Properties

Label 3360.2.g.c.1681.8
Level $3360$
Weight $2$
Character 3360.1681
Analytic conductor $26.830$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3360,2,Mod(1681,3360)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3360.1681"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3360, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 3360 = 2^{5} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3360.g (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,0,0,0,12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(26.8297350792\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: 12.0.3058043990573056.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + x^{10} - 8x^{7} - 16x^{5} + 16x^{2} + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{29}]\)
Coefficient ring index: \( 2^{13} \)
Twist minimal: no (minimal twist has level 840)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1681.8
Root \(-1.23149 + 0.695292i\) of defining polynomial
Character \(\chi\) \(=\) 3360.1681
Dual form 3360.2.g.c.1681.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{3} -1.00000i q^{5} +1.00000 q^{7} -1.00000 q^{9} -3.45686i q^{11} +3.45686i q^{13} +1.00000 q^{15} +1.15712 q^{17} -5.88796i q^{19} +1.00000i q^{21} -2.37595 q^{23} -1.00000 q^{25} -1.00000i q^{27} +3.63769i q^{29} +5.40739 q^{31} +3.45686 q^{33} -1.00000i q^{35} -4.15908i q^{37} -3.45686 q^{39} +3.26174 q^{41} -4.97544i q^{43} +1.00000i q^{45} -13.0778 q^{47} +1.00000 q^{49} +1.15712i q^{51} +5.92814i q^{53} -3.45686 q^{55} +5.88796 q^{57} -12.5571i q^{59} -13.8161i q^{61} -1.00000 q^{63} +3.45686 q^{65} -3.21227i q^{67} -2.37595i q^{69} -2.33991 q^{71} +5.95172 q^{73} -1.00000i q^{75} -3.45686i q^{77} +14.2934 q^{79} +1.00000 q^{81} +8.18770i q^{83} -1.15712i q^{85} -3.63769 q^{87} -2.61172 q^{89} +3.45686i q^{91} +5.40739i q^{93} -5.88796 q^{95} +0.962000 q^{97} +3.45686i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 12 q^{7} - 12 q^{9} + 12 q^{15} - 40 q^{23} - 12 q^{25} + 8 q^{31} + 32 q^{47} + 12 q^{49} - 12 q^{63} + 8 q^{71} + 80 q^{79} + 12 q^{81} - 16 q^{87}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3360\mathbb{Z}\right)^\times\).

\(n\) \(421\) \(1121\) \(1471\) \(1921\) \(2017\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000i 0.577350i
\(4\) 0 0
\(5\) − 1.00000i − 0.447214i
\(6\) 0 0
\(7\) 1.00000 0.377964
\(8\) 0 0
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) − 3.45686i − 1.04228i −0.853470 0.521141i \(-0.825506\pi\)
0.853470 0.521141i \(-0.174494\pi\)
\(12\) 0 0
\(13\) 3.45686i 0.958761i 0.877607 + 0.479380i \(0.159139\pi\)
−0.877607 + 0.479380i \(0.840861\pi\)
\(14\) 0 0
\(15\) 1.00000 0.258199
\(16\) 0 0
\(17\) 1.15712 0.280643 0.140321 0.990106i \(-0.455186\pi\)
0.140321 + 0.990106i \(0.455186\pi\)
\(18\) 0 0
\(19\) − 5.88796i − 1.35079i −0.737456 0.675396i \(-0.763973\pi\)
0.737456 0.675396i \(-0.236027\pi\)
\(20\) 0 0
\(21\) 1.00000i 0.218218i
\(22\) 0 0
\(23\) −2.37595 −0.495420 −0.247710 0.968834i \(-0.579678\pi\)
−0.247710 + 0.968834i \(0.579678\pi\)
\(24\) 0 0
\(25\) −1.00000 −0.200000
\(26\) 0 0
\(27\) − 1.00000i − 0.192450i
\(28\) 0 0
\(29\) 3.63769i 0.675503i 0.941235 + 0.337751i \(0.109666\pi\)
−0.941235 + 0.337751i \(0.890334\pi\)
\(30\) 0 0
\(31\) 5.40739 0.971196 0.485598 0.874182i \(-0.338602\pi\)
0.485598 + 0.874182i \(0.338602\pi\)
\(32\) 0 0
\(33\) 3.45686 0.601762
\(34\) 0 0
\(35\) − 1.00000i − 0.169031i
\(36\) 0 0
\(37\) − 4.15908i − 0.683749i −0.939746 0.341874i \(-0.888938\pi\)
0.939746 0.341874i \(-0.111062\pi\)
\(38\) 0 0
\(39\) −3.45686 −0.553541
\(40\) 0 0
\(41\) 3.26174 0.509398 0.254699 0.967020i \(-0.418024\pi\)
0.254699 + 0.967020i \(0.418024\pi\)
\(42\) 0 0
\(43\) − 4.97544i − 0.758747i −0.925244 0.379373i \(-0.876140\pi\)
0.925244 0.379373i \(-0.123860\pi\)
\(44\) 0 0
\(45\) 1.00000i 0.149071i
\(46\) 0 0
\(47\) −13.0778 −1.90760 −0.953800 0.300444i \(-0.902865\pi\)
−0.953800 + 0.300444i \(0.902865\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 1.15712i 0.162029i
\(52\) 0 0
\(53\) 5.92814i 0.814292i 0.913363 + 0.407146i \(0.133476\pi\)
−0.913363 + 0.407146i \(0.866524\pi\)
\(54\) 0 0
\(55\) −3.45686 −0.466123
\(56\) 0 0
\(57\) 5.88796 0.779880
\(58\) 0 0
\(59\) − 12.5571i − 1.63479i −0.576075 0.817397i \(-0.695416\pi\)
0.576075 0.817397i \(-0.304584\pi\)
