.218127i
\(169\) 1.05011 0.0807779
\(170\) −1.42498 + 0.804535i −0.109291 + 0.0617051i
\(171\) 5.88796i 0.450264i
\(172\) −8.52039 5.14031i −0.649673 0.391945i
\(173\) 1.60976i 0.122388i 0.998126 + 0.0611940i \(0.0194908\pi\)
−0.998126 + 0.0611940i \(0.980509\pi\)
\(174\) −2.52926 4.47979i −0.191743 0.339612i
\(175\) 1.00000 0.0755929
\(176\) 12.2320 6.44791i 0.922024 0.486029i
\(177\) 12.5571 0.943849
\(178\) 1.81591 + 3.21631i 0.136108 + 0.241073i
\(179\) 17.9373i 1.34069i 0.742048 + 0.670347i \(0.233855\pi\)
−0.742048 + 0.670347i \(0.766145\pi\)
\(180\) −1.71249 1.03314i −0.127642 0.0770056i
\(181\) 12.5922i 0.935973i 0.883736 + 0.467986i \(0.155020\pi\)
−0.883736 + 0.467986i \(0.844980\pi\)
\(182\) −4.25709 + 2.40353i −0.315557 + 0.178161i
\(183\) −13.8161 −1.02132
\(184\) 6.71741 + 0.193925i 0.495214 + 0.0142963i
\(185\) −4.15908 −0.305782
\(186\) 6.65915 3.75971i 0.488272 0.275676i
\(187\) 4.00000i 0.292509i
\(188\) −13.5112 + 22.3957i −0.985407 + 1.63337i
\(189\) 1.00000i 0.0727393i
\(190\) −4.09385 7.25097i −0.296999 0.526041i
\(191\) 0.362860 0.0262556 0.0131278 0.999914i \(-0.495821\pi\)
0.0131278 + 0.999914i \(0.495821\pi\)
\(192\) 0.461519 7.98668i 0.0333073 0.576389i
\(193\) −21.4416 −1.54340 −0.771698 0.635989i \(-0.780592\pi\)
−0.771698 + 0.635989i \(0.780592\pi\)
\(194\) −0.668871 1.18469i −0.0480221 0.0850561i
\(195\) 3.45686i 0.247551i
\(196\) −1.03314 + 1.71249i −0.0737956 + 0.122321i
\(197\) 19.6997i 1.40355i −0.712400 0.701773i \(-0.752392\pi\)
0.712400 0.701773i \(-0.247608\pi\)
\(198\) −4.25709 + 2.40353i −0.302538 + 0.170811i
\(199\) 8.33424 0.590798 0.295399 0.955374i \(-0.404547\pi\)
0.295399 + 0.955374i \(0.404547\pi\)
\(200\) −2.82725 0.0816198i −0.199917 0.00577139i
\(201\) 3.21227 0.226576
\(202\) −10.6572 + 6.01702i −0.749841 + 0.423356i
\(203\) 3.63769i 0.255316i
\(204\) 1.98156 + 1.19546i 0.138737 + 0.0836993i
\(205\) 3.26174i 0.227810i
\(206\) −8.71050 15.4279i −0.606889 1.07491i
\(207\) −2.37595 −0.165140
\(208\) 12.2320 6.44791i 0.848139 0.447082i
\(209\) −20.3539 −1.40791
\(210\) −0.695292 1.23149i −0.0479797 0.0849809i
\(211\) 15.0108i 1.03339i −0.856171 0.516693i \(-0.827163\pi\)
0.856171 0.516693i \(-0.172837\pi\)
\(212\) −10.1519 6.12459i −0.697234 0.420638i
\(213\) 2.33991i 0.160328i
\(214\) 16.9040 9.54389i 1.15553 0.652407i
\(215\) 4.97544 0.339322
\(216\) −0.0816198 + 2.82725i −0.00555353 + 0.192370i
\(217\) 5.40739 0.367077
\(218\) −1.12351 + 0.634327i −0.0760937 + 0.0429620i
\(219\) 5.95172i 0.402180i
\(220\) −3.57142 + 5.91984i −0.240785 + 0.399116i
\(221\) 4.00000i 0.269069i
\(222\) 2.89178 + 5.12187i 0.194083 + 0.343757i
\(223\) −20.0655 −1.34369 −0.671843 0.740693i \(-0.734497\pi\)
−0.671843 + 0.740693i \(0.734497\pi\)
\(224\) 3.06071 4.75731i 0.204503 0.317861i
\(225\) 1.00000 0.0666667
\(226\) 1.28932 + 2.28362i 0.0857641 + 0.151904i
\(227\) 21.6784i 1.43884i 0.694573 + 0.719422i \(0.255593\pi\)
−0.694573 + 0.719422i \(0.744407\pi\)
\(228\) −6.08308 + 10.0831i −0.402862 + 0.667768i
\(229\) 7.83904i 0.518019i 0.965875 + 0.259009i \(0.0833960\pi\)
−0.965875 + 0.259009i \(0.916604\pi\)
\(230\) −2.92596 + 1.65198i −0.192932 + 0.108928i
\(231\) −3.45686 −0.227445
\(232\) −0.296908 + 10.2847i −0.0194930 + 0.675221i
\(233\) 24.9587 1.63510 0.817550 0.575857i \(-0.195332\pi\)
0.817550 + 0.575857i \(0.195332\pi\)
\(234\) −4.25709 + 2.40353i −0.278295 + 0.157123i
\(235\) 13.0778i 0.853104i
\(236\) −21.5039 12.9732i −1.39979 0.844485i
\(237\) 14.2934i 0.928455i
\(238\) 0.804535 + 1.42498i 0.0521503 + 0.0923678i
\(239\) −2.64981 −0.171402 −0.0857009 0.996321i \(-0.527313\pi\)
−0.0857009 + 0.996321i \(0.527313\pi\)
\(240\) 1.86525 + 3.53848i 0.120401 + 0.228408i
\(241\) −5.92835 −0.381878 −0.190939 0.981602i \(-0.561153\pi\)
−0.190939 + 0.981602i \(0.561153\pi\)
\(242\) 0.660449 + 1.16978i 0.0424552 + 0.0751961i
\(243\) 1.00000i 0.0641500i
\(244\) 23.6599 + 14.2739i 1.51467 + 0.913796i
\(245\) 1.00000i 0.0638877i
\(246\) −4.01680 + 2.26786i −0.256102 + 0.144594i
\(247\) −20.3539 −1.29509
\(248\) −15.2880 0.441350i −0.970791 0.0280258i
\(249\) −8.18770 −0.518875
\(250\) 1.23149 0.695292i 0.0778863 0.0439741i
\(251\) 13.3090i 0.840056i −0.907511 0.420028i \(-0.862020\pi\)
0.907511 0.420028i \(-0.137980\pi\)
\(252\) −1.03314 + 1.71249i −0.0650816 + 0.107877i
\(253\) 8.21334i 0.516368i
\(254\) 6.77912 + 12.0071i 0.425360 + 0.753391i
\(255\) −1.15712 −0.0724616
\(256\) −9.04169 + 13.2003i −0.565106 + 0.825019i
\(257\) 21.0189 1.31112 0.655560 0.755143i \(-0.272432\pi\)
0.655560 + 0.755143i \(0.272432\pi\)
\(258\) −3.45938 6.12720i −0.215372 0.381463i
\(259\) 4.15908i 0.258433i
\(260\) −3.57142 + 5.91984i −0.221490 + 0.367133i
\(261\) 3.63769i 0.225168i
\(262\) 9.02576 5.09589i 0.557613 0.314825i
\(263\) −21.3307 −1.31531 −0.657654 0.753320i \(-0.728451\pi\)
−0.657654 + 0.753320i \(0.728451\pi\)
\(264\) 9.77341 + 0.282148i 0.601512 + 0.0173650i
\(265\) 5.92814 0.364162
\(266\) −7.25097 + 4.09385i −0.444586 + 0.251010i
\(267\) 2.61172i 0.159835i
\(268\) −5.50098 3.31872i −0.336026 0.202723i
\(269\) 10.3670i 0.632087i 0.948745 + 0.316043i \(0.102355\pi\)
−0.948745 + 0.316043i \(0.897645\pi\)
