Properties

Label 840.2.bt.b.97.4
Level $840$
Weight $2$
Character 840.97
Analytic conductor $6.707$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [840,2,Mod(97,840)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(840, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("840.97"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 840 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 840.bt (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.70743376979\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 97.4
Character \(\chi\) \(=\) 840.97
Dual form 840.2.bt.b.433.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.707107 - 0.707107i) q^{3} +(0.0188126 - 2.23599i) q^{5} +(-1.30388 - 2.30215i) q^{7} +1.00000i q^{9} -5.19499 q^{11} +(0.817355 + 0.817355i) q^{13} +(-1.59439 + 1.56778i) q^{15} +(0.550305 - 0.550305i) q^{17} +1.30741 q^{19} +(-0.705888 + 2.54985i) q^{21} +(-3.04663 + 3.04663i) q^{23} +(-4.99929 - 0.0841295i) q^{25} +(0.707107 - 0.707107i) q^{27} +2.99042i q^{29} +3.89498i q^{31} +(3.67341 + 3.67341i) q^{33} +(-5.17212 + 2.87214i) q^{35} +(0.199077 + 0.199077i) q^{37} -1.15591i q^{39} +2.72993i q^{41} +(1.98342 - 1.98342i) q^{43} +(2.23599 + 0.0188126i) q^{45} +(4.41033 - 4.41033i) q^{47} +(-3.59981 + 6.00344i) q^{49} -0.778249 q^{51} +(-1.09146 + 1.09146i) q^{53} +(-0.0977312 + 11.6159i) q^{55} +(-0.924478 - 0.924478i) q^{57} -13.8935 q^{59} -10.9392i q^{61} +(2.30215 - 1.30388i) q^{63} +(1.84297 - 1.81222i) q^{65} +(-10.0506 - 10.0506i) q^{67} +4.30858 q^{69} -16.2833 q^{71} +(5.32068 + 5.32068i) q^{73} +(3.47554 + 3.59452i) q^{75} +(6.77362 + 11.9597i) q^{77} +8.15872i q^{79} -1.00000 q^{81} +(-7.49447 - 7.49447i) q^{83} +(-1.22012 - 1.24083i) q^{85} +(2.11455 - 2.11455i) q^{87} -16.5546 q^{89} +(0.815946 - 2.94740i) q^{91} +(2.75417 - 2.75417i) q^{93} +(0.0245958 - 2.92335i) q^{95} +(9.70745 - 9.70745i) q^{97} -5.19499i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 8 q^{11} - 16 q^{13} + 4 q^{15} - 20 q^{17} - 8 q^{19} + 24 q^{23} - 4 q^{25} + 4 q^{37} - 16 q^{43} + 4 q^{45} + 24 q^{47} - 36 q^{49} + 16 q^{53} - 28 q^{55} + 4 q^{57} - 8 q^{59} + 4 q^{63} + 24 q^{65}+ \cdots + 28 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/840\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(281\) \(337\) \(421\) \(631\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{1}{4}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.707107 0.707107i −0.408248 0.408248i
\(4\) 0 0
\(5\) 0.0188126 2.23599i 0.00841325 0.999965i
\(6\) 0 0
\(7\) −1.30388 2.30215i −0.492819 0.870132i
\(8\) 0 0
\(9\) 1.00000i 0.333333i
\(10\) 0 0
\(11\) −5.19499 −1.56635 −0.783174 0.621803i \(-0.786400\pi\)
−0.783174 + 0.621803i \(0.786400\pi\)
\(12\) 0 0
\(13\) 0.817355 + 0.817355i 0.226693 + 0.226693i 0.811310 0.584616i \(-0.198755\pi\)
−0.584616 + 0.811310i \(0.698755\pi\)
\(14\) 0 0
\(15\) −1.59439 + 1.56778i −0.411669 + 0.404799i
\(16\) 0 0
\(17\) 0.550305 0.550305i 0.133469 0.133469i −0.637216 0.770685i \(-0.719914\pi\)
0.770685 + 0.637216i \(0.219914\pi\)
\(18\) 0 0
\(19\) 1.30741 0.299940 0.149970 0.988691i \(-0.452082\pi\)
0.149970 + 0.988691i \(0.452082\pi\)
\(20\) 0 0
\(21\) −0.705888 + 2.54985i −0.154037 + 0.556422i
\(22\) 0 0
\(23\) −3.04663 + 3.04663i −0.635266 + 0.635266i −0.949384 0.314118i \(-0.898291\pi\)
0.314118 + 0.949384i \(0.398291\pi\)
\(24\) 0 0
\(25\) −4.99929 0.0841295i −0.999858 0.0168259i
\(26\) 0 0
\(27\) 0.707107 0.707107i 0.136083 0.136083i
\(28\) 0 0
\(29\) 2.99042i 0.555308i 0.960681 + 0.277654i \(0.0895568\pi\)
−0.960681 + 0.277654i \(0.910443\pi\)
\(30\) 0 0
\(31\) 3.89498i 0.699559i 0.936832 + 0.349780i \(0.113744\pi\)
−0.936832 + 0.349780i \(0.886256\pi\)
\(32\) 0 0
\(33\) 3.67341 + 3.67341i 0.639459 + 0.639459i
\(34\) 0 0
\(35\) −5.17212 + 2.87214i −0.874247 + 0.485481i
\(36\) 0 0
\(37\) 0.199077 + 0.199077i 0.0327281 + 0.0327281i 0.723281 0.690553i \(-0.242633\pi\)
−0.690553 + 0.723281i \(0.742633\pi\)
\(38\) 0 0
\(39\) 1.15591i 0.185094i
\(40\) 0 0
\(41\) 2.72993i 0.426344i 0.977015 + 0.213172i \(0.0683795\pi\)
−0.977015 + 0.213172i \(0.931621\pi\)
\(42\) 0 0
\(43\) 1.98342 1.98342i 0.302469 0.302469i −0.539510 0.841979i \(-0.681391\pi\)
0.841979 + 0.539510i \(0.181391\pi\)
\(44\) 0 0
\(45\) 2.23599 + 0.0188126i 0.333322 + 0.00280442i
\(46\) 0 0
