Properties

Label 840.2.dd.a.313.7
Level $840$
Weight $2$
Character 840.313
Analytic conductor $6.707$
Analytic rank $0$
Dimension $48$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [840,2,Mod(73,840)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("840.73"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(840, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([0, 0, 0, 9, 2])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 840 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 840.dd (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.70743376979\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(12\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 313.7
Character \(\chi\) \(=\) 840.313
Dual form 840.2.dd.a.577.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.965926 + 0.258819i) q^{3} +(-2.16114 + 0.574011i) q^{5} +(2.47337 - 0.939373i) q^{7} +(0.866025 + 0.500000i) q^{9} +(-2.18212 - 3.77954i) q^{11} +(2.79969 - 2.79969i) q^{13} +(-2.23606 - 0.00489121i) q^{15} +(-0.0821940 + 0.306752i) q^{17} +(1.35172 - 2.34125i) q^{19} +(2.63222 - 0.267208i) q^{21} +(2.92383 - 0.783438i) q^{23} +(4.34102 - 2.48103i) q^{25} +(0.707107 + 0.707107i) q^{27} +4.52748i q^{29} +(1.89712 - 1.09530i) q^{31} +(-1.12955 - 4.21553i) q^{33} +(-4.80609 + 3.44986i) q^{35} +(0.692812 + 2.58561i) q^{37} +(3.42891 - 1.97968i) q^{39} -2.63418i q^{41} +(6.21198 + 6.21198i) q^{43} +(-2.15860 - 0.583460i) q^{45} +(6.07142 - 1.62683i) q^{47} +(5.23516 - 4.64684i) q^{49} +(-0.158787 + 0.275026i) q^{51} +(3.22704 - 12.0435i) q^{53} +(6.88536 + 6.91554i) q^{55} +(1.91162 - 1.91162i) q^{57} +(0.863327 + 1.49533i) q^{59} +(-8.84369 - 5.10591i) q^{61} +(2.61169 + 0.423166i) q^{63} +(-4.44347 + 7.65758i) q^{65} +(-7.38122 - 1.97779i) q^{67} +3.02697 q^{69} +5.39235 q^{71} +(-15.0908 - 4.04357i) q^{73} +(4.83524 - 1.27295i) q^{75} +(-8.94759 - 7.29840i) q^{77} +(11.6020 + 6.69839i) q^{79} +(0.500000 + 0.866025i) q^{81} +(-11.4560 + 11.4560i) q^{83} +(0.00155332 - 0.710113i) q^{85} +(-1.17180 + 4.37321i) q^{87} +(-3.03332 + 5.25387i) q^{89} +(4.29473 - 9.55465i) q^{91} +(2.11597 - 0.566971i) q^{93} +(-1.57735 + 5.83566i) q^{95} +(-7.89037 - 7.89037i) q^{97} -4.36424i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 4 q^{11} + 16 q^{13} - 4 q^{15} - 4 q^{17} + 8 q^{19} - 24 q^{23} + 28 q^{25} + 12 q^{33} - 4 q^{37} - 12 q^{39} + 16 q^{43} - 4 q^{45} + 12 q^{47} - 12 q^{49} + 20 q^{53} - 56 q^{55} + 8 q^{57}+ \cdots + 44 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/840\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(281\) \(337\) \(421\) \(631\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(e\left(\frac{3}{4}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.965926 + 0.258819i 0.557678 + 0.149429i
\(4\) 0 0
\(5\) −2.16114 + 0.574011i −0.966490 + 0.256706i
\(6\) 0 0
\(7\) 2.47337 0.939373i 0.934848 0.355049i
\(8\) 0 0
\(9\) 0.866025 + 0.500000i 0.288675 + 0.166667i
\(10\) 0 0
\(11\) −2.18212 3.77954i −0.657934 1.13957i −0.981150 0.193249i \(-0.938097\pi\)
0.323216 0.946325i \(-0.395236\pi\)
\(12\) 0 0
\(13\) 2.79969 2.79969i 0.776495 0.776495i −0.202738 0.979233i \(-0.564984\pi\)
0.979233 + 0.202738i \(0.0649839\pi\)
\(14\) 0 0
\(15\) −2.23606 0.00489121i −0.577349 0.00126291i
\(16\) 0 0
\(17\) −0.0821940 + 0.306752i −0.0199350 + 0.0743983i −0.975177 0.221428i \(-0.928928\pi\)
0.955242 + 0.295826i \(0.0955949\pi\)
\(18\) 0 0
\(19\) 1.35172 2.34125i 0.310106 0.537120i −0.668279 0.743911i \(-0.732969\pi\)
0.978385 + 0.206791i \(0.0663021\pi\)
\(20\) 0 0
\(21\) 2.63222 0.267208i 0.574398 0.0583096i
\(22\) 0 0
\(23\) 2.92383 0.783438i 0.609661 0.163358i 0.0592377 0.998244i \(-0.481133\pi\)
0.550423 + 0.834886i \(0.314466\pi\)
\(24\) 0 0
\(25\) 4.34102 2.48103i 0.868205 0.496207i
\(26\) 0 0
\(27\) 0.707107 + 0.707107i 0.136083 + 0.136083i
\(28\) 0 0
\(29\) 4.52748i 0.840732i 0.907355 + 0.420366i \(0.138098\pi\)
−0.907355 + 0.420366i \(0.861902\pi\)
\(30\) 0 0
\(31\) 1.89712 1.09530i 0.340733 0.196722i −0.319863 0.947464i \(-0.603637\pi\)
0.660596 + 0.750741i \(0.270304\pi\)
\(32\) 0 0
\(33\) −1.12955 4.21553i −0.196629 0.733830i
\(34\) 0 0
\(35\) −4.80609 + 3.44986i −0.812377 + 0.583132i
\(36\) 0 0
\(37\) 0.692812 + 2.58561i 0.113898 + 0.425072i 0.999202 0.0399401i \(-0.0127167\pi\)
−0.885304 + 0.465012i \(0.846050\pi\)
\(38\) 0 0
\(39\) 3.42891 1.97968i 0.549065 0.317003i
\(40\) 0 0
\(41\) 2.63418i 0.411390i −0.978616 0.205695i \(-0.934055\pi\)
0.978616 0.205695i \(-0.0659454\pi\)
\(42\) 0 0
\(43\) 6.21198 + 6.21198i 0.947319 + 0.947319i 0.998680 0.0513615i \(-0.0163561\pi\)
−0.0513615 + 0.998680i \(0.516356\pi\)
\(44\) 0 0
\(45\) −2.15860 0.583460i −0.321786 0.0869771i
\(46\) 0 0
\(47\) 6.07142 1.62683i 0.885608 0.237298i 0.212783 0.977100i \(-0.431747\pi\)
0.672825 + 0.739802i \(0.265081\pi\)
\(48\) 0 0
\(49\) 5.23516 4.64684i 0.747880 0.663834i
\(50\) 0 0
\(51\) −0.158787 + 0.275026i −0.0222346 + 0.0385114i
\(52\) 0 0
\(53\) 3.22704 12.0435i 0.443268 1.65430i −0.277202 0.960812i \(-0.589407\pi\)
0.720470 0.693486i \(-0.243926\pi\)
\(54\) 0 0
\(55\) 6.88536 + 6.91554i 0.928421 + 0.932492i
\(56\) 0 0
\(57\) 1.91162 1.91162i 0.253201 0.253201i
\(58\) 0 0
\(59\) 0.863327 + 1.49533i 0.112396 + 0.194675i 0.916736 0.399494i \(-0.130814\pi\)
−0.804340 + 0.594169i \(0.797481\pi\)
\(60\) 0 0
\(61\) −8.84369 5.10591i −1.13232 0.653745i −0.187802 0.982207i \(-0.560136\pi\)
−0.944517 + 0.328462i \(0.893470\pi\)
\(62\) 0 0
\(63\) 2.61169 + 0.423166i 0.329042 + 0.0533140i