\(270\) −0.695292 1.23149i −0.0423141 0.0749461i
\(271\) −18.7588 −1.13951 −0.569757 0.821813i \(-0.692963\pi\)
−0.569757 + 0.821813i \(0.692963\pi\)
\(272\) −2.15832 4.09444i −0.130867 0.248262i
\(273\) −3.45686 −0.209219
\(274\) 2.84827 + 5.04482i 0.172071 + 0.304769i
\(275\) 3.45686i 0.208457i
\(276\) 4.06880 + 2.45469i 0.244913 + 0.147755i
\(277\) 25.1344i 1.51018i −0.655621 0.755090i \(-0.727593\pi\)
0.655621 0.755090i \(-0.272407\pi\)
\(278\) 22.3553 12.6217i 1.34078 0.756998i
\(279\) 5.40739 0.323732
\(280\) −0.0816198 + 2.82725i −0.00487772 + 0.168960i
\(281\) 8.31424 0.495986 0.247993 0.968762i \(-0.420229\pi\)
0.247993 + 0.968762i \(0.420229\pi\)
\(282\) −16.1052 + 9.09292i −0.959053 + 0.541475i
\(283\) 10.9655i 0.651831i 0.945399 + 0.325916i \(0.105673\pi\)
−0.945399 + 0.325916i \(0.894327\pi\)
\(284\) −2.41746 + 4.00708i −0.143450 + 0.237777i
\(285\) 5.88796i 0.348773i
\(286\) 8.30866 + 14.7162i 0.491301 + 0.870186i
\(287\) −3.26174 −0.192535
\(288\) 3.06071 4.75731i 0.180354 0.280327i
\(289\) −15.6611 −0.921240
\(290\) −2.52926 4.47979i −0.148523 0.263062i
\(291\) 0.962000i 0.0563934i
\(292\) −6.14895 + 10.1923i −0.359840 + 0.596457i
\(293\) 17.0513i 0.996148i −0.867134 0.498074i \(-0.834041\pi\)
0.867134 0.498074i \(-0.165959\pi\)
\(294\) −1.23149 + 0.695292i −0.0718220 + 0.0405502i
\(295\) 12.5571 0.731102
\(296\) 0.339464 11.7588i 0.0197309 0.683464i
\(297\) −3.45686 −0.200587
\(298\) −6.11040 + 3.44989i −0.353966 + 0.199847i
\(299\) 8.21334i 0.474989i
\(300\) −1.71249 1.03314i −0.0988707 0.0596483i
\(301\) 4.97544i 0.286779i
\(302\) 13.7744 + 24.3970i 0.792627 + 1.40389i
\(303\) −8.65394 −0.497156
\(304\) 20.8344 10.9825i 1.19494 0.629891i
\(305\) −13.8161 −0.791108
\(306\) 0.804535 + 1.42498i 0.0459922 + 0.0814608i
\(307\) 22.1618i 1.26484i −0.774625 0.632421i \(-0.782061\pi\)
0.774625 0.632421i \(-0.217939\pi\)
\(308\) 5.91984 + 3.57142i 0.337314 + 0.203500i
\(309\) 12.5278i 0.712683i
\(310\) 6.65915 3.75971i 0.378214 0.213537i
\(311\) 15.5650 0.882609 0.441304 0.897357i \(-0.354516\pi\)
0.441304 + 0.897357i \(0.354516\pi\)
\(312\) 9.77341 + 0.282148i 0.553310 + 0.0159735i
\(313\) 25.6560 1.45016 0.725081 0.688663i \(-0.241802\pi\)
0.725081 + 0.688663i \(0.241802\pi\)
\(314\) 28.0773 15.8523i 1.58450 0.894596i
\(315\) 1.00000i 0.0563436i
\(316\) 14.7671 24.4773i 0.830712 1.37696i
\(317\) 21.9692i 1.23391i −0.786998 0.616956i \(-0.788366\pi\)
0.786998 0.616956i \(-0.211634\pi\)
\(318\) −4.12178 7.30044i −0.231138 0.409389i
\(319\) −12.5750 −0.704065
\(320\) 0.461519 7.98668i 0.0257997 0.446469i
\(321\) 13.7265 0.766136
\(322\) 1.65198 + 2.92596i 0.0920612 + 0.163058i
\(323\) 6.81307i 0.379090i
\(324\) −1.03314 + 1.71249i −0.0573966 + 0.0951384i
\(325\) 3.45686i 0.191752i
\(326\) 9.33379 5.26980i 0.516951 0.291867i
\(327\) −0.912317 −0.0504512
\(328\) 9.22176 + 0.266223i 0.509186 + 0.0146997i
\(329\) −13.0778 −0.721005
\(330\) −4.25709 + 2.40353i −0.234345 + 0.132310i
\(331\) 17.1940i 0.945068i 0.881312 + 0.472534i \(0.156661\pi\)
−0.881312 + 0.472534i \(0.843339\pi\)
\(332\) 14.0214 + 8.45903i 0.769523 + 0.464250i
\(333\) 4.15908i 0.227916i
\(334\) −4.97030 8.80332i −0.271963 0.481696i
\(335\) 3.21227 0.175505
\(336\) 3.53848 1.86525i 0.193040 0.101758i
\(337\) 2.89078 0.157471 0.0787353 0.996896i \(-0.474912\pi\)
0.0787353 + 0.996896i \(0.474912\pi\)
\(338\) −0.730135 1.29320i −0.0397141 0.0703410i
\(339\) 1.85435i 0.100715i
\(340\) 1.98156 + 1.19546i 0.107465 + 0.0648332i
\(341\) 18.6926i 1.01226i
\(342\) −7.25097 + 4.09385i −0.392088 + 0.221370i
\(343\) −1.00000 −0.0539949
\(344\) −0.406094 + 14.0668i −0.0218951 + 0.758431i
\(345\) −2.37595 −0.127917
\(346\) 1.98241 1.11925i 0.106575 0.0601715i
\(347\) 35.6670i 1.91471i −0.288922 0.957353i \(-0.593297\pi\)
0.288922 0.957353i \(-0.406703\pi\)
\(348\) −3.75824 + 6.22952i −0.201463 + 0.333937i
\(349\) 4.17512i 0.223489i −0.993737 0.111745i \(-0.964356\pi\)
0.993737 0.111745i \(-0.0356438\pi\)
\(350\) −0.695292 1.23149i −0.0371649 0.0658259i
\(351\) −3.45686 −0.184514
\(352\) −16.4454 10.5805i −0.876541 0.563940i
\(353\) −25.4091 −1.35239 −0.676195 0.736723i \(-0.736372\pi\)
−0.676195 + 0.736723i \(0.736372\pi\)
\(354\) −8.73084 15.4639i −0.464039 0.821899i
\(355\) 2.33991i 0.124190i
\(356\) 2.69827 4.47255i 0.143008 0.237045i
\(357\) 1.15712i 0.0612412i
\(358\) 22.0896 12.4716i 1.16747 0.659146i
\(359\) 7.66401 0.404491 0.202245 0.979335i \(-0.435176\pi\)
0.202245 + 0.979335i \(0.435176\pi\)
\(360\) −0.0816198 + 2.82725i −0.00430174 + 0.149009i
\(361\) −15.6681 −0.824637
\(362\) 15.5072 8.75527i 0.815041 0.460167i
\(363\) 0.949887i 0.0498561i
\(364\) 5.91984 + 3.57142i 0.310284 + 0.187193i
\(365\) 5.95172i 0.311527i
\(366\) 9.60622 + 17.0144i 0.502125 + 0.889357i
\(367\) 18.5662 0.969149 0.484574 0.874750i \(-0.338974\pi\)
0.484574 + 0.874750i \(0.338974\pi\)
\(368\) −4.43174 8.40726i −0.231021 0.438259i
\(369\) −3.26174 −0.169799
\(370\) 2.89178 + 5.12187i 0.150336 + 0.266273i
\(371\) 5.92814i 0.307773i
\(372\) −9.26010 5.58658i −0.480114 0.289651i
\(373\) 26.1444i 1.35371i 0.736118 + 0.676853i \(0.236657\pi\)