\(47\) 4.41033 4.41033i 0.643313 0.643313i −0.308055 0.951369i \(-0.599678\pi\)
0.951369 + 0.308055i \(0.0996781\pi\)
\(48\) 0 0
\(49\) −3.59981 + 6.00344i −0.514259 + 0.857635i
\(50\) 0 0
\(51\) −0.778249 −0.108977
\(52\) 0 0
\(53\) −1.09146 + 1.09146i −0.149923 + 0.149923i −0.778084 0.628160i \(-0.783808\pi\)
0.628160 + 0.778084i \(0.283808\pi\)
\(54\) 0 0
\(55\) −0.0977312 + 11.6159i −0.0131781 + 1.56629i
\(56\) 0 0
\(57\) −0.924478 0.924478i −0.122450 0.122450i
\(58\) 0 0
\(59\) −13.8935 −1.80878 −0.904392 0.426702i \(-0.859675\pi\)
−0.904392 + 0.426702i \(0.859675\pi\)
\(60\) 0 0
\(61\) 10.9392i 1.40062i −0.713838 0.700311i \(-0.753045\pi\)
0.713838 0.700311i \(-0.246955\pi\)
\(62\) 0 0
\(63\) 2.30215 1.30388i 0.290044 0.164273i
\(64\) 0 0
\(65\) 1.84297 1.81222i 0.228593 0.224778i
\(66\) 0 0
\(67\) −10.0506 10.0506i −1.22787 1.22787i −0.964767 0.263104i \(-0.915254\pi\)
−0.263104 0.964767i \(-0.584746\pi\)
\(68\) 0 0
\(69\) 4.30858 0.518692
\(70\) 0 0
\(71\) −16.2833 −1.93247 −0.966233 0.257668i \(-0.917046\pi\)
−0.966233 + 0.257668i \(0.917046\pi\)
\(72\) 0 0
\(73\) 5.32068 + 5.32068i 0.622738 + 0.622738i 0.946231 0.323492i \(-0.104857\pi\)
−0.323492 + 0.946231i \(0.604857\pi\)
\(74\) 0 0
\(75\) 3.47554 + 3.59452i 0.401321 + 0.415060i
\(76\) 0 0
\(77\) 6.77362 + 11.9597i 0.771926 + 1.36293i
\(78\) 0 0
\(79\) 8.15872i 0.917928i 0.888455 + 0.458964i \(0.151779\pi\)
−0.888455 + 0.458964i \(0.848221\pi\)
\(80\) 0 0
\(81\) −1.00000 −0.111111
\(82\) 0 0
\(83\) −7.49447 7.49447i −0.822625 0.822625i 0.163859 0.986484i \(-0.447606\pi\)
−0.986484 + 0.163859i \(0.947606\pi\)
\(84\) 0 0
\(85\) −1.22012 1.24083i −0.132341 0.134587i
\(86\) 0 0
\(87\) 2.11455 2.11455i 0.226703 0.226703i
\(88\) 0 0
\(89\) −16.5546 −1.75478 −0.877390 0.479777i \(-0.840717\pi\)
−0.877390 + 0.479777i \(0.840717\pi\)
\(90\) 0 0
\(91\) 0.815946 2.94740i 0.0855343 0.308972i
\(92\) 0 0
\(93\) 2.75417 2.75417i 0.285594 0.285594i
\(94\) 0 0
\(95\) 0.0245958 2.92335i 0.00252347 0.299930i
\(96\) 0 0
\(97\) 9.70745 9.70745i 0.985642 0.985642i −0.0142566 0.999898i \(-0.504538\pi\)
0.999898 + 0.0142566i \(0.00453816\pi\)
\(98\) 0 0
\(99\) 5.19499i 0.522116i
\(100\) 0 0
\(101\) 17.3275i 1.72415i −0.506777 0.862077i \(-0.669163\pi\)
0.506777 0.862077i \(-0.330837\pi\)
\(102\) 0 0
\(103\) 9.94786 + 9.94786i 0.980191 + 0.980191i 0.999808 0.0196162i \(-0.00624444\pi\)
−0.0196162 + 0.999808i \(0.506244\pi\)
\(104\) 0 0
\(105\) 5.68815 + 1.62633i 0.555107 + 0.158713i
\(106\) 0 0
\(107\) 4.45880 + 4.45880i 0.431049 + 0.431049i 0.888985 0.457936i \(-0.151411\pi\)
−0.457936 + 0.888985i \(0.651411\pi\)
\(108\) 0 0
\(109\) 6.76993i 0.648442i 0.945981 + 0.324221i \(0.105102\pi\)
−0.945981 + 0.324221i \(0.894898\pi\)
\(110\) 0 0
\(111\) 0.281538i 0.0267224i
\(112\) 0 0
\(113\) 4.02997 4.02997i 0.379107 0.379107i −0.491673 0.870780i \(-0.663614\pi\)
0.870780 + 0.491673i \(0.163614\pi\)
\(114\) 0 0
\(115\) 6.75491 + 6.86954i 0.629899 + 0.640588i
\(116\) 0 0
\(117\) −0.817355 + 0.817355i −0.0755645 + 0.0755645i
\(118\) 0 0
\(119\) −1.98442 0.549356i −0.181911 0.0503594i
\(120\) 0 0
\(121\) 15.9879 1.45344
\(122\) 0 0
\(123\) 1.93035 1.93035i 0.174054 0.174054i
\(124\) 0 0
\(125\) −0.282162 + 11.1768i −0.0252374 + 0.999681i
\(126\) 0 0
\(127\) 0.737538 + 0.737538i 0.0654459 + 0.0654459i 0.739072 0.673626i \(-0.235264\pi\)
−0.673626 + 0.739072i \(0.735264\pi\)
\(128\) 0 0
\(129\) −2.80498 −0.246965
\(130\) 0 0
\(131\) 13.6157i 1.18961i −0.803869 0.594806i \(-0.797229\pi\)
0.803869 0.594806i \(-0.202771\pi\)
\(132\) 0 0
\(133\) −1.70470 3.00986i −0.147816 0.260988i
\(134\) 0 0
\(135\) −1.56778 1.59439i −0.134933 0.137223i
\(136\) 0 0
\(137\) −2.42049 2.42049i −0.206797 0.206797i 0.596108 0.802904i \(-0.296713\pi\)
−0.802904 + 0.596108i \(0.796713\pi\)
\(138\) 0 0
\(139\) 5.93270 0.503205 0.251603 0.967831i \(-0.419042\pi\)
0.251603 + 0.967831i \(0.419042\pi\)
\(140\) 0 0
\(141\) −6.23715 −0.525263
\(142\) 0 0
\(143\) −4.24615 4.24615i −0.355081 0.355081i
\(144\) 0 0
\(145\) 6.68655 + 0.0562577i 0.555288 + 0.00467194i
\(146\) 0 0
\(147\) 6.79053 1.69962i 0.560073 0.140183i
\(148\) 0 0
\(149\) 5.96507i 0.488678i 0.969690 + 0.244339i \(0.0785709\pi\)
−0.969690 + 0.244339i \(0.921429\pi\)
\(150\) 0 0
\(151\) −7.86040 −0.639670 −0.319835 0.947473i \(-0.603628\pi\)
−0.319835 + 0.947473i \(0.603628\pi\)
