Properties

Label 840.2.dd.b.73.9
Level $840$
Weight $2$
Character 840.73
Analytic conductor $6.707$
Analytic rank $0$
Dimension $48$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [840,2,Mod(73,840)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(840, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([0, 0, 0, 9, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("840.73"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 840 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 840.dd (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0,0,0,0,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.70743376979\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(12\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 73.9
Character \(\chi\) \(=\) 840.73
Dual form 840.2.dd.b.817.9

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.258819 + 0.965926i) q^{3} +(-0.583460 + 2.15860i) q^{5} +(0.939373 - 2.47337i) q^{7} +(-0.866025 + 0.500000i) q^{9} +(-2.18212 + 3.77954i) q^{11} +(-2.79969 + 2.79969i) q^{13} +(-2.23606 - 0.00489121i) q^{15} +(-0.306752 + 0.0821940i) q^{17} +(-1.35172 - 2.34125i) q^{19} +(2.63222 + 0.267208i) q^{21} +(-0.783438 + 2.92383i) q^{23} +(-4.31915 - 2.51892i) q^{25} +(-0.707107 - 0.707107i) q^{27} +4.52748i q^{29} +(1.89712 + 1.09530i) q^{31} +(-4.21553 - 1.12955i) q^{33} +(4.79095 + 3.47085i) q^{35} +(-2.58561 - 0.692812i) q^{37} +(-3.42891 - 1.97968i) q^{39} +2.63418i q^{41} +(6.21198 + 6.21198i) q^{43} +(-0.574011 - 2.16114i) q^{45} +(1.62683 - 6.07142i) q^{47} +(-5.23516 - 4.64684i) q^{49} +(-0.158787 - 0.275026i) q^{51} +(-12.0435 + 3.22704i) q^{53} +(-6.88536 - 6.91554i) q^{55} +(1.91162 - 1.91162i) q^{57} +(-0.863327 + 1.49533i) q^{59} +(-8.84369 + 5.10591i) q^{61} +(0.423166 + 2.61169i) q^{63} +(-4.40992 - 7.67694i) q^{65} +(1.97779 + 7.38122i) q^{67} -3.02697 q^{69} +5.39235 q^{71} +(-4.04357 - 15.0908i) q^{73} +(1.31521 - 4.82392i) q^{75} +(7.29840 + 8.94759i) q^{77} +(-11.6020 + 6.69839i) q^{79} +(0.500000 - 0.866025i) q^{81} +(11.4560 - 11.4560i) q^{83} +(0.00155332 - 0.710113i) q^{85} +(-4.37321 + 1.17180i) q^{87} +(3.03332 + 5.25387i) q^{89} +(4.29473 + 9.55465i) q^{91} +(-0.566971 + 2.11597i) q^{93} +(5.84251 - 1.55181i) q^{95} +(7.89037 + 7.89037i) q^{97} -4.36424i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 4 q^{7} - 4 q^{11} - 16 q^{13} - 4 q^{15} + 4 q^{17} - 8 q^{19} + 48 q^{23} - 20 q^{25} + 24 q^{33} - 4 q^{37} + 12 q^{39} + 16 q^{43} + 4 q^{45} - 12 q^{47} + 12 q^{49} - 52 q^{53} + 56 q^{55} + 8 q^{57}+ \cdots - 44 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/840\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(281\) \(337\) \(421\) \(631\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(1\) \(e\left(\frac{3}{4}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.258819 + 0.965926i 0.149429 + 0.557678i
\(4\) 0 0
\(5\) −0.583460 + 2.15860i −0.260931 + 0.965357i
\(6\) 0 0
\(7\) 0.939373 2.47337i 0.355049 0.934848i
\(8\) 0 0
\(9\) −0.866025 + 0.500000i −0.288675 + 0.166667i
\(10\) 0 0
\(11\) −2.18212 + 3.77954i −0.657934 + 1.13957i 0.323216 + 0.946325i \(0.395236\pi\)
−0.981150 + 0.193249i \(0.938097\pi\)
\(12\) 0 0
\(13\) −2.79969 + 2.79969i −0.776495 + 0.776495i −0.979233 0.202738i \(-0.935016\pi\)
0.202738 + 0.979233i \(0.435016\pi\)
\(14\) 0 0
\(15\) −2.23606 0.00489121i −0.577349 0.00126291i
\(16\) 0 0
\(17\) −0.306752 + 0.0821940i −0.0743983 + 0.0199350i −0.295826 0.955242i \(-0.595595\pi\)
0.221428 + 0.975177i \(0.428928\pi\)
\(18\) 0 0
\(19\) −1.35172 2.34125i −0.310106 0.537120i 0.668279 0.743911i \(-0.267031\pi\)
−0.978385 + 0.206791i \(0.933698\pi\)
\(20\) 0 0
\(21\) 2.63222 + 0.267208i 0.574398 + 0.0583096i
\(22\) 0 0
\(23\) −0.783438 + 2.92383i −0.163358 + 0.609661i 0.834886 + 0.550423i \(0.185534\pi\)
−0.998244 + 0.0592377i \(0.981133\pi\)
\(24\) 0 0
\(25\) −4.31915 2.51892i −0.863830 0.503784i
\(26\) 0 0
\(27\) −0.707107 0.707107i −0.136083 0.136083i
\(28\) 0 0
\(29\) 4.52748i 0.840732i 0.907355 + 0.420366i \(0.138098\pi\)
−0.907355 + 0.420366i \(0.861902\pi\)
\(30\) 0 0
\(31\) 1.89712 + 1.09530i 0.340733 + 0.196722i 0.660596 0.750741i \(-0.270304\pi\)
−0.319863 + 0.947464i \(0.603637\pi\)
\(32\) 0 0
\(33\) −4.21553 1.12955i −0.733830 0.196629i
\(34\) 0 0
\(35\) 4.79095 + 3.47085i 0.809818 + 0.586681i
\(36\) 0 0
\(37\) −2.58561 0.692812i −0.425072 0.113898i 0.0399401 0.999202i \(-0.487283\pi\)
−0.465012 + 0.885304i \(0.653950\pi\)
\(38\) 0 0
\(39\) −3.42891 1.97968i −0.549065 0.317003i
\(40\) 0 0
\(41\) 2.63418i 0.411390i 0.978616 + 0.205695i \(0.0659454\pi\)
−0.978616 + 0.205695i \(0.934055\pi\)
\(42\) 0 0
\(43\) 6.21198 + 6.21198i 0.947319 + 0.947319i 0.998680 0.0513615i \(-0.0163561\pi\)
−0.0513615 + 0.998680i \(0.516356\pi\)
\(44\) 0 0
\(45\) −0.574011 2.16114i −0.0855685 0.322163i
\(46\) 0 0
\(47\) 1.62683 6.07142i 0.237298 0.885608i −0.739802 0.672825i \(-0.765081\pi\)
0.977100 0.212783i \(-0.0682526\pi\)
\(48\) 0 0
\(49\) −5.23516 4.64684i −0.747880 0.663834i
\(50\) 0 0
\(51\) −0.158787 0.275026i −0.0222346 0.0385114i
\(52\) 0 0
\(53\) −12.0435 + 3.22704i −1.65430 + 0.443268i −0.960812 0.277202i \(-0.910593\pi\)
−0.693486 + 0.720470i \(0.743926\pi\)
\(54\) 0 0
\(55\) −6.88536 6.91554i −0.928421 0.932492i
\(56\) 0 0
\(57\) 1.91162 1.91162i 0.253201 0.253201i
\(58\) 0 0
\(59\) −0.863327 + 1.49533i −0.112396 + 0.194675i −0.916736 0.399494i \(-0.869186\pi\)
0.804340 + 0.594169i \(0.202519\pi\)
\(60\) 0 0
\(61\) −8.84369 + 5.10591i −1.13232 + 0.653745i −0.944517 0.328462i \(-0.893470\pi\)