−0.736118 + 0.676853i \(0.763343\pi\)
\(374\) 4.92596 2.78117i 0.254715 0.143811i
\(375\) 1.00000 0.0516398
\(376\) 36.9743 + 1.06741i 1.90680 + 0.0550475i
\(377\) −12.5750 −0.647646
\(378\) −1.23149 + 0.695292i −0.0633410 + 0.0357620i
\(379\) 12.3622i 0.635003i −0.948258 0.317501i \(-0.897156\pi\)
0.948258 0.317501i \(-0.102844\pi\)
\(380\) −6.08308 + 10.0831i −0.312056 + 0.517251i
\(381\) 9.75004i 0.499510i
\(382\) −0.252294 0.446859i −0.0129085 0.0228633i
\(383\) 17.1552 0.876592 0.438296 0.898831i \(-0.355582\pi\)
0.438296 + 0.898831i \(0.355582\pi\)
\(384\) −10.1564 + 4.98471i −0.518292 + 0.254375i
\(385\) −3.45686 −0.176178
\(386\) 14.9081 + 26.4051i 0.758804 + 1.34398i
\(387\) 4.97544i 0.252916i
\(388\) −0.993879 + 1.64742i −0.0504566 + 0.0836349i
\(389\) 10.3584i 0.525191i −0.964906 0.262595i \(-0.915422\pi\)
0.964906 0.262595i \(-0.0845784\pi\)
\(390\) −4.25709 + 2.40353i −0.215566 + 0.121707i
\(391\) 2.74926 0.139036
\(392\) 2.82725 + 0.0816198i 0.142798 + 0.00412242i
\(393\) 7.32913 0.369706
\(394\) −24.2600 + 13.6971i −1.22220 + 0.690047i
\(395\) 14.2934i 0.719178i
\(396\) 5.91984 + 3.57142i 0.297483 + 0.179470i
\(397\) 2.12996i 0.106899i 0.998571 + 0.0534497i \(0.0170217\pi\)
−0.998571 + 0.0534497i \(0.982978\pi\)
\(398\) −5.79473 10.2635i −0.290463 0.514465i
\(399\) −5.88796 −0.294767
\(400\) 1.86525 + 3.53848i 0.0932625 + 0.176924i
\(401\) 30.7553 1.53585 0.767924 0.640541i \(-0.221290\pi\)
0.767924 + 0.640541i \(0.221290\pi\)
\(402\) −2.23346 3.95588i −0.111395 0.197301i
\(403\) 18.6926i 0.931144i
\(404\) 14.8198 + 8.94072i 0.737312 + 0.444818i
\(405\) 1.00000i 0.0496904i
\(406\) −4.47979 + 2.52926i −0.222328 + 0.125525i
\(407\) 14.3774 0.712660
\(408\) 0.0944439 3.27146i 0.00467567 0.161962i
\(409\) 2.50335 0.123783 0.0618913 0.998083i \(-0.480287\pi\)
0.0618913 + 0.998083i \(0.480287\pi\)
\(410\) −4.01680 + 2.26786i −0.198376 + 0.112002i
\(411\) 4.09652i 0.202066i
\(412\) −12.9430 + 21.4538i −0.637655 + 1.05695i
\(413\) 12.5571i 0.617894i
\(414\) 1.65198 + 2.92596i 0.0811904 + 0.143803i
\(415\) −8.18770 −0.401919
\(416\) −16.4454 10.5805i −0.806301 0.518750i
\(417\) 18.1531 0.888960
\(418\) 14.1519 + 25.0656i 0.692191 + 1.22600i
\(419\) 36.8405i 1.79978i −0.436118 0.899889i \(-0.643647\pi\)
0.436118 0.899889i \(-0.356353\pi\)
\(420\) −1.03314 + 1.71249i −0.0504120 + 0.0835610i
\(421\) 15.2623i 0.743837i −0.928265 0.371919i \(-0.878700\pi\)
0.928265 0.371919i \(-0.121300\pi\)
\(422\) −18.4857 + 10.4369i −0.899868 + 0.508060i
\(423\) −13.0778 −0.635866
\(424\) −0.483854 + 16.7603i −0.0234980 + 0.813953i
\(425\) −1.15712 −0.0561285
\(426\) −2.88158 + 1.62692i −0.139613 + 0.0788247i
\(427\) 13.8161i 0.668608i
\(428\) −23.5064 14.1813i −1.13623 0.685480i
\(429\) 11.9499i 0.576946i
\(430\) −3.45938 6.12720i −0.166826 0.295480i
\(431\) 13.1302 0.632460 0.316230 0.948683i \(-0.397583\pi\)
0.316230 + 0.948683i \(0.397583\pi\)
\(432\) 3.53848 1.86525i 0.170245 0.0897418i
\(433\) 29.3975 1.41275 0.706376 0.707837i \(-0.250329\pi\)
0.706376 + 0.707837i \(0.250329\pi\)
\(434\) −3.75971 6.65915i −0.180472 0.319649i
\(435\) 3.63769i 0.174414i
\(436\) 1.56233 + 0.942550i 0.0748222 + 0.0451400i
\(437\) 13.9895i 0.669209i
\(438\) −7.32949 + 4.13818i −0.350217 + 0.197730i
\(439\) 22.6867 1.08278 0.541389 0.840773i \(-0.317899\pi\)
0.541389 + 0.840773i \(0.317899\pi\)
\(440\) 9.77341 + 0.282148i 0.465929 + 0.0134509i
\(441\) −1.00000 −0.0476190
\(442\) 4.92596 2.78117i 0.234304 0.132287i
\(443\) 35.7201i 1.69711i −0.529106 0.848556i \(-0.677473\pi\)
0.529106 0.848556i \(-0.322527\pi\)
\(444\) 4.29691 7.12239i 0.203922 0.338014i
\(445\) 2.61172i 0.123808i
\(446\) 13.9514 + 24.7105i 0.660617 + 1.17008i
\(447\) −4.96179 −0.234685
\(448\) −7.98668 0.461519i −0.377335 0.0218047i
\(449\) −23.1828 −1.09406 −0.547031 0.837112i \(-0.684242\pi\)
−0.547031 + 0.837112i \(0.684242\pi\)
\(450\) −0.695292 1.23149i −0.0327764 0.0580530i
\(451\) 11.2754i 0.530937i
\(452\) 1.91580 3.17556i 0.0901119 0.149366i
\(453\) 19.8109i 0.930799i
\(454\) 26.6967 15.0728i 1.25294 0.707402i
\(455\) −3.45686 −0.162060
\(456\) 16.6467 + 0.480575i 0.779555 + 0.0225050i
\(457\) −2.26681 −0.106037 −0.0530185 0.998594i \(-0.516884\pi\)
−0.0530185 + 0.998594i \(0.516884\pi\)
\(458\) 9.65371 5.45042i 0.451088 0.254682i
\(459\) 1.15712i 0.0540097i
\(460\) 4.06880 + 2.45469i 0.189709 + 0.114450i
\(461\) 1.56217i 0.0727575i 0.999338 + 0.0363787i \(0.0115823\pi\)
−0.999338 + 0.0363787i \(0.988418\pi\)
\(462\) 2.40353 + 4.25709i 0.111822 + 0.198058i
\(463\) −32.5631 −1.51334 −0.756668 0.653799i \(-0.773174\pi\)
−0.756668 + 0.653799i \(0.773174\pi\)
\(464\) 12.8719 6.78521i 0.597563 0.314995i
\(465\) 5.40739 0.250762
\(466\) −17.3536 30.7364i −0.803890 1.42384i
\(467\) 23.9641i 1.10892i −0.832209 0.554462i \(-0.812924\pi\)
0.832209 0.554462i \(-0.187076\pi\)
\(468\) 5.91984 + 3.57142i 0.273645 + 0.165089i
\(469\) 3.21227i 0.148329i
\(470\) −16.1052 + 9.09292i −0.742879 + 0.419425i
\(471\) 22.7995 1.05054
\(472\) −1.02491 + 35.5020i −0.0471752 + 1.63411i
\(473\) −17.1994 −0.790829
\(474\) 17.6022 9.93808i 0.808495 0.456471i
\(475\) 5.88796i 0.270158i