\(64\) 0 0
\(65\) −4.44347 + 7.65758i −0.551144 + 0.949805i
\(66\) 0 0
\(67\) −7.38122 1.97779i −0.901759 0.241626i −0.221988 0.975049i \(-0.571254\pi\)
−0.679772 + 0.733424i \(0.737921\pi\)
\(68\) 0 0
\(69\) 3.02697 0.364405
\(70\) 0 0
\(71\) 5.39235 0.639955 0.319977 0.947425i \(-0.396325\pi\)
0.319977 + 0.947425i \(0.396325\pi\)
\(72\) 0 0
\(73\) −15.0908 4.04357i −1.76624 0.473264i −0.778276 0.627922i \(-0.783906\pi\)
−0.987968 + 0.154658i \(0.950572\pi\)
\(74\) 0 0
\(75\) 4.83524 1.27295i 0.558326 0.146988i
\(76\) 0 0
\(77\) −8.94759 7.29840i −1.01967 0.831729i
\(78\) 0 0
\(79\) 11.6020 + 6.69839i 1.30532 + 0.753628i 0.981312 0.192425i \(-0.0616353\pi\)
0.324011 + 0.946053i \(0.394969\pi\)
\(80\) 0 0
\(81\) 0.500000 + 0.866025i 0.0555556 + 0.0962250i
\(82\) 0 0
\(83\) −11.4560 + 11.4560i −1.25746 + 1.25746i −0.305165 + 0.952299i \(0.598712\pi\)
−0.952299 + 0.305165i \(0.901288\pi\)
\(84\) 0 0
\(85\) 0.00155332 0.710113i 0.000168481 0.0770226i
\(86\) 0 0
\(87\) −1.17180 + 4.37321i −0.125630 + 0.468858i
\(88\) 0 0
\(89\) −3.03332 + 5.25387i −0.321532 + 0.556909i −0.980804 0.194995i \(-0.937531\pi\)
0.659273 + 0.751904i \(0.270864\pi\)
\(90\) 0 0
\(91\) 4.29473 9.55465i 0.450210 1.00160i
\(92\) 0 0
\(93\) 2.11597 0.566971i 0.219415 0.0587922i
\(94\) 0 0
\(95\) −1.57735 + 5.83566i −0.161833 + 0.598726i
\(96\) 0 0
\(97\) −7.89037 7.89037i −0.801146 0.801146i 0.182129 0.983275i \(-0.441701\pi\)
−0.983275 + 0.182129i \(0.941701\pi\)
\(98\) 0 0
\(99\) 4.36424i 0.438622i
\(100\) 0 0
\(101\) −2.94262 + 1.69892i −0.292801 + 0.169049i −0.639205 0.769037i \(-0.720736\pi\)
0.346403 + 0.938086i \(0.387403\pi\)
\(102\) 0 0
\(103\) 4.00916 + 14.9624i 0.395034 + 1.47429i 0.821722 + 0.569889i \(0.193014\pi\)
−0.426687 + 0.904399i \(0.640319\pi\)
\(104\) 0 0
\(105\) −5.53521 + 2.08840i −0.540182 + 0.203807i
\(106\) 0 0
\(107\) −3.53035 13.1754i −0.341291 1.27372i −0.896885 0.442263i \(-0.854176\pi\)
0.555594 0.831454i \(-0.312491\pi\)
\(108\) 0 0
\(109\) 0.454868 0.262618i 0.0435685 0.0251543i −0.478058 0.878329i \(-0.658659\pi\)
0.521626 + 0.853174i \(0.325326\pi\)
\(110\) 0 0
\(111\) 2.67682i 0.254073i
\(112\) 0 0
\(113\) 12.2952 + 12.2952i 1.15664 + 1.15664i 0.985194 + 0.171445i \(0.0548436\pi\)
0.171445 + 0.985194i \(0.445156\pi\)
\(114\) 0 0
\(115\) −5.86910 + 3.37143i −0.547296 + 0.314387i
\(116\) 0 0
\(117\) 3.82445 1.02476i 0.353571 0.0947390i
\(118\) 0 0
\(119\) 0.0848581 + 0.835923i 0.00777893 + 0.0766290i
\(120\) 0 0
\(121\) −4.02329 + 6.96854i −0.365754 + 0.633504i
\(122\) 0 0
\(123\) 0.681776 2.54442i 0.0614736 0.229423i
\(124\) 0 0
\(125\) −7.95740 + 7.85365i −0.711732 + 0.702451i
\(126\) 0 0
\(127\) 6.07887 6.07887i 0.539413 0.539413i −0.383944 0.923357i \(-0.625434\pi\)
0.923357 + 0.383944i \(0.125434\pi\)
\(128\) 0 0
\(129\) 4.39254 + 7.60810i 0.386741 + 0.669855i
\(130\) 0 0
\(131\) −4.99501 2.88387i −0.436416 0.251965i 0.265660 0.964067i \(-0.414410\pi\)
−0.702076 + 0.712102i \(0.747743\pi\)
\(132\) 0 0
\(133\) 1.14401 7.06056i 0.0991979 0.612228i
\(134\) 0 0
\(135\) −1.93404 1.12227i −0.166456 0.0965894i
\(136\) 0 0
\(137\) −18.3559 4.91846i −1.56825 0.420212i −0.632989 0.774161i \(-0.718172\pi\)
−0.935265 + 0.353948i \(0.884839\pi\)
\(138\) 0 0
\(139\) 0.316854 0.0268752 0.0134376 0.999910i \(-0.495723\pi\)
0.0134376 + 0.999910i \(0.495723\pi\)
\(140\) 0 0
\(141\) 6.28560 0.529343
\(142\) 0 0
\(143\) −16.6908 4.47229i −1.39576 0.373992i
\(144\) 0 0
\(145\) −2.59883 9.78451i −0.215821 0.812559i
\(146\) 0 0
\(147\) 6.25946 3.13354i 0.516272 0.258450i
\(148\) 0 0
\(149\) 7.11870 + 4.10998i 0.583187 + 0.336703i 0.762399 0.647107i \(-0.224022\pi\)
−0.179212 + 0.983810i \(0.557355\pi\)
\(150\) 0 0
\(151\) 4.68283 + 8.11090i 0.381083 + 0.660055i 0.991217 0.132243i \(-0.0422178\pi\)
−0.610134 + 0.792298i \(0.708884\pi\)
\(152\) 0 0
\(153\) −0.224558 + 0.224558i −0.0181544 + 0.0181544i
\(154\) 0 0
\(155\) −3.47123 + 3.45607i −0.278816 + 0.277598i
\(156\) 0 0
\(157\) 3.96366 14.7926i 0.316334 1.18058i −0.606407 0.795155i \(-0.707390\pi\)
0.922741 0.385421i \(-0.125944\pi\)
\(158\) 0 0
\(159\) 6.23416 10.7979i 0.494401 0.856328i
\(160\) 0 0
\(161\) 6.49579 4.68430i 0.511940 0.369175i
\(162\) 0 0
\(163\) −17.7755 + 4.76292i −1.39228 + 0.373061i −0.875567 0.483097i \(-0.839512\pi\)
−0.516715 + 0.856158i \(0.672845\pi\)
\(164\) 0 0
\(165\) 4.86087 + 8.46196i 0.378418 + 0.658763i
\(166\) 0 0
\(167\) 7.47910 + 7.47910i 0.578750 + 0.578750i 0.934559 0.355809i \(-0.115795\pi\)
−0.355809 + 0.934559i \(0.615795\pi\)
\(168\) 0 0
\(169\) 2.67657i 0.205890i
\(170\) 0 0
\(171\) 2.34125 1.35172i 0.179040 0.103369i
\(172\) 0 0
\(173\) 1.41915 + 5.29635i 0.107896 + 0.402674i 0.998658 0.0517971i \(-0.0164949\pi\)
−0.890761 + 0.454471i \(0.849828\pi\)
\(174\) 0 0
\(175\) 8.40636 10.2144i 0.635461 0.772133i
\(176\) 0 0
\(177\) 0.446891 + 1.66782i 0.0335904 + 0.125361i
\(178\) 0 0
\(179\) −8.91592 + 5.14761i −0.666407 + 0.384750i −0.794714 0.606984i \(-0.792379\pi\)
0.128307 + 0.991735i \(0.459046\pi\)
\(180\) 0 0
\(181\) 13.9242i 1.03498i 0.855689 + 0.517490i \(0.173134\pi\)
−0.855689 + 0.517490i \(0.826866\pi\)
\(182\) 0 0
\(183\) −7.22085 7.22085i −0.533780 0.533780i
\(184\) 0 0
\(185\) −2.98143 5.19018i −0.219199 0.381589i
\(186\) 0 0
\(187\) 1.33874 0.358714i 0.0978983 0.0262318i
\(188\) 0 0
\(189\) 2.41318 + 1.08470i 0.175533 + 0.0789005i
\(190\) 0 0
\(191\) 5.34601 9.25957i 0.386824 0.669999i −0.605196 0.796076i \(-0.706905\pi\)
0.992020 + 0.126077i \(0.0402387\pi\)