\(152\) 0 0
\(153\) 0.550305 + 0.550305i 0.0444895 + 0.0444895i
\(154\) 0 0
\(155\) 8.70914 + 0.0732748i 0.699535 + 0.00588557i
\(156\) 0 0
\(157\) −9.34553 + 9.34553i −0.745854 + 0.745854i −0.973698 0.227844i \(-0.926833\pi\)
0.227844 + 0.973698i \(0.426833\pi\)
\(158\) 0 0
\(159\) 1.54356 0.122412
\(160\) 0 0
\(161\) 10.9862 + 3.04138i 0.865836 + 0.239694i
\(162\) 0 0
\(163\) 10.7290 10.7290i 0.840364 0.840364i −0.148542 0.988906i \(-0.547458\pi\)
0.988906 + 0.148542i \(0.0474581\pi\)
\(164\) 0 0
\(165\) 8.28281 8.14460i 0.644816 0.634056i
\(166\) 0 0
\(167\) 10.1432 10.1432i 0.784905 0.784905i −0.195749 0.980654i \(-0.562714\pi\)
0.980654 + 0.195749i \(0.0627139\pi\)
\(168\) 0 0
\(169\) 11.6639i 0.897220i
\(170\) 0 0
\(171\) 1.30741i 0.0999801i
\(172\) 0 0
\(173\) −2.09542 2.09542i −0.159312 0.159312i 0.622950 0.782262i \(-0.285934\pi\)
−0.782262 + 0.622950i \(0.785934\pi\)
\(174\) 0 0
\(175\) 6.32478 + 11.6188i 0.478108 + 0.878301i
\(176\) 0 0
\(177\) 9.82421 + 9.82421i 0.738433 + 0.738433i
\(178\) 0 0
\(179\) 19.6465i 1.46845i −0.678909 0.734223i \(-0.737547\pi\)
0.678909 0.734223i \(-0.262453\pi\)
\(180\) 0 0
\(181\) 9.50946i 0.706832i −0.935466 0.353416i \(-0.885020\pi\)
0.935466 0.353416i \(-0.114980\pi\)
\(182\) 0 0
\(183\) −7.73519 + 7.73519i −0.571802 + 0.571802i
\(184\) 0 0
\(185\) 0.448880 0.441390i 0.0330023 0.0324516i
\(186\) 0 0
\(187\) −2.85883 + 2.85883i −0.209058 + 0.209058i
\(188\) 0 0
\(189\) −2.54985 0.705888i −0.185474 0.0513458i
\(190\) 0 0
\(191\) 14.3411 1.03768 0.518842 0.854870i \(-0.326363\pi\)
0.518842 + 0.854870i \(0.326363\pi\)
\(192\) 0 0
\(193\) −2.94208 + 2.94208i −0.211775 + 0.211775i −0.805021 0.593246i \(-0.797846\pi\)
0.593246 + 0.805021i \(0.297846\pi\)
\(194\) 0 0
\(195\) −2.58461 0.0217458i −0.185088 0.00155725i
\(196\) 0 0
\(197\) −8.66057 8.66057i −0.617040 0.617040i 0.327731 0.944771i \(-0.393716\pi\)
−0.944771 + 0.327731i \(0.893716\pi\)
\(198\) 0 0
\(199\) −4.07354 −0.288766 −0.144383 0.989522i \(-0.546120\pi\)
−0.144383 + 0.989522i \(0.546120\pi\)
\(200\) 0 0
\(201\) 14.2136i 1.00255i
\(202\) 0 0
\(203\) 6.88441 3.89914i 0.483191 0.273666i
\(204\) 0 0
\(205\) 6.10410 + 0.0513572i 0.426329 + 0.00358694i
\(206\) 0 0
\(207\) −3.04663 3.04663i −0.211755 0.211755i
\(208\) 0 0
\(209\) −6.79198 −0.469811
\(210\) 0 0
\(211\) 24.2786 1.67141 0.835704 0.549180i \(-0.185060\pi\)
0.835704 + 0.549180i \(0.185060\pi\)
\(212\) 0 0
\(213\) 11.5140 + 11.5140i 0.788926 + 0.788926i
\(214\) 0 0
\(215\) −4.39760 4.47222i −0.299914 0.305003i
\(216\) 0 0
\(217\) 8.96684 5.07857i 0.608709 0.344756i
\(218\) 0 0
\(219\) 7.52458i 0.508464i
\(220\) 0 0
\(221\) 0.899588 0.0605129
\(222\) 0 0
\(223\) −12.4444 12.4444i −0.833339 0.833339i 0.154633 0.987972i \(-0.450581\pi\)
−0.987972 + 0.154633i \(0.950581\pi\)
\(224\) 0 0
\(225\) 0.0841295 4.99929i 0.00560864 0.333286i
\(226\) 0 0
\(227\) −0.870542 + 0.870542i −0.0577799 + 0.0577799i −0.735406 0.677626i \(-0.763009\pi\)
0.677626 + 0.735406i \(0.263009\pi\)
\(228\) 0 0
\(229\) −20.5096 −1.35531 −0.677655 0.735380i \(-0.737004\pi\)
−0.677655 + 0.735380i \(0.737004\pi\)
\(230\) 0 0
\(231\) 3.66708 13.2464i 0.241276 0.871551i
\(232\) 0 0
\(233\) −2.49345 + 2.49345i −0.163351 + 0.163351i −0.784050 0.620698i \(-0.786849\pi\)
0.620698 + 0.784050i \(0.286849\pi\)
\(234\) 0 0
\(235\) −9.77849 9.94443i −0.637878 0.648703i
\(236\) 0 0
\(237\) 5.76909 5.76909i 0.374743 0.374743i
\(238\) 0 0
\(239\) 23.0468i 1.49078i 0.666631 + 0.745388i \(0.267736\pi\)
−0.666631 + 0.745388i \(0.732264\pi\)
\(240\) 0 0
\(241\) 20.7075i 1.33388i −0.745109 0.666942i \(-0.767603\pi\)
0.745109 0.666942i \(-0.232397\pi\)
\(242\) 0 0
\(243\) 0.707107 + 0.707107i 0.0453609 + 0.0453609i
\(244\) 0 0
\(245\) 13.3559 + 8.16208i 0.853278 + 0.521456i
\(246\) 0 0
\(247\) 1.06862 + 1.06862i 0.0679945 + 0.0679945i
\(248\) 0 0
\(249\) 10.5988i 0.671670i
\(250\) 0 0
\(251\) 3.12576i 0.197296i 0.995122 + 0.0986481i \(0.0314518\pi\)
−0.995122 + 0.0986481i \(0.968548\pi\)
\(252\) 0 0
\(253\) 15.8272 15.8272i 0.995047 0.995047i
\(254\) 0 0
\(255\) −0.0146409 + 1.74016i −0.000916848 + 0.108973i
\(256\) 0 0
\(257\) 1.42680 1.42680i 0.0890016 0.0890016i −0.661204 0.750206i \(-0.729954\pi\)
0.750206 + 0.661204i \(0.229954\pi\)
\(258\) 0 0
\(259\) 0.198734 0.717879i 0.0123487 0.0446068i
\(260\) 0 0