\(476\) 1.19546 1.98156i 0.0547940 0.0908245i
\(477\) 5.92814i 0.271431i
\(478\) 1.84239 + 3.26321i 0.0842689 + 0.149256i
\(479\) 20.5143 0.937321 0.468661 0.883378i \(-0.344737\pi\)
0.468661 + 0.883378i \(0.344737\pi\)
\(480\) 3.06071 4.75731i 0.139702 0.217141i
\(481\) 14.3774 0.655551
\(482\) 4.12193 + 7.30070i 0.187749 + 0.332538i
\(483\) 2.37595i 0.108110i
\(484\) 0.981365 1.62667i 0.0446075 0.0739397i
\(485\) 0.962000i 0.0436822i
\(486\) −1.23149 + 0.695292i −0.0558616 + 0.0315391i
\(487\) 35.7867 1.62165 0.810826 0.585288i \(-0.199018\pi\)
0.810826 + 0.585288i \(0.199018\pi\)
\(488\) 1.12767 39.0616i 0.0510471 1.76823i
\(489\) 7.57926 0.342746
\(490\) −1.23149 + 0.695292i −0.0556331 + 0.0314101i
\(491\) 23.8613i 1.07684i 0.842675 + 0.538422i \(0.180979\pi\)
−0.842675 + 0.538422i \(0.819021\pi\)
\(492\) 5.58570 + 3.36983i 0.251823 + 0.151924i
\(493\) 4.20925i 0.189575i
\(494\) 14.1519 + 25.0656i 0.636723 + 1.12775i
\(495\) −3.45686 −0.155374
\(496\) 10.0861 + 19.1339i 0.452880 + 0.859139i
\(497\) −2.33991 −0.104960
\(498\) 5.69284 + 10.0831i 0.255102 + 0.451834i
\(499\) 34.5650i 1.54734i 0.633587 + 0.773672i \(0.281582\pi\)
−0.633587 + 0.773672i \(0.718418\pi\)
\(500\) −1.71249 1.03314i −0.0765849 0.0462034i
\(501\) 7.14851i 0.319372i
\(502\) −16.3899 + 9.25364i −0.731517 + 0.413010i
\(503\) 15.1957 0.677542 0.338771 0.940869i \(-0.389989\pi\)
0.338771 + 0.940869i \(0.389989\pi\)
\(504\) 2.82725 + 0.0816198i 0.125936 + 0.00363564i
\(505\) −8.65394 −0.385095
\(506\) 10.1146 5.71066i 0.449651 0.253870i
\(507\) 1.05011i 0.0466372i
\(508\) 10.0731 16.6969i 0.446923 0.740803i
\(509\) 6.28118i 0.278408i 0.990264 + 0.139204i \(0.0444544\pi\)
−0.990264 + 0.139204i \(0.955546\pi\)
\(510\) 0.804535 + 1.42498i 0.0356254 + 0.0630992i
\(511\) −5.95172 −0.263289
\(512\) 22.5427 + 1.95670i 0.996254 + 0.0864748i
\(513\) −5.88796 −0.259960
\(514\) −14.6142 25.8845i −0.644607 1.14172i
\(515\) 12.5278i 0.552042i
\(516\) −5.14031 + 8.52039i −0.226290 + 0.375089i
\(517\) 45.2083i 1.98826i
\(518\) 5.12187 2.89178i 0.225042 0.127057i
\(519\) 1.60976 0.0706607
\(520\) 9.77341 + 0.282148i 0.428592 + 0.0123730i
\(521\) 5.88279 0.257730 0.128865 0.991662i \(-0.458867\pi\)
0.128865 + 0.991662i \(0.458867\pi\)
\(522\) −4.47979 + 2.52926i −0.196075 + 0.110703i
\(523\) 1.16662i 0.0510129i −0.999675 0.0255065i \(-0.991880\pi\)
0.999675 0.0255065i \(-0.00811984\pi\)
\(524\) −12.5511 7.57201i −0.548296 0.330785i
\(525\) 1.00000i 0.0436436i
\(526\) 14.8311 + 26.2686i 0.646665 + 1.14536i
\(527\) −6.25699 −0.272559
\(528\) −6.44791 12.2320i −0.280609 0.532331i
\(529\) −17.3549 −0.754559
\(530\) −4.12178 7.30044i −0.179039 0.317111i
\(531\) 12.5571i 0.544931i
\(532\) 10.0831 + 6.08308i 0.437157 + 0.263735i
\(533\) 11.2754i 0.488391i
\(534\) 3.21631 1.81591i 0.139184 0.0785821i
\(535\) 13.7265 0.593446
\(536\) −0.262185 + 9.08189i −0.0113247 + 0.392278i
\(537\) 17.9373 0.774050
\(538\) 12.7669 7.20809i 0.550418 0.310763i
\(539\) 3.45686i 0.148898i
\(540\) −1.03314 + 1.71249i −0.0444592 + 0.0736939i
\(541\) 13.7558i 0.591408i 0.955280 + 0.295704i \(0.0955541\pi\)
−0.955280 + 0.295704i \(0.904446\pi\)
\(542\) 13.0428 + 23.1013i 0.560237 + 0.992284i
\(543\) 12.5922 0.540384
\(544\) −3.54161 + 5.50478i −0.151845 + 0.236015i
\(545\) −0.912317 −0.0390794
\(546\) 2.40353 + 4.25709i 0.102861 + 0.182187i
\(547\) 15.0151i 0.641998i −0.947080 0.320999i \(-0.895981\pi\)
0.947080 0.320999i \(-0.104019\pi\)
\(548\) 4.23227 7.01525i 0.180794 0.299677i
\(549\) 13.8161i 0.589657i
\(550\) −4.25709 + 2.40353i −0.181523 + 0.102487i
\(551\) −21.4186 −0.912463
\(552\) 0.193925 6.71741i 0.00825399 0.285912i
\(553\) 14.2934 0.607817
\(554\) −30.9528 + 17.4757i −1.31506 + 0.742473i
\(555\) 4.15908i 0.176543i
\(556\) −31.0870 18.7546i −1.31838 0.795374i
\(557\) 16.4658i 0.697678i −0.937183 0.348839i \(-0.886576\pi\)
0.937183 0.348839i \(-0.113424\pi\)
\(558\) −3.75971 6.65915i −0.159161 0.281904i
\(559\) −17.1994 −0.727457
\(560\) 3.53848 1.86525i 0.149528 0.0788212i
\(561\) 4.00000 0.168880
\(562\) −5.78082 10.2389i −0.243849 0.431902i
\(563\) 5.43891i 0.229223i 0.993410 + 0.114611i \(0.0365623\pi\)
−0.993410 + 0.114611i \(0.963438\pi\)
\(564\) 22.3957 + 13.5112i 0.943028 + 0.568925i
\(565\) 1.85435i 0.0780132i
\(566\) 13.5039 7.62422i 0.567611 0.320470i
\(567\) −1.00000 −0.0419961
\(568\) 6.61552 + 0.190983i 0.277581 + 0.00801349i
\(569\) −46.1886 −1.93633 −0.968163 0.250319i \(-0.919464\pi\)
−0.968163 + 0.250319i \(0.919464\pi\)
\(570\) −7.25097 + 4.09385i −0.303710 + 0.171473i
\(571\) 30.7029i 1.28488i −0.766338 0.642438i \(-0.777923\pi\)
0.766338 0.642438i \(-0.222077\pi\)
\(572\) 12.3459 20.4641i 0.516208 0.855646i
\(573\) 0.362860i 0.0151587i
\(574\) 2.26786 + 4.01680i 0.0946587 + 0.167658i
\(575\) −2.37595 −0.0990840
\(576\) −7.98668 0.461519i −0.332778 0.0192300i
\(577\) 42.3096 1.76137 0.880687 0.473699i \(-0.157082\pi\)
0.880687 + 0.473699i \(0.157082\pi\)
\(578\) 10.8890 + 19.2865i 0.452923 + 0.802211i
\(579\) 21.4416i 0.891080i
\(580\) −3.75824 + 6.22952i −0.156053 + 0.258667i
\(581\) 8.18770i 0.339683i
\(582\) −1.18469 + 0.668871i −0.0491072 + 0.0277256i