\(60\) 0 0
\(61\) − 13.8161i − 1.76897i −0.466568 0.884485i \(-0.654510\pi\)
0.466568 0.884485i \(-0.345490\pi\)
\(62\) 0 0
\(63\) −1.00000 −0.125988
\(64\) 0 0
\(65\) 3.45686 0.428771
\(66\) 0 0
\(67\) − 3.21227i − 0.392441i −0.980560 0.196221i \(-0.937133\pi\)
0.980560 0.196221i \(-0.0628669\pi\)
\(68\) 0 0
\(69\) − 2.37595i − 0.286031i
\(70\) 0 0
\(71\) −2.33991 −0.277697 −0.138848 0.990314i \(-0.544340\pi\)
−0.138848 + 0.990314i \(0.544340\pi\)
\(72\) 0 0
\(73\) 5.95172 0.696596 0.348298 0.937384i \(-0.386760\pi\)
0.348298 + 0.937384i \(0.386760\pi\)
\(74\) 0 0
\(75\) − 1.00000i − 0.115470i
\(76\) 0 0
\(77\) − 3.45686i − 0.393946i
\(78\) 0 0
\(79\) 14.2934 1.60813 0.804066 0.594540i \(-0.202666\pi\)
0.804066 + 0.594540i \(0.202666\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 8.18770i 0.898717i 0.893351 + 0.449359i \(0.148347\pi\)
−0.893351 + 0.449359i \(0.851653\pi\)
\(84\) 0 0
\(85\) − 1.15712i − 0.125507i
\(86\) 0 0
\(87\) −3.63769 −0.390002
\(88\) 0 0
\(89\) −2.61172 −0.276842 −0.138421 0.990373i \(-0.544203\pi\)
−0.138421 + 0.990373i \(0.544203\pi\)
\(90\) 0 0
\(91\) 3.45686i 0.362377i
\(92\) 0 0
\(93\) 5.40739i 0.560720i
\(94\) 0 0
\(95\) −5.88796 −0.604092
\(96\) 0 0
\(97\) 0.962000 0.0976763 0.0488382 0.998807i \(-0.484448\pi\)
0.0488382 + 0.998807i \(0.484448\pi\)
\(98\) 0 0
\(99\) 3.45686i 0.347428i
\(100\) 0 0
\(101\) − 8.65394i − 0.861099i −0.902567 0.430550i \(-0.858320\pi\)
0.902567 0.430550i \(-0.141680\pi\)
\(102\) 0 0
\(103\) −12.5278 −1.23440 −0.617202 0.786805i \(-0.711734\pi\)
−0.617202 + 0.786805i \(0.711734\pi\)
\(104\) 0 0
\(105\) 1.00000 0.0975900
\(106\) 0 0
\(107\) − 13.7265i − 1.32699i −0.748182 0.663493i \(-0.769073\pi\)
0.748182 0.663493i \(-0.230927\pi\)
\(108\) 0 0
\(109\) − 0.912317i − 0.0873841i −0.999045 0.0436921i \(-0.986088\pi\)
0.999045 0.0436921i \(-0.0139120\pi\)
\(110\) 0 0
\(111\) 4.15908 0.394763
\(112\) 0 0
\(113\) −1.85435 −0.174443 −0.0872215 0.996189i \(-0.527799\pi\)
−0.0872215 + 0.996189i \(0.527799\pi\)
\(114\) 0 0
\(115\) 2.37595i 0.221559i
\(116\) 0 0
\(117\) − 3.45686i − 0.319587i
\(118\) 0 0
\(119\) 1.15712 0.106073
\(120\) 0 0
\(121\) −0.949887 −0.0863534
\(122\) 0 0
\(123\) 3.26174i 0.294101i
\(124\) 0 0
\(125\) 1.00000i 0.0894427i
\(126\) 0 0
\(127\) 9.75004 0.865176 0.432588 0.901592i \(-0.357600\pi\)
0.432588 + 0.901592i \(0.357600\pi\)
\(128\) 0 0
\(129\) 4.97544 0.438063
\(130\) 0 0
\(131\) − 7.32913i − 0.640349i −0.947359 0.320175i \(-0.896258\pi\)
0.947359 0.320175i \(-0.103742\pi\)
\(132\) 0 0
\(133\) − 5.88796i − 0.510551i
\(134\) 0 0
\(135\) −1.00000 −0.0860663
\(136\) 0 0
\(137\) −4.09652 −0.349989 −0.174995 0.984569i \(-0.555991\pi\)
−0.174995 + 0.984569i \(0.555991\pi\)
\(138\) 0 0
\(139\) − 18.1531i − 1.53972i −0.638211 0.769862i \(-0.720325\pi\)
0.638211 0.769862i \(-0.279675\pi\)
\(140\) 0 0
\(141\) − 13.0778i − 1.10135i
\(142\) 0 0
\(143\) 11.9499 0.999300
\(144\) 0 0
\(145\) 3.63769 0.302094
\(146\) 0 0
\(147\) 1.00000i 0.0824786i
\(148\) 0 0
\(149\) − 4.96179i − 0.406486i −0.979128 0.203243i \(-0.934852\pi\)
0.979128 0.203243i \(-0.0651481\pi\)
\(150\) 0 0
\(151\) 19.8109 1.61219 0.806096 0.591785i \(-0.201577\pi\)
0.806096 + 0.591785i \(0.201577\pi\)
\(152\) 0 0
\(153\) −1.15712 −0.0935475
\(154\) 0 0
\(155\) − 5.40739i − 0.434332i
\(156\) 0 0
\(157\) 22.7995i 1.81960i 0.415052 + 0.909798i \(0.363763\pi\)
−0.415052 + 0.909798i \(0.636237\pi\)
\(158\) 0 0
\(159\) −5.92814 −0.470132
\(160\) 0 0
\(161\) −2.37595 −0.187251
\(162\) 0 0
\(163\) − 7.57926i − 0.593654i −0.954931 0.296827i \(-0.904072\pi\)
0.954931 0.296827i \(-0.0959284\pi\)
\(164\) 0 0
\(165\) − 3.45686i − 0.269116i
\(166\) 0 0
\(167\) −7.14851 −0.553168 −0.276584 0.960990i \(-0.589202\pi\)
−0.276584 + 0.960990i \(0.589202\pi\)
\(168\) 0 0
\(169\) 1.05011 0.0807779
\(170\) 0 0
\(171\) 5.88796i 0.450264i
\(172\) 0 0
\(173\) 1.60976i 0.122388i 0.998126 + 0.0611940i \(0.0194908\pi\)
−0.998126 + 0.0611940i \(0.980509\pi\)
\(174\) 0 0
\(175\) −1.00000 −0.0755929
\(176\) 0 0
\(177\) 12.5571 0.943849
\(178\) 0 0
\(179\) − 17.9373i − 1.34069i −0.742048 0.670347i \(-0.766145\pi\)
0.742048 0.670347i \(-0.233855\pi\)
\(180\) 0 0
\(181\) 12.5922i 0.935973i 0.883736 + 0.467986i \(0.155020\pi\)
−0.883736 + 0.467986i \(0.844980\pi\)
\(182\) 0 0
\(183\) 13.8161 1.02132
\(184\) 0 0