\(261\) −2.99042 −0.185103
\(262\) 0 0
\(263\) −8.20481 + 8.20481i −0.505930 + 0.505930i −0.913275 0.407344i \(-0.866455\pi\)
0.407344 + 0.913275i \(0.366455\pi\)
\(264\) 0 0
\(265\) 2.41996 + 2.46102i 0.148657 + 0.151179i
\(266\) 0 0
\(267\) 11.7058 + 11.7058i 0.716386 + 0.716386i
\(268\) 0 0
\(269\) −9.63912 −0.587707 −0.293854 0.955850i \(-0.594938\pi\)
−0.293854 + 0.955850i \(0.594938\pi\)
\(270\) 0 0
\(271\) 26.5971i 1.61566i 0.589417 + 0.807829i \(0.299357\pi\)
−0.589417 + 0.807829i \(0.700643\pi\)
\(272\) 0 0
\(273\) −2.66109 + 1.50717i −0.161057 + 0.0912180i
\(274\) 0 0
\(275\) 25.9713 + 0.437052i 1.56613 + 0.0263552i
\(276\) 0 0
\(277\) −19.9489 19.9489i −1.19862 1.19862i −0.974581 0.224034i \(-0.928077\pi\)
−0.224034 0.974581i \(-0.571923\pi\)
\(278\) 0 0
\(279\) −3.89498 −0.233186
\(280\) 0 0
\(281\) −15.0938 −0.900422 −0.450211 0.892922i \(-0.648651\pi\)
−0.450211 + 0.892922i \(0.648651\pi\)
\(282\) 0 0
\(283\) −0.163056 0.163056i −0.00969268 0.00969268i 0.702244 0.711937i \(-0.252182\pi\)
−0.711937 + 0.702244i \(0.752182\pi\)
\(284\) 0 0
\(285\) −2.08452 + 2.04973i −0.123476 + 0.121416i
\(286\) 0 0
\(287\) 6.28472 3.55950i 0.370976 0.210110i
\(288\) 0 0
\(289\) 16.3943i 0.964372i
\(290\) 0 0
\(291\) −13.7284 −0.804773
\(292\) 0 0
\(293\) 14.0636 + 14.0636i 0.821606 + 0.821606i 0.986338 0.164732i \(-0.0526760\pi\)
−0.164732 + 0.986338i \(0.552676\pi\)
\(294\) 0 0
\(295\) −0.261374 + 31.0658i −0.0152178 + 1.80872i
\(296\) 0 0
\(297\) −3.67341 + 3.67341i −0.213153 + 0.213153i
\(298\) 0 0
\(299\) −4.98035 −0.288021
\(300\) 0 0
\(301\) −7.15228 1.98000i −0.412251 0.114126i
\(302\) 0 0
\(303\) −12.2524 + 12.2524i −0.703883 + 0.703883i
\(304\) 0 0
\(305\) −24.4599 0.205795i −1.40057 0.0117838i
\(306\) 0 0
\(307\) 7.28161 7.28161i 0.415584 0.415584i −0.468095 0.883678i \(-0.655059\pi\)
0.883678 + 0.468095i \(0.155059\pi\)
\(308\) 0 0
\(309\) 14.0684i 0.800323i
\(310\) 0 0
\(311\) 8.14282i 0.461737i 0.972985 + 0.230869i \(0.0741568\pi\)
−0.972985 + 0.230869i \(0.925843\pi\)
\(312\) 0 0
\(313\) 11.6844 + 11.6844i 0.660441 + 0.660441i 0.955484 0.295043i \(-0.0953340\pi\)
−0.295043 + 0.955484i \(0.595334\pi\)
\(314\) 0 0
\(315\) −2.87214 5.17212i −0.161827 0.291416i
\(316\) 0 0
\(317\) −2.40116 2.40116i −0.134863 0.134863i 0.636453 0.771316i \(-0.280401\pi\)
−0.771316 + 0.636453i \(0.780401\pi\)
\(318\) 0 0
\(319\) 15.5352i 0.869805i
\(320\) 0 0
\(321\) 6.30570i 0.351950i
\(322\) 0 0
\(323\) 0.719474 0.719474i 0.0400326 0.0400326i
\(324\) 0 0
\(325\) −4.01743 4.15496i −0.222847 0.230476i
\(326\) 0 0
\(327\) 4.78706 4.78706i 0.264725 0.264725i
\(328\) 0 0
\(329\) −15.9038 4.40273i −0.876804 0.242730i
\(330\) 0 0
\(331\) 19.9270 1.09529 0.547644 0.836711i \(-0.315525\pi\)
0.547644 + 0.836711i \(0.315525\pi\)
\(332\) 0 0
\(333\) −0.199077 + 0.199077i −0.0109094 + 0.0109094i
\(334\) 0 0
\(335\) −22.6620 + 22.2839i −1.23816 + 1.21750i
\(336\) 0 0
\(337\) −14.2601 14.2601i −0.776798 0.776798i 0.202487 0.979285i \(-0.435098\pi\)
−0.979285 + 0.202487i \(0.935098\pi\)
\(338\) 0 0
\(339\) −5.69923 −0.309540
\(340\) 0 0
\(341\) 20.2344i 1.09575i
\(342\) 0 0
\(343\) 18.5146 + 0.459569i 0.999692 + 0.0248144i
\(344\) 0 0
\(345\) 0.0810556 9.63394i 0.00436389 0.518674i
\(346\) 0 0
\(347\) −10.8252 10.8252i −0.581126 0.581126i 0.354087 0.935213i \(-0.384792\pi\)
−0.935213 + 0.354087i \(0.884792\pi\)
\(348\) 0 0
\(349\) −11.2159 −0.600373 −0.300186 0.953881i \(-0.597049\pi\)
−0.300186 + 0.953881i \(0.597049\pi\)
\(350\) 0 0
\(351\) 1.15591 0.0616981
\(352\) 0 0
\(353\) 25.4175 + 25.4175i 1.35283 + 1.35283i 0.882475 + 0.470360i \(0.155876\pi\)
0.470360 + 0.882475i \(0.344124\pi\)
\(354\) 0 0
\(355\) −0.306330 + 36.4092i −0.0162583 + 1.93240i
\(356\) 0 0
\(357\) 1.01474 + 1.79165i 0.0537057 + 0.0948240i
\(358\) 0 0
\(359\) 28.3149i 1.49440i 0.664597 + 0.747202i \(0.268603\pi\)
−0.664597 + 0.747202i \(0.731397\pi\)
\(360\) 0 0
\(361\) −17.2907 −0.910036
\(362\) 0 0
\(363\) −11.3051 11.3051i −0.593366 0.593366i
\(364\) 0 0
\(365\) 11.9971 11.7969i 0.627956 0.617477i
\(366\) 0 0
\(367\) 21.3444 21.3444i 1.11417 1.11417i 0.121587 0.992581i \(-0.461202\pi\)
0.992581 0.121587i \(-0.0387983\pi\)
\(368\) 0 0
\(369\) −2.72993 −0.142115
\(370\) 0 0
\(371\) 3.93583 + 1.08958i 0.204338 + 0.0565680i
\(372\) 0 0