−0.187802 + 0.982207i \(0.560136\pi\)
\(62\) 0 0
\(63\) 0.423166 + 2.61169i 0.0533140 + 0.329042i
\(64\) 0 0
\(65\) −4.40992 7.67694i −0.546984 0.952208i
\(66\) 0 0
\(67\) 1.97779 + 7.38122i 0.241626 + 0.901759i 0.975049 + 0.221988i \(0.0712545\pi\)
−0.733424 + 0.679772i \(0.762079\pi\)
\(68\) 0 0
\(69\) −3.02697 −0.364405
\(70\) 0 0
\(71\) 5.39235 0.639955 0.319977 0.947425i \(-0.396325\pi\)
0.319977 + 0.947425i \(0.396325\pi\)
\(72\) 0 0
\(73\) −4.04357 15.0908i −0.473264 1.76624i −0.627922 0.778276i \(-0.716094\pi\)
0.154658 0.987968i \(-0.450572\pi\)
\(74\) 0 0
\(75\) 1.31521 4.82392i 0.151868 0.557018i
\(76\) 0 0
\(77\) 7.29840 + 8.94759i 0.831729 + 1.01967i
\(78\) 0 0
\(79\) −11.6020 + 6.69839i −1.30532 + 0.753628i −0.981312 0.192425i \(-0.938365\pi\)
−0.324011 + 0.946053i \(0.605031\pi\)
\(80\) 0 0
\(81\) 0.500000 0.866025i 0.0555556 0.0962250i
\(82\) 0 0
\(83\) 11.4560 11.4560i 1.25746 1.25746i 0.305165 0.952299i \(-0.401288\pi\)
0.952299 0.305165i \(-0.0987118\pi\)
\(84\) 0 0
\(85\) 0.00155332 0.710113i 0.000168481 0.0770226i
\(86\) 0 0
\(87\) −4.37321 + 1.17180i −0.468858 + 0.125630i
\(88\) 0 0
\(89\) 3.03332 + 5.25387i 0.321532 + 0.556909i 0.980804 0.194995i \(-0.0624690\pi\)
−0.659273 + 0.751904i \(0.729136\pi\)
\(90\) 0 0
\(91\) 4.29473 + 9.55465i 0.450210 + 1.00160i
\(92\) 0 0
\(93\) −0.566971 + 2.11597i −0.0587922 + 0.219415i
\(94\) 0 0
\(95\) 5.84251 1.55181i 0.599429 0.159212i
\(96\) 0 0
\(97\) 7.89037 + 7.89037i 0.801146 + 0.801146i 0.983275 0.182129i \(-0.0582987\pi\)
−0.182129 + 0.983275i \(0.558299\pi\)
\(98\) 0 0
\(99\) 4.36424i 0.438622i
\(100\) 0 0
\(101\) −2.94262 1.69892i −0.292801 0.169049i 0.346403 0.938086i \(-0.387403\pi\)
−0.639205 + 0.769037i \(0.720736\pi\)
\(102\) 0 0
\(103\) 14.9624 + 4.00916i 1.47429 + 0.395034i 0.904399 0.426687i \(-0.140319\pi\)
0.569889 + 0.821722i \(0.306986\pi\)
\(104\) 0 0
\(105\) −2.11259 + 5.52602i −0.206168 + 0.539285i
\(106\) 0 0
\(107\) 13.1754 + 3.53035i 1.27372 + 0.341291i 0.831454 0.555594i \(-0.187509\pi\)
0.442263 + 0.896885i \(0.354176\pi\)
\(108\) 0 0
\(109\) −0.454868 0.262618i −0.0435685 0.0251543i 0.478058 0.878329i \(-0.341341\pi\)
−0.521626 + 0.853174i \(0.674674\pi\)
\(110\) 0 0
\(111\) 2.67682i 0.254073i
\(112\) 0 0
\(113\) 12.2952 + 12.2952i 1.15664 + 1.15664i 0.985194 + 0.171445i \(0.0548436\pi\)
0.171445 + 0.985194i \(0.445156\pi\)
\(114\) 0 0
\(115\) −5.85429 3.39707i −0.545915 0.316779i
\(116\) 0 0
\(117\) 1.02476 3.82445i 0.0947390 0.353571i
\(118\) 0 0
\(119\) −0.0848581 + 0.835923i −0.00777893 + 0.0766290i
\(120\) 0 0
\(121\) −4.02329 6.96854i −0.365754 0.633504i
\(122\) 0 0
\(123\) −2.54442 + 0.681776i −0.229423 + 0.0614736i
\(124\) 0 0
\(125\) 7.95740 7.85365i 0.711732 0.702451i
\(126\) 0 0
\(127\) 6.07887 6.07887i 0.539413 0.539413i −0.383944 0.923357i \(-0.625434\pi\)
0.923357 + 0.383944i \(0.125434\pi\)
\(128\) 0 0
\(129\) −4.39254 + 7.60810i −0.386741 + 0.669855i
\(130\) 0 0
\(131\) −4.99501 + 2.88387i −0.436416 + 0.251965i −0.702076 0.712102i \(-0.747743\pi\)
0.265660 + 0.964067i \(0.414410\pi\)
\(132\) 0 0
\(133\) −7.06056 + 1.14401i −0.612228 + 0.0991979i
\(134\) 0 0
\(135\) 1.93893 1.11380i 0.166877 0.0958602i
\(136\) 0 0
\(137\) 4.91846 + 18.3559i 0.420212 + 1.56825i 0.774161 + 0.632989i \(0.218172\pi\)
−0.353948 + 0.935265i \(0.615161\pi\)
\(138\) 0 0
\(139\) −0.316854 −0.0268752 −0.0134376 0.999910i \(-0.504277\pi\)
−0.0134376 + 0.999910i \(0.504277\pi\)
\(140\) 0 0
\(141\) 6.28560 0.529343
\(142\) 0 0
\(143\) −4.47229 16.6908i −0.373992 1.39576i
\(144\) 0 0
\(145\) −9.77305 2.64161i −0.811607 0.219373i
\(146\) 0 0
\(147\) 3.13354 6.25946i 0.258450 0.516272i
\(148\) 0 0
\(149\) −7.11870 + 4.10998i −0.583187 + 0.336703i −0.762399 0.647107i \(-0.775978\pi\)
0.179212 + 0.983810i \(0.442645\pi\)
\(150\) 0 0
\(151\) 4.68283 8.11090i 0.381083 0.660055i −0.610134 0.792298i \(-0.708884\pi\)
0.991217 + 0.132243i \(0.0422178\pi\)
\(152\) 0 0
\(153\) 0.224558 0.224558i 0.0181544 0.0181544i
\(154\) 0 0
\(155\) −3.47123 + 3.45607i −0.278816 + 0.277598i
\(156\) 0 0
\(157\) 14.7926 3.96366i 1.18058 0.316334i 0.385421 0.922741i \(-0.374056\pi\)
0.795155 + 0.606407i \(0.207390\pi\)
\(158\) 0 0
\(159\) −6.23416 10.7979i −0.494401 0.856328i
\(160\) 0 0
\(161\) 6.49579 + 4.68430i 0.511940 + 0.369175i
\(162\) 0 0
\(163\) 4.76292 17.7755i 0.373061 1.39228i −0.483097 0.875567i \(-0.660488\pi\)
0.856158 0.516715i \(-0.172845\pi\)
\(164\) 0 0
\(165\) 4.89784 8.44062i 0.381296 0.657101i
\(166\) 0 0
\(167\) −7.47910 7.47910i −0.578750 0.578750i 0.355809 0.934559i \(-0.384205\pi\)
−0.934559 + 0.355809i \(0.884205\pi\)
\(168\) 0 0
\(169\) 2.67657i 0.205890i
\(170\) 0 0
\(171\) 2.34125 + 1.35172i 0.179040 + 0.103369i
\(172\) 0 0
\(173\) 5.29635 + 1.41915i 0.402674 + 0.107896i 0.454471 0.890761i \(-0.349828\pi\)
−0.0517971 + 0.998658i \(0.516495\pi\)
\(174\) 0 0
\(175\) −10.2875 + 8.31667i −0.777663 + 0.628681i
\(176\) 0 0
\(177\) −1.66782 0.446891i −0.125361 0.0335904i
\(178\) 0 0
\(179\) 8.91592 + 5.14761i 0.666407 + 0.384750i 0.794714 0.606984i \(-0.207621\pi\)
−0.128307 + 0.991735i \(0.540954\pi\)
\(180\) 0 0
\(181\) 13.9242i 1.03498i −0.855689 0.517490i \(-0.826866\pi\)
0.855689 0.517490i \(-0.173134\pi\)
\(182\) 0 0
\(183\) −7.22085 7.22085i −0.533780 0.533780i
\(184\) 0 0
\(185\) 3.00411 5.17708i 0.220866 0.380627i
\(186\) 0 0
\(187\) 0.358714 1.33874i 0.0262318 0.0978983i
\(188\) 0 0
\(189\) −2.41318 + 1.08470i −0.175533 + 0.0789005i
\(190\) 0 0