\(185\) −4.15908 −0.305782
\(186\) 0 0
\(187\) − 4.00000i − 0.292509i
\(188\) 0 0
\(189\) − 1.00000i − 0.0727393i
\(190\) 0 0
\(191\) −0.362860 −0.0262556 −0.0131278 0.999914i \(-0.504179\pi\)
−0.0131278 + 0.999914i \(0.504179\pi\)
\(192\) 0 0
\(193\) −21.4416 −1.54340 −0.771698 0.635989i \(-0.780592\pi\)
−0.771698 + 0.635989i \(0.780592\pi\)
\(194\) 0 0
\(195\) 3.45686i 0.247551i
\(196\) 0 0
\(197\) − 19.6997i − 1.40355i −0.712400 0.701773i \(-0.752392\pi\)
0.712400 0.701773i \(-0.247608\pi\)
\(198\) 0 0
\(199\) −8.33424 −0.590798 −0.295399 0.955374i \(-0.595453\pi\)
−0.295399 + 0.955374i \(0.595453\pi\)
\(200\) 0 0
\(201\) 3.21227 0.226576
\(202\) 0 0
\(203\) 3.63769i 0.255316i
\(204\) 0 0
\(205\) − 3.26174i − 0.227810i
\(206\) 0 0
\(207\) 2.37595 0.165140
\(208\) 0 0
\(209\) −20.3539 −1.40791
\(210\) 0 0
\(211\) 15.0108i 1.03339i 0.856171 + 0.516693i \(0.172837\pi\)
−0.856171 + 0.516693i \(0.827163\pi\)
\(212\) 0 0
\(213\) − 2.33991i − 0.160328i
\(214\) 0 0
\(215\) −4.97544 −0.339322
\(216\) 0 0
\(217\) 5.40739 0.367077
\(218\) 0 0
\(219\) 5.95172i 0.402180i
\(220\) 0 0
\(221\) 4.00000i 0.269069i
\(222\) 0 0
\(223\) 20.0655 1.34369 0.671843 0.740693i \(-0.265503\pi\)
0.671843 + 0.740693i \(0.265503\pi\)
\(224\) 0 0
\(225\) 1.00000 0.0666667
\(226\) 0 0
\(227\) − 21.6784i − 1.43884i −0.694573 0.719422i \(-0.744407\pi\)
0.694573 0.719422i \(-0.255593\pi\)
\(228\) 0 0
\(229\) 7.83904i 0.518019i 0.965875 + 0.259009i \(0.0833960\pi\)
−0.965875 + 0.259009i \(0.916604\pi\)
\(230\) 0 0
\(231\) 3.45686 0.227445
\(232\) 0 0
\(233\) 24.9587 1.63510 0.817550 0.575857i \(-0.195332\pi\)
0.817550 + 0.575857i \(0.195332\pi\)
\(234\) 0 0
\(235\) 13.0778i 0.853104i
\(236\) 0 0
\(237\) 14.2934i 0.928455i
\(238\) 0 0
\(239\) 2.64981 0.171402 0.0857009 0.996321i \(-0.472687\pi\)
0.0857009 + 0.996321i \(0.472687\pi\)
\(240\) 0 0
\(241\) −5.92835 −0.381878 −0.190939 0.981602i \(-0.561153\pi\)
−0.190939 + 0.981602i \(0.561153\pi\)
\(242\) 0 0
\(243\) 1.00000i 0.0641500i
\(244\) 0 0
\(245\) − 1.00000i − 0.0638877i
\(246\) 0 0
\(247\) 20.3539 1.29509
\(248\) 0 0
\(249\) −8.18770 −0.518875
\(250\) 0 0
\(251\) 13.3090i 0.840056i 0.907511 + 0.420028i \(0.137980\pi\)
−0.907511 + 0.420028i \(0.862020\pi\)
\(252\) 0 0
\(253\) 8.21334i 0.516368i
\(254\) 0 0
\(255\) 1.15712 0.0724616
\(256\) 0 0
\(257\) 21.0189 1.31112 0.655560 0.755143i \(-0.272432\pi\)
0.655560 + 0.755143i \(0.272432\pi\)
\(258\) 0 0
\(259\) − 4.15908i − 0.258433i
\(260\) 0 0
\(261\) − 3.63769i − 0.225168i
\(262\) 0 0
\(263\) 21.3307 1.31531 0.657654 0.753320i \(-0.271549\pi\)
0.657654 + 0.753320i \(0.271549\pi\)
\(264\) 0 0
\(265\) 5.92814 0.364162
\(266\) 0 0
\(267\) − 2.61172i − 0.159835i
\(268\) 0 0
\(269\) 10.3670i 0.632087i 0.948745 + 0.316043i \(0.102355\pi\)
−0.948745 + 0.316043i \(0.897645\pi\)
\(270\) 0 0
\(271\) 18.7588 1.13951 0.569757 0.821813i \(-0.307037\pi\)
0.569757 + 0.821813i \(0.307037\pi\)
\(272\) 0 0
\(273\) −3.45686 −0.209219
\(274\) 0 0
\(275\) 3.45686i 0.208457i
\(276\) 0 0
\(277\) − 25.1344i − 1.51018i −0.655621 0.755090i \(-0.727593\pi\)
0.655621 0.755090i \(-0.272407\pi\)
\(278\) 0 0
\(279\) −5.40739 −0.323732
\(280\) 0 0
\(281\) 8.31424 0.495986 0.247993 0.968762i \(-0.420229\pi\)
0.247993 + 0.968762i \(0.420229\pi\)
\(282\) 0 0
\(283\) − 10.9655i − 0.651831i −0.945399 0.325916i \(-0.894327\pi\)
0.945399 0.325916i \(-0.105673\pi\)
\(284\) 0 0
\(285\) − 5.88796i − 0.348773i
\(286\) 0 0
\(287\) 3.26174 0.192535
\(288\) 0 0
\(289\) −15.6611 −0.921240
\(290\) 0 0
\(291\) 0.962000i 0.0563934i
\(292\) 0 0
\(293\) − 17.0513i − 0.996148i −0.867134 0.498074i \(-0.834041\pi\)
0.867134 0.498074i \(-0.165959\pi\)
\(294\) 0 0
\(295\) −12.5571 −0.731102
\(296\) 0 0
\(297\) −3.45686 −0.200587
\(298\) 0 0
\(299\) − 8.21334i − 0.474989i
\(300\) 0 0
\(301\) − 4.97544i − 0.286779i
\(302\) 0 0
\(303\) 8.65394 0.497156
\(304\) 0 0
\(305\) −13.8161 −0.791108
\(306\) 0 0
\(307\) 22.1618i 1.26484i 0.774625 + 0.632421i \(0.217939\pi\)
−0.774625 + 0.632421i \(0.782061\pi\)
\(308\) 0 0
\(309\) − 12.5278i − 0.712683i
\(310\) 0 0
\(311\) −15.5650 −0.882609 −0.441304 0.897357i \(-0.645484\pi\)
−0.441304 + 0.897357i \(0.645484\pi\)
\(312\) 0 0
\(313\) 25.6560 1.45016 0.725081 0.688663i \(-0.241802\pi\)
0.725081 + 0.688663i \(0.241802\pi\)
\(314\) 0 0
\(315\) 1.00000i 0.0563436i
\(316\) 0 0