\(373\) −4.99355 + 4.99355i −0.258556 + 0.258556i −0.824467 0.565911i \(-0.808525\pi\)
0.565911 + 0.824467i \(0.308525\pi\)
\(374\) 0 0
\(375\) 8.10270 7.70366i 0.418421 0.397815i
\(376\) 0 0
\(377\) −2.44424 + 2.44424i −0.125885 + 0.125885i
\(378\) 0 0
\(379\) 6.22172i 0.319588i −0.987150 0.159794i \(-0.948917\pi\)
0.987150 0.159794i \(-0.0510830\pi\)
\(380\) 0 0
\(381\) 1.04304i 0.0534364i
\(382\) 0 0
\(383\) −23.9817 23.9817i −1.22541 1.22541i −0.965683 0.259723i \(-0.916369\pi\)
−0.259723 0.965683i \(-0.583631\pi\)
\(384\) 0 0
\(385\) 26.8691 14.9207i 1.36938 0.760432i
\(386\) 0 0
\(387\) 1.98342 + 1.98342i 0.100823 + 0.100823i
\(388\) 0 0
\(389\) 13.0476i 0.661541i −0.943711 0.330771i \(-0.892691\pi\)
0.943711 0.330771i \(-0.107309\pi\)
\(390\) 0 0
\(391\) 3.35315i 0.169576i
\(392\) 0 0
\(393\) −9.62778 + 9.62778i −0.485657 + 0.485657i
\(394\) 0 0
\(395\) 18.2428 + 0.153487i 0.917895 + 0.00772276i
\(396\) 0 0
\(397\) 0.363615 0.363615i 0.0182493 0.0182493i −0.697923 0.716173i \(-0.745892\pi\)
0.716173 + 0.697923i \(0.245892\pi\)
\(398\) 0 0
\(399\) −0.922885 + 3.33370i −0.0462020 + 0.166894i
\(400\) 0 0
\(401\) 5.54793 0.277050 0.138525 0.990359i \(-0.455764\pi\)
0.138525 + 0.990359i \(0.455764\pi\)
\(402\) 0 0
\(403\) −3.18358 + 3.18358i −0.158585 + 0.158585i
\(404\) 0 0
\(405\) −0.0188126 + 2.23599i −0.000934806 + 0.111107i
\(406\) 0 0
\(407\) −1.03420 1.03420i −0.0512636 0.0512636i
\(408\) 0 0
\(409\) −15.4786 −0.765369 −0.382684 0.923879i \(-0.625000\pi\)
−0.382684 + 0.923879i \(0.625000\pi\)
\(410\) 0 0
\(411\) 3.42309i 0.168849i
\(412\) 0 0
\(413\) 18.1155 + 31.9850i 0.891403 + 1.57388i
\(414\) 0 0
\(415\) −16.8985 + 16.6166i −0.829516 + 0.815675i
\(416\) 0 0
\(417\) −4.19506 4.19506i −0.205433 0.205433i
\(418\) 0 0
\(419\) 34.2957 1.67546 0.837728 0.546088i \(-0.183884\pi\)
0.837728 + 0.546088i \(0.183884\pi\)
\(420\) 0 0
\(421\) −27.0249 −1.31711 −0.658556 0.752532i \(-0.728832\pi\)
−0.658556 + 0.752532i \(0.728832\pi\)
\(422\) 0 0
\(423\) 4.41033 + 4.41033i 0.214438 + 0.214438i
\(424\) 0 0
\(425\) −2.79743 + 2.70484i −0.135695 + 0.131204i
\(426\) 0 0
\(427\) −25.1837 + 14.2634i −1.21873 + 0.690253i
\(428\) 0 0
\(429\) 6.00496i 0.289922i
\(430\) 0 0
\(431\) −17.0803 −0.822731 −0.411366 0.911470i \(-0.634948\pi\)
−0.411366 + 0.911470i \(0.634948\pi\)
\(432\) 0 0
\(433\) −23.6189 23.6189i −1.13505 1.13505i −0.989325 0.145725i \(-0.953449\pi\)
−0.145725 0.989325i \(-0.546551\pi\)
\(434\) 0 0
\(435\) −4.68833 4.76789i −0.224788 0.228603i
\(436\) 0 0
\(437\) −3.98319 + 3.98319i −0.190542 + 0.190542i
\(438\) 0 0
\(439\) 12.2095 0.582729 0.291365 0.956612i \(-0.405891\pi\)
0.291365 + 0.956612i \(0.405891\pi\)
\(440\) 0 0
\(441\) −6.00344 3.59981i −0.285878 0.171420i
\(442\) 0 0
\(443\) −10.4501 + 10.4501i −0.496500 + 0.496500i −0.910347 0.413847i \(-0.864185\pi\)
0.413847 + 0.910347i \(0.364185\pi\)
\(444\) 0 0
\(445\) −0.311435 + 37.0158i −0.0147634 + 1.75472i
\(446\) 0 0
\(447\) 4.21794 4.21794i 0.199502 0.199502i
\(448\) 0 0
\(449\) 27.4726i 1.29651i −0.761423 0.648255i \(-0.775499\pi\)
0.761423 0.648255i \(-0.224501\pi\)
\(450\) 0 0
\(451\) 14.1820i 0.667803i
\(452\) 0 0
\(453\) 5.55814 + 5.55814i 0.261144 + 0.261144i
\(454\) 0 0
\(455\) −6.57501 1.87989i −0.308241 0.0881308i
\(456\) 0 0
\(457\) −21.3864 21.3864i −1.00042 1.00042i −1.00000 0.000415123i \(-0.999868\pi\)
−0.000415123 1.00000i \(-0.500132\pi\)
\(458\) 0 0
\(459\) 0.778249i 0.0363255i
\(460\) 0 0
\(461\) 27.9120i 1.29999i 0.759939 + 0.649995i \(0.225229\pi\)
−0.759939 + 0.649995i \(0.774771\pi\)
\(462\) 0 0
\(463\) −20.8693 + 20.8693i −0.969877 + 0.969877i −0.999559 0.0296827i \(-0.990550\pi\)
0.0296827 + 0.999559i \(0.490550\pi\)
\(464\) 0 0
\(465\) −6.10648 6.21010i −0.283181 0.287987i
\(466\) 0 0
\(467\) 26.6658 26.6658i 1.23395 1.23395i 0.271511 0.962435i \(-0.412477\pi\)
0.962435 0.271511i \(-0.0875232\pi\)
\(468\) 0 0
\(469\) −10.0332 + 36.2426i −0.463292 + 1.67353i
\(470\) 0 0
\(471\) 13.2166 0.608987
\(472\) 0 0
\(473\) −10.3039 + 10.3039i −0.473772 + 0.473772i
\(474\) 0 0
\(475\) −6.53612 0.109992i −0.299898 0.00504677i
\(476\) 0 0
\(477\) −1.09146 1.09146i −0.0499744 0.0499744i
\(478\) 0 0
\(479\) 18.8257 0.860166 0.430083 0.902789i \(-0.358484\pi\)
0.430083 + 0.902789i \(0.358484\pi\)
\(480\) 0 0
\(481\) 0.325434i 0.0148385i
\(482\) 0 0
\(483\) −5.61786 9.91901i −0.255621 0.451331i