\(191\) 5.34601 + 9.25957i 0.386824 + 0.669999i 0.992020 0.126077i \(-0.0402387\pi\)
−0.605196 + 0.796076i \(0.706905\pi\)
\(192\) 0 0
\(193\) 4.16518 1.11606i 0.299816 0.0803356i −0.105775 0.994390i \(-0.533732\pi\)
0.405591 + 0.914055i \(0.367066\pi\)
\(194\) 0 0
\(195\) 6.27399 6.24660i 0.449289 0.447328i
\(196\) 0 0
\(197\) −1.11483 + 1.11483i −0.0794281 + 0.0794281i −0.745705 0.666277i \(-0.767887\pi\)
0.666277 + 0.745705i \(0.267887\pi\)
\(198\) 0 0
\(199\) −11.7514 + 20.3540i −0.833034 + 1.44286i 0.0625877 + 0.998039i \(0.480065\pi\)
−0.895621 + 0.444817i \(0.853269\pi\)
\(200\) 0 0
\(201\) −6.61782 + 3.82080i −0.466785 + 0.269498i
\(202\) 0 0
\(203\) 11.1982 + 4.25299i 0.785957 + 0.298502i
\(204\) 0 0
\(205\) −5.68615 1.53694i −0.397138 0.107344i
\(206\) 0 0
\(207\) −0.783438 2.92383i −0.0544527 0.203220i
\(208\) 0 0
\(209\) 11.7985 0.816117
\(210\) 0 0
\(211\) 13.9609 0.961108 0.480554 0.876965i \(-0.340436\pi\)
0.480554 + 0.876965i \(0.340436\pi\)
\(212\) 0 0
\(213\) 1.39564 + 5.20861i 0.0956280 + 0.356888i
\(214\) 0 0
\(215\) −17.0337 + 9.78477i −1.16169 + 0.667316i
\(216\) 0 0
\(217\) 4.49120 3.66340i 0.304883 0.248688i
\(218\) 0 0
\(219\) 13.5300 7.81157i 0.914275 0.527857i
\(220\) 0 0
\(221\) 0.628694 1.08893i 0.0422905 0.0732493i
\(222\) 0 0
\(223\) 19.7736 19.7736i 1.32414 1.32414i 0.413745 0.910393i \(-0.364220\pi\)
0.910393 0.413745i \(-0.135780\pi\)
\(224\) 0 0
\(225\) 4.99995 + 0.0218741i 0.333330 + 0.00145827i
\(226\) 0 0
\(227\) −9.14875 + 2.45140i −0.607224 + 0.162705i −0.549313 0.835617i \(-0.685111\pi\)
−0.0579110 + 0.998322i \(0.518444\pi\)
\(228\) 0 0
\(229\) 0.927717 + 1.60685i 0.0613053 + 0.106184i 0.895049 0.445968i \(-0.147140\pi\)
−0.833744 + 0.552151i \(0.813807\pi\)
\(230\) 0 0
\(231\) −6.75375 + 9.36552i −0.444364 + 0.616206i
\(232\) 0 0
\(233\) 7.12699 26.5983i 0.466905 1.74251i −0.183591 0.983003i \(-0.558772\pi\)
0.650496 0.759510i \(-0.274561\pi\)
\(234\) 0 0
\(235\) 12.1566 + 7.05412i 0.793009 + 0.460160i
\(236\) 0 0
\(237\) −9.47296 9.47296i −0.615335 0.615335i
\(238\) 0 0
\(239\) 14.3815i 0.930260i 0.885242 + 0.465130i \(0.153992\pi\)
−0.885242 + 0.465130i \(0.846008\pi\)
\(240\) 0 0
\(241\) 5.73574 + 3.31153i 0.369471 + 0.213314i 0.673227 0.739435i \(-0.264908\pi\)
−0.303756 + 0.952750i \(0.598241\pi\)
\(242\) 0 0
\(243\) 0.965926 + 0.258819i 0.0619642 + 0.0166032i
\(244\) 0 0
\(245\) 13.0852 8.58939i 0.835983 0.548756i
\(246\) 0 0
\(247\) 10.3392 + 2.77038i 0.657867 + 0.176275i
\(248\) 0 0
\(249\) 14.0307 + 8.10065i 0.889162 + 0.513358i
\(250\) 0 0
\(251\) 3.20820i 0.202500i 0.994861 + 0.101250i \(0.0322841\pi\)
−0.994861 + 0.101250i \(0.967716\pi\)
\(252\) 0 0
\(253\) −9.34119 9.34119i −0.587275 0.587275i
\(254\) 0 0
\(255\) 0.686319 0.182290i 0.0429789 0.0114155i
\(256\) 0 0
\(257\) −4.06736 + 15.1796i −0.253715 + 0.946877i 0.715086 + 0.699037i \(0.246388\pi\)
−0.968801 + 0.247841i \(0.920279\pi\)
\(258\) 0 0
\(259\) −4.14244 + 5.74437i −0.257398 + 0.356938i
\(260\) 0 0
\(261\) −2.26374 3.92092i −0.140122 0.242699i
\(262\) 0 0
\(263\) −14.0606 + 3.76752i −0.867011 + 0.232315i −0.664795 0.747026i \(-0.731481\pi\)
−0.202216 + 0.979341i \(0.564814\pi\)
\(264\) 0 0
\(265\) 0.0609852 27.8799i 0.00374629 1.71265i
\(266\) 0 0
\(267\) −4.28977 + 4.28977i −0.262529 + 0.262529i
\(268\) 0 0
\(269\) 6.10002 10.5655i 0.371925 0.644193i −0.617937 0.786228i \(-0.712031\pi\)
0.989862 + 0.142035i \(0.0453646\pi\)
\(270\) 0 0
\(271\) −11.0842 + 6.39946i −0.673317 + 0.388740i −0.797332 0.603541i \(-0.793756\pi\)
0.124015 + 0.992280i \(0.460423\pi\)
\(272\) 0 0
\(273\) −8.11752 + 6.62132i −0.491295 + 0.400740i
\(274\) 0 0
\(275\) 18.9453 10.8278i 1.14244 0.652942i
\(276\) 0 0
\(277\) 5.42047 + 20.2295i 0.325685 + 1.21547i 0.913622 + 0.406565i \(0.133273\pi\)
−0.587937 + 0.808906i \(0.700060\pi\)
\(278\) 0 0
\(279\) −2.19061 −0.131148
\(280\) 0 0
\(281\) 23.8868 1.42497 0.712483 0.701690i \(-0.247571\pi\)
0.712483 + 0.701690i \(0.247571\pi\)
\(282\) 0 0
\(283\) 1.67303 + 6.24382i 0.0994511 + 0.371157i 0.997657 0.0684190i \(-0.0217955\pi\)
−0.898206 + 0.439576i \(0.855129\pi\)
\(284\) 0 0
\(285\) 3.01108 + 5.24179i 0.178361 + 0.310497i
\(286\) 0 0
\(287\) 6.51531 + 2.47448i 0.384586 + 0.146064i
\(288\) 0 0
\(289\) −14.6351 + 8.44957i −0.860888 + 0.497034i
\(290\) 0 0
\(291\) −5.57934 + 9.66369i −0.327066 + 0.566496i
\(292\) 0 0
\(293\) −6.91665 + 6.91665i −0.404075 + 0.404075i −0.879666 0.475591i \(-0.842234\pi\)
0.475591 + 0.879666i \(0.342234\pi\)
\(294\) 0 0
\(295\) −2.72410 2.73604i −0.158603 0.159299i
\(296\) 0 0
\(297\) 4.21553 1.12955i 0.244610 0.0655430i
\(298\) 0 0
\(299\) −5.99245 10.3792i −0.346552 0.600246i
\(300\) 0 0
\(301\) 21.1999 9.52919i 1.22194 0.549253i
\(302\) 0 0
\(303\) 0.879426 3.28206i 0.0505217 0.188550i
\(304\) 0 0
\(305\) −5.86170 22.0691i −0.335640 1.26367i
\(306\) 0 0
\(307\) 7.31476 + 7.31476i 0.417475 + 0.417475i 0.884333 0.466857i \(-0.154614\pi\)
−0.466857 + 0.884333i \(0.654614\pi\)
\(308\) 0 0
\(309\) 15.4902i 0.881207i
\(310\) 0 0
\(311\) −18.8693 10.8942i −1.06998 0.617752i −0.141803 0.989895i \(-0.545290\pi\)
−0.928175 + 0.372143i \(0.878623\pi\)
\(312\) 0 0
\(313\) −22.7616 6.09895i −1.28656 0.344733i −0.450208 0.892924i \(-0.648650\pi\)
−0.836353 + 0.548191i \(0.815317\pi\)
\(314\) 0 0
\(315\) −5.88451 0.610369i −0.331555 0.0343904i
\(316\) 0 0
\(317\) −21.3318 5.71583i −1.19811 0.321033i −0.396024 0.918240i \(-0.629610\pi\)
−0.802087 + 0.597207i \(0.796277\pi\)
\(318\) 0 0
\(319\) −17.1118 9.87951i −0.958077 0.553146i