\(317\) − 21.9692i − 1.23391i −0.786998 0.616956i \(-0.788366\pi\)
0.786998 0.616956i \(-0.211634\pi\)
\(318\) 0 0
\(319\) 12.5750 0.704065
\(320\) 0 0
\(321\) 13.7265 0.766136
\(322\) 0 0
\(323\) − 6.81307i − 0.379090i
\(324\) 0 0
\(325\) − 3.45686i − 0.191752i
\(326\) 0 0
\(327\) 0.912317 0.0504512
\(328\) 0 0
\(329\) −13.0778 −0.721005
\(330\) 0 0
\(331\) − 17.1940i − 0.945068i −0.881312 0.472534i \(-0.843339\pi\)
0.881312 0.472534i \(-0.156661\pi\)
\(332\) 0 0
\(333\) 4.15908i 0.227916i
\(334\) 0 0
\(335\) −3.21227 −0.175505
\(336\) 0 0
\(337\) 2.89078 0.157471 0.0787353 0.996896i \(-0.474912\pi\)
0.0787353 + 0.996896i \(0.474912\pi\)
\(338\) 0 0
\(339\) − 1.85435i − 0.100715i
\(340\) 0 0
\(341\) − 18.6926i − 1.01226i
\(342\) 0 0
\(343\) 1.00000 0.0539949
\(344\) 0 0
\(345\) −2.37595 −0.127917
\(346\) 0 0
\(347\) 35.6670i 1.91471i 0.288922 + 0.957353i \(0.406703\pi\)
−0.288922 + 0.957353i \(0.593297\pi\)
\(348\) 0 0
\(349\) − 4.17512i − 0.223489i −0.993737 0.111745i \(-0.964356\pi\)
0.993737 0.111745i \(-0.0356438\pi\)
\(350\) 0 0
\(351\) 3.45686 0.184514
\(352\) 0 0
\(353\) −25.4091 −1.35239 −0.676195 0.736723i \(-0.736372\pi\)
−0.676195 + 0.736723i \(0.736372\pi\)
\(354\) 0 0
\(355\) 2.33991i 0.124190i
\(356\) 0 0
\(357\) 1.15712i 0.0612412i
\(358\) 0 0
\(359\) −7.66401 −0.404491 −0.202245 0.979335i \(-0.564824\pi\)
−0.202245 + 0.979335i \(0.564824\pi\)
\(360\) 0 0
\(361\) −15.6681 −0.824637
\(362\) 0 0
\(363\) − 0.949887i − 0.0498561i
\(364\) 0 0
\(365\) − 5.95172i − 0.311527i
\(366\) 0 0
\(367\) −18.5662 −0.969149 −0.484574 0.874750i \(-0.661026\pi\)
−0.484574 + 0.874750i \(0.661026\pi\)
\(368\) 0 0
\(369\) −3.26174 −0.169799
\(370\) 0 0
\(371\) 5.92814i 0.307773i
\(372\) 0 0
\(373\) 26.1444i 1.35371i 0.736118 + 0.676853i \(0.236657\pi\)
−0.736118 + 0.676853i \(0.763343\pi\)
\(374\) 0 0
\(375\) −1.00000 −0.0516398
\(376\) 0 0
\(377\) −12.5750 −0.647646
\(378\) 0 0
\(379\) 12.3622i 0.635003i 0.948258 + 0.317501i \(0.102844\pi\)
−0.948258 + 0.317501i \(0.897156\pi\)
\(380\) 0 0
\(381\) 9.75004i 0.499510i
\(382\) 0 0
\(383\) −17.1552 −0.876592 −0.438296 0.898831i \(-0.644418\pi\)
−0.438296 + 0.898831i \(0.644418\pi\)
\(384\) 0 0
\(385\) −3.45686 −0.176178
\(386\) 0 0
\(387\) 4.97544i 0.252916i
\(388\) 0 0
\(389\) − 10.3584i − 0.525191i −0.964906 0.262595i \(-0.915422\pi\)
0.964906 0.262595i \(-0.0845784\pi\)
\(390\) 0 0
\(391\) −2.74926 −0.139036
\(392\) 0 0
\(393\) 7.32913 0.369706
\(394\) 0 0
\(395\) − 14.2934i − 0.719178i
\(396\) 0 0
\(397\) 2.12996i 0.106899i 0.998571 + 0.0534497i \(0.0170217\pi\)
−0.998571 + 0.0534497i \(0.982978\pi\)
\(398\) 0 0
\(399\) 5.88796 0.294767
\(400\) 0 0
\(401\) 30.7553 1.53585 0.767924 0.640541i \(-0.221290\pi\)
0.767924 + 0.640541i \(0.221290\pi\)
\(402\) 0 0
\(403\) 18.6926i 0.931144i
\(404\) 0 0
\(405\) − 1.00000i − 0.0496904i
\(406\) 0 0
\(407\) −14.3774 −0.712660
\(408\) 0 0
\(409\) 2.50335 0.123783 0.0618913 0.998083i \(-0.480287\pi\)
0.0618913 + 0.998083i \(0.480287\pi\)
\(410\) 0 0
\(411\) − 4.09652i − 0.202066i
\(412\) 0 0
\(413\) − 12.5571i − 0.617894i
\(414\) 0 0
\(415\) 8.18770 0.401919
\(416\) 0 0
\(417\) 18.1531 0.888960
\(418\) 0 0
\(419\) 36.8405i 1.79978i 0.436118 + 0.899889i \(0.356353\pi\)
−0.436118 + 0.899889i \(0.643647\pi\)
\(420\) 0 0
\(421\) − 15.2623i − 0.743837i −0.928265 0.371919i \(-0.878700\pi\)
0.928265 0.371919i \(-0.121300\pi\)
\(422\) 0 0
\(423\) 13.0778 0.635866
\(424\) 0 0
\(425\) −1.15712 −0.0561285
\(426\) 0 0
\(427\) − 13.8161i − 0.668608i
\(428\) 0 0
\(429\) 11.9499i 0.576946i
\(430\) 0 0
\(431\) −13.1302 −0.632460 −0.316230 0.948683i \(-0.602417\pi\)
−0.316230 + 0.948683i \(0.602417\pi\)
\(432\) 0 0
\(433\) 29.3975 1.41275 0.706376 0.707837i \(-0.250329\pi\)
0.706376 + 0.707837i \(0.250329\pi\)
\(434\) 0 0
\(435\) 3.63769i 0.174414i
\(436\) 0 0
\(437\) 13.9895i 0.669209i
\(438\) 0 0
\(439\) −22.6867 −1.08278 −0.541389 0.840773i \(-0.682101\pi\)
−0.541389 + 0.840773i \(0.682101\pi\)
\(440\) 0 0
\(441\) −1.00000 −0.0476190
\(442\) 0 0
\(443\) 35.7201i 1.69711i 0.529106 + 0.848556i \(0.322527\pi\)
−0.529106 + 0.848556i \(0.677473\pi\)
\(444\) 0 0
\(445\) 2.61172i 0.123808i
\(446\) 0 0
\(447\) 4.96179 0.234685
\(448\) 0 0
\(449\) −23.1828 −1.09406 −0.547031 0.837112i \(-0.684242\pi\)
−0.547031 + 0.837112i \(0.684242\pi\)
\(450\) 0 0
\(451\) − 11.2754i − 0.530937i