\(484\) 0 0
\(485\) −21.5231 21.8884i −0.977314 0.993899i
\(486\) 0 0
\(487\) −3.79308 3.79308i −0.171881 0.171881i 0.615924 0.787805i \(-0.288783\pi\)
−0.787805 + 0.615924i \(0.788783\pi\)
\(488\) 0 0
\(489\) −15.1732 −0.686154
\(490\) 0 0
\(491\) −31.0544 −1.40146 −0.700732 0.713425i \(-0.747143\pi\)
−0.700732 + 0.713425i \(0.747143\pi\)
\(492\) 0 0
\(493\) 1.64564 + 1.64564i 0.0741161 + 0.0741161i
\(494\) 0 0
\(495\) −11.6159 0.0977312i −0.522097 0.00439269i
\(496\) 0 0
\(497\) 21.2314 + 37.4865i 0.952356 + 1.68150i
\(498\) 0 0
\(499\) 19.4573i 0.871029i 0.900182 + 0.435514i \(0.143434\pi\)
−0.900182 + 0.435514i \(0.856566\pi\)
\(500\) 0 0
\(501\) −14.3447 −0.640872
\(502\) 0 0
\(503\) 15.4448 + 15.4448i 0.688647 + 0.688647i 0.961933 0.273286i \(-0.0881104\pi\)
−0.273286 + 0.961933i \(0.588110\pi\)
\(504\) 0 0
\(505\) −38.7442 0.325976i −1.72409 0.0145057i
\(506\) 0 0
\(507\) −8.24760 + 8.24760i −0.366289 + 0.366289i
\(508\) 0 0
\(509\) 31.6165 1.40138 0.700689 0.713467i \(-0.252876\pi\)
0.700689 + 0.713467i \(0.252876\pi\)
\(510\) 0 0
\(511\) 5.31151 19.1865i 0.234967 0.848762i
\(512\) 0 0
\(513\) 0.924478 0.924478i 0.0408167 0.0408167i
\(514\) 0 0
\(515\) 22.4304 22.0561i 0.988403 0.971910i
\(516\) 0 0
\(517\) −22.9116 + 22.9116i −1.00765 + 1.00765i
\(518\) 0 0
\(519\) 2.96337i 0.130078i
\(520\) 0 0
\(521\) 2.87693i 0.126041i −0.998012 0.0630203i \(-0.979927\pi\)
0.998012 0.0630203i \(-0.0200733\pi\)
\(522\) 0 0
\(523\) −29.2446 29.2446i −1.27878 1.27878i −0.941353 0.337424i \(-0.890444\pi\)
−0.337424 0.941353i \(-0.609556\pi\)
\(524\) 0 0
\(525\) 3.74346 12.6880i 0.163378 0.553752i
\(526\) 0 0
\(527\) 2.14343 + 2.14343i 0.0933692 + 0.0933692i
\(528\) 0 0
\(529\) 4.43613i 0.192875i
\(530\) 0 0
\(531\) 13.8935i 0.602928i
\(532\) 0 0
\(533\) −2.23132 + 2.23132i −0.0966494 + 0.0966494i
\(534\) 0 0
\(535\) 10.0537 9.88595i 0.434660 0.427407i
\(536\) 0 0
\(537\) −13.8921 + 13.8921i −0.599490 + 0.599490i
\(538\) 0 0
\(539\) 18.7010 31.1878i 0.805508 1.34335i
\(540\) 0 0
\(541\) −1.43266 −0.0615950 −0.0307975 0.999526i \(-0.509805\pi\)
−0.0307975 + 0.999526i \(0.509805\pi\)
\(542\) 0 0
\(543\) −6.72420 + 6.72420i −0.288563 + 0.288563i
\(544\) 0 0
\(545\) 15.1375 + 0.127360i 0.648419 + 0.00545551i
\(546\) 0 0
\(547\) 2.35459 + 2.35459i 0.100675 + 0.100675i 0.755650 0.654975i \(-0.227321\pi\)
−0.654975 + 0.755650i \(0.727321\pi\)
\(548\) 0 0
\(549\) 10.9392 0.466874
\(550\) 0 0
\(551\) 3.90971i 0.166559i
\(552\) 0 0
\(553\) 18.7826 10.6380i 0.798718 0.452372i
\(554\) 0 0
\(555\) −0.629516 0.00529646i −0.0267214 0.000224822i
\(556\) 0 0
\(557\) 23.6125 + 23.6125i 1.00050 + 1.00050i 1.00000 0.000495740i \(0.000157799\pi\)
0.000495740 1.00000i \(0.499842\pi\)
\(558\) 0 0
\(559\) 3.24232 0.137135
\(560\) 0 0
\(561\) 4.04299 0.170695
\(562\) 0 0
\(563\) −0.952567 0.952567i −0.0401459 0.0401459i 0.686749 0.726895i \(-0.259037\pi\)
−0.726895 + 0.686749i \(0.759037\pi\)
\(564\) 0 0
\(565\) −8.93514 9.08677i −0.375904 0.382283i
\(566\) 0 0
\(567\) 1.30388 + 2.30215i 0.0547577 + 0.0966813i
\(568\) 0 0
\(569\) 47.6344i 1.99694i −0.0553320 0.998468i \(-0.517622\pi\)
0.0553320 0.998468i \(-0.482378\pi\)
\(570\) 0 0
\(571\) 26.5737 1.11208 0.556038 0.831157i \(-0.312321\pi\)
0.556038 + 0.831157i \(0.312321\pi\)
\(572\) 0 0
\(573\) −10.1407 10.1407i −0.423633 0.423633i
\(574\) 0 0
\(575\) 15.4873 14.9747i 0.645865 0.624487i
\(576\) 0 0
\(577\) −21.9280 + 21.9280i −0.912875 + 0.912875i −0.996498 0.0836224i \(-0.973351\pi\)
0.0836224 + 0.996498i \(0.473351\pi\)
\(578\) 0 0
\(579\) 4.16073 0.172914
\(580\) 0 0
\(581\) −7.48155 + 27.0253i −0.310387 + 1.12120i
\(582\) 0 0
\(583\) 5.67011 5.67011i 0.234832 0.234832i
\(584\) 0 0
\(585\) 1.81222 + 1.84297i 0.0749260 + 0.0761975i
\(586\) 0 0
\(587\) −24.0864 + 24.0864i −0.994151 + 0.994151i −0.999983 0.00583245i \(-0.998143\pi\)
0.00583245 + 0.999983i \(0.498143\pi\)
\(588\) 0 0
\(589\) 5.09234i 0.209826i
\(590\) 0 0
\(591\) 12.2479i 0.503811i
\(592\) 0 0
\(593\) −16.0709 16.0709i −0.659954 0.659954i 0.295415 0.955369i \(-0.404542\pi\)
−0.955369 + 0.295415i \(0.904542\pi\)
\(594\) 0 0
\(595\) −1.26569 + 4.42680i −0.0518881 + 0.181481i
\(596\) 0 0
\(597\) 2.88043 + 2.88043i 0.117888 + 0.117888i
\(598\) 0 0
\(599\) 7.55382i 0.308641i 0.988021 + 0.154320i \(0.0493188\pi\)