\(320\) 0 0
\(321\) 13.6402i 0.761322i
\(322\) 0 0
\(323\) 0.607080 + 0.607080i 0.0337788 + 0.0337788i
\(324\) 0 0
\(325\) 19.1445 5.04009i 1.06195 0.279574i
\(326\) 0 0
\(327\) 0.135941 0.507340i 0.00751757 0.0280560i
\(328\) 0 0
\(329\) −13.4887 9.72709i −0.743656 0.536272i
\(330\) 0 0
\(331\) 0.440888 + 0.763640i 0.0242334 + 0.0419735i 0.877888 0.478866i \(-0.158952\pi\)
−0.853654 + 0.520840i \(0.825619\pi\)
\(332\) 0 0
\(333\) 2.58561 0.692812i 0.141691 0.0379659i
\(334\) 0 0
\(335\) −17.0871 0.0373767i −0.933568 0.00204211i
\(336\) 0 0
\(337\) 17.8218 17.8218i 0.970813 0.970813i −0.0287728 0.999586i \(-0.509160\pi\)
0.999586 + 0.0287728i \(0.00915993\pi\)
\(338\) 0 0
\(339\) −8.69405 + 15.0585i −0.472196 + 0.817867i
\(340\) 0 0
\(341\) −8.27950 + 4.78017i −0.448360 + 0.258861i
\(342\) 0 0
\(343\) −16.4111 + 8.58339i −0.886118 + 0.463459i
\(344\) 0 0
\(345\) 1.76612 6.53404i 0.0950846 0.351781i
\(346\) 0 0
\(347\) −5.76421 21.5123i −0.309439 1.15484i −0.929056 0.369938i \(-0.879379\pi\)
0.619617 0.784904i \(-0.287288\pi\)
\(348\) 0 0
\(349\) 1.52167 0.0814531 0.0407266 0.999170i \(-0.487033\pi\)
0.0407266 + 0.999170i \(0.487033\pi\)
\(350\) 0 0
\(351\) 3.95937 0.211335
\(352\) 0 0
\(353\) 5.02235 + 18.7437i 0.267313 + 0.997625i 0.960819 + 0.277175i \(0.0893982\pi\)
−0.693506 + 0.720450i \(0.743935\pi\)
\(354\) 0 0
\(355\) −3.14622 + 11.6400i −0.166984 + 0.617785i
\(356\) 0 0
\(357\) −0.829403 + 0.134386i −0.0438966 + 0.00711247i
\(358\) 0 0
\(359\) −26.7834 + 15.4634i −1.41357 + 0.816126i −0.995723 0.0923909i \(-0.970549\pi\)
−0.417849 + 0.908517i \(0.637216\pi\)
\(360\) 0 0
\(361\) 5.84570 10.1250i 0.307668 0.532897i
\(362\) 0 0
\(363\) 5.68979 5.68979i 0.298637 0.298637i
\(364\) 0 0
\(365\) 34.9343 + 0.0764161i 1.82855 + 0.00399980i
\(366\) 0 0
\(367\) −11.9942 + 3.21383i −0.626091 + 0.167761i −0.557895 0.829911i \(-0.688391\pi\)
−0.0681957 + 0.997672i \(0.521724\pi\)
\(368\) 0 0
\(369\) −1.31709 2.28127i −0.0685649 0.118758i
\(370\) 0 0
\(371\) −3.33164 + 32.8194i −0.172970 + 1.70390i
\(372\) 0 0
\(373\) 1.57261 5.86906i 0.0814266 0.303888i −0.913187 0.407541i \(-0.866386\pi\)
0.994614 + 0.103653i \(0.0330530\pi\)
\(374\) 0 0
\(375\) 9.64557 + 5.65359i 0.498095 + 0.291950i
\(376\) 0 0
\(377\) −12.6756 12.6756i −0.652825 0.652825i
\(378\) 0 0
\(379\) 12.2273i 0.628072i −0.949411 0.314036i \(-0.898319\pi\)
0.949411 0.314036i \(-0.101681\pi\)
\(380\) 0 0
\(381\) 7.44507 + 4.29841i 0.381423 + 0.220214i
\(382\) 0 0
\(383\) −11.9425 3.19999i −0.610234 0.163512i −0.0595499 0.998225i \(-0.518967\pi\)
−0.550684 + 0.834714i \(0.685633\pi\)
\(384\) 0 0
\(385\) −23.5726 + 10.5338i −1.20137 + 0.536852i
\(386\) 0 0
\(387\) −8.48573 2.27374i −0.431354 0.115581i
\(388\) 0 0
\(389\) −25.2993 14.6065i −1.28272 0.740581i −0.305378 0.952231i \(-0.598783\pi\)
−0.977345 + 0.211651i \(0.932116\pi\)
\(390\) 0 0
\(391\) 0.961285i 0.0486143i
\(392\) 0 0
\(393\) −4.07841 4.07841i −0.205729 0.205729i
\(394\) 0 0
\(395\) −7.68990 28.9523i −0.386921 1.45675i
\(396\) 0 0
\(397\) −9.54692 + 35.6296i −0.479146 + 1.78820i 0.125939 + 0.992038i \(0.459805\pi\)
−0.605086 + 0.796160i \(0.706861\pi\)
\(398\) 0 0
\(399\) −2.93243 6.52388i −0.146805 0.326603i
\(400\) 0 0
\(401\) 17.7131 + 30.6799i 0.884549 + 1.53208i 0.846230 + 0.532818i \(0.178867\pi\)
0.0383185 + 0.999266i \(0.487800\pi\)
\(402\) 0 0
\(403\) −8.37788 + 2.24485i −0.417332 + 0.111824i
\(404\) 0 0
\(405\) 1.57768 + 1.58459i 0.0783954 + 0.0787391i
\(406\) 0 0
\(407\) 8.26062 8.26062i 0.409464 0.409464i
\(408\) 0 0
\(409\) −13.9895 + 24.2306i −0.691737 + 1.19812i 0.279531 + 0.960137i \(0.409821\pi\)
−0.971268 + 0.237988i \(0.923512\pi\)
\(410\) 0 0
\(411\) −16.4575 + 9.50174i −0.811788 + 0.468686i
\(412\) 0 0
\(413\) 2.88752 + 3.54000i 0.142085 + 0.174192i
\(414\) 0 0
\(415\) 18.0449 + 31.4132i 0.885791 + 1.54201i
\(416\) 0 0
\(417\) −0.0820080 0.306058i −0.00401595 0.0149877i
\(418\) 0 0
\(419\) −6.49494 −0.317299 −0.158649 0.987335i \(-0.550714\pi\)
−0.158649 + 0.987335i \(0.550714\pi\)
\(420\) 0 0
\(421\) −16.6014 −0.809103 −0.404551 0.914515i \(-0.632572\pi\)
−0.404551 + 0.914515i \(0.632572\pi\)
\(422\) 0 0
\(423\) 1.62683 + 6.07142i 0.0790993 + 0.295203i
\(424\) 0 0
\(425\) 1.53195 + 0.417676i 0.0743104 + 0.0202603i
\(426\) 0 0
\(427\) 4.32130 + 26.6701i 0.209122 + 1.29066i
\(428\) 0 0
\(429\) 14.9646 8.63981i 0.722497 0.417134i
\(430\) 0 0
\(431\) 2.13950 3.70572i 0.103056 0.178498i −0.809886 0.586587i \(-0.800471\pi\)
0.912942 + 0.408089i \(0.133805\pi\)
\(432\) 0 0
\(433\) 11.5948 11.5948i 0.557208 0.557208i −0.371303 0.928512i \(-0.621089\pi\)
0.928512 + 0.371303i \(0.121089\pi\)
\(434\) 0 0
\(435\) 0.0221449 10.1237i 0.00106177 0.485396i
\(436\) 0 0
\(437\) 7.90441 2.11798i 0.378119 0.101317i
\(438\) 0 0
\(439\) −13.9971 24.2437i −0.668046 1.15709i −0.978450 0.206484i \(-0.933798\pi\)
0.310404 0.950605i \(-0.399536\pi\)
\(440\) 0 0
\(441\) 6.85720 + 1.40670i 0.326533 + 0.0669858i
\(442\) 0 0
\(443\) −2.35732 + 8.79765i −0.112000 + 0.417989i −0.999045 0.0436936i \(-0.986087\pi\)
0.887045 + 0.461683i \(0.152754\pi\)
\(444\) 0 0
\(445\) −13.1108 + 3.48232i −0.621514 + 0.165078i
\(446\) 0 0
\(447\) −5.81239 5.81239i −0.274917 0.274917i
\(448\) 0 0
\(449\) 26.7133i 1.26068i 0.776319 + 0.630340i \(0.217084\pi\)
−0.776319 + 0.630340i \(0.782916\pi\)
\(450\) 0 0
\(451\) −9.95599 5.74809i −0.468809 0.270667i
\(452\) 0 0
\(453\) 9.04653 + 2.42401i 0.425043 + 0.113890i
\(454\) 0 0
\(455\) −23.1305 + 3.69588i −1.08438 + 0.173265i
\(456\) 0 0