\(583\) −20.4927 −0.848723
\(584\) 16.8270 + 0.485779i 0.696306 + 0.0201017i
\(585\) −3.45686 −0.142924
\(586\) −20.9985 + 11.8556i −0.867441 + 0.489752i
\(587\) 33.7492i 1.39298i −0.717567 0.696490i \(-0.754744\pi\)
0.717567 0.696490i \(-0.245256\pi\)
\(588\) 1.71249 + 1.03314i 0.0706219 + 0.0426059i
\(589\) 31.8385i 1.31188i
\(590\) −8.73084 15.4639i −0.359443 0.636640i
\(591\) −19.6997 −0.810338
\(592\) −14.7168 + 7.75772i −0.604858 + 0.318840i
\(593\) −18.7826 −0.771308 −0.385654 0.922643i \(-0.626024\pi\)
−0.385654 + 0.922643i \(0.626024\pi\)
\(594\) 2.40353 + 4.25709i 0.0986179 + 0.174671i
\(595\) 1.15712i 0.0474373i
\(596\) 8.49702 + 5.12622i 0.348051 + 0.209978i
\(597\) 8.33424i 0.341098i
\(598\) 10.1146 5.71066i 0.413619 0.233526i
\(599\) 36.0553 1.47318 0.736590 0.676340i \(-0.236435\pi\)
0.736590 + 0.676340i \(0.236435\pi\)
\(600\) −0.0816198 + 2.82725i −0.00333212 + 0.115422i
\(601\) −40.1760 −1.63881 −0.819406 0.573213i \(-0.805697\pi\)
−0.819406 + 0.573213i \(0.805697\pi\)
\(602\) −6.12720 + 3.45938i −0.249726 + 0.140994i
\(603\) 3.21227i 0.130814i
\(604\) 20.4674 33.9261i 0.832809 1.38043i
\(605\) 0.949887i 0.0386184i
\(606\) 6.01702 + 10.6572i 0.244425 + 0.432921i
\(607\) −1.19349 −0.0484425 −0.0242212 0.999707i \(-0.507711\pi\)
−0.0242212 + 0.999707i \(0.507711\pi\)
\(608\) −28.0109 18.0214i −1.13599 0.730863i
\(609\) −3.63769 −0.147407
\(610\) 9.60622 + 17.0144i 0.388944 + 0.688893i
\(611\) 45.2083i 1.82893i
\(612\) 1.19546 1.98156i 0.0483238 0.0800996i
\(613\) 5.58254i 0.225477i −0.993625 0.112738i \(-0.964038\pi\)
0.993625 0.112738i \(-0.0359622\pi\)
\(614\) −27.2921 + 15.4089i −1.10142 + 0.621854i
\(615\) −3.26174 −0.131526
\(616\) 0.282148 9.77341i 0.0113681 0.393782i
\(617\) 1.04871 0.0422194 0.0211097 0.999777i \(-0.493280\pi\)
0.0211097 + 0.999777i \(0.493280\pi\)
\(618\) −15.4279 + 8.71050i −0.620601 + 0.350388i
\(619\) 20.7700i 0.834818i −0.908719 0.417409i \(-0.862938\pi\)
0.908719 0.417409i \(-0.137062\pi\)
\(620\) −9.26010 5.58658i −0.371895 0.224363i
\(621\) 2.37595i 0.0953437i
\(622\) −10.8222 19.1681i −0.433931 0.768572i
\(623\) 2.61172 0.104637
\(624\) −6.44791 12.2320i −0.258123 0.489673i
\(625\) 1.00000 0.0400000
\(626\) −17.8384 31.5951i −0.712966 1.26279i
\(627\) 20.3539i 0.812855i
\(628\) −39.0439 23.5550i −1.55802 0.939947i
\(629\) 4.81255i 0.191889i
\(630\) −1.23149 + 0.695292i −0.0490638 + 0.0277011i
\(631\) −13.4246 −0.534426 −0.267213 0.963637i \(-0.586103\pi\)
−0.267213 + 0.963637i \(0.586103\pi\)
\(632\) −40.4110 1.16662i −1.60746 0.0464058i
\(633\) −15.0108 −0.596626
\(634\) −27.0548 + 15.2750i −1.07448 + 0.606647i
\(635\) 9.75004i 0.386918i
\(636\) −6.12459 + 10.1519i −0.242856 + 0.402548i
\(637\) 3.45686i 0.136966i
\(638\) 8.74330 + 15.4860i 0.346150 + 0.613096i
\(639\) −2.33991 −0.0925656
\(640\) −10.1564 + 4.98471i −0.401467 + 0.197038i
\(641\) −5.50664 −0.217499 −0.108750 0.994069i \(-0.534685\pi\)
−0.108750 + 0.994069i \(0.534685\pi\)
\(642\) −9.54389 16.9040i −0.376667 0.667148i
\(643\) 44.9187i 1.77142i −0.464239 0.885710i \(-0.653672\pi\)
0.464239 0.885710i \(-0.346328\pi\)
\(644\) 2.45469 4.06880i 0.0967283 0.160333i
\(645\) 4.97544i 0.195908i
\(646\) 8.39024 4.73707i 0.330110 0.186378i
\(647\) 33.1838 1.30459 0.652295 0.757965i \(-0.273806\pi\)
0.652295 + 0.757965i \(0.273806\pi\)
\(648\) 2.82725 + 0.0816198i 0.111065 + 0.00320633i
\(649\) −43.4081 −1.70392
\(650\) −4.25709 + 2.40353i −0.166977 + 0.0942741i
\(651\) 5.40739i 0.211932i
\(652\) −12.9794 7.83043i −0.508313 0.306663i
\(653\) 13.1201i 0.513429i −0.966487 0.256714i \(-0.917360\pi\)
0.966487 0.256714i \(-0.0826400\pi\)
\(654\) 0.634327 + 1.12351i 0.0248041 + 0.0439327i
\(655\) 7.32913 0.286373
\(656\) −6.08396 11.5416i −0.237539 0.450624i
\(657\) −5.95172 −0.232199
\(658\) 9.09292 + 16.1052i 0.354479 + 0.627848i
\(659\) 13.6449i 0.531528i 0.964038 + 0.265764i \(0.0856243\pi\)
−0.964038 + 0.265764i \(0.914376\pi\)
\(660\) 5.91984 + 3.57142i 0.230430 + 0.139017i
\(661\) 35.1275i 1.36630i 0.730278 + 0.683150i \(0.239391\pi\)
−0.730278 + 0.683150i \(0.760609\pi\)
\(662\) 21.1743 11.9549i 0.822961 0.464639i
\(663\) 4.00000 0.155347
\(664\) 0.668279 23.1487i 0.0259343 0.898343i
\(665\) −5.88796 −0.228325
\(666\) 5.12187 2.89178i 0.198468 0.112054i
\(667\) 8.64299i 0.334658i
\(668\) −7.38540 + 12.2418i −0.285750 + 0.473648i
\(669\) 20.0655i 0.775778i
\(670\) −2.23346 3.95588i −0.0862863 0.152829i
\(671\) 47.7603 1.84377
\(672\) −4.75731 3.06071i −0.183517 0.118070i
\(673\) −7.01462 −0.270394 −0.135197 0.990819i \(-0.543167\pi\)
−0.135197 + 0.990819i \(0.543167\pi\)
\(674\) −2.00993 3.55996i −0.0774197 0.137125i
\(675\) 1.00000i 0.0384900i
\(676\) −1.08491 + 1.79831i −0.0417274 + 0.0691657i
\(677\) 24.1419i 0.927850i −0.885874 0.463925i \(-0.846441\pi\)
0.885874 0.463925i \(-0.153559\pi\)
\(678\) 2.28362 1.28932i 0.0877019 0.0495159i
\(679\) −0.962000 −0.0369182
\(680\) 0.0944439 3.27146i 0.00362176 0.125455i
\(681\) 21.6784 0.830718
\(682\) −23.0197 + 12.9968i −0.881472 + 0.497673i
\(683\) 13.3089i 0.509252i −0.967040 0.254626i \(-0.918048\pi\)
0.967040 0.254626i \(-0.0819523\pi\)
\(684\) 10.0831 + 6.08308i 0.385536 + 0.232592i