\(192\) 0 0
\(193\) −1.11606 + 4.16518i −0.0803356 + 0.299816i −0.994390 0.105775i \(-0.966268\pi\)
0.914055 + 0.405591i \(0.132934\pi\)
\(194\) 0 0
\(195\) −6.27399 + 6.24660i −0.449289 + 0.447328i
\(196\) 0 0
\(197\) −1.11483 + 1.11483i −0.0794281 + 0.0794281i −0.745705 0.666277i \(-0.767887\pi\)
0.666277 + 0.745705i \(0.267887\pi\)
\(198\) 0 0
\(199\) 11.7514 + 20.3540i 0.833034 + 1.44286i 0.895621 + 0.444817i \(0.146731\pi\)
−0.0625877 + 0.998039i \(0.519935\pi\)
\(200\) 0 0
\(201\) −6.61782 3.82080i −0.466785 0.269498i
\(202\) 0 0
\(203\) 4.25299 + 11.1982i 0.298502 + 0.785957i
\(204\) 0 0
\(205\) 1.51205 + 5.69282i 0.105606 + 0.397604i
\(206\) 0 0
\(207\) 2.92383 + 0.783438i 0.203220 + 0.0544527i
\(208\) 0 0
\(209\) −11.7985 −0.816117
\(210\) 0 0
\(211\) 13.9609 0.961108 0.480554 0.876965i \(-0.340436\pi\)
0.480554 + 0.876965i \(0.340436\pi\)
\(212\) 0 0
\(213\) 5.20861 + 1.39564i 0.356888 + 0.0956280i
\(214\) 0 0
\(215\) −16.9907 9.85920i −1.15876 0.672392i
\(216\) 0 0
\(217\) 3.66340 4.49120i 0.248688 0.304883i
\(218\) 0 0
\(219\) −13.5300 7.81157i −0.914275 0.527857i
\(220\) 0 0
\(221\) 0.628694 + 1.08893i 0.0422905 + 0.0732493i
\(222\) 0 0
\(223\) −19.7736 + 19.7736i −1.32414 + 1.32414i −0.413745 + 0.910393i \(0.635780\pi\)
−0.910393 + 0.413745i \(0.864220\pi\)
\(224\) 0 0
\(225\) 4.99995 + 0.0218741i 0.333330 + 0.00145827i
\(226\) 0 0
\(227\) −2.45140 + 9.14875i −0.162705 + 0.607224i 0.835617 + 0.549313i \(0.185111\pi\)
−0.998322 + 0.0579110i \(0.981556\pi\)
\(228\) 0 0
\(229\) −0.927717 + 1.60685i −0.0613053 + 0.106184i −0.895049 0.445968i \(-0.852860\pi\)
0.833744 + 0.552151i \(0.186193\pi\)
\(230\) 0 0
\(231\) −6.75375 9.36552i −0.444364 0.616206i
\(232\) 0 0
\(233\) −26.5983 + 7.12699i −1.74251 + 0.466905i −0.983003 0.183591i \(-0.941228\pi\)
−0.759510 + 0.650496i \(0.774561\pi\)
\(234\) 0 0
\(235\) −12.1873 + 7.00087i −0.795015 + 0.456686i
\(236\) 0 0
\(237\) 9.47296 + 9.47296i 0.615335 + 0.615335i
\(238\) 0 0
\(239\) 14.3815i 0.930260i 0.885242 + 0.465130i \(0.153992\pi\)
−0.885242 + 0.465130i \(0.846008\pi\)
\(240\) 0 0
\(241\) 5.73574 3.31153i 0.369471 0.213314i −0.303756 0.952750i \(-0.598241\pi\)
0.673227 + 0.739435i \(0.264908\pi\)
\(242\) 0 0
\(243\) 0.258819 + 0.965926i 0.0166032 + 0.0619642i
\(244\) 0 0
\(245\) −8.64655 + 13.0475i −0.552408 + 0.833574i
\(246\) 0 0
\(247\) −2.77038 10.3392i −0.176275 0.657867i
\(248\) 0 0
\(249\) −14.0307 + 8.10065i −0.889162 + 0.513358i
\(250\) 0 0
\(251\) 3.20820i 0.202500i −0.994861 0.101250i \(-0.967716\pi\)
0.994861 0.101250i \(-0.0322841\pi\)
\(252\) 0 0
\(253\) −9.34119 9.34119i −0.587275 0.587275i
\(254\) 0 0
\(255\) 0.185291 0.685515i 0.0116034 0.0429286i
\(256\) 0 0
\(257\) −15.1796 + 4.06736i −0.946877 + 0.253715i −0.699037 0.715086i \(-0.746388\pi\)
−0.247841 + 0.968801i \(0.579721\pi\)
\(258\) 0 0
\(259\) 4.14244 + 5.74437i 0.257398 + 0.356938i
\(260\) 0 0
\(261\) −2.26374 + 3.92092i −0.140122 + 0.242699i
\(262\) 0 0
\(263\) 3.76752 14.0606i 0.232315 0.867011i −0.747026 0.664795i \(-0.768519\pi\)
0.979341 0.202216i \(-0.0648145\pi\)
\(264\) 0 0
\(265\) −0.0609852 + 27.8799i −0.00374629 + 1.71265i
\(266\) 0 0
\(267\) −4.28977 + 4.28977i −0.262529 + 0.262529i
\(268\) 0 0
\(269\) −6.10002 10.5655i −0.371925 0.644193i 0.617937 0.786228i \(-0.287969\pi\)
−0.989862 + 0.142035i \(0.954635\pi\)
\(270\) 0 0
\(271\) −11.0842 6.39946i −0.673317 0.388740i 0.124015 0.992280i \(-0.460423\pi\)
−0.797332 + 0.603541i \(0.793756\pi\)
\(272\) 0 0
\(273\) 6.62132 8.11752i 0.400740 0.491295i
\(274\) 0 0
\(275\) −18.8498 10.9932i −1.13669 0.662913i
\(276\) 0 0
\(277\) −20.2295 5.42047i −1.21547 0.325685i −0.406565 0.913622i \(-0.633273\pi\)
−0.808906 + 0.587937i \(0.799940\pi\)
\(278\) 0 0
\(279\) 2.19061 0.131148
\(280\) 0 0
\(281\) 23.8868 1.42497 0.712483 0.701690i \(-0.247571\pi\)
0.712483 + 0.701690i \(0.247571\pi\)
\(282\) 0 0
\(283\) 6.24382 + 1.67303i 0.371157 + 0.0994511i 0.439576 0.898206i \(-0.355129\pi\)
−0.0684190 + 0.997657i \(0.521795\pi\)
\(284\) 0 0
\(285\) −3.03398 + 5.22857i −0.179718 + 0.309714i
\(286\) 0 0
\(287\) −2.47448 6.51531i −0.146064 0.384586i
\(288\) 0 0
\(289\) 14.6351 + 8.44957i 0.860888 + 0.497034i
\(290\) 0 0
\(291\) −5.57934 9.66369i −0.327066 0.566496i
\(292\) 0 0
\(293\) 6.91665 6.91665i 0.404075 0.404075i −0.475591 0.879666i \(-0.657766\pi\)
0.879666 + 0.475591i \(0.157766\pi\)
\(294\) 0 0
\(295\) −2.72410 2.73604i −0.158603 0.159299i
\(296\) 0 0
\(297\) 1.12955 4.21553i 0.0655430 0.244610i
\(298\) 0 0
\(299\) 5.99245 10.3792i 0.346552 0.600246i
\(300\) 0 0
\(301\) 21.1999 + 9.52919i 1.22194 + 0.549253i
\(302\) 0 0
\(303\) −3.28206 + 0.879426i −0.188550 + 0.0505217i
\(304\) 0 0
\(305\) 22.0433 + 5.95819i 1.26219 + 0.341165i
\(306\) 0 0
\(307\) −7.31476 7.31476i −0.417475 0.417475i 0.466857 0.884333i \(-0.345386\pi\)
−0.884333 + 0.466857i \(0.845386\pi\)
\(308\) 0 0
\(309\) 15.4902i 0.881207i
\(310\) 0 0
\(311\) −18.8693 + 10.8942i −1.06998 + 0.617752i −0.928175 0.372143i \(-0.878623\pi\)
−0.141803 + 0.989895i \(0.545290\pi\)
\(312\) 0 0
\(313\) −6.09895 22.7616i −0.344733 1.28656i −0.892924 0.450208i \(-0.851350\pi\)
0.548191 0.836353i \(-0.315317\pi\)
\(314\) 0 0
\(315\) −5.88712 + 0.584619i −0.331702 + 0.0329396i
\(316\) 0 0
\(317\) 5.71583 + 21.3318i 0.321033 + 1.19811i 0.918240 + 0.396024i \(0.129610\pi\)
−0.597207 + 0.802087i \(0.703723\pi\)
\(318\) 0 0
\(319\) 17.1118 9.87951i 0.958077 0.553146i
\(320\) 0 0
\(321\) 13.6402i 0.761322i
\(322\) 0 0