\(457\) −3.39673 0.910151i −0.158892 0.0425751i 0.178496 0.983941i \(-0.442877\pi\)
−0.337388 + 0.941366i \(0.609544\pi\)
\(458\) 0 0
\(459\) 0.275026 + 0.158787i 0.0128371 + 0.00741152i
\(460\) 0 0
\(461\) 2.72235i 0.126793i 0.997988 + 0.0633963i \(0.0201932\pi\)
−0.997988 + 0.0633963i \(0.979807\pi\)
\(462\) 0 0
\(463\) 26.6530 + 26.6530i 1.23867 + 1.23867i 0.960544 + 0.278128i \(0.0897140\pi\)
0.278128 + 0.960544i \(0.410286\pi\)
\(464\) 0 0
\(465\) −4.23673 2.45845i −0.196474 0.114008i
\(466\) 0 0
\(467\) 11.0524 41.2480i 0.511442 1.90873i 0.106717 0.994289i \(-0.465966\pi\)
0.404725 0.914438i \(-0.367367\pi\)
\(468\) 0 0
\(469\) 20.1144 + 2.04190i 0.928797 + 0.0942860i
\(470\) 0 0
\(471\) 7.65720 + 13.2627i 0.352825 + 0.611111i
\(472\) 0 0
\(473\) −37.0337 + 9.92316i −1.70281 + 0.456267i
\(474\) 0 0
\(475\) −0.0591354 + 13.5171i −0.00271332 + 0.620206i
\(476\) 0 0
\(477\) 8.81643 8.81643i 0.403677 0.403677i
\(478\) 0 0
\(479\) 12.8201 22.2051i 0.585766 1.01458i −0.409013 0.912528i \(-0.634127\pi\)
0.994779 0.102048i \(-0.0325397\pi\)
\(480\) 0 0
\(481\) 9.17858 5.29926i 0.418507 0.241625i
\(482\) 0 0
\(483\) −2.84346 + 7.48684i −0.129382 + 0.340663i
\(484\) 0 0
\(485\) −21.6359 + 12.4285i −0.982436 + 0.564348i
\(486\) 0 0
\(487\) 6.31034 + 23.5505i 0.285949 + 1.06717i 0.948143 + 0.317843i \(0.102959\pi\)
−0.662195 + 0.749332i \(0.730375\pi\)
\(488\) 0 0
\(489\) 18.4025 0.832190
\(490\) 0 0
\(491\) 7.86333 0.354867 0.177434 0.984133i \(-0.443221\pi\)
0.177434 + 0.984133i \(0.443221\pi\)
\(492\) 0 0
\(493\) −0.372132 1.38881i −0.0167600 0.0625491i
\(494\) 0 0
\(495\) 9.42067 + 2.54636i 0.423427 + 0.114450i
\(496\) 0 0
\(497\) 5.06543 13.3373i 0.227216 0.598260i
\(498\) 0 0
\(499\) 2.03266 1.17356i 0.0909945 0.0525357i −0.453812 0.891097i \(-0.649936\pi\)
0.544807 + 0.838562i \(0.316603\pi\)
\(500\) 0 0
\(501\) 5.28852 9.15998i 0.236274 0.409238i
\(502\) 0 0
\(503\) −14.5260 + 14.5260i −0.647682 + 0.647682i −0.952432 0.304750i \(-0.901427\pi\)
0.304750 + 0.952432i \(0.401427\pi\)
\(504\) 0 0
\(505\) 5.38420 5.36070i 0.239594 0.238548i
\(506\) 0 0
\(507\) 2.58537 0.692748i 0.114820 0.0307660i
\(508\) 0 0
\(509\) 8.29178 + 14.3618i 0.367527 + 0.636575i 0.989178 0.146719i \(-0.0468714\pi\)
−0.621652 + 0.783294i \(0.713538\pi\)
\(510\) 0 0
\(511\) −41.1236 4.17463i −1.81920 0.184675i
\(512\) 0 0
\(513\) −0.699702 + 2.61132i −0.0308926 + 0.115293i
\(514\) 0 0
\(515\) −17.3842 + 29.9587i −0.766037 + 1.32014i
\(516\) 0 0
\(517\) 19.3972 + 19.3972i 0.853090 + 0.853090i
\(518\) 0 0
\(519\) 5.48319i 0.240685i
\(520\) 0 0
\(521\) −28.8215 16.6401i −1.26269 0.729015i −0.289097 0.957300i \(-0.593355\pi\)
−0.973594 + 0.228285i \(0.926688\pi\)
\(522\) 0 0
\(523\) 22.7287 + 6.09013i 0.993855 + 0.266303i 0.718869 0.695146i \(-0.244660\pi\)
0.274986 + 0.961448i \(0.411327\pi\)
\(524\) 0 0
\(525\) −10.6959 7.78447i −0.466807 0.339742i
\(526\) 0 0
\(527\) −0.671974 0.180055i −0.0292716 0.00784331i
\(528\) 0 0
\(529\) 11.9836 + 6.91872i 0.521025 + 0.300814i
\(530\) 0 0
\(531\) 1.72665i 0.0749304i
\(532\) 0 0
\(533\) −7.37489 7.37489i −0.319442 0.319442i
\(534\) 0 0
\(535\) −15.3080 + 26.3807i −0.661821 + 1.14054i
\(536\) 0 0
\(537\) −2.66460 + 9.94441i −0.114986 + 0.429133i
\(538\) 0 0
\(539\) 28.9867 9.64654i 1.24854 0.415506i
\(540\) 0 0
\(541\) 7.54153 + 13.0623i 0.324236 + 0.561592i 0.981357 0.192192i \(-0.0615596\pi\)
−0.657122 + 0.753784i \(0.728226\pi\)
\(542\) 0 0
\(543\) 13.4498 3.60386i 0.577185 0.154656i
\(544\) 0 0
\(545\) 0.832287 0.828654i 0.0356513 0.0354956i
\(546\) 0 0
\(547\) −24.4516 + 24.4516i −1.04547 + 1.04547i −0.0465590 + 0.998916i \(0.514826\pi\)
−0.998916 + 0.0465590i \(0.985174\pi\)
\(548\) 0 0
\(549\) 5.10591 8.84369i 0.217915 0.377440i
\(550\) 0 0
\(551\) 10.6000 6.11989i 0.451574 0.260716i
\(552\) 0 0
\(553\) 5.66907 + 34.9883i 0.241073 + 1.48785i
\(554\) 0 0
\(555\) 5.77820 + 1.56182i 0.245271 + 0.0662955i
\(556\) 0 0
\(557\) −4.92576 18.3832i −0.208711 0.778920i −0.988286 0.152612i \(-0.951232\pi\)
0.779575 0.626309i \(-0.215435\pi\)
\(558\) 0 0
\(559\) −34.7833 −1.47118
\(560\) 0 0
\(561\) 1.38596 0.0585155
\(562\) 0 0
\(563\) −5.33699 19.9179i −0.224927 0.839441i −0.982434 0.186613i \(-0.940249\pi\)
0.757506 0.652828i \(-0.226418\pi\)
\(564\) 0 0
\(565\) −33.7143 + 19.3668i −1.41837 + 0.814766i
\(566\) 0 0
\(567\) −1.67232 2.05021i −0.0702308 0.0861006i
\(568\) 0 0
\(569\) −5.59023 + 3.22752i −0.234354 + 0.135305i −0.612579 0.790409i \(-0.709868\pi\)
0.378225 + 0.925714i \(0.376535\pi\)
\(570\) 0 0
\(571\) 23.4901 40.6860i 0.983028 1.70265i 0.332638 0.943055i \(-0.392061\pi\)
0.650390 0.759600i \(-0.274605\pi\)
\(572\) 0 0
\(573\) −7.56041 + 7.56041i −0.315841 + 0.315841i
\(574\) 0 0
\(575\) 10.7487 10.6550i 0.448251 0.444346i
\(576\) 0 0
\(577\) 13.4042 3.59166i 0.558026 0.149523i 0.0312266 0.999512i \(-0.490059\pi\)
0.526799 + 0.849990i \(0.323392\pi\)
\(578\) 0 0
\(579\) 2.15606 + 3.73440i 0.0896027 + 0.155196i
\(580\) 0 0
\(581\) −17.5736 39.0966i −0.729076 1.62200i
\(582\) 0 0
\(583\) 14.0836 52.5606i 0.583282 2.17684i
\(584\) 0 0
\(585\) 7.65758 + 4.44347i 0.316602 + 0.183715i
\(586\) 0 0
\(587\) −25.6597 25.6597i −1.05909 1.05909i −0.998141 0.0609461i \(-0.980588\pi\)
−0.0609461 0.998141i \(-0.519412\pi\)
\(588\) 0 0
\(589\) 5.92219i 0.244019i
\(590\) 0 0
\(591\) −1.36538 0.788301i −0.0561641 0.0324264i
\(592\) 0 0
\(593\) −3.09944 0.830494i −0.127279 0.0341043i 0.194617 0.980879i \(-0.437654\pi\)
−0.321896 + 0.946775i \(0.604320\pi\)
\(594\) 0 0