−0.988021 + 0.154320i \(0.950681\pi\)
\(600\) 0 0
\(601\) 3.81675i 0.155689i 0.996966 + 0.0778443i \(0.0248037\pi\)
−0.996966 + 0.0778443i \(0.975196\pi\)
\(602\) 0 0
\(603\) 10.0506 10.0506i 0.409291 0.409291i
\(604\) 0 0
\(605\) 0.300774 35.7487i 0.0122282 1.45339i
\(606\) 0 0
\(607\) −14.1224 + 14.1224i −0.573211 + 0.573211i −0.933024 0.359814i \(-0.882840\pi\)
0.359814 + 0.933024i \(0.382840\pi\)
\(608\) 0 0
\(609\) −7.62512 2.11090i −0.308986 0.0855381i
\(610\) 0 0
\(611\) 7.20961 0.291670
\(612\) 0 0
\(613\) 21.4072 21.4072i 0.864628 0.864628i −0.127243 0.991872i \(-0.540613\pi\)
0.991872 + 0.127243i \(0.0406129\pi\)
\(614\) 0 0
\(615\) −4.27994 4.35257i −0.172584 0.175512i
\(616\) 0 0
\(617\) 1.82038 + 1.82038i 0.0732859 + 0.0732859i 0.742800 0.669514i \(-0.233497\pi\)
−0.669514 + 0.742800i \(0.733497\pi\)
\(618\) 0 0
\(619\) 11.7390 0.471831 0.235916 0.971774i \(-0.424191\pi\)
0.235916 + 0.971774i \(0.424191\pi\)
\(620\) 0 0
\(621\) 4.30858i 0.172897i
\(622\) 0 0
\(623\) 21.5851 + 38.1111i 0.864789 + 1.52689i
\(624\) 0 0
\(625\) 24.9858 + 0.841176i 0.999434 + 0.0336471i
\(626\) 0 0
\(627\) 4.80265 + 4.80265i 0.191799 + 0.191799i
\(628\) 0 0
\(629\) 0.219106 0.00873635
\(630\) 0 0
\(631\) 16.0788 0.640085 0.320043 0.947403i \(-0.396303\pi\)
0.320043 + 0.947403i \(0.396303\pi\)
\(632\) 0 0
\(633\) −17.1676 17.1676i −0.682349 0.682349i
\(634\) 0 0
\(635\) 1.66300 1.63525i 0.0659942 0.0648930i
\(636\) 0 0
\(637\) −7.84927 + 1.96462i −0.310999 + 0.0778411i
\(638\) 0 0
\(639\) 16.2833i 0.644156i
\(640\) 0 0
\(641\) −7.16795 −0.283117 −0.141559 0.989930i \(-0.545211\pi\)
−0.141559 + 0.989930i \(0.545211\pi\)
\(642\) 0 0
\(643\) −17.8589 17.8589i −0.704287 0.704287i 0.261041 0.965328i \(-0.415934\pi\)
−0.965328 + 0.261041i \(0.915934\pi\)
\(644\) 0 0
\(645\) −0.0527690 + 6.27191i −0.00207778 + 0.246956i
\(646\) 0 0
\(647\) 9.02595 9.02595i 0.354847 0.354847i −0.507062 0.861909i \(-0.669269\pi\)
0.861909 + 0.507062i \(0.169269\pi\)
\(648\) 0 0
\(649\) 72.1767 2.83318
\(650\) 0 0
\(651\) −9.93161 2.74942i −0.389250 0.107758i
\(652\) 0 0
\(653\) −1.90663 + 1.90663i −0.0746123 + 0.0746123i −0.743428 0.668816i \(-0.766801\pi\)
0.668816 + 0.743428i \(0.266801\pi\)
\(654\) 0 0
\(655\) −30.4446 0.256147i −1.18957 0.0100085i
\(656\) 0 0
\(657\) −5.32068 + 5.32068i −0.207579 + 0.207579i
\(658\) 0 0
\(659\) 42.8056i 1.66747i 0.552165 + 0.833735i \(0.313802\pi\)
−0.552165 + 0.833735i \(0.686198\pi\)
\(660\) 0 0
\(661\) 45.0781i 1.75334i 0.481095 + 0.876668i \(0.340239\pi\)
−0.481095 + 0.876668i \(0.659761\pi\)
\(662\) 0 0
\(663\) −0.636105 0.636105i −0.0247043 0.0247043i
\(664\) 0 0
\(665\) −6.76208 + 3.75507i −0.262222 + 0.145615i
\(666\) 0 0
\(667\) −9.11070 9.11070i −0.352768 0.352768i
\(668\) 0 0
\(669\) 17.5991i 0.680419i
\(670\) 0 0
\(671\) 56.8290i 2.19386i
\(672\) 0 0
\(673\) 22.0502 22.0502i 0.849974 0.849974i −0.140155 0.990130i \(-0.544760\pi\)
0.990130 + 0.140155i \(0.0447602\pi\)
\(674\) 0 0
\(675\) −3.59452 + 3.47554i −0.138353 + 0.133774i
\(676\) 0 0
\(677\) 15.0980 15.0980i 0.580264 0.580264i −0.354712 0.934976i \(-0.615421\pi\)
0.934976 + 0.354712i \(0.115421\pi\)
\(678\) 0 0
\(679\) −35.0053 9.69071i −1.34338 0.371895i
\(680\) 0 0
\(681\) 1.23113 0.0471771
\(682\) 0 0
\(683\) 4.73943 4.73943i 0.181349 0.181349i −0.610594 0.791944i \(-0.709069\pi\)
0.791944 + 0.610594i \(0.209069\pi\)
\(684\) 0 0
\(685\) −5.45773 + 5.36666i −0.208529 + 0.205049i
\(686\) 0 0
\(687\) 14.5025 + 14.5025i 0.553303 + 0.553303i
\(688\) 0 0
\(689\) −1.78422 −0.0679733
\(690\) 0 0
\(691\) 6.10818i 0.232366i 0.993228 + 0.116183i \(0.0370659\pi\)
−0.993228 + 0.116183i \(0.962934\pi\)
\(692\) 0 0
\(693\) −11.9597 + 6.77362i −0.454310 + 0.257309i
\(694\) 0 0
\(695\) 0.111610 13.2655i 0.00423359 0.503188i
\(696\) 0 0
\(697\) 1.50230 + 1.50230i 0.0569035 + 0.0569035i
\(698\) 0 0
\(699\) 3.52627 0.133376
\(700\) 0 0
\(701\) 28.4319 1.07386 0.536929 0.843628i \(-0.319584\pi\)
0.536929 + 0.843628i \(0.319584\pi\)
\(702\) 0 0
\(703\) 0.260276 + 0.260276i 0.00981648 + 0.00981648i
\(704\) 0 0
\(705\) −0.117337 + 13.9462i −0.00441917 + 0.525245i
\(706\) 0 0
\(707\) −39.8906 + 22.5930i −1.50024 + 0.849696i
\(708\) 0 0
\(709\) 11.7255i 0.440359i 0.975459 + 0.220180i \(0.0706643\pi\)
−0.975459 + 0.220180i \(0.929336\pi\)
\(710\) 0 0
\(711\) −8.15872 −0.305976
\(712\) 0 0