\(323\) 0.607080 + 0.607080i 0.0337788 + 0.0337788i
\(324\) 0 0
\(325\) 5.20740 19.0997i 0.288855 1.05946i
\(326\) 0 0
\(327\) 0.507340 0.135941i 0.0280560 0.00751757i
\(328\) 0 0
\(329\) 13.4887 9.72709i 0.743656 0.536272i
\(330\) 0 0
\(331\) 0.440888 0.763640i 0.0242334 0.0419735i −0.853654 0.520840i \(-0.825619\pi\)
0.877888 + 0.478866i \(0.158952\pi\)
\(332\) 0 0
\(333\) −0.692812 + 2.58561i −0.0379659 + 0.141691i
\(334\) 0 0
\(335\) 17.0871 + 0.0373767i 0.933568 + 0.00204211i
\(336\) 0 0
\(337\) 17.8218 17.8218i 0.970813 0.970813i −0.0287728 0.999586i \(-0.509160\pi\)
0.999586 + 0.0287728i \(0.00915993\pi\)
\(338\) 0 0
\(339\) 8.69405 + 15.0585i 0.472196 + 0.817867i
\(340\) 0 0
\(341\) −8.27950 4.78017i −0.448360 0.258861i
\(342\) 0 0
\(343\) 8.58339 16.4111i 0.463459 0.886118i
\(344\) 0 0
\(345\) −6.54170 + 1.73752i −0.352193 + 0.0935447i
\(346\) 0 0
\(347\) 21.5123 + 5.76421i 1.15484 + 0.309439i 0.784904 0.619617i \(-0.212712\pi\)
0.369938 + 0.929056i \(0.379379\pi\)
\(348\) 0 0
\(349\) −1.52167 −0.0814531 −0.0407266 0.999170i \(-0.512967\pi\)
−0.0407266 + 0.999170i \(0.512967\pi\)
\(350\) 0 0
\(351\) 3.95937 0.211335
\(352\) 0 0
\(353\) 18.7437 + 5.02235i 0.997625 + 0.267313i 0.720450 0.693506i \(-0.243935\pi\)
0.277175 + 0.960819i \(0.410602\pi\)
\(354\) 0 0
\(355\) −11.6536 + 3.09527i −0.618510 + 0.164280i
\(356\) 0 0
\(357\) −0.134386 + 0.829403i −0.00711247 + 0.0438966i
\(358\) 0 0
\(359\) 26.7834 + 15.4634i 1.41357 + 0.816126i 0.995723 0.0923909i \(-0.0294509\pi\)
0.417849 + 0.908517i \(0.362784\pi\)
\(360\) 0 0
\(361\) 5.84570 + 10.1250i 0.307668 + 0.532897i
\(362\) 0 0
\(363\) −5.68979 + 5.68979i −0.298637 + 0.298637i
\(364\) 0 0
\(365\) 34.9343 + 0.0764161i 1.82855 + 0.00399980i
\(366\) 0 0
\(367\) −3.21383 + 11.9942i −0.167761 + 0.626091i 0.829911 + 0.557895i \(0.188391\pi\)
−0.997672 + 0.0681957i \(0.978276\pi\)
\(368\) 0 0
\(369\) 1.31709 2.28127i 0.0685649 0.118758i
\(370\) 0 0
\(371\) −3.33164 32.8194i −0.172970 1.70390i
\(372\) 0 0
\(373\) −5.86906 + 1.57261i −0.303888 + 0.0814266i −0.407541 0.913187i \(-0.633614\pi\)
0.103653 + 0.994614i \(0.466947\pi\)
\(374\) 0 0
\(375\) −9.71893 + 5.52651i −0.501884 + 0.285388i
\(376\) 0 0
\(377\) 12.6756 + 12.6756i 0.652825 + 0.652825i
\(378\) 0 0
\(379\) 12.2273i 0.628072i −0.949411 0.314036i \(-0.898319\pi\)
0.949411 0.314036i \(-0.101681\pi\)
\(380\) 0 0
\(381\) 7.44507 4.29841i 0.381423 0.220214i
\(382\) 0 0
\(383\) −3.19999 11.9425i −0.163512 0.610234i −0.998225 0.0595499i \(-0.981033\pi\)
0.834714 0.550684i \(-0.185633\pi\)
\(384\) 0 0
\(385\) 23.5263 + 10.6368i 1.19901 + 0.542102i
\(386\) 0 0
\(387\) 2.27374 + 8.48573i 0.115581 + 0.431354i
\(388\) 0 0
\(389\) 25.2993 14.6065i 1.28272 0.740581i 0.305378 0.952231i \(-0.401217\pi\)
0.977345 + 0.211651i \(0.0678839\pi\)
\(390\) 0 0
\(391\) 0.961285i 0.0486143i
\(392\) 0 0
\(393\) −4.07841 4.07841i −0.205729 0.205729i
\(394\) 0 0
\(395\) −28.9184 7.81649i −1.45504 0.393290i
\(396\) 0 0
\(397\) −35.6296 + 9.54692i −1.78820 + 0.479146i −0.992038 0.125939i \(-0.959805\pi\)
−0.796160 + 0.605086i \(0.793139\pi\)
\(398\) 0 0
\(399\) 2.93243 6.52388i 0.146805 0.326603i
\(400\) 0 0
\(401\) 17.7131 30.6799i 0.884549 1.53208i 0.0383185 0.999266i \(-0.487800\pi\)
0.846230 0.532818i \(-0.178867\pi\)
\(402\) 0 0
\(403\) 2.24485 8.37788i 0.111824 0.417332i
\(404\) 0 0
\(405\) −1.57768 1.58459i −0.0783954 0.0787391i
\(406\) 0 0
\(407\) 8.26062 8.26062i 0.409464 0.409464i
\(408\) 0 0
\(409\) 13.9895 + 24.2306i 0.691737 + 1.19812i 0.971268 + 0.237988i \(0.0764877\pi\)
−0.279531 + 0.960137i \(0.590179\pi\)
\(410\) 0 0
\(411\) −16.4575 9.50174i −0.811788 0.468686i
\(412\) 0 0
\(413\) 3.54000 + 2.88752i 0.174192 + 0.142085i
\(414\) 0 0
\(415\) 18.1822 31.3340i 0.892529 1.53812i
\(416\) 0 0
\(417\) 0.306058 + 0.0820080i 0.0149877 + 0.00401595i
\(418\) 0 0
\(419\) 6.49494 0.317299 0.158649 0.987335i \(-0.449286\pi\)
0.158649 + 0.987335i \(0.449286\pi\)
\(420\) 0 0
\(421\) −16.6014 −0.809103 −0.404551 0.914515i \(-0.632572\pi\)
−0.404551 + 0.914515i \(0.632572\pi\)
\(422\) 0 0
\(423\) 6.07142 + 1.62683i 0.295203 + 0.0790993i
\(424\) 0 0
\(425\) 0.404256 + 1.53554i 0.0196093 + 0.0744848i
\(426\) 0 0
\(427\) −26.6701 4.32130i −1.29066 0.209122i
\(428\) 0 0
\(429\) −14.9646 8.63981i −0.722497 0.417134i
\(430\) 0 0
\(431\) 2.13950 + 3.70572i 0.103056 + 0.178498i 0.912942 0.408089i \(-0.133805\pi\)
−0.809886 + 0.586587i \(0.800471\pi\)
\(432\) 0 0
\(433\) −11.5948 + 11.5948i −0.557208 + 0.557208i −0.928512 0.371303i \(-0.878911\pi\)
0.371303 + 0.928512i \(0.378911\pi\)
\(434\) 0 0
\(435\) 0.0221449 10.1237i 0.00106177 0.485396i
\(436\) 0 0
\(437\) 2.11798 7.90441i 0.101317 0.378119i
\(438\) 0 0
\(439\) 13.9971 24.2437i 0.668046 1.15709i −0.310404 0.950605i \(-0.600464\pi\)
0.978450 0.206484i \(-0.0662022\pi\)
\(440\) 0 0
\(441\) 6.85720 1.40670i 0.326533 0.0669858i
\(442\) 0 0
\(443\) 8.79765 2.35732i 0.417989 0.112000i −0.0436936 0.999045i \(-0.513913\pi\)
0.461683 + 0.887045i \(0.347246\pi\)
\(444\) 0 0
\(445\) 3.53965 13.0955i 0.167795 0.620786i
\(446\) 0 0
\(447\) 5.81239 + 5.81239i 0.274917 + 0.274917i
\(448\) 0 0
\(449\) 26.7133i 1.26068i 0.776319 + 0.630340i \(0.217084\pi\)
−0.776319 + 0.630340i \(0.782916\pi\)
\(450\) 0 0
\(451\) −9.95599 + 5.74809i −0.468809 + 0.270667i
\(452\) 0 0
\(453\) 2.42401 + 9.04653i 0.113890 + 0.425043i
\(454\) 0 0
\(455\) −3.79704 + 23.1141i −0.178008 + 1.08361i
\(456\) 0 0
\(457\) 0.910151 + 3.39673i 0.0425751 + 0.158892i 0.983941 0.178496i \(-0.0571231\pi\)