\(595\) −1.75492 0.670903i −0.0719446 0.0275043i
\(596\) 0 0
\(597\) −22.7019 6.08297i −0.929128 0.248959i
\(598\) 0 0
\(599\) −35.6333 20.5729i −1.45594 0.840586i −0.457130 0.889400i \(-0.651123\pi\)
−0.998808 + 0.0488140i \(0.984456\pi\)
\(600\) 0 0
\(601\) 35.6457i 1.45402i −0.686628 0.727009i \(-0.740910\pi\)
0.686628 0.727009i \(-0.259090\pi\)
\(602\) 0 0
\(603\) −5.40343 5.40343i −0.220045 0.220045i
\(604\) 0 0
\(605\) 17.3898 4.61882i 0.706994 0.187782i
\(606\) 0 0
\(607\) 8.36776 31.2289i 0.339637 1.26754i −0.559117 0.829088i \(-0.688860\pi\)
0.898754 0.438453i \(-0.144473\pi\)
\(608\) 0 0
\(609\) −1.20978 + 11.9173i −0.0490227 + 0.482915i
\(610\) 0 0
\(611\) 12.4435 + 21.5527i 0.503410 + 0.871931i
\(612\) 0 0
\(613\) 9.43387 2.52780i 0.381030 0.102097i −0.0632197 0.998000i \(-0.520137\pi\)
0.444250 + 0.895903i \(0.353470\pi\)
\(614\) 0 0
\(615\) 0.0128843 5.89019i 0.000519546 0.237515i
\(616\) 0 0
\(617\) −9.23419 + 9.23419i −0.371754 + 0.371754i −0.868116 0.496362i \(-0.834669\pi\)
0.496362 + 0.868116i \(0.334669\pi\)
\(618\) 0 0
\(619\) 12.1118 20.9783i 0.486815 0.843188i −0.513070 0.858347i \(-0.671492\pi\)
0.999885 + 0.0151586i \(0.00482531\pi\)
\(620\) 0 0
\(621\) 2.62144 1.51349i 0.105195 0.0607341i
\(622\) 0 0
\(623\) 15.8442 2.56720i 0.634785 0.102853i
\(624\) 0 0
\(625\) 12.3101 + 21.7592i 0.492404 + 0.870367i
\(626\) 0 0
\(627\) 3.05367 + 11.3964i 0.121952 + 0.455130i
\(628\) 0 0
\(629\) 0.850086 0.0338952
\(630\) 0 0
\(631\) −14.1379 −0.562819 −0.281410 0.959588i \(-0.590802\pi\)
−0.281410 + 0.959588i \(0.590802\pi\)
\(632\) 0 0
\(633\) 3.61335 + 13.4852i 0.143618 + 0.535988i
\(634\) 0 0
\(635\) 9.57511 + 16.6687i 0.379977 + 0.661476i
\(636\) 0 0
\(637\) 27.6666 1.64711i 1.09619 0.0652609i
\(638\) 0 0
\(639\) −4.66992 + 2.69618i −0.184739 + 0.106659i
\(640\) 0 0
\(641\) −16.8927 + 29.2590i −0.667222 + 1.15566i 0.311456 + 0.950260i \(0.399183\pi\)
−0.978678 + 0.205401i \(0.934150\pi\)
\(642\) 0 0
\(643\) −5.54153 + 5.54153i −0.218537 + 0.218537i −0.807882 0.589345i \(-0.799386\pi\)
0.589345 + 0.807882i \(0.299386\pi\)
\(644\) 0 0
\(645\) −13.8600 13.9208i −0.545737 0.548130i
\(646\) 0 0
\(647\) 2.44295 0.654586i 0.0960422 0.0257344i −0.210478 0.977599i \(-0.567502\pi\)
0.306520 + 0.951864i \(0.400835\pi\)
\(648\) 0 0
\(649\) −3.76776 6.52596i −0.147898 0.256166i
\(650\) 0 0
\(651\) 4.70098 + 3.39001i 0.184246 + 0.132865i
\(652\) 0 0
\(653\) −2.47246 + 9.22736i −0.0967550 + 0.361094i −0.997280 0.0737104i \(-0.976516\pi\)
0.900525 + 0.434805i \(0.143183\pi\)
\(654\) 0 0
\(655\) −3.31075 12.4649i −0.129362 0.487043i
\(656\) 0 0
\(657\) 11.0472 + 11.0472i 0.430994 + 0.430994i
\(658\) 0 0
\(659\) 25.7019i 1.00120i 0.865678 + 0.500602i \(0.166888\pi\)
−0.865678 + 0.500602i \(0.833112\pi\)
\(660\) 0 0
\(661\) −4.00560 2.31264i −0.155800 0.0899511i 0.420073 0.907490i \(-0.362004\pi\)
−0.575873 + 0.817539i \(0.695338\pi\)
\(662\) 0 0
\(663\) 1.21454 + 0.325436i 0.0471690 + 0.0126389i
\(664\) 0 0
\(665\) 1.65010 15.9084i 0.0639880 0.616903i
\(666\) 0 0
\(667\) −13.2376 3.54700i −0.512562 0.137341i
\(668\) 0 0
\(669\) 24.2176 + 13.9820i 0.936307 + 0.540577i
\(670\) 0 0
\(671\) 44.5668i 1.72048i
\(672\) 0 0
\(673\) −19.3062 19.3062i −0.744198 0.744198i 0.229185 0.973383i \(-0.426394\pi\)
−0.973383 + 0.229185i \(0.926394\pi\)
\(674\) 0 0
\(675\) 1.27295 + 4.83524i 0.0489960 + 0.186109i
\(676\) 0 0
\(677\) 3.07047 11.4592i 0.118008 0.440411i −0.881487 0.472209i \(-0.843457\pi\)
0.999494 + 0.0317981i \(0.0101234\pi\)
\(678\) 0 0
\(679\) 26.9278 12.1038i 1.03340 0.464503i
\(680\) 0 0
\(681\) −4.73574 8.20255i −0.181474 0.314322i
\(682\) 0 0
\(683\) −42.4276 + 11.3685i −1.62345 + 0.435002i −0.952012 0.306060i \(-0.900989\pi\)
−0.671437 + 0.741062i \(0.734322\pi\)
\(684\) 0 0
\(685\) −42.4930 0.0929501i −1.62357 0.00355144i
\(686\) 0 0
\(687\) −1.31199 + 1.31199i −0.0500555 + 0.0500555i
\(688\) 0 0
\(689\) 24.6833 42.7528i 0.940359 1.62875i
\(690\) 0 0
\(691\) 7.97994 4.60722i 0.303571 0.175267i −0.340475 0.940254i \(-0.610588\pi\)
0.644046 + 0.764987i \(0.277254\pi\)
\(692\) 0 0
\(693\) −10.7944 4.09965i −0.410045 0.155733i
\(694\) 0 0
\(695\) 0.184872 0.683963i 0.00701259 0.0259442i
\(696\) 0 0
\(697\) −0.216514 0.808040i −0.00820104 0.0306067i
\(698\) 0 0
\(699\) 27.5366 1.04153
\(700\) 0 0
\(701\) 16.6053 0.627174 0.313587 0.949559i \(-0.398469\pi\)
0.313587 + 0.949559i \(0.398469\pi\)
\(702\) 0 0
\(703\) 1.87298 + 6.99005i 0.0706407 + 0.263635i
\(704\) 0 0
\(705\) −3.66739 + 13.5681i −0.138122 + 0.511005i
\(706\) 0 0
\(707\) −6.96628 + 5.68228i −0.261994 + 0.213704i
\(708\) 0 0
\(709\) 27.6385 15.9571i 1.03799 0.599282i 0.118725 0.992927i \(-0.462119\pi\)
0.919262 + 0.393645i \(0.128786\pi\)
\(710\) 0 0
\(711\) 6.69839 11.6020i 0.251209 0.435107i
\(712\) 0 0
\(713\) −4.68876 + 4.68876i −0.175596 + 0.175596i
\(714\) 0 0
\(715\) 38.6383 + 0.0845183i 1.44499 + 0.00316081i
\(716\) 0 0
\(717\) −13.8914 + 3.72220i −0.518785 + 0.139008i
\(718\) 0 0
\(719\) 8.63741 + 14.9604i 0.322121 + 0.557930i 0.980925 0.194384i \(-0.0622709\pi\)
−0.658804 + 0.752314i \(0.728938\pi\)
\(720\) 0 0
\(721\) 23.9714 33.2415i 0.892742 1.23798i
\(722\) 0 0
\(723\) −1.71417 + 6.39738i −0.0637508 + 0.237921i
\(724\) 0 0
\(725\) 11.4044 19.5549i 0.423547 0.726250i
\(726\) 0 0
\(727\) 30.3766 + 30.3766i 1.12661 + 1.12661i 0.990725 + 0.135880i \(0.0433861\pi\)
0.135880 + 0.990725i \(0.456614\pi\)
\(728\) 0 0
\(729\) 1.00000i 0.0370370i
\(730\) 0 0
\(731\) −2.41613 1.39495i −0.0893637 0.0515941i