\(685\) 4.09652i 0.156520i
\(686\) 0.695292 + 1.23149i 0.0265464 + 0.0470185i
\(687\) 7.83904 0.299078
\(688\) 17.6055 9.28043i 0.671203 0.353813i
\(689\) −20.4927 −0.780711
\(690\) 1.65198 + 2.92596i 0.0628898 + 0.111389i
\(691\) 1.62524i 0.0618271i −0.999522 0.0309136i \(-0.990158\pi\)
0.999522 0.0309136i \(-0.00984166\pi\)
\(692\) −2.75670 1.66311i −0.104794 0.0632218i
\(693\) 3.45686i 0.131315i
\(694\) −43.9236 + 24.7990i −1.66732 + 0.941356i
\(695\) 18.1531 0.688585
\(696\) 10.2847 + 0.296908i 0.389839 + 0.0112543i
\(697\) 3.77422 0.142959
\(698\) −5.14162 + 2.90293i −0.194613 + 0.109877i
\(699\) 24.9587i 0.944026i
\(700\) −1.03314 + 1.71249i −0.0390490 + 0.0647261i
\(701\) 35.1489i 1.32755i 0.747931 + 0.663777i \(0.231048\pi\)
−0.747931 + 0.663777i \(0.768952\pi\)
\(702\) 2.40353 + 4.25709i 0.0907153 + 0.160674i
\(703\) 24.4885 0.923602
\(704\) −1.59541 + 27.6088i −0.0601292 + 1.04055i
\(705\) −13.0778 −0.492540
\(706\) 17.6667 + 31.2911i 0.664897 + 1.17766i
\(707\) 8.65394i 0.325465i
\(708\) −12.9732 + 21.5039i −0.487563 + 0.808166i
\(709\) 20.0114i 0.751542i −0.926713 0.375771i \(-0.877378\pi\)
0.926713 0.375771i \(-0.122622\pi\)
\(710\) −2.88158 + 1.62692i −0.108144 + 0.0610573i
\(711\) 14.2934 0.536044
\(712\) −7.38400 0.213169i −0.276727 0.00798883i
\(713\) −12.8477 −0.481150
\(714\) 1.42498 0.804535i 0.0533286 0.0301090i
\(715\) 11.9499i 0.446900i
\(716\) −30.7174 18.5317i −1.14796 0.692561i
\(717\) 2.64981i 0.0989589i
\(718\) −5.32872 9.43816i −0.198866 0.352229i
\(719\) −31.7901 −1.18557 −0.592785 0.805361i \(-0.701972\pi\)
−0.592785 + 0.805361i \(0.701972\pi\)
\(720\) 3.53848 1.86525i 0.131871 0.0695137i
\(721\) −12.5278 −0.466561
\(722\) 10.8939 + 19.2951i 0.405429 + 0.718090i
\(723\) 5.92835i 0.220478i
\(724\) −21.5641 13.0095i −0.801423 0.483495i
\(725\) 3.63769i 0.135101i
\(726\) 1.16978 0.660449i 0.0434145 0.0245115i
\(727\) 25.9394 0.962041 0.481020 0.876709i \(-0.340266\pi\)
0.481020 + 0.876709i \(0.340266\pi\)
\(728\) 0.282148 9.77341i 0.0104571 0.362227i
\(729\) −1.00000 −0.0370370
\(730\) −7.32949 + 4.13818i −0.271277 + 0.153161i
\(731\) 5.75717i 0.212937i
\(732\) 14.2739 23.6599i 0.527580 0.874497i
\(733\) 16.8200i 0.621262i 0.950531 + 0.310631i \(0.100540\pi\)
−0.950531 + 0.310631i \(0.899460\pi\)
\(734\) −12.9089 22.8641i −0.476478 0.843930i
\(735\) −1.00000 −0.0368856
\(736\) −7.27211 + 11.3031i −0.268053 + 0.416640i
\(737\) −11.1044 −0.409035
\(738\) 2.26786 + 4.01680i 0.0834812 + 0.147861i
\(739\) 43.9284i 1.61593i 0.589228 + 0.807967i \(0.299432\pi\)
−0.589228 + 0.807967i \(0.700568\pi\)
\(740\) 4.29691 7.12239i 0.157957 0.261824i
\(741\) 20.3539i 0.747718i
\(742\) −7.30044 + 4.12178i −0.268008 + 0.151315i
\(743\) −24.5519 −0.900723 −0.450362 0.892846i \(-0.648705\pi\)
−0.450362 + 0.892846i \(0.648705\pi\)
\(744\) −0.441350 + 15.2880i −0.0161807 + 0.560487i
\(745\) −4.96179 −0.181786
\(746\) 32.1966 18.1780i 1.17880 0.665544i
\(747\) 8.18770i 0.299572i
\(748\) −6.84996 4.13255i −0.250459 0.151101i
\(749\) 13.7265i 0.501554i
\(750\) −0.695292 1.23149i −0.0253885 0.0449677i
\(751\) −10.0855 −0.368026 −0.184013 0.982924i \(-0.558909\pi\)
−0.184013 + 0.982924i \(0.558909\pi\)
\(752\) −24.3934 46.2757i −0.889537 1.68750i
\(753\) −13.3090 −0.485007
\(754\) 8.74330 + 15.4860i 0.318412 + 0.563967i
\(755\) 19.8109i 0.720994i
\(756\) 1.71249 + 1.03314i 0.0622827 + 0.0375749i
\(757\) 20.2698i 0.736719i 0.929684 + 0.368359i \(0.120080\pi\)
−0.929684 + 0.368359i \(0.879920\pi\)
\(758\) −15.2239 + 8.59533i −0.552957 + 0.312196i
\(759\) 8.21334 0.298125
\(760\) 16.6467 + 0.480575i 0.603841 + 0.0174323i
\(761\) 19.4494 0.705042 0.352521 0.935804i \(-0.385325\pi\)
0.352521 + 0.935804i \(0.385325\pi\)
\(762\) 12.0071 6.77912i 0.434971 0.245582i
\(763\) 0.912317i 0.0330281i
\(764\) −0.374885 + 0.621395i −0.0135629 + 0.0224813i
\(765\) 1.15712i 0.0418357i
\(766\) −11.9279 21.1265i −0.430973 0.763332i
\(767\) −43.4081 −1.56738
\(768\) 13.2003 + 9.04169i 0.476325 + 0.326264i
\(769\) −22.6523 −0.816863 −0.408431 0.912789i \(-0.633924\pi\)
−0.408431 + 0.912789i \(0.633924\pi\)
\(770\) 2.40353 + 4.25709i 0.0866171 + 0.153415i
\(771\) 21.0189i 0.756976i
\(772\) 22.1521 36.7185i 0.797271 1.32153i
\(773\) 32.3487i 1.16350i 0.813367 + 0.581751i \(0.197632\pi\)
−0.813367 + 0.581751i \(0.802368\pi\)
\(774\) −6.12720 + 3.45938i −0.220238 + 0.124345i
\(775\) 5.40739 0.194239
\(776\) 2.71981 + 0.0785183i 0.0976356 + 0.00281864i
\(777\) 4.15908 0.149206
\(778\) −12.7562 + 7.20210i −0.457334 + 0.258208i
\(779\) 19.2050i 0.688091i
\(780\) 5.91984 + 3.57142i 0.211964 + 0.127877i
\(781\) 8.08876i 0.289439i
\(782\) −1.91154 3.38569i −0.0683564 0.121072i
\(783\) −3.63769 −0.130001
\(784\) −1.86525 3.53848i −0.0666160 0.126374i
\(785\) 22.7995 0.813748
\(786\) −5.09589 9.02576i −0.181764 0.321938i
\(787\) 31.4411i 1.12076i −0.828237 0.560378i \(-0.810656\pi\)
0.828237 0.560378i \(-0.189344\pi\)
\(788\) 33.7356 + 20.3525i 1.20178 + 0.725029i
\(789\) 21.3307i 0.759393i
\(790\) 17.6022 9.93808i 0.626257 0.353581i
\(791\) 1.85435 0.0659332
\(792\) 0.282148 9.77341i 0.0100257 0.347283i
\(793\) 47.7603 1.69602