−0.941366 + 0.337388i \(0.890456\pi\)
\(458\) 0 0
\(459\) −0.275026 + 0.158787i −0.0128371 + 0.00741152i
\(460\) 0 0
\(461\) 2.72235i 0.126793i −0.997988 0.0633963i \(-0.979807\pi\)
0.997988 0.0633963i \(-0.0201932\pi\)
\(462\) 0 0
\(463\) 26.6530 + 26.6530i 1.23867 + 1.23867i 0.960544 + 0.278128i \(0.0897140\pi\)
0.278128 + 0.960544i \(0.410286\pi\)
\(464\) 0 0
\(465\) −4.24744 + 2.43989i −0.196970 + 0.113147i
\(466\) 0 0
\(467\) 41.2480 11.0524i 1.90873 0.511442i 0.914438 0.404725i \(-0.132633\pi\)
0.994289 0.106717i \(-0.0340338\pi\)
\(468\) 0 0
\(469\) −20.1144 + 2.04190i −0.928797 + 0.0942860i
\(470\) 0 0
\(471\) 7.65720 13.2627i 0.352825 0.611111i
\(472\) 0 0
\(473\) 9.92316 37.0337i 0.456267 1.70281i
\(474\) 0 0
\(475\) 0.0591354 13.5171i 0.00271332 0.620206i
\(476\) 0 0
\(477\) 8.81643 8.81643i 0.403677 0.403677i
\(478\) 0 0
\(479\) −12.8201 22.2051i −0.585766 1.01458i −0.994779 0.102048i \(-0.967460\pi\)
0.409013 0.912528i \(-0.365873\pi\)
\(480\) 0 0
\(481\) 9.17858 + 5.29926i 0.418507 + 0.241625i
\(482\) 0 0
\(483\) 7.48684 2.84346i 0.340663 0.129382i
\(484\) 0 0
\(485\) 21.5813 + 12.5230i 0.979958 + 0.568641i
\(486\) 0 0
\(487\) −23.5505 6.31034i −1.06717 0.285949i −0.317843 0.948143i \(-0.602959\pi\)
−0.749332 + 0.662195i \(0.769625\pi\)
\(488\) 0 0
\(489\) −18.4025 −0.832190
\(490\) 0 0
\(491\) 7.86333 0.354867 0.177434 0.984133i \(-0.443221\pi\)
0.177434 + 0.984133i \(0.443221\pi\)
\(492\) 0 0
\(493\) −1.38881 0.372132i −0.0625491 0.0167600i
\(494\) 0 0
\(495\) 2.50512 + 9.43172i 0.112597 + 0.423924i
\(496\) 0 0
\(497\) 13.3373 5.06543i 0.598260 0.227216i
\(498\) 0 0
\(499\) −2.03266 1.17356i −0.0909945 0.0525357i 0.453812 0.891097i \(-0.350064\pi\)
−0.544807 + 0.838562i \(0.683397\pi\)
\(500\) 0 0
\(501\) 5.28852 + 9.15998i 0.236274 + 0.409238i
\(502\) 0 0
\(503\) 14.5260 14.5260i 0.647682 0.647682i −0.304750 0.952432i \(-0.598573\pi\)
0.952432 + 0.304750i \(0.0985729\pi\)
\(504\) 0 0
\(505\) 5.38420 5.36070i 0.239594 0.238548i
\(506\) 0 0
\(507\) 0.692748 2.58537i 0.0307660 0.114820i
\(508\) 0 0
\(509\) −8.29178 + 14.3618i −0.367527 + 0.636575i −0.989178 0.146719i \(-0.953129\pi\)
0.621652 + 0.783294i \(0.286462\pi\)
\(510\) 0 0
\(511\) −41.1236 + 4.17463i −1.81920 + 0.184675i
\(512\) 0 0
\(513\) 2.61132 0.699702i 0.115293 0.0308926i
\(514\) 0 0
\(515\) −17.2529 30.0345i −0.760255 1.32348i
\(516\) 0 0
\(517\) −19.3972 19.3972i −0.853090 0.853090i
\(518\) 0 0
\(519\) 5.48319i 0.240685i
\(520\) 0 0
\(521\) −28.8215 + 16.6401i −1.26269 + 0.729015i −0.973594 0.228285i \(-0.926688\pi\)
−0.289097 + 0.957300i \(0.593355\pi\)
\(522\) 0 0
\(523\) 6.09013 + 22.7287i 0.266303 + 0.993855i 0.961448 + 0.274986i \(0.0886732\pi\)
−0.695146 + 0.718869i \(0.744660\pi\)
\(524\) 0 0
\(525\) 10.7636 7.69059i 0.469762 0.335645i
\(526\) 0 0
\(527\) 0.180055 + 0.671974i 0.00784331 + 0.0292716i
\(528\) 0 0
\(529\) −11.9836 + 6.91872i −0.521025 + 0.300814i
\(530\) 0 0
\(531\) 1.72665i 0.0749304i
\(532\) 0 0
\(533\) −7.37489 7.37489i −0.319442 0.319442i
\(534\) 0 0
\(535\) 15.1924 + 26.4475i 0.656825 + 1.14342i
\(536\) 0 0
\(537\) −9.94441 + 2.66460i −0.429133 + 0.114986i
\(538\) 0 0
\(539\) −28.9867 9.64654i −1.24854 0.415506i
\(540\) 0 0
\(541\) 7.54153 13.0623i 0.324236 0.561592i −0.657122 0.753784i \(-0.728226\pi\)
0.981357 + 0.192192i \(0.0615596\pi\)
\(542\) 0 0
\(543\) −3.60386 + 13.4498i −0.154656 + 0.577185i
\(544\) 0 0
\(545\) −0.832287 + 0.828654i −0.0356513 + 0.0354956i
\(546\) 0 0
\(547\) −24.4516 + 24.4516i −1.04547 + 1.04547i −0.0465590 + 0.998916i \(0.514826\pi\)
−0.998916 + 0.0465590i \(0.985174\pi\)
\(548\) 0 0
\(549\) −5.10591 8.84369i −0.217915 0.377440i
\(550\) 0 0
\(551\) 10.6000 + 6.11989i 0.451574 + 0.260716i
\(552\) 0 0
\(553\) 34.9883 + 5.66907i 1.48785 + 0.241073i
\(554\) 0 0
\(555\) −1.53652 5.78498i −0.0652219 0.245559i
\(556\) 0 0
\(557\) 18.3832 + 4.92576i 0.778920 + 0.208711i 0.626309 0.779575i \(-0.284565\pi\)
0.152612 + 0.988286i \(0.451232\pi\)
\(558\) 0 0
\(559\) 34.7833 1.47118
\(560\) 0 0
\(561\) 1.38596 0.0585155
\(562\) 0 0
\(563\) −19.9179 5.33699i −0.839441 0.224927i −0.186613 0.982434i \(-0.559751\pi\)
−0.652828 + 0.757506i \(0.726418\pi\)
\(564\) 0 0
\(565\) −33.6293 19.5141i −1.41479 0.820964i
\(566\) 0 0
\(567\) 2.05021 + 1.67232i 0.0861006 + 0.0702308i
\(568\) 0 0
\(569\) 5.59023 + 3.22752i 0.234354 + 0.135305i 0.612579 0.790409i \(-0.290132\pi\)
−0.378225 + 0.925714i \(0.623465\pi\)
\(570\) 0 0
\(571\) 23.4901 + 40.6860i 0.983028 + 1.70265i 0.650390 + 0.759600i \(0.274605\pi\)
0.332638 + 0.943055i \(0.392061\pi\)
\(572\) 0 0
\(573\) 7.56041 7.56041i 0.315841 0.315841i
\(574\) 0 0
\(575\) 10.7487 10.6550i 0.448251 0.444346i
\(576\) 0 0
\(577\) 3.59166 13.4042i 0.149523 0.558026i −0.849990 0.526799i \(-0.823392\pi\)
0.999512 0.0312266i \(-0.00994136\pi\)
\(578\) 0 0
\(579\) −2.15606 + 3.73440i −0.0896027 + 0.155196i
\(580\) 0 0
\(581\) −17.5736 + 39.0966i −0.729076 + 1.62200i
\(582\) 0 0
\(583\) −52.5606 + 14.0836i −2.17684 + 0.583282i
\(584\) 0 0
\(585\) −7.67694 + 4.40992i −0.317403 + 0.182328i
\(586\) 0 0
\(587\) 25.6597 + 25.6597i 1.05909 + 1.05909i 0.998141 + 0.0609461i \(0.0194118\pi\)
0.0609461 + 0.998141i \(0.480588\pi\)
\(588\) 0 0
\(589\) 5.92219i 0.244019i
\(590\) 0 0
\(591\) −1.36538 + 0.788301i −0.0561641 + 0.0324264i
\(592\) 0 0
\(593\) −0.830494 3.09944i −0.0341043 0.127279i 0.946775 0.321896i \(-0.104320\pi\)
−0.980879 + 0.194617i \(0.937654\pi\)
\(594\) 0 0
\(595\) −0.663219 1.75783i −0.0271893 0.0720642i