\(732\) 0 0
\(733\) 34.0692 + 9.12882i 1.25838 + 0.337181i 0.825566 0.564305i \(-0.190856\pi\)
0.432809 + 0.901486i \(0.357522\pi\)
\(734\) 0 0
\(735\) 11.6834 + 10.4162i 0.430949 + 0.384208i
\(736\) 0 0
\(737\) −32.2134 8.63155i −1.18660 0.317947i
\(738\) 0 0
\(739\) 25.1311 + 14.5095i 0.924463 + 0.533739i 0.885056 0.465484i \(-0.154120\pi\)
0.0394067 + 0.999223i \(0.487453\pi\)
\(740\) 0 0
\(741\) 10.7039i 0.393218i
\(742\) 0 0
\(743\) 6.98196 + 6.98196i 0.256143 + 0.256143i 0.823483 0.567340i \(-0.192028\pi\)
−0.567340 + 0.823483i \(0.692028\pi\)
\(744\) 0 0
\(745\) −4.71835 17.7645i −0.172867 0.650840i
\(746\) 0 0
\(747\) −4.19321 + 15.6493i −0.153421 + 0.572576i
\(748\) 0 0
\(749\) 21.1085 29.2715i 0.771288 1.06956i
\(750\) 0 0
\(751\) −2.61368 4.52703i −0.0953745 0.165194i 0.814390 0.580317i \(-0.197072\pi\)
−0.909765 + 0.415124i \(0.863738\pi\)
\(752\) 0 0
\(753\) −3.09888 + 0.830342i −0.112929 + 0.0302594i
\(754\) 0 0
\(755\) 14.7760 + 14.8408i 0.537753 + 0.540111i
\(756\) 0 0
\(757\) −33.4817 + 33.4817i −1.21691 + 1.21691i −0.248207 + 0.968707i \(0.579841\pi\)
−0.968707 + 0.248207i \(0.920159\pi\)
\(758\) 0 0
\(759\) 6.60522 11.4406i 0.239754 0.415266i
\(760\) 0 0
\(761\) −45.5767 + 26.3137i −1.65215 + 0.953872i −0.675970 + 0.736929i \(0.736275\pi\)
−0.976184 + 0.216942i \(0.930392\pi\)
\(762\) 0 0
\(763\) −1.07684 + 0.878363i −0.0389844 + 0.0317989i
\(764\) 0 0
\(765\) 0.353711 + 0.615753i 0.0127885 + 0.0222626i
\(766\) 0 0
\(767\) −1.76940 6.60351i −0.0638895 0.238439i
\(768\) 0 0
\(769\) 34.1069 1.22993 0.614963 0.788556i \(-0.289171\pi\)
0.614963 + 0.788556i \(0.289171\pi\)
\(770\) 0 0
\(771\) −15.7151 −0.565965
\(772\) 0 0
\(773\) −0.603106 2.25082i −0.0216922 0.0809564i 0.954231 0.299070i \(-0.0966764\pi\)
−0.975923 + 0.218113i \(0.930010\pi\)
\(774\) 0 0
\(775\) −5.43497 9.50948i −0.195230 0.341591i
\(776\) 0 0
\(777\) −6.62078 2.51453i −0.237519 0.0902084i
\(778\) 0 0
\(779\) 6.16727 3.56067i 0.220965 0.127574i
\(780\) 0 0
\(781\) −11.7668 + 20.3806i −0.421048 + 0.729276i
\(782\) 0 0
\(783\) 3.20141 3.20141i 0.114409 0.114409i
\(784\) 0 0
\(785\) −0.0749060 + 34.2439i −0.00267351 + 1.22222i
\(786\) 0 0
\(787\) 23.1456 6.20186i 0.825053 0.221072i 0.178499 0.983940i \(-0.442876\pi\)
0.646554 + 0.762868i \(0.276209\pi\)
\(788\) 0 0
\(789\) −7.27828 12.6064i −0.259114 0.448798i
\(790\) 0 0
\(791\) 41.9605 18.8609i 1.49194 0.670617i
\(792\) 0 0
\(793\) 10.4647 39.0546i 0.371611 1.38687i
\(794\) 0 0
\(795\) 26.9457 7.15695i 0.955667 0.253831i
\(796\) 0 0
\(797\) 4.27731 + 4.27731i 0.151510 + 0.151510i 0.778792 0.627282i \(-0.215833\pi\)
−0.627282 + 0.778792i \(0.715833\pi\)
\(798\) 0 0
\(799\) 1.99614i 0.0706182i
\(800\) 0 0
\(801\) −5.25387 3.03332i −0.185636 0.107177i
\(802\) 0 0
\(803\) 65.8598 + 17.6471i 2.32414 + 0.622752i
\(804\) 0 0
\(805\) −13.9016 + 11.2887i −0.489967 + 0.397876i
\(806\) 0 0
\(807\) 11.7843 + 3.15760i 0.414828 + 0.111153i
\(808\) 0 0
\(809\) 24.3656 + 14.0675i 0.856649 + 0.494587i 0.862889 0.505394i \(-0.168653\pi\)
−0.00623939 + 0.999981i \(0.501986\pi\)
\(810\) 0 0
\(811\) 14.6408i 0.514108i 0.966397 + 0.257054i \(0.0827518\pi\)
−0.966397 + 0.257054i \(0.917248\pi\)
\(812\) 0 0
\(813\) −9.05021 9.05021i −0.317405 0.317405i
\(814\) 0 0
\(815\) 35.5912 + 20.6525i 1.24671 + 0.723427i
\(816\) 0 0
\(817\) 6.14694 22.9407i 0.215054 0.802593i
\(818\) 0 0
\(819\) −8.49667 6.12720i −0.296898 0.214102i
\(820\) 0 0
\(821\) −19.0342 32.9682i −0.664298 1.15060i −0.979475 0.201565i \(-0.935397\pi\)
0.315178 0.949033i \(-0.397936\pi\)
\(822\) 0 0
\(823\) 27.2459 7.30051i 0.949731 0.254480i 0.249483 0.968379i \(-0.419739\pi\)
0.700248 + 0.713900i \(0.253073\pi\)
\(824\) 0 0
\(825\) 15.3623 + 15.4973i 0.534845 + 0.539546i
\(826\) 0 0
\(827\) −13.2575 + 13.2575i −0.461008 + 0.461008i −0.898986 0.437977i \(-0.855695\pi\)
0.437977 + 0.898986i \(0.355695\pi\)
\(828\) 0 0
\(829\) −23.4677 + 40.6472i −0.815067 + 1.41174i 0.0942131 + 0.995552i \(0.469967\pi\)
−0.909280 + 0.416185i \(0.863367\pi\)
\(830\) 0 0
\(831\) −18.1373 + 10.4715i −0.629174 + 0.363254i
\(832\) 0 0
\(833\) 1.98784 + 0.995129i 0.0688745 + 0.0344792i
\(834\) 0 0
\(835\) 20.5082 11.7807i 0.709714 0.407686i
\(836\) 0 0
\(837\) −0.566971 2.11597i −0.0195974 0.0731385i
\(838\) 0 0
\(839\) 37.4760 1.29382 0.646908 0.762568i \(-0.276062\pi\)
0.646908 + 0.762568i \(0.276062\pi\)
\(840\) 0 0
\(841\) 8.50190 0.293169
\(842\) 0 0
\(843\) 6.18235 + 23.0728i 0.212931 + 0.794671i
\(844\) 0 0
\(845\) 5.77766 + 1.56167i 0.198758 + 0.0537232i
\(846\) 0 0
\(847\) −21.0152 + 3.40504i −0.722090 + 0.116999i
\(848\) 0 0
\(849\) −5.59806 + 3.23204i −0.192125 + 0.110923i
\(850\) 0 0
\(851\) 4.05133 7.01711i 0.138878 0.240544i
\(852\) 0 0
\(853\) −3.02250 + 3.02250i −0.103488 + 0.103488i −0.756955 0.653467i \(-0.773314\pi\)
0.653467 + 0.756955i \(0.273314\pi\)
\(854\) 0 0
\(855\) −4.28386 + 4.26516i −0.146505 + 0.145865i
\(856\) 0 0
\(857\) 12.7393 3.41348i 0.435166 0.116602i −0.0345842 0.999402i \(-0.511011\pi\)
0.469750 + 0.882799i \(0.344344\pi\)
\(858\) 0 0
\(859\) −3.65300 6.32718i −0.124639 0.215881i 0.796953 0.604041i \(-0.206444\pi\)
−0.921592 + 0.388161i \(0.873111\pi\)
\(860\) 0 0
\(861\) −0.703874 + 6.93375i −0.0239879 + 0.236301i
\(862\) 0 0
\(863\) −4.24474 + 15.8416i −0.144493 + 0.539254i 0.855285 + 0.518158i \(0.173382\pi\)
−0.999777 + 0.0210958i \(0.993284\pi\)
\(864\) 0 0
\(865\) −6.15360 + 10.6047i −0.209229 + 0.360571i
\(866\) 0 0
\(867\) −11.9495 11.9495i −0.405826 0.405826i
\(868\) 0 0