\(794\) 2.62302 1.48094i 0.0930875 0.0525566i
\(795\) 5.92814i 0.210249i
\(796\) −8.61042 + 14.2723i −0.305188 + 0.505868i
\(797\) 28.1515i 0.997177i −0.866839 0.498589i \(-0.833852\pi\)
0.866839 0.498589i \(-0.166148\pi\)
\(798\) 4.09385 + 7.25097i 0.144921 + 0.256682i
\(799\) 15.1326 0.535354
\(800\) 3.06071 4.75731i 0.108213 0.168196i
\(801\) 2.61172 0.0922807
\(802\) −21.3839 37.8749i −0.755093 1.33741i
\(803\) 20.5743i 0.726050i
\(804\) −3.31872 + 5.50098i −0.117042 + 0.194005i
\(805\) 2.37595i 0.0837413i
\(806\) −23.0197 + 12.9968i −0.810836 + 0.457793i
\(807\) 10.3670 0.364936
\(808\) 0.706333 24.4669i 0.0248487 0.860741i
\(809\) 14.9984 0.527316 0.263658 0.964616i \(-0.415071\pi\)
0.263658 + 0.964616i \(0.415071\pi\)
\(810\) −1.23149 + 0.695292i −0.0432702 + 0.0244301i
\(811\) 18.8356i 0.661406i −0.943735 0.330703i \(-0.892714\pi\)
0.943735 0.330703i \(-0.107286\pi\)
\(812\) 6.22952 + 3.75824i 0.218613 + 0.131888i
\(813\) 18.7588i 0.657899i
\(814\) −9.99647 17.7056i −0.350376 0.620581i
\(815\) 7.57926 0.265490
\(816\) −4.09444 + 2.15832i −0.143334 + 0.0755562i
\(817\) −29.2952 −1.02491
\(818\) −1.74056 3.08285i −0.0608572 0.107789i
\(819\) 3.45686i 0.120792i
\(820\) 5.58570 + 3.36983i 0.195061 + 0.117680i
\(821\) 35.1179i 1.22562i 0.790229 + 0.612811i \(0.209961\pi\)
−0.790229 + 0.612811i \(0.790039\pi\)
\(822\) 5.04482 2.84827i 0.175958 0.0993450i
\(823\) 10.8181 0.377097 0.188548 0.982064i \(-0.439622\pi\)
0.188548 + 0.982064i \(0.439622\pi\)
\(824\) 35.4193 + 1.02252i 1.23389 + 0.0356212i
\(825\) −3.45686 −0.120352
\(826\) −15.4639 + 8.73084i −0.538059 + 0.303785i
\(827\) 38.7858i 1.34871i 0.738406 + 0.674357i \(0.235579\pi\)
−0.738406 + 0.674357i \(0.764421\pi\)
\(828\) 2.45469 4.06880i 0.0853063 0.141400i
\(829\) 38.0268i 1.32072i −0.750947 0.660362i \(-0.770403\pi\)
0.750947 0.660362i \(-0.229597\pi\)
\(830\) 5.69284 + 10.0831i 0.197601 + 0.349989i
\(831\) −25.1344 −0.871903
\(832\) −1.59541 + 27.6088i −0.0553108 + 0.957164i
\(833\) 1.15712 0.0400918
\(834\) −12.6217 22.3553i −0.437053 0.774102i
\(835\) 7.14851i 0.247384i
\(836\) 21.0284 34.8558i 0.727281 1.20551i
\(837\) 5.40739i 0.186907i
\(838\) −45.3688 + 25.6149i −1.56724 + 0.884853i
\(839\) 33.7281 1.16442 0.582211 0.813038i \(-0.302188\pi\)
0.582211 + 0.813038i \(0.302188\pi\)
\(840\) 2.82725 + 0.0816198i 0.0975494 + 0.00281615i
\(841\) 15.7672 0.543696
\(842\) −18.7953 + 10.6117i −0.647730 + 0.365704i
\(843\) 8.31424i 0.286358i
\(844\) 25.7059 + 15.5082i 0.884832 + 0.533815i
\(845\) 1.05011i 0.0361250i
\(846\) 9.09292 + 16.1052i 0.312621 + 0.553710i
\(847\) 0.949887 0.0326385
\(848\) 20.9766 11.0575i 0.720339 0.379714i
\(849\) 10.9655 0.376335
\(850\) 0.804535 + 1.42498i 0.0275953 + 0.0488765i
\(851\) 9.88178i 0.338743i
\(852\) 4.00708 + 2.41746i 0.137280 + 0.0828207i
\(853\) 43.8436i 1.50118i 0.660770 + 0.750589i \(0.270230\pi\)
−0.660770 + 0.750589i \(0.729770\pi\)
\(854\) 17.0144 9.60622i 0.582221 0.328718i
\(855\) −5.88796 −0.201364
\(856\) −1.12035 + 38.8081i −0.0382928 + 1.32643i
\(857\) −20.7396 −0.708451 −0.354225 0.935160i \(-0.615255\pi\)
−0.354225 + 0.935160i \(0.615255\pi\)
\(858\) 14.7162 8.30866i 0.502402 0.283653i
\(859\) 24.7972i 0.846071i 0.906113 + 0.423036i \(0.139035\pi\)
−0.906113 + 0.423036i \(0.860965\pi\)
\(860\) −5.14031 + 8.52039i −0.175283 + 0.290543i
\(861\) 3.26174i 0.111160i
\(862\) −9.12933 16.1697i −0.310946 0.550743i
\(863\) −31.3753 −1.06803 −0.534014 0.845475i \(-0.679317\pi\)
−0.534014 + 0.845475i \(0.679317\pi\)
\(864\) −4.75731 3.06071i −0.161847 0.104128i
\(865\) 1.60976 0.0547335
\(866\) −20.4398 36.2027i −0.694573 1.23022i
\(867\) 15.6611i 0.531878i
\(868\) −5.58658 + 9.26010i −0.189621 + 0.314308i
\(869\) 49.4103i 1.67613i
\(870\) −4.47979 + 2.52926i −0.151879 + 0.0857499i
\(871\) −11.1044 −0.376257
\(872\) 0.0744632 2.57935i 0.00252164 0.0873477i
\(873\) −0.962000 −0.0325588
\(874\) 17.2280 9.72680i 0.582744 0.329014i
\(875\) 1.00000i 0.0338062i
\(876\) 10.1923 + 6.14895i 0.344365 + 0.207754i
\(877\) 22.7957i 0.769755i 0.922968 + 0.384878i \(0.125756\pi\)
−0.922968 + 0.384878i \(0.874244\pi\)
\(878\) −15.7739 27.9385i −0.532343 0.942877i
\(879\) −17.0513 −0.575127
\(880\) −6.44791 12.2320i −0.217359 0.412342i
\(881\) −14.2101 −0.478749 −0.239375 0.970927i \(-0.576942\pi\)
−0.239375 + 0.970927i \(0.576942\pi\)
\(882\) 0.695292 + 1.23149i 0.0234117 + 0.0414664i
\(883\) 11.3850i 0.383135i −0.981479 0.191568i \(-0.938643\pi\)
0.981479 0.191568i \(-0.0613572\pi\)
\(884\) −6.84996 4.13255i −0.230389 0.138993i
\(885\) 12.5571i 0.422102i
\(886\) −43.9889 + 24.8359i −1.47784 + 0.834377i
\(887\) −11.5024 −0.386212 −0.193106 0.981178i \(-0.561856\pi\)
−0.193106 + 0.981178i \(0.561856\pi\)
\(888\) −11.7588 0.339464i −0.394598 0.0113917i
\(889\) 9.75004 0.327006
\(890\) 3.21631 1.81591i 0.107811 0.0608695i
\(891\) 3.45686i 0.115809i
\(892\) 20.7305 34.3620i 0.694107 1.15053i
\(893\) 77.0018i 2.57677i
\(894\) 3.44989 + 6.11040i 0.115382 + 0.204362i
\(895\) 17.9373 0.599577
\(896\) 4.98471 + 10.1564i 0.166528 + 0.339302i
\(897\) 8.21334 0.274235
\(898\) 16.1188 + 28.5493i 0.537891 + 0.952704i