\(596\) 0 0
\(597\) 6.08297 + 22.7019i 0.248959 + 0.929128i
\(598\) 0 0
\(599\) 35.6333 20.5729i 1.45594 0.840586i 0.457130 0.889400i \(-0.348877\pi\)
0.998808 + 0.0488140i \(0.0155442\pi\)
\(600\) 0 0
\(601\) 35.6457i 1.45402i 0.686628 + 0.727009i \(0.259090\pi\)
−0.686628 + 0.727009i \(0.740910\pi\)
\(602\) 0 0
\(603\) −5.40343 5.40343i −0.220045 0.220045i
\(604\) 0 0
\(605\) 4.69486 17.3694i 0.190873 0.706166i
\(606\) 0 0
\(607\) 31.2289 8.36776i 1.26754 0.339637i 0.438453 0.898754i \(-0.355527\pi\)
0.829088 + 0.559117i \(0.188860\pi\)
\(608\) 0 0
\(609\) 1.20978 + 11.9173i 0.0490227 + 0.482915i
\(610\) 0 0
\(611\) 12.4435 21.5527i 0.503410 0.871931i
\(612\) 0 0
\(613\) −2.52780 + 9.43387i −0.102097 + 0.381030i −0.998000 0.0632197i \(-0.979863\pi\)
0.895903 + 0.444250i \(0.146530\pi\)
\(614\) 0 0
\(615\) −0.0128843 + 5.89019i −0.000519546 + 0.237515i
\(616\) 0 0
\(617\) −9.23419 + 9.23419i −0.371754 + 0.371754i −0.868116 0.496362i \(-0.834669\pi\)
0.496362 + 0.868116i \(0.334669\pi\)
\(618\) 0 0
\(619\) −12.1118 20.9783i −0.486815 0.843188i 0.513070 0.858347i \(-0.328508\pi\)
−0.999885 + 0.0151586i \(0.995175\pi\)
\(620\) 0 0
\(621\) 2.62144 + 1.51349i 0.105195 + 0.0607341i
\(622\) 0 0
\(623\) −2.56720 + 15.8442i −0.102853 + 0.634785i
\(624\) 0 0
\(625\) 12.6890 21.5404i 0.507558 0.861617i
\(626\) 0 0
\(627\) −11.3964 3.05367i −0.455130 0.121952i
\(628\) 0 0
\(629\) −0.850086 −0.0338952
\(630\) 0 0
\(631\) −14.1379 −0.562819 −0.281410 0.959588i \(-0.590802\pi\)
−0.281410 + 0.959588i \(0.590802\pi\)
\(632\) 0 0
\(633\) 13.4852 + 3.61335i 0.535988 + 0.143618i
\(634\) 0 0
\(635\) −9.64794 + 16.6266i −0.382867 + 0.659807i
\(636\) 0 0
\(637\) 1.64711 27.6666i 0.0652609 1.09619i
\(638\) 0 0
\(639\) 4.66992 + 2.69618i 0.184739 + 0.106659i
\(640\) 0 0
\(641\) −16.8927 29.2590i −0.667222 1.15566i −0.978678 0.205401i \(-0.934150\pi\)
0.311456 0.950260i \(-0.399183\pi\)
\(642\) 0 0
\(643\) 5.54153 5.54153i 0.218537 0.218537i −0.589345 0.807882i \(-0.700614\pi\)
0.807882 + 0.589345i \(0.200614\pi\)
\(644\) 0 0
\(645\) −13.8600 13.9208i −0.545737 0.548130i
\(646\) 0 0
\(647\) 0.654586 2.44295i 0.0257344 0.0960422i −0.951864 0.306520i \(-0.900835\pi\)
0.977599 + 0.210478i \(0.0675020\pi\)
\(648\) 0 0
\(649\) 3.76776 6.52596i 0.147898 0.256166i
\(650\) 0 0
\(651\) 4.70098 3.39001i 0.184246 0.132865i
\(652\) 0 0
\(653\) 9.22736 2.47246i 0.361094 0.0967550i −0.0737104 0.997280i \(-0.523484\pi\)
0.434805 + 0.900525i \(0.356817\pi\)
\(654\) 0 0
\(655\) 12.4503 + 3.36525i 0.486472 + 0.131491i
\(656\) 0 0
\(657\) −11.0472 11.0472i −0.430994 0.430994i
\(658\) 0 0
\(659\) 25.7019i 1.00120i 0.865678 + 0.500602i \(0.166888\pi\)
−0.865678 + 0.500602i \(0.833112\pi\)
\(660\) 0 0
\(661\) −4.00560 + 2.31264i −0.155800 + 0.0899511i −0.575873 0.817539i \(-0.695338\pi\)
0.420073 + 0.907490i \(0.362004\pi\)
\(662\) 0 0
\(663\) 0.325436 + 1.21454i 0.0126389 + 0.0471690i
\(664\) 0 0
\(665\) 1.58048 + 15.9155i 0.0612885 + 0.617177i
\(666\) 0 0
\(667\) 3.54700 + 13.2376i 0.137341 + 0.512562i
\(668\) 0 0
\(669\) −24.2176 + 13.9820i −0.936307 + 0.540577i
\(670\) 0 0
\(671\) 44.5668i 1.72048i
\(672\) 0 0
\(673\) −19.3062 19.3062i −0.744198 0.744198i 0.229185 0.973383i \(-0.426394\pi\)
−0.973383 + 0.229185i \(0.926394\pi\)
\(674\) 0 0
\(675\) 4.82392 + 1.31521i 0.185673 + 0.0506225i
\(676\) 0 0
\(677\) 11.4592 3.07047i 0.440411 0.118008i −0.0317981 0.999494i \(-0.510123\pi\)
0.472209 + 0.881487i \(0.343457\pi\)
\(678\) 0 0
\(679\) −26.9278 12.1038i −1.03340 0.464503i
\(680\) 0 0
\(681\) −4.73574 + 8.20255i −0.181474 + 0.314322i
\(682\) 0 0
\(683\) 11.3685 42.4276i 0.435002 1.62345i −0.306060 0.952012i \(-0.599011\pi\)
0.741062 0.671437i \(-0.234322\pi\)
\(684\) 0 0
\(685\) 42.4930 + 0.0929501i 1.62357 + 0.00355144i
\(686\) 0 0
\(687\) −1.31199 + 1.31199i −0.0500555 + 0.0500555i
\(688\) 0 0
\(689\) −24.6833 42.7528i −0.940359 1.62875i
\(690\) 0 0
\(691\) 7.97994 + 4.60722i 0.303571 + 0.175267i 0.644046 0.764987i \(-0.277254\pi\)
−0.340475 + 0.940254i \(0.610588\pi\)
\(692\) 0 0
\(693\) −4.09965 10.7944i −0.155733 0.410045i
\(694\) 0 0
\(695\) −0.684766 + 0.181878i −0.0259746 + 0.00689902i
\(696\) 0 0
\(697\) 0.808040 + 0.216514i 0.0306067 + 0.00820104i
\(698\) 0 0
\(699\) −27.5366 −1.04153
\(700\) 0 0
\(701\) 16.6053 0.627174 0.313587 0.949559i \(-0.398469\pi\)
0.313587 + 0.949559i \(0.398469\pi\)
\(702\) 0 0
\(703\) 6.99005 + 1.87298i 0.263635 + 0.0706407i
\(704\) 0 0
\(705\) −13.5840 + 3.60800i −0.511604 + 0.135885i
\(706\) 0 0
\(707\) −5.68228 + 6.96628i −0.213704 + 0.261994i
\(708\) 0 0
\(709\) −27.6385 15.9571i −1.03799 0.599282i −0.118725 0.992927i \(-0.537881\pi\)
−0.919262 + 0.393645i \(0.871214\pi\)
\(710\) 0 0
\(711\) 6.69839 + 11.6020i 0.251209 + 0.435107i
\(712\) 0 0
\(713\) 4.68876 4.68876i 0.175596 0.175596i
\(714\) 0 0
\(715\) 38.6383 + 0.0845183i 1.44499 + 0.00316081i
\(716\) 0 0
\(717\) −3.72220 + 13.8914i −0.139008 + 0.518785i
\(718\) 0 0
\(719\) −8.63741 + 14.9604i −0.322121 + 0.557930i −0.980925 0.194384i \(-0.937729\pi\)
0.658804 + 0.752314i \(0.271062\pi\)
\(720\) 0 0
\(721\) 23.9714 + 33.2415i 0.892742 + 1.23798i
\(722\) 0 0
\(723\) 6.39738 1.71417i 0.237921 0.0637508i
\(724\) 0 0
\(725\) 11.2328 + 19.6539i 0.417177 + 0.729928i
\(726\) 0 0
\(727\) −30.3766 30.3766i −1.12661 1.12661i −0.990725 0.135880i \(-0.956614\pi\)
−0.135880 0.990725i \(-0.543386\pi\)
\(728\) 0 0
\(729\) 1.00000i 0.0370370i
\(730\) 0 0
\(731\) −2.41613 + 1.39495i −0.0893637 + 0.0515941i