\(452\) 0 0
\(453\) 19.8109i 0.930799i
\(454\) 0 0
\(455\) 3.45686 0.162060
\(456\) 0 0
\(457\) −2.26681 −0.106037 −0.0530185 0.998594i \(-0.516884\pi\)
−0.0530185 + 0.998594i \(0.516884\pi\)
\(458\) 0 0
\(459\) − 1.15712i − 0.0540097i
\(460\) 0 0
\(461\) 1.56217i 0.0727575i 0.999338 + 0.0363787i \(0.0115823\pi\)
−0.999338 + 0.0363787i \(0.988418\pi\)
\(462\) 0 0
\(463\) 32.5631 1.51334 0.756668 0.653799i \(-0.226826\pi\)
0.756668 + 0.653799i \(0.226826\pi\)
\(464\) 0 0
\(465\) 5.40739 0.250762
\(466\) 0 0
\(467\) 23.9641i 1.10892i 0.832209 + 0.554462i \(0.187076\pi\)
−0.832209 + 0.554462i \(0.812924\pi\)
\(468\) 0 0
\(469\) − 3.21227i − 0.148329i
\(470\) 0 0
\(471\) −22.7995 −1.05054
\(472\) 0 0
\(473\) −17.1994 −0.790829
\(474\) 0 0
\(475\) 5.88796i 0.270158i
\(476\) 0 0
\(477\) − 5.92814i − 0.271431i
\(478\) 0 0
\(479\) −20.5143 −0.937321 −0.468661 0.883378i \(-0.655263\pi\)
−0.468661 + 0.883378i \(0.655263\pi\)
\(480\) 0 0
\(481\) 14.3774 0.655551
\(482\) 0 0
\(483\) − 2.37595i − 0.108110i
\(484\) 0 0
\(485\) − 0.962000i − 0.0436822i
\(486\) 0 0
\(487\) −35.7867 −1.62165 −0.810826 0.585288i \(-0.800982\pi\)
−0.810826 + 0.585288i \(0.800982\pi\)
\(488\) 0 0
\(489\) 7.57926 0.342746
\(490\) 0 0
\(491\) − 23.8613i − 1.07684i −0.842675 0.538422i \(-0.819021\pi\)
0.842675 0.538422i \(-0.180979\pi\)
\(492\) 0 0
\(493\) 4.20925i 0.189575i
\(494\) 0 0
\(495\) 3.45686 0.155374
\(496\) 0 0
\(497\) −2.33991 −0.104960
\(498\) 0 0
\(499\) − 34.5650i − 1.54734i −0.633587 0.773672i \(-0.718418\pi\)
0.633587 0.773672i \(-0.281582\pi\)
\(500\) 0 0
\(501\) − 7.14851i − 0.319372i
\(502\) 0 0
\(503\) −15.1957 −0.677542 −0.338771 0.940869i \(-0.610011\pi\)
−0.338771 + 0.940869i \(0.610011\pi\)
\(504\) 0 0
\(505\) −8.65394 −0.385095
\(506\) 0 0
\(507\) 1.05011i 0.0466372i
\(508\) 0 0
\(509\) 6.28118i 0.278408i 0.990264 + 0.139204i \(0.0444544\pi\)
−0.990264 + 0.139204i \(0.955546\pi\)
\(510\) 0 0
\(511\) 5.95172 0.263289
\(512\) 0 0
\(513\) −5.88796 −0.259960
\(514\) 0 0
\(515\) 12.5278i 0.552042i
\(516\) 0 0
\(517\) 45.2083i 1.98826i
\(518\) 0 0
\(519\) −1.60976 −0.0706607
\(520\) 0 0
\(521\) 5.88279 0.257730 0.128865 0.991662i \(-0.458867\pi\)
0.128865 + 0.991662i \(0.458867\pi\)
\(522\) 0 0
\(523\) 1.16662i 0.0510129i 0.999675 + 0.0255065i \(0.00811984\pi\)
−0.999675 + 0.0255065i \(0.991880\pi\)
\(524\) 0 0
\(525\) − 1.00000i − 0.0436436i
\(526\) 0 0
\(527\) 6.25699 0.272559
\(528\) 0 0
\(529\) −17.3549 −0.754559
\(530\) 0 0
\(531\) 12.5571i 0.544931i
\(532\) 0 0
\(533\) 11.2754i 0.488391i
\(534\) 0 0
\(535\) −13.7265 −0.593446
\(536\) 0 0
\(537\) 17.9373 0.774050
\(538\) 0 0
\(539\) − 3.45686i − 0.148898i
\(540\) 0 0
\(541\) 13.7558i 0.591408i 0.955280 + 0.295704i \(0.0955541\pi\)
−0.955280 + 0.295704i \(0.904446\pi\)
\(542\) 0 0
\(543\) −12.5922 −0.540384
\(544\) 0 0
\(545\) −0.912317 −0.0390794
\(546\) 0 0
\(547\) 15.0151i 0.641998i 0.947080 + 0.320999i \(0.104019\pi\)
−0.947080 + 0.320999i \(0.895981\pi\)
\(548\) 0 0
\(549\) 13.8161i 0.589657i
\(550\) 0 0
\(551\) 21.4186 0.912463
\(552\) 0 0
\(553\) 14.2934 0.607817
\(554\) 0 0
\(555\) − 4.15908i − 0.176543i
\(556\) 0 0
\(557\) − 16.4658i − 0.697678i −0.937183 0.348839i \(-0.886576\pi\)
0.937183 0.348839i \(-0.113424\pi\)
\(558\) 0 0
\(559\) 17.1994 0.727457
\(560\) 0 0
\(561\) 4.00000 0.168880
\(562\) 0 0
\(563\) − 5.43891i − 0.229223i −0.993410 0.114611i \(-0.963438\pi\)
0.993410 0.114611i \(-0.0365623\pi\)
\(564\) 0 0
\(565\) 1.85435i 0.0780132i
\(566\) 0 0
\(567\) 1.00000 0.0419961
\(568\) 0 0
\(569\) −46.1886 −1.93633 −0.968163 0.250319i \(-0.919464\pi\)
−0.968163 + 0.250319i \(0.919464\pi\)
\(570\) 0 0
\(571\) 30.7029i 1.28488i 0.766338 + 0.642438i \(0.222077\pi\)
−0.766338 + 0.642438i \(0.777923\pi\)
\(572\) 0 0
\(573\) − 0.362860i − 0.0151587i
\(574\) 0 0
\(575\) 2.37595 0.0990840
\(576\) 0 0
\(577\) 42.3096 1.76137 0.880687 0.473699i \(-0.157082\pi\)
0.880687 + 0.473699i \(0.157082\pi\)
\(578\) 0 0
\(579\) − 21.4416i − 0.891080i
\(580\) 0 0
\(581\) 8.18770i 0.339683i
\(582\) 0 0
\(583\) 20.4927 0.848723
\(584\) 0 0
\(585\) −3.45686 −0.142924
\(586\) 0 0
\(587\) 33.7492i 1.39298i 0.717567 + 0.696490i \(0.245256\pi\)
−0.717567 + 0.696490i \(0.754744\pi\)
\(588\) 0 0
\(589\) − 31.8385i − 1.31188i
\(590\) 0 0
\(591\) 19.6997 0.810338
\(592\) 0 0