\(869\) 58.4668i 1.98335i
\(870\) 0 0
\(871\) −26.2024 15.1279i −0.887833 0.512591i
\(872\) 0 0
\(873\) −10.7785 2.88808i −0.364795 0.0977466i
\(874\) 0 0
\(875\) −11.9500 27.0591i −0.403985 0.914766i
\(876\) 0 0
\(877\) −4.78568 1.28232i −0.161601 0.0433008i 0.177111 0.984191i \(-0.443325\pi\)
−0.338712 + 0.940890i \(0.609991\pi\)
\(878\) 0 0
\(879\) −8.47113 4.89081i −0.285724 0.164963i
\(880\) 0 0
\(881\) 31.5578i 1.06321i 0.846993 + 0.531605i \(0.178411\pi\)
−0.846993 + 0.531605i \(0.821589\pi\)
\(882\) 0 0
\(883\) −4.81686 4.81686i −0.162100 0.162100i 0.621396 0.783496i \(-0.286566\pi\)
−0.783496 + 0.621396i \(0.786566\pi\)
\(884\) 0 0
\(885\) 1.93777 3.33942i 0.0651373 0.112253i
\(886\) 0 0
\(887\) 4.31598 16.1074i 0.144916 0.540835i −0.854843 0.518887i \(-0.826346\pi\)
0.999759 0.0219480i \(-0.00698684\pi\)
\(888\) 0 0
\(889\) −9.32500 20.7457i −0.312751 0.695787i
\(890\) 0 0
\(891\) 2.18212 + 3.77954i 0.0731037 + 0.126619i
\(892\) 0 0
\(893\) −16.4137 + 4.39805i −0.549265 + 0.147175i
\(894\) 0 0
\(895\) −16.3137 + 16.2425i −0.545308 + 0.542927i
\(896\) 0 0
\(897\) 8.47460 8.47460i 0.282959 0.282959i
\(898\) 0 0
\(899\) −4.95897 + 8.58919i −0.165391 + 0.286466i
\(900\) 0 0
\(901\) 3.42912 1.97980i 0.114240 0.0659567i
\(902\) 0 0
\(903\) 14.6914 + 18.0112i 0.488900 + 0.599376i
\(904\) 0 0
\(905\) 30.0569 + 8.12424i 0.999126 + 0.270059i
\(906\) 0 0
\(907\) −3.00183 11.2030i −0.0996741 0.371989i 0.898013 0.439970i \(-0.145011\pi\)
−0.997687 + 0.0679811i \(0.978344\pi\)
\(908\) 0 0
\(909\) 3.39784 0.112699
\(910\) 0 0
\(911\) −18.0104 −0.596712 −0.298356 0.954455i \(-0.596438\pi\)
−0.298356 + 0.954455i \(0.596438\pi\)
\(912\) 0 0
\(913\) 18.3001 + 68.2971i 0.605646 + 2.26030i
\(914\) 0 0
\(915\) 19.8000 11.3739i 0.654569 0.376009i
\(916\) 0 0
\(917\) 2.44071 + 15.0636i 0.0805995 + 0.497443i
\(918\) 0 0
\(919\) 28.7287 16.5865i 0.947672 0.547139i 0.0553148 0.998469i \(-0.482384\pi\)
0.892357 + 0.451330i \(0.149050\pi\)
\(920\) 0 0
\(921\) −5.17232 + 8.95872i −0.170434 + 0.295200i
\(922\) 0 0
\(923\) −15.0969 + 15.0969i −0.496922 + 0.496922i
\(924\) 0 0
\(925\) 9.42250 + 9.50531i 0.309810 + 0.312533i
\(926\) 0 0
\(927\) −14.9624 + 4.00916i −0.491429 + 0.131678i
\(928\) 0 0
\(929\) −28.5132 49.3864i −0.935489 1.62032i −0.773759 0.633480i \(-0.781626\pi\)
−0.161730 0.986835i \(-0.551707\pi\)
\(930\) 0 0
\(931\) −3.80294 + 18.5380i −0.124636 + 0.607560i
\(932\) 0 0
\(933\) 5.63924 21.0459i 0.184620 0.689013i
\(934\) 0 0
\(935\) 2.68051 + 1.55542i 0.0876621 + 0.0508678i
\(936\) 0 0
\(937\) −18.4132 18.4132i −0.601534 0.601534i 0.339186 0.940719i \(-0.389848\pi\)
−0.940719 + 0.339186i \(0.889848\pi\)
\(938\) 0 0
\(939\) 23.5645i 0.769000i
\(940\) 0 0
\(941\) 2.15419 + 1.24372i 0.0702245 + 0.0405441i 0.534701 0.845041i \(-0.320424\pi\)
−0.464477 + 0.885585i \(0.653758\pi\)
\(942\) 0 0
\(943\) −7.70189 2.06372i −0.250808 0.0672038i
\(944\) 0 0
\(945\) −0.933452 5.84197i −0.0303652 0.190039i
\(946\) 0 0
\(947\) −49.1124 13.1596i −1.59594 0.427630i −0.652126 0.758111i \(-0.726123\pi\)
−0.943813 + 0.330481i \(0.892789\pi\)
\(948\) 0 0
\(949\) 53.5704 + 30.9289i 1.73897 + 1.00399i
\(950\) 0 0
\(951\) 22.0843i 0.716131i
\(952\) 0 0
\(953\) −9.31188 9.31188i −0.301641 0.301641i 0.540014 0.841656i \(-0.318419\pi\)
−0.841656 + 0.540014i \(0.818419\pi\)
\(954\) 0 0
\(955\) −23.1069 + 6.13734i −0.747723 + 0.198600i
\(956\) 0 0
\(957\) 5.11401 19.0857i 0.165312 0.616954i
\(958\) 0 0
\(959\) 50.0214 + 5.07788i 1.61527 + 0.163973i
\(960\) 0 0
\(961\) −13.1006 22.6909i −0.422601 0.731966i
\(962\) 0 0
\(963\) −13.1754 + 3.53035i −0.424572 + 0.113764i
\(964\) 0 0
\(965\) −0.0210915 + 9.64216i −0.000678959 + 0.310392i
\(966\) 0 0
\(967\) 18.4525 18.4525i 0.593394 0.593394i −0.345153 0.938547i \(-0.612173\pi\)
0.938547 + 0.345153i \(0.112173\pi\)
\(968\) 0 0
\(969\) −0.429270 + 0.743518i −0.0137901 + 0.0238852i
\(970\) 0 0
\(971\) 29.7627 17.1835i 0.955131 0.551445i 0.0604600 0.998171i \(-0.480743\pi\)
0.894671 + 0.446725i \(0.147410\pi\)
\(972\) 0 0
\(973\) −0.297644 + 0.783700i −0.00954204 + 0.0251243i
\(974\) 0 0
\(975\) 9.82331 + 17.1877i 0.314598 + 0.550447i
\(976\) 0 0
\(977\) 4.64414 + 17.3322i 0.148579 + 0.554505i 0.999570 + 0.0293246i \(0.00933566\pi\)
−0.850991 + 0.525181i \(0.823998\pi\)
\(978\) 0 0
\(979\) −26.4763 −0.846186
\(980\) 0 0
\(981\) 0.525237 0.0167695
\(982\) 0 0
\(983\) −7.55607 28.1996i −0.241001 0.899428i −0.975351 0.220658i \(-0.929180\pi\)
0.734350 0.678771i \(-0.237487\pi\)
\(984\) 0 0
\(985\) −1.75601 3.05693i −0.0559512 0.0974017i
\(986\) 0 0
\(987\) 5.90452 15.5466i 0.187943 0.494855i
\(988\) 0 0
\(989\) −23.0295 + 13.2961i −0.732295 + 0.422791i
\(990\) 0 0
\(991\) 17.3733 30.0914i 0.551880 0.955885i −0.446258 0.894904i \(-0.647244\pi\)
0.998139 0.0609809i \(-0.0194229\pi\)
\(992\) 0 0
\(993\) −0.623510 + 0.623510i −0.0197865 + 0.0197865i
\(994\) 0 0
\(995\) −37.0798 37.2423i −1.17551 1.18066i
\(996\) 0 0
\(997\) −30.4690 + 8.16415i −0.964964 + 0.258561i −0.706700 0.707513i \(-0.749817\pi\)
−0.258264 + 0.966074i \(0.583150\pi\)
\(998\) 0 0
\(999\) 1.33841 + 2.31820i 0.0423454 + 0.0733445i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 840.2.dd.b.73.9 yes 48
5.2 odd 4 840.2.dd.a.577.7 yes 48
7.5 odd 6 840.2.dd.a.313.7 48
35.12 even 12 inner 840.2.dd.b.817.9 yes 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
840.2.dd.a.313.7 48 7.5 odd 6
840.2.dd.a.577.7 yes 48 5.2 odd 4
840.2.dd.b.73.9 yes 48 1.1 even 1 trivial
840.2.dd.b.817.9 yes 48 35.12 even 12 inner