\(732\) 0 0
\(733\) 9.12882 + 34.0692i 0.337181 + 1.25838i 0.901486 + 0.432809i \(0.142478\pi\)
−0.564305 + 0.825566i \(0.690856\pi\)
\(734\) 0 0
\(735\) −11.7289 + 10.3650i −0.432626 + 0.382319i
\(736\) 0 0
\(737\) 8.63155 + 32.2134i 0.317947 + 1.18660i
\(738\) 0 0
\(739\) −25.1311 + 14.5095i −0.924463 + 0.533739i −0.885056 0.465484i \(-0.845880\pi\)
−0.0394067 + 0.999223i \(0.512547\pi\)
\(740\) 0 0
\(741\) 10.7039i 0.393218i
\(742\) 0 0
\(743\) 6.98196 + 6.98196i 0.256143 + 0.256143i 0.823483 0.567340i \(-0.192028\pi\)
−0.567340 + 0.823483i \(0.692028\pi\)
\(744\) 0 0
\(745\) −17.7437 4.79602i −0.650077 0.175713i
\(746\) 0 0
\(747\) −15.6493 + 4.19321i −0.572576 + 0.153421i
\(748\) 0 0
\(749\) −21.1085 29.2715i −0.771288 1.06956i
\(750\) 0 0
\(751\) −2.61368 + 4.52703i −0.0953745 + 0.165194i −0.909765 0.415124i \(-0.863738\pi\)
0.814390 + 0.580317i \(0.197072\pi\)
\(752\) 0 0
\(753\) 0.830342 3.09888i 0.0302594 0.112929i
\(754\) 0 0
\(755\) −14.7760 14.8408i −0.537753 0.540111i
\(756\) 0 0
\(757\) −33.4817 + 33.4817i −1.21691 + 1.21691i −0.248207 + 0.968707i \(0.579841\pi\)
−0.968707 + 0.248207i \(0.920159\pi\)
\(758\) 0 0
\(759\) −6.60522 11.4406i −0.239754 0.415266i
\(760\) 0 0
\(761\) −45.5767 26.3137i −1.65215 0.953872i −0.976184 0.216942i \(-0.930392\pi\)
−0.675970 0.736929i \(-0.736275\pi\)
\(762\) 0 0
\(763\) 0.878363 1.07684i 0.0317989 0.0389844i
\(764\) 0 0
\(765\) 0.356402 0.614199i 0.0128857 0.0222064i
\(766\) 0 0
\(767\) 6.60351 + 1.76940i 0.238439 + 0.0638895i
\(768\) 0 0
\(769\) −34.1069 −1.22993 −0.614963 0.788556i \(-0.710829\pi\)
−0.614963 + 0.788556i \(0.710829\pi\)
\(770\) 0 0
\(771\) −15.7151 −0.565965
\(772\) 0 0
\(773\) −2.25082 0.603106i −0.0809564 0.0216922i 0.218113 0.975923i \(-0.430010\pi\)
−0.299070 + 0.954231i \(0.596676\pi\)
\(774\) 0 0
\(775\) 5.51797 9.46157i 0.198211 0.339869i
\(776\) 0 0
\(777\) 2.51453 + 6.62078i 0.0902084 + 0.237519i
\(778\) 0 0
\(779\) −6.16727 3.56067i −0.220965 0.127574i
\(780\) 0 0
\(781\) −11.7668 20.3806i −0.421048 0.729276i
\(782\) 0 0
\(783\) −3.20141 + 3.20141i −0.114409 + 0.114409i
\(784\) 0 0
\(785\) −0.0749060 + 34.2439i −0.00267351 + 1.22222i
\(786\) 0 0
\(787\) 6.20186 23.1456i 0.221072 0.825053i −0.762868 0.646554i \(-0.776209\pi\)
0.983940 0.178499i \(-0.0571240\pi\)
\(788\) 0 0
\(789\) 7.27828 12.6064i 0.259114 0.448798i
\(790\) 0 0
\(791\) 41.9605 + 18.8609i 1.49194 + 0.670617i
\(792\) 0 0
\(793\) −39.0546 + 10.4647i −1.38687 + 0.371611i
\(794\) 0 0
\(795\) −7.27477 + 26.9142i −0.258009 + 0.954547i
\(796\) 0 0
\(797\) −4.27731 4.27731i −0.151510 0.151510i 0.627282 0.778792i \(-0.284167\pi\)
−0.778792 + 0.627282i \(0.784167\pi\)
\(798\) 0 0
\(799\) 1.99614i 0.0706182i
\(800\) 0 0
\(801\) −5.25387 + 3.03332i −0.185636 + 0.107177i
\(802\) 0 0
\(803\) 17.6471 + 65.8598i 0.622752 + 2.32414i
\(804\) 0 0
\(805\) −11.3494 + 13.8521i −0.400015 + 0.488221i
\(806\) 0 0
\(807\) −3.15760 11.7843i −0.111153 0.414828i
\(808\) 0 0
\(809\) −24.3656 + 14.0675i −0.856649 + 0.494587i −0.862889 0.505394i \(-0.831347\pi\)
0.00623939 + 0.999981i \(0.498014\pi\)
\(810\) 0 0
\(811\) 14.6408i 0.514108i −0.966397 0.257054i \(-0.917248\pi\)
0.966397 0.257054i \(-0.0827518\pi\)
\(812\) 0 0
\(813\) −9.05021 9.05021i −0.317405 0.317405i
\(814\) 0 0
\(815\) 35.6812 20.4966i 1.24986 0.717966i
\(816\) 0 0
\(817\) 22.9407 6.14694i 0.802593 0.215054i
\(818\) 0 0
\(819\) 8.49667 6.12720i 0.296898 0.214102i
\(820\) 0 0
\(821\) −19.0342 + 32.9682i −0.664298 + 1.15060i 0.315178 + 0.949033i \(0.397936\pi\)
−0.979475 + 0.201565i \(0.935397\pi\)
\(822\) 0 0
\(823\) −7.30051 + 27.2459i −0.254480 + 0.949731i 0.713900 + 0.700248i \(0.246927\pi\)
−0.968379 + 0.249483i \(0.919739\pi\)
\(824\) 0 0
\(825\) −15.3623 15.4973i −0.534845 0.539546i
\(826\) 0 0
\(827\) −13.2575 + 13.2575i −0.461008 + 0.461008i −0.898986 0.437977i \(-0.855695\pi\)
0.437977 + 0.898986i \(0.355695\pi\)
\(828\) 0 0
\(829\) 23.4677 + 40.6472i 0.815067 + 1.41174i 0.909280 + 0.416185i \(0.136633\pi\)
−0.0942131 + 0.995552i \(0.530033\pi\)
\(830\) 0 0
\(831\) −18.1373 10.4715i −0.629174 0.363254i
\(832\) 0 0
\(833\) 0.995129 + 1.98784i 0.0344792 + 0.0688745i
\(834\) 0 0
\(835\) −20.4564 11.8703i −0.707924 0.410787i
\(836\) 0 0
\(837\) 2.11597 + 0.566971i 0.0731385 + 0.0195974i
\(838\) 0 0
\(839\) −37.4760 −1.29382 −0.646908 0.762568i \(-0.723938\pi\)
−0.646908 + 0.762568i \(0.723938\pi\)
\(840\) 0 0
\(841\) 8.50190 0.293169
\(842\) 0 0
\(843\) 23.0728 + 6.18235i 0.794671 + 0.212931i
\(844\) 0 0
\(845\) 1.53638 + 5.78444i 0.0528532 + 0.198991i
\(846\) 0 0
\(847\) −3.40504 + 21.0152i −0.116999 + 0.722090i
\(848\) 0 0
\(849\) 5.59806 + 3.23204i 0.192125 + 0.110923i
\(850\) 0 0
\(851\) 4.05133 + 7.01711i 0.138878 + 0.240544i
\(852\) 0 0
\(853\) 3.02250 3.02250i 0.103488 0.103488i −0.653467 0.756955i \(-0.726686\pi\)
0.756955 + 0.653467i \(0.226686\pi\)
\(854\) 0 0
\(855\) −4.28386 + 4.26516i −0.146505 + 0.145865i
\(856\) 0 0
\(857\) 3.41348 12.7393i 0.116602 0.435166i −0.882799 0.469750i \(-0.844344\pi\)
0.999402 + 0.0345842i \(0.0110107\pi\)
\(858\) 0 0
\(859\) 3.65300 6.32718i 0.124639 0.215881i −0.796953 0.604041i \(-0.793556\pi\)
0.921592 + 0.388161i \(0.126889\pi\)
\(860\) 0 0
\(861\) −0.703874 6.93375i −0.0239879 0.236301i
\(862\) 0 0
\(863\) 15.8416 4.24474i 0.539254 0.144493i 0.0210958 0.999777i \(-0.493284\pi\)
0.518158 + 0.855285i \(0.326618\pi\)
\(864\) 0 0
\(865\) −6.10715 10.6315i −0.207649 0.361483i
\(866\) 0 0
\(867\) 11.9495 + 11.9495i 0.405826 + 0.405826i