\(593\) −18.7826 −0.771308 −0.385654 0.922643i \(-0.626024\pi\)
−0.385654 + 0.922643i \(0.626024\pi\)
\(594\) 0 0
\(595\) − 1.15712i − 0.0474373i
\(596\) 0 0
\(597\) − 8.33424i − 0.341098i
\(598\) 0 0
\(599\) −36.0553 −1.47318 −0.736590 0.676340i \(-0.763565\pi\)
−0.736590 + 0.676340i \(0.763565\pi\)
\(600\) 0 0
\(601\) −40.1760 −1.63881 −0.819406 0.573213i \(-0.805697\pi\)
−0.819406 + 0.573213i \(0.805697\pi\)
\(602\) 0 0
\(603\) 3.21227i 0.130814i
\(604\) 0 0
\(605\) 0.949887i 0.0386184i
\(606\) 0 0
\(607\) 1.19349 0.0484425 0.0242212 0.999707i \(-0.492289\pi\)
0.0242212 + 0.999707i \(0.492289\pi\)
\(608\) 0 0
\(609\) −3.63769 −0.147407
\(610\) 0 0
\(611\) − 45.2083i − 1.82893i
\(612\) 0 0
\(613\) − 5.58254i − 0.225477i −0.993625 0.112738i \(-0.964038\pi\)
0.993625 0.112738i \(-0.0359622\pi\)
\(614\) 0 0
\(615\) 3.26174 0.131526
\(616\) 0 0
\(617\) 1.04871 0.0422194 0.0211097 0.999777i \(-0.493280\pi\)
0.0211097 + 0.999777i \(0.493280\pi\)
\(618\) 0 0
\(619\) 20.7700i 0.834818i 0.908719 + 0.417409i \(0.137062\pi\)
−0.908719 + 0.417409i \(0.862938\pi\)
\(620\) 0 0
\(621\) 2.37595i 0.0953437i
\(622\) 0 0
\(623\) −2.61172 −0.104637
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) − 20.3539i − 0.812855i
\(628\) 0 0
\(629\) − 4.81255i − 0.191889i
\(630\) 0 0
\(631\) 13.4246 0.534426 0.267213 0.963637i \(-0.413897\pi\)
0.267213 + 0.963637i \(0.413897\pi\)
\(632\) 0 0
\(633\) −15.0108 −0.596626
\(634\) 0 0
\(635\) − 9.75004i − 0.386918i
\(636\) 0 0
\(637\) 3.45686i 0.136966i
\(638\) 0 0
\(639\) 2.33991 0.0925656
\(640\) 0 0
\(641\) −5.50664 −0.217499 −0.108750 0.994069i \(-0.534685\pi\)
−0.108750 + 0.994069i \(0.534685\pi\)
\(642\) 0 0
\(643\) 44.9187i 1.77142i 0.464239 + 0.885710i \(0.346328\pi\)
−0.464239 + 0.885710i \(0.653672\pi\)
\(644\) 0 0
\(645\) − 4.97544i − 0.195908i
\(646\) 0 0
\(647\) −33.1838 −1.30459 −0.652295 0.757965i \(-0.726194\pi\)
−0.652295 + 0.757965i \(0.726194\pi\)
\(648\) 0 0
\(649\) −43.4081 −1.70392
\(650\) 0 0
\(651\) 5.40739i 0.211932i
\(652\) 0 0
\(653\) − 13.1201i − 0.513429i −0.966487 0.256714i \(-0.917360\pi\)
0.966487 0.256714i \(-0.0826400\pi\)
\(654\) 0 0
\(655\) −7.32913 −0.286373
\(656\) 0 0
\(657\) −5.95172 −0.232199
\(658\) 0 0
\(659\) − 13.6449i − 0.531528i −0.964038 0.265764i \(-0.914376\pi\)
0.964038 0.265764i \(-0.0856243\pi\)
\(660\) 0 0
\(661\) 35.1275i 1.36630i 0.730278 + 0.683150i \(0.239391\pi\)
−0.730278 + 0.683150i \(0.760609\pi\)
\(662\) 0 0
\(663\) −4.00000 −0.155347
\(664\) 0 0
\(665\) −5.88796 −0.228325
\(666\) 0 0
\(667\) − 8.64299i − 0.334658i
\(668\) 0 0
\(669\) 20.0655i 0.775778i
\(670\) 0 0
\(671\) −47.7603 −1.84377
\(672\) 0 0
\(673\) −7.01462 −0.270394 −0.135197 0.990819i \(-0.543167\pi\)
−0.135197 + 0.990819i \(0.543167\pi\)
\(674\) 0 0
\(675\) 1.00000i 0.0384900i
\(676\) 0 0
\(677\) − 24.1419i − 0.927850i −0.885874 0.463925i \(-0.846441\pi\)
0.885874 0.463925i \(-0.153559\pi\)
\(678\) 0 0
\(679\) 0.962000 0.0369182
\(680\) 0 0
\(681\) 21.6784 0.830718
\(682\) 0 0
\(683\) 13.3089i 0.509252i 0.967040 + 0.254626i \(0.0819523\pi\)
−0.967040 + 0.254626i \(0.918048\pi\)
\(684\) 0 0
\(685\) 4.09652i 0.156520i
\(686\) 0 0
\(687\) −7.83904 −0.299078
\(688\) 0 0
\(689\) −20.4927 −0.780711
\(690\) 0 0
\(691\) 1.62524i 0.0618271i 0.999522 + 0.0309136i \(0.00984166\pi\)
−0.999522 + 0.0309136i \(0.990158\pi\)
\(692\) 0 0
\(693\) 3.45686i 0.131315i
\(694\) 0 0
\(695\) −18.1531 −0.688585
\(696\) 0 0
\(697\) 3.77422 0.142959
\(698\) 0 0
\(699\) 24.9587i 0.944026i
\(700\) 0 0
\(701\) 35.1489i 1.32755i 0.747931 + 0.663777i \(0.231048\pi\)
−0.747931 + 0.663777i \(0.768952\pi\)
\(702\) 0 0
\(703\) −24.4885 −0.923602
\(704\) 0 0
\(705\) −13.0778 −0.492540
\(706\) 0 0
\(707\) − 8.65394i − 0.325465i
\(708\) 0 0
\(709\) − 20.0114i − 0.751542i −0.926713 0.375771i \(-0.877378\pi\)
0.926713 0.375771i \(-0.122622\pi\)
\(710\) 0 0
\(711\) −14.2934 −0.536044
\(712\) 0 0
\(713\) −12.8477 −0.481150
\(714\) 0 0
\(715\) − 11.9499i − 0.446900i
\(716\) 0 0
\(717\) 2.64981i 0.0989589i
\(718\) 0 0
\(719\) 31.7901 1.18557 0.592785 0.805361i \(-0.298028\pi\)
0.592785 + 0.805361i \(0.298028\pi\)
\(720\) 0 0
\(721\) −12.5278 −0.466561
\(722\) 0 0
\(723\) − 5.92835i − 0.220478i
\(724\) 0 0
\(725\) − 3.63769i − 0.135101i
\(726\) 0 0
\(727\) −25.9394 −0.962041 −0.481020 0.876709i \(-0.659734\pi\)