\(899\) 19.6704i 0.656045i
\(900\) −1.03314 + 1.71249i −0.0344380 + 0.0570830i
\(901\) 6.85956i 0.228525i
\(902\) 13.8855 7.83968i 0.462338 0.261033i
\(903\) −4.97544 −0.165572
\(904\) −5.24272 0.151352i −0.174370 0.00503389i
\(905\) 12.5922 0.418580
\(906\) 24.3970 13.7744i 0.810536 0.457623i
\(907\) 34.8718i 1.15790i −0.815364 0.578949i \(-0.803463\pi\)
0.815364 0.578949i \(-0.196537\pi\)
\(908\) −37.1240 22.3968i −1.23200 0.743263i
\(909\) 8.65394i 0.287033i
\(910\) 2.40353 + 4.25709i 0.0796761 + 0.141121i
\(911\) 8.14049 0.269706 0.134853 0.990866i \(-0.456944\pi\)
0.134853 + 0.990866i \(0.456944\pi\)
\(912\) −10.9825 20.8344i −0.363667 0.689897i
\(913\) 28.3038 0.936718
\(914\) 1.57609 + 2.79156i 0.0521326 + 0.0923365i
\(915\) 13.8161i 0.456746i
\(916\) −13.4243 8.09882i −0.443551 0.267593i
\(917\) 7.32913i 0.242029i
\(918\) 1.42498 0.804535i 0.0470314 0.0265536i
\(919\) −16.9557 −0.559318 −0.279659 0.960099i \(-0.590221\pi\)
−0.279659 + 0.960099i \(0.590221\pi\)
\(920\) 0.193925 6.71741i 0.00639351 0.221466i
\(921\) −22.1618 −0.730257
\(922\) 1.92380 1.08616i 0.0633569 0.0357709i
\(923\) 8.08876i 0.266245i
\(924\) 3.57142 5.91984i 0.117491 0.194749i
\(925\) 4.15908i 0.136750i
\(926\) 22.6409 + 40.1012i 0.744025 + 1.31781i
\(927\) −12.5278 −0.411468
\(928\) −17.3056 11.1339i −0.568086 0.365489i
\(929\) −11.1454 −0.365670 −0.182835 0.983144i \(-0.558527\pi\)
−0.182835 + 0.983144i \(0.558527\pi\)
\(930\) −3.75971 6.65915i −0.123286 0.218362i
\(931\) 5.88796i 0.192970i
\(932\) −25.7858 + 42.7416i −0.844643 + 1.40005i
\(933\) 15.5650i 0.509575i
\(934\) −29.5115 + 16.6620i −0.965646 + 0.545198i
\(935\) 4.00000 0.130814
\(936\) 0.282148 9.77341i 0.00922231 0.319454i
\(937\) −18.5833 −0.607089 −0.303545 0.952817i \(-0.598170\pi\)
−0.303545 + 0.952817i \(0.598170\pi\)
\(938\) −3.95588 + 2.23346i −0.129164 + 0.0729252i
\(939\) 25.6560i 0.837252i
\(940\) 22.3957 + 13.5112i 0.730467 + 0.440687i
\(941\) 41.3754i 1.34880i 0.738367 + 0.674399i \(0.235597\pi\)
−0.738367 + 0.674399i \(0.764403\pi\)
\(942\) −15.8523 28.0773i −0.516495 0.914809i
\(943\) 7.74974 0.252366
\(944\) 44.4330 23.4221i 1.44617 0.762325i
\(945\) −1.00000 −0.0325300
\(946\) 11.9586 + 21.1809i 0.388807 + 0.688650i
\(947\) 48.0763i 1.56227i −0.624363 0.781134i \(-0.714641\pi\)
0.624363 0.781134i \(-0.285359\pi\)
\(948\) −24.4773 14.7671i −0.794986 0.479612i
\(949\) 20.5743i 0.667869i
\(950\) −7.25097 + 4.09385i −0.235253 + 0.132822i
\(951\) −21.9692 −0.712399
\(952\) −3.27146 0.0944439i −0.106029 0.00306094i
\(953\) 17.6285 0.571042 0.285521 0.958372i \(-0.407833\pi\)
0.285521 + 0.958372i \(0.407833\pi\)
\(954\) −7.30044 + 4.12178i −0.236361 + 0.133448i
\(955\) 0.362860i 0.0117419i
\(956\) 2.73762 4.53777i 0.0885409 0.146762i
\(957\) 12.5750i 0.406492i
\(958\) −14.2634 25.2631i −0.460830 0.816215i
\(959\) 4.09652 0.132283
\(960\) −7.98668 0.461519i −0.257769 0.0148955i
\(961\) −1.76015 −0.0567791
\(962\) −9.99647 17.7056i −0.322299 0.570851i
\(963\) 13.7265i 0.442329i
\(964\) 6.12480 10.1522i 0.197267 0.326982i
\(965\) 21.4416i 0.690228i
\(966\) 2.92596 1.65198i 0.0941413 0.0531516i
\(967\) −16.9567 −0.545291 −0.272646 0.962115i \(-0.587899\pi\)
−0.272646 + 0.962115i \(0.587899\pi\)
\(968\) −2.68557 0.0775296i −0.0863174 0.00249190i
\(969\) 6.81307 0.218867
\(970\) −1.18469 + 0.668871i −0.0380382 + 0.0214761i
\(971\) 15.0779i 0.483873i 0.970292 + 0.241937i \(0.0777826\pi\)
−0.970292 + 0.241937i \(0.922217\pi\)
\(972\) 1.71249 + 1.03314i 0.0549282 + 0.0331379i
\(973\) 18.1531i 0.581961i
\(974\) −24.8822 44.0710i −0.797278 1.41213i
\(975\) −3.45686 −0.110708
\(976\) −48.8880 + 25.7705i −1.56487 + 0.824893i
\(977\) 39.9107 1.27686 0.638428 0.769682i \(-0.279585\pi\)
0.638428 + 0.769682i \(0.279585\pi\)
\(978\) −5.26980 9.33379i −0.168510 0.298462i
\(979\) 9.02837i 0.288548i
\(980\) 1.71249 + 1.03314i 0.0547035 + 0.0330024i
\(981\) 0.912317i 0.0291280i
\(982\) 29.3849 16.5905i 0.937711 0.529425i
\(983\) 24.0536 0.767190 0.383595 0.923502i \(-0.374686\pi\)
0.383595 + 0.923502i \(0.374686\pi\)
\(984\) 0.266223 9.22176i 0.00848687 0.293979i
\(985\) −19.6997 −0.627685
\(986\) 5.18365 2.92665i 0.165081 0.0932036i
\(987\) 13.0778i 0.416272i
\(988\) 21.0284 34.8558i 0.669002 1.10891i
\(989\) 11.8214i 0.375899i
\(990\) 2.40353 + 4.25709i 0.0763891 + 0.135299i
\(991\) −47.3455 −1.50398 −0.751990 0.659174i \(-0.770906\pi\)
−0.751990 + 0.659174i \(0.770906\pi\)
\(992\) 16.5505 25.7246i 0.525478 0.816758i
\(993\) 17.1940 0.545636
\(994\) 1.62692 + 2.88158i 0.0516029 + 0.0913983i
\(995\) 8.33424i 0.264213i
\(996\) 8.45903 14.0214i 0.268035 0.444284i
\(997\) 25.2053i 0.798261i 0.916894 + 0.399130i \(0.130688\pi\)
−0.916894 + 0.399130i \(0.869312\pi\)
\(998\) 42.5665 24.0328i 1.34742 0.760745i
\(999\) 4.15908 0.131588
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 840.2.g.b.421.5 12
4.3 odd 2 3360.2.g.c.1681.8 12
8.3 odd 2 3360.2.g.c.1681.5 12
8.5 even 2 inner 840.2.g.b.421.6 yes 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
840.2.g.b.421.5 12 1.1 even 1 trivial
840.2.g.b.421.6 yes 12 8.5 even 2 inner
3360.2.g.c.1681.5 12 8.3 odd 2
3360.2.g.c.1681.8 12 4.3 odd 2