\(868\) 0 0
\(869\) 58.4668i 1.98335i
\(870\) 0 0
\(871\) −26.2024 + 15.1279i −0.887833 + 0.512591i
\(872\) 0 0
\(873\) −2.88808 10.7785i −0.0977466 0.364795i
\(874\) 0 0
\(875\) −12.3041 + 26.9000i −0.415956 + 0.909385i
\(876\) 0 0
\(877\) 1.28232 + 4.78568i 0.0433008 + 0.161601i 0.984191 0.177111i \(-0.0566753\pi\)
−0.940890 + 0.338712i \(0.890009\pi\)
\(878\) 0 0
\(879\) 8.47113 4.89081i 0.285724 0.164963i
\(880\) 0 0
\(881\) 31.5578i 1.06321i −0.846993 0.531605i \(-0.821589\pi\)
0.846993 0.531605i \(-0.178411\pi\)
\(882\) 0 0
\(883\) −4.81686 4.81686i −0.162100 0.162100i 0.621396 0.783496i \(-0.286566\pi\)
−0.783496 + 0.621396i \(0.786566\pi\)
\(884\) 0 0
\(885\) −1.92314 3.34787i −0.0646456 0.112537i
\(886\) 0 0
\(887\) 16.1074 4.31598i 0.540835 0.144916i 0.0219480 0.999759i \(-0.493013\pi\)
0.518887 + 0.854843i \(0.326346\pi\)
\(888\) 0 0
\(889\) 9.32500 20.7457i 0.312751 0.695787i
\(890\) 0 0
\(891\) 2.18212 3.77954i 0.0731037 0.126619i
\(892\) 0 0
\(893\) 4.39805 16.4137i 0.147175 0.549265i
\(894\) 0 0
\(895\) 16.3137 16.2425i 0.545308 0.542927i
\(896\) 0 0
\(897\) 8.47460 8.47460i 0.282959 0.282959i
\(898\) 0 0
\(899\) 4.95897 + 8.58919i 0.165391 + 0.286466i
\(900\) 0 0
\(901\) 3.42912 + 1.97980i 0.114240 + 0.0659567i
\(902\) 0 0
\(903\) 18.0112 + 14.6914i 0.599376 + 0.488900i
\(904\) 0 0
\(905\) −7.99267 30.0922i −0.265685 1.00030i
\(906\) 0 0
\(907\) 11.2030 + 3.00183i 0.371989 + 0.0996741i 0.439970 0.898013i \(-0.354989\pi\)
−0.0679811 + 0.997687i \(0.521656\pi\)
\(908\) 0 0
\(909\) −3.39784 −0.112699
\(910\) 0 0
\(911\) −18.0104 −0.596712 −0.298356 0.954455i \(-0.596438\pi\)
−0.298356 + 0.954455i \(0.596438\pi\)
\(912\) 0 0
\(913\) 68.2971 + 18.3001i 2.26030 + 0.605646i
\(914\) 0 0
\(915\) 19.7501 + 11.4604i 0.652918 + 0.378869i
\(916\) 0 0
\(917\) −15.0636 2.44071i −0.497443 0.0805995i
\(918\) 0 0
\(919\) −28.7287 16.5865i −0.947672 0.547139i −0.0553148 0.998469i \(-0.517616\pi\)
−0.892357 + 0.451330i \(0.850950\pi\)
\(920\) 0 0
\(921\) −5.17232 8.95872i −0.170434 0.295200i
\(922\) 0 0
\(923\) 15.0969 15.0969i 0.496922 0.496922i
\(924\) 0 0
\(925\) 9.42250 + 9.50531i 0.309810 + 0.312533i
\(926\) 0 0
\(927\) −4.00916 + 14.9624i −0.131678 + 0.491429i
\(928\) 0 0
\(929\) 28.5132 49.3864i 0.935489 1.62032i 0.161730 0.986835i \(-0.448293\pi\)
0.773759 0.633480i \(-0.218374\pi\)
\(930\) 0 0
\(931\) −3.80294 18.5380i −0.124636 0.607560i
\(932\) 0 0
\(933\) −21.0459 + 5.63924i −0.689013 + 0.184620i
\(934\) 0 0
\(935\) −2.68729 + 1.54368i −0.0878838 + 0.0504838i
\(936\) 0 0
\(937\) 18.4132 + 18.4132i 0.601534 + 0.601534i 0.940719 0.339186i \(-0.110152\pi\)
−0.339186 + 0.940719i \(0.610152\pi\)
\(938\) 0 0
\(939\) 23.5645i 0.769000i
\(940\) 0 0
\(941\) 2.15419 1.24372i 0.0702245 0.0405441i −0.464477 0.885585i \(-0.653758\pi\)
0.534701 + 0.845041i \(0.320424\pi\)
\(942\) 0 0
\(943\) −2.06372 7.70189i −0.0672038 0.250808i
\(944\) 0 0
\(945\) −5.83783 0.959001i −0.189905 0.0311963i
\(946\) 0 0
\(947\) 13.1596 + 49.1124i 0.427630 + 1.59594i 0.758111 + 0.652126i \(0.226123\pi\)
−0.330481 + 0.943813i \(0.607211\pi\)
\(948\) 0 0
\(949\) −53.5704 + 30.9289i −1.73897 + 1.00399i
\(950\) 0 0
\(951\) 22.0843i 0.716131i
\(952\) 0 0
\(953\) −9.31188 9.31188i −0.301641 0.301641i 0.540014 0.841656i \(-0.318419\pi\)
−0.841656 + 0.540014i \(0.818419\pi\)
\(954\) 0 0
\(955\) −6.23837 + 23.0799i −0.201869 + 0.746847i
\(956\) 0 0
\(957\) 19.0857 5.11401i 0.616954 0.165312i
\(958\) 0 0
\(959\) −50.0214 + 5.07788i −1.61527 + 0.163973i
\(960\) 0 0
\(961\) −13.1006 + 22.6909i −0.422601 + 0.731966i
\(962\) 0 0
\(963\) 3.53035 13.1754i 0.113764 0.424572i
\(964\) 0 0
\(965\) 0.0210915 9.64216i 0.000678959 0.310392i
\(966\) 0 0
\(967\) 18.4525 18.4525i 0.593394 0.593394i −0.345153 0.938547i \(-0.612173\pi\)
0.938547 + 0.345153i \(0.112173\pi\)
\(968\) 0 0
\(969\) 0.429270 + 0.743518i 0.0137901 + 0.0238852i
\(970\) 0 0
\(971\) 29.7627 + 17.1835i 0.955131 + 0.551445i 0.894671 0.446725i \(-0.147410\pi\)
0.0604600 + 0.998171i \(0.480743\pi\)
\(972\) 0 0
\(973\) 0.783700 0.297644i 0.0251243 0.00954204i
\(974\) 0 0
\(975\) 9.97332 17.1011i 0.319402 0.547673i
\(976\) 0 0
\(977\) −17.3322 4.64414i −0.554505 0.148579i −0.0293246 0.999570i \(-0.509336\pi\)
−0.525181 + 0.850991i \(0.676002\pi\)
\(978\) 0 0
\(979\) 26.4763 0.846186
\(980\) 0 0
\(981\) 0.525237 0.0167695
\(982\) 0 0
\(983\) −28.1996 7.55607i −0.899428 0.241001i −0.220658 0.975351i \(-0.570820\pi\)
−0.678771 + 0.734350i \(0.737487\pi\)
\(984\) 0 0
\(985\) 1.76937 3.04921i 0.0563768 0.0971560i
\(986\) 0 0
\(987\) 15.5466 5.90452i 0.494855 0.187943i
\(988\) 0 0
\(989\) 23.0295 + 13.2961i 0.732295 + 0.422791i
\(990\) 0 0
\(991\) 17.3733 + 30.0914i 0.551880 + 0.955885i 0.998139 + 0.0609809i \(0.0194229\pi\)
−0.446258 + 0.894904i \(0.647244\pi\)
\(992\) 0 0
\(993\) 0.623510 0.623510i 0.0197865 0.0197865i
\(994\) 0 0
\(995\) −37.0798 37.2423i −1.17551 1.18066i
\(996\) 0 0
\(997\) −8.16415 + 30.4690i −0.258561 + 0.964964i 0.707513 + 0.706700i \(0.249817\pi\)
−0.966074 + 0.258264i \(0.916850\pi\)
\(998\) 0 0
\(999\) −1.33841 + 2.31820i −0.0423454 + 0.0733445i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 840.2.dd.a.313.7 48
5.2 odd 4 840.2.dd.b.817.9 yes 48
7.3 odd 6 840.2.dd.b.73.9 yes 48
35.17 even 12 inner 840.2.dd.a.577.7 yes 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
840.2.dd.a.313.7 48 1.1 even 1 trivial
840.2.dd.a.577.7 yes 48 35.17 even 12 inner
840.2.dd.b.73.9 yes 48 7.3 odd 6
840.2.dd.b.817.9 yes 48 5.2 odd 4