L(s) = 1 | + (0.258 + 0.965i)3-s + (−0.583 + 2.15i)5-s + (0.939 − 2.47i)7-s + (−0.866 + 0.499i)9-s + (−2.18 + 3.77i)11-s + (−2.79 + 2.79i)13-s + (−2.23 − 0.00489i)15-s + (−0.306 + 0.0821i)17-s + (−1.35 − 2.34i)19-s + (2.63 + 0.267i)21-s + (−0.783 + 2.92i)23-s + (−4.31 − 2.51i)25-s + (−0.707 − 0.707i)27-s + 4.52i·29-s + (1.89 + 1.09i)31-s + ⋯ |
L(s) = 1 | + (0.149 + 0.557i)3-s + (−0.260 + 0.965i)5-s + (0.355 − 0.934i)7-s + (−0.288 + 0.166i)9-s + (−0.657 + 1.13i)11-s + (−0.776 + 0.776i)13-s + (−0.577 − 0.00126i)15-s + (−0.0743 + 0.0199i)17-s + (−0.310 − 0.537i)19-s + (0.574 + 0.0583i)21-s + (−0.163 + 0.609i)23-s + (−0.863 − 0.503i)25-s + (−0.136 − 0.136i)27-s + 0.840i·29-s + (0.340 + 0.196i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.862 - 0.505i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 840 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.862 - 0.505i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.253800 + 0.934881i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.253800 + 0.934881i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.258 - 0.965i)T \) |
| 5 | \( 1 + (0.583 - 2.15i)T \) |
| 7 | \( 1 + (-0.939 + 2.47i)T \) |
good | 11 | \( 1 + (2.18 - 3.77i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (2.79 - 2.79i)T - 13iT^{2} \) |
| 17 | \( 1 + (0.306 - 0.0821i)T + (14.7 - 8.5i)T^{2} \) |
| 19 | \( 1 + (1.35 + 2.34i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (0.783 - 2.92i)T + (-19.9 - 11.5i)T^{2} \) |
| 29 | \( 1 - 4.52iT - 29T^{2} \) |
| 31 | \( 1 + (-1.89 - 1.09i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (2.58 + 0.692i)T + (32.0 + 18.5i)T^{2} \) |
| 41 | \( 1 - 2.63iT - 41T^{2} \) |
| 43 | \( 1 + (-6.21 - 6.21i)T + 43iT^{2} \) |
| 47 | \( 1 + (-1.62 + 6.07i)T + (-40.7 - 23.5i)T^{2} \) |
| 53 | \( 1 + (12.0 - 3.22i)T + (45.8 - 26.5i)T^{2} \) |
| 59 | \( 1 + (0.863 - 1.49i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (8.84 - 5.10i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-1.97 - 7.38i)T + (-58.0 + 33.5i)T^{2} \) |
| 71 | \( 1 - 5.39T + 71T^{2} \) |
| 73 | \( 1 + (4.04 + 15.0i)T + (-63.2 + 36.5i)T^{2} \) |
| 79 | \( 1 + (11.6 - 6.69i)T + (39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (-11.4 + 11.4i)T - 83iT^{2} \) |
| 89 | \( 1 + (-3.03 - 5.25i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-7.89 - 7.89i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.46013048742599275043771213108, −9.928685305243004794577004064953, −9.027099527759235567353537791327, −7.67843101202500828374009264397, −7.34119005869898599995316273353, −6.40173463712314699795825582811, −4.90371945008498983510555493681, −4.33961167167431871580561594096, −3.19236162021460233603514618968, −2.03918176553713858788988858596,
0.43949532802511641073674810809, 2.05700163396913184613141983493, 3.14111246105426207016709620571, 4.59413576632430157219586722134, 5.52439835939976966325398694359, 6.12380261166950954914403687258, 7.63789289427705987674208556841, 8.180103116410372917892058907476, 8.752578227603599880039590529618, 9.695468462375033532523036927325