−0.481020 + 0.876709i \(0.659734\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) − 5.75717i − 0.212937i
\(732\) 0 0
\(733\) 16.8200i 0.621262i 0.950531 + 0.310631i \(0.100540\pi\)
−0.950531 + 0.310631i \(0.899460\pi\)
\(734\) 0 0
\(735\) 1.00000 0.0368856
\(736\) 0 0
\(737\) −11.1044 −0.409035
\(738\) 0 0
\(739\) − 43.9284i − 1.61593i −0.589228 0.807967i \(-0.700568\pi\)
0.589228 0.807967i \(-0.299432\pi\)
\(740\) 0 0
\(741\) 20.3539i 0.747718i
\(742\) 0 0
\(743\) 24.5519 0.900723 0.450362 0.892846i \(-0.351295\pi\)
0.450362 + 0.892846i \(0.351295\pi\)
\(744\) 0 0
\(745\) −4.96179 −0.181786
\(746\) 0 0
\(747\) − 8.18770i − 0.299572i
\(748\) 0 0
\(749\) − 13.7265i − 0.501554i
\(750\) 0 0
\(751\) 10.0855 0.368026 0.184013 0.982924i \(-0.441091\pi\)
0.184013 + 0.982924i \(0.441091\pi\)
\(752\) 0 0
\(753\) −13.3090 −0.485007
\(754\) 0 0
\(755\) − 19.8109i − 0.720994i
\(756\) 0 0
\(757\) 20.2698i 0.736719i 0.929684 + 0.368359i \(0.120080\pi\)
−0.929684 + 0.368359i \(0.879920\pi\)
\(758\) 0 0
\(759\) −8.21334 −0.298125
\(760\) 0 0
\(761\) 19.4494 0.705042 0.352521 0.935804i \(-0.385325\pi\)
0.352521 + 0.935804i \(0.385325\pi\)
\(762\) 0 0
\(763\) − 0.912317i − 0.0330281i
\(764\) 0 0
\(765\) 1.15712i 0.0418357i
\(766\) 0 0
\(767\) 43.4081 1.56738
\(768\) 0 0
\(769\) −22.6523 −0.816863 −0.408431 0.912789i \(-0.633924\pi\)
−0.408431 + 0.912789i \(0.633924\pi\)
\(770\) 0 0
\(771\) 21.0189i 0.756976i
\(772\) 0 0
\(773\) 32.3487i 1.16350i 0.813367 + 0.581751i \(0.197632\pi\)
−0.813367 + 0.581751i \(0.802368\pi\)
\(774\) 0 0
\(775\) −5.40739 −0.194239
\(776\) 0 0
\(777\) 4.15908 0.149206
\(778\) 0 0
\(779\) − 19.2050i − 0.688091i
\(780\) 0 0
\(781\) 8.08876i 0.289439i
\(782\) 0 0
\(783\) 3.63769 0.130001
\(784\) 0 0
\(785\) 22.7995 0.813748
\(786\) 0 0
\(787\) 31.4411i 1.12076i 0.828237 + 0.560378i \(0.189344\pi\)
−0.828237 + 0.560378i \(0.810656\pi\)
\(788\) 0 0
\(789\) 21.3307i 0.759393i
\(790\) 0 0
\(791\) −1.85435 −0.0659332
\(792\) 0 0
\(793\) 47.7603 1.69602
\(794\) 0 0
\(795\) 5.92814i 0.210249i
\(796\) 0 0
\(797\) − 28.1515i − 0.997177i −0.866839 0.498589i \(-0.833852\pi\)
0.866839 0.498589i \(-0.166148\pi\)
\(798\) 0 0
\(799\) −15.1326 −0.535354
\(800\) 0 0
\(801\) 2.61172 0.0922807
\(802\) 0 0
\(803\) − 20.5743i − 0.726050i
\(804\) 0 0
\(805\) 2.37595i 0.0837413i
\(806\) 0 0
\(807\) −10.3670 −0.364936
\(808\) 0 0
\(809\) 14.9984 0.527316 0.263658 0.964616i \(-0.415071\pi\)
0.263658 + 0.964616i \(0.415071\pi\)
\(810\) 0 0
\(811\) 18.8356i 0.661406i 0.943735 + 0.330703i \(0.107286\pi\)
−0.943735 + 0.330703i \(0.892714\pi\)
\(812\) 0 0
\(813\) 18.7588i 0.657899i
\(814\) 0 0
\(815\) −7.57926 −0.265490
\(816\) 0 0
\(817\) −29.2952 −1.02491
\(818\) 0 0
\(819\) − 3.45686i − 0.120792i
\(820\) 0 0
\(821\) 35.1179i 1.22562i 0.790229 + 0.612811i \(0.209961\pi\)
−0.790229 + 0.612811i \(0.790039\pi\)
\(822\) 0 0
\(823\) −10.8181 −0.377097 −0.188548 0.982064i \(-0.560378\pi\)
−0.188548 + 0.982064i \(0.560378\pi\)
\(824\) 0 0
\(825\) −3.45686 −0.120352
\(826\) 0 0
\(827\) − 38.7858i − 1.34871i −0.738406 0.674357i \(-0.764421\pi\)
0.738406 0.674357i \(-0.235579\pi\)
\(828\) 0 0
\(829\) − 38.0268i − 1.32072i −0.750947 0.660362i \(-0.770403\pi\)
0.750947 0.660362i \(-0.229597\pi\)
\(830\) 0 0
\(831\) 25.1344 0.871903
\(832\) 0 0
\(833\) 1.15712 0.0400918
\(834\) 0 0
\(835\) 7.14851i 0.247384i
\(836\) 0 0
\(837\) − 5.40739i − 0.186907i
\(838\) 0 0
\(839\) −33.7281 −1.16442 −0.582211 0.813038i \(-0.697812\pi\)
−0.582211 + 0.813038i \(0.697812\pi\)
\(840\) 0 0
\(841\) 15.7672 0.543696
\(842\) 0 0
\(843\) 8.31424i 0.286358i
\(844\) 0 0
\(845\) − 1.05011i − 0.0361250i
\(846\) 0 0
\(847\) −0.949887 −0.0326385
\(848\) 0 0
\(849\) 10.9655 0.376335
\(850\) 0 0
\(851\) 9.88178i 0.338743i
\(852\) 0 0
\(853\) 43.8436i 1.50118i 0.660770 + 0.750589i \(0.270230\pi\)
−0.660770 + 0.750589i \(0.729770\pi\)
\(854\) 0 0
\(855\) 5.88796 0.201364
\(856\) 0 0
\(857\) −20.7396 −0.708451 −0.354225 0.935160i \(-0.615255\pi\)
−0.354225 + 0.935160i \(0.615255\pi\)
\(858\) 0 0
\(859\) − 24.7972i − 0.846071i −0.906113 0.423036i \(-0.860965\pi\)
0.906113 0.423036i \(-0.139035\pi\)
\(860\) 0 0
\(861\) 3.26174i 0.111160i
\(862\) 0 0
\(863\) 31.3753 1.06803 0.534014 0.845475i \(-0.320683\pi\)
0.534014 + 0.845475i \(0.320683\pi\)
\(864\) 0 0
\(865\) 1.60976 0.0547335
\(866\) 0 0
\(867\) − 15.6611i − 0.531878i
\(868\) 0 0
\(869\) − 49.4103i − 1.67613i
\(870\) 0 0
\(871\) 11.1044 0.376257
\(872\) 0 0
\(873\) −0.962000 −0.0325588
\(874\) 0 0
\(875\) 1.00000i 0.0338062i
\(876\) 0 0
\(877\) 22.7957i 0.769755i 0.922968 + 0.384878i \(0.125756\pi\)
−0.922968 + 0.384878i \(0.874244\pi\)
\(878\) 0 0
\(879\) 17.0513 0.575127
\(880\) 0 0
\(881\) −14.2101 −0.478749 −0.239375 0.970927i \(-0.576942\pi\)
−0.239375 + 0.970927i \(0.576942\pi\)
\(882\) 0 0
\(883\) 11.3850i 0.383135i 0.981479 + 0.191568i \(0.0613572\pi\)
−0.981479 + 0.191568i \(0.938643\pi\)
\(884\) 0 0
\(885\) − 12.5571i − 0.422102i
\(886\) 0 0
\(887\) 11.5024 0.386212 0.193106 0.981178i \(-0.438144\pi\)
0.193106 + 0.981178i \(0.438144\pi\)
\(888\) 0 0
\(889\) 9.75004 0.327006
\(890\) 0 0
\(891\) − 3.45686i − 0.115809i
\(892\) 0 0
\(893\) 77.0018i 2.57677i
\(894\) 0 0
\(895\) −17.9373 −0.599577
\(896\) 0 0
\(897\) 8.21334 0.274235
\(898\) 0 0
\(899\) 19.6704i 0.656045i
\(900\) 0 0
\(901\) 6.85956i 0.228525i
\(902\) 0 0
\(903\) 4.97544 0.165572
\(904\) 0 0
\(905\) 12.5922 0.418580
\(906\) 0 0
\(907\) 34.8718i 1.15790i 0.815364 + 0.578949i \(0.196537\pi\)
−0.815364 + 0.578949i \(0.803463\pi\)
\(908\) 0 0
\(909\) 8.65394i 0.287033i
\(910\) 0 0
\(911\) −8.14049 −0.269706 −0.134853 0.990866i \(-0.543056\pi\)
−0.134853 + 0.990866i \(0.543056\pi\)
\(912\) 0 0
\(913\) 28.3038 0.936718
\(914\) 0 0
\(915\) − 13.8161i − 0.456746i
\(916\) 0 0
\(917\) − 7.32913i − 0.242029i
\(918\) 0 0
\(919\) 16.9557 0.559318 0.279659 0.960099i \(-0.409779\pi\)
0.279659 + 0.960099i \(0.409779\pi\)
\(920\) 0 0
\(921\) −22.1618 −0.730257
\(922\) 0 0
\(923\) − 8.08876i − 0.266245i
\(924\) 0 0
\(925\) 4.15908i 0.136750i
\(926\) 0 0
\(927\) 12.5278 0.411468
\(928\) 0 0
\(929\) −11.1454 −0.365670 −0.182835 0.983144i \(-0.558527\pi\)
−0.182835 + 0.983144i \(0.558527\pi\)
\(930\) 0 0
\(931\) − 5.88796i − 0.192970i
\(932\) 0 0
\(933\) − 15.5650i − 0.509575i
\(934\) 0 0
\(935\) −4.00000 −0.130814
\(936\) 0 0
\(937\) −18.5833 −0.607089 −0.303545 0.952817i \(-0.598170\pi\)
−0.303545 + 0.952817i \(0.598170\pi\)
\(938\) 0 0
\(939\) 25.6560i 0.837252i
\(940\) 0 0
\(941\) 41.3754i 1.34880i 0.738367 + 0.674399i \(0.235597\pi\)
−0.738367 + 0.674399i \(0.764403\pi\)
\(942\) 0 0
\(943\) −7.74974 −0.252366
\(944\) 0 0
\(945\) −1.00000 −0.0325300
\(946\) 0 0
\(947\) 48.0763i 1.56227i 0.624363 + 0.781134i \(0.285359\pi\)
−0.624363 + 0.781134i \(0.714641\pi\)
\(948\) 0 0
\(949\) 20.5743i 0.667869i
\(950\) 0 0
\(951\) 21.9692 0.712399
\(952\) 0 0
\(953\) 17.6285 0.571042 0.285521 0.958372i \(-0.407833\pi\)
0.285521 + 0.958372i \(0.407833\pi\)
\(954\) 0 0
\(955\) 0.362860i 0.0117419i
\(956\) 0 0
\(957\) 12.5750i 0.406492i
\(958\) 0 0
\(959\) −4.09652 −0.132283
\(960\) 0 0
\(961\) −1.76015 −0.0567791
\(962\) 0 0
\(963\) 13.7265i 0.442329i
\(964\) 0 0
\(965\) 21.4416i 0.690228i
\(966\) 0 0
\(967\) 16.9567 0.545291 0.272646 0.962115i \(-0.412101\pi\)
0.272646 + 0.962115i \(0.412101\pi\)
\(968\) 0 0
\(969\) 6.81307 0.218867
\(970\) 0 0
\(971\) − 15.0779i − 0.483873i −0.970292 0.241937i \(-0.922217\pi\)
0.970292 0.241937i \(-0.0777826\pi\)
\(972\) 0 0
\(973\) − 18.1531i − 0.581961i
\(974\) 0 0
\(975\) 3.45686 0.110708
\(976\) 0 0
\(977\) 39.9107 1.27686 0.638428 0.769682i \(-0.279585\pi\)
0.638428 + 0.769682i \(0.279585\pi\)
\(978\) 0 0
\(979\) 9.02837i 0.288548i
\(980\) 0 0
\(981\) 0.912317i 0.0291280i
\(982\) 0 0
\(983\) −24.0536 −0.767190 −0.383595 0.923502i \(-0.625314\pi\)
−0.383595 + 0.923502i \(0.625314\pi\)
\(984\) 0 0
\(985\) −19.6997 −0.627685
\(986\) 0 0
\(987\) − 13.0778i − 0.416272i
\(988\) 0 0
\(989\) 11.8214i 0.375899i
\(990\) 0 0
\(991\) 47.3455 1.50398 0.751990 0.659174i \(-0.229094\pi\)
0.751990 + 0.659174i \(0.229094\pi\)
\(992\) 0 0
\(993\) 17.1940 0.545636
\(994\) 0 0
\(995\) 8.33424i 0.264213i
\(996\) 0 0
\(997\) 25.2053i 0.798261i 0.916894 + 0.399130i \(0.130688\pi\)
−0.916894 + 0.399130i \(0.869312\pi\)
\(998\) 0 0
\(999\) −4.15908 −0.131588
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3360.2.g.c.1681.8 12
4.3 odd 2 840.2.g.b.421.5 12
8.3 odd 2 840.2.g.b.421.6 yes 12
8.5 even 2 inner 3360.2.g.c.1681.5 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
840.2.g.b.421.5 12 4.3 odd 2
840.2.g.b.421.6 yes 12 8.3 odd 2
3360.2.g.c.1681.5 12 8.5 even 2 inner
3360.2.g.c.1681.8 12 1.1 even 1 trivial