\(713\) −11.8666 11.8666i −0.444406 0.444406i
\(714\) 0 0
\(715\) −9.57422 + 9.41445i −0.358055 + 0.352081i
\(716\) 0 0
\(717\) 16.2966 16.2966i 0.608607 0.608607i
\(718\) 0 0
\(719\) 19.4579 0.725656 0.362828 0.931856i \(-0.381811\pi\)
0.362828 + 0.931856i \(0.381811\pi\)
\(720\) 0 0
\(721\) 9.93071 35.8723i 0.369839 1.33595i
\(722\) 0 0
\(723\) −14.6424 + 14.6424i −0.544556 + 0.544556i
\(724\) 0 0
\(725\) 0.251583 14.9500i 0.00934356 0.555229i
\(726\) 0 0
\(727\) 22.3113 22.3113i 0.827481 0.827481i −0.159686 0.987168i \(-0.551048\pi\)
0.987168 + 0.159686i \(0.0510483\pi\)
\(728\) 0 0
\(729\) 1.00000i 0.0370370i
\(730\) 0 0
\(731\) 2.18297i 0.0807402i
\(732\) 0 0
\(733\) −9.17722 9.17722i −0.338968 0.338968i 0.517011 0.855979i \(-0.327045\pi\)
−0.855979 + 0.517011i \(0.827045\pi\)
\(734\) 0 0
\(735\) −3.67259 15.2155i −0.135466 0.561233i
\(736\) 0 0
\(737\) 52.2125 + 52.2125i 1.92327 + 1.92327i
\(738\) 0 0
\(739\) 18.5498i 0.682366i −0.939997 0.341183i \(-0.889172\pi\)
0.939997 0.341183i \(-0.110828\pi\)
\(740\) 0 0
\(741\) 1.51125i 0.0555173i
\(742\) 0 0
\(743\) 25.0521 25.0521i 0.919072 0.919072i −0.0778896 0.996962i \(-0.524818\pi\)
0.996962 + 0.0778896i \(0.0248182\pi\)
\(744\) 0 0
\(745\) 13.3378 + 0.112218i 0.488660 + 0.00411137i
\(746\) 0 0
\(747\) 7.49447 7.49447i 0.274208 0.274208i
\(748\) 0 0
\(749\) 4.45112 16.0786i 0.162640 0.587498i
\(750\) 0 0
\(751\) 2.07100 0.0755720 0.0377860 0.999286i \(-0.487969\pi\)
0.0377860 + 0.999286i \(0.487969\pi\)
\(752\) 0 0
\(753\) 2.21025 2.21025i 0.0805459 0.0805459i
\(754\) 0 0
\(755\) −0.147875 + 17.5758i −0.00538171 + 0.639648i
\(756\) 0 0
\(757\) 2.35793 + 2.35793i 0.0857003 + 0.0857003i 0.748657 0.662957i \(-0.230699\pi\)
−0.662957 + 0.748657i \(0.730699\pi\)
\(758\) 0 0
\(759\) −22.3830 −0.812452
\(760\) 0 0
\(761\) 26.2514i 0.951614i −0.879550 0.475807i \(-0.842156\pi\)
0.879550 0.475807i \(-0.157844\pi\)
\(762\) 0 0
\(763\) 15.5854 8.82715i 0.564230 0.319564i
\(764\) 0 0
\(765\) 1.24083 1.22012i 0.0448622 0.0441136i
\(766\) 0 0
\(767\) −11.3559 11.3559i −0.410039 0.410039i
\(768\) 0 0
\(769\) 36.8140 1.32755 0.663773 0.747934i \(-0.268954\pi\)
0.663773 + 0.747934i \(0.268954\pi\)
\(770\) 0 0
\(771\) −2.01780 −0.0726695
\(772\) 0 0
\(773\) −2.82574 2.82574i −0.101635 0.101635i 0.654461 0.756096i \(-0.272896\pi\)
−0.756096 + 0.654461i \(0.772896\pi\)
\(774\) 0 0
\(775\) 0.327683 19.4722i 0.0117707 0.699460i
\(776\) 0 0
\(777\) −0.648143 + 0.367091i −0.0232520 + 0.0131693i
\(778\) 0 0
\(779\) 3.56914i 0.127878i
\(780\) 0 0
\(781\) 84.5913 3.02691
\(782\) 0 0
\(783\) 2.11455 + 2.11455i 0.0755678 + 0.0755678i
\(784\) 0 0
\(785\) 20.7207 + 21.0723i 0.739553 + 0.752103i
\(786\) 0 0
\(787\) −20.2284 + 20.2284i −0.721065 + 0.721065i −0.968822 0.247757i \(-0.920307\pi\)
0.247757 + 0.968822i \(0.420307\pi\)
\(788\) 0 0
\(789\) 11.6034 0.413090
\(790\) 0 0
\(791\) −14.5322 4.02302i −0.516705 0.143042i
\(792\) 0 0
\(793\) 8.94121 8.94121i 0.317512 0.317512i
\(794\) 0 0
\(795\) 0.0290383 3.45137i 0.00102988 0.122408i
\(796\) 0 0
\(797\) 35.7989 35.7989i 1.26806 1.26806i 0.320972 0.947089i \(-0.395990\pi\)
0.947089 0.320972i \(-0.104010\pi\)
\(798\) 0 0
\(799\) 4.85406i 0.171724i
\(800\) 0 0
\(801\) 16.5546i 0.584927i
\(802\) 0 0
\(803\) −27.6409 27.6409i −0.975425 0.975425i
\(804\) 0 0
\(805\) 7.00716 24.5079i 0.246970 0.863789i
\(806\) 0 0
\(807\) 6.81588 + 6.81588i 0.239930 + 0.239930i
\(808\) 0 0
\(809\) 30.7500i 1.08111i 0.841308 + 0.540556i \(0.181786\pi\)
−0.841308 + 0.540556i \(0.818214\pi\)
\(810\) 0 0
\(811\) 24.9358i 0.875613i −0.899069 0.437806i \(-0.855756\pi\)
0.899069 0.437806i \(-0.144244\pi\)
\(812\) 0 0
\(813\) 18.8070 18.8070i 0.659590 0.659590i
\(814\) 0 0
\(815\) −23.7882 24.1919i −0.833264 0.847404i
\(816\) 0 0
\(817\) 2.59315 2.59315i 0.0907227 0.0907227i
\(818\) 0 0
\(819\) 2.94740 + 0.815946i 0.102991 + 0.0285114i
\(820\) 0 0
\(821\) −19.5635 −0.682770 −0.341385 0.939924i \(-0.610896\pi\)
−0.341385 + 0.939924i \(0.610896\pi\)
\(822\) 0 0
\(823\) 18.2254 18.2254i 0.635297 0.635297i −0.314094 0.949392i \(-0.601701\pi\)
0.949392 + 0.314094i \(0.101701\pi\)
\(824\) 0 0
\(825\) −18.0554 18.6735i −0.628609 0.650128i
\(826\) 0 0
\(827\) 19.7863 + 19.7863i 0.688038 + 0.688038i 0.961798 0.273760i \(-0.0882675\pi\)
−0.273760 + 0.961798i \(0.588268\pi\)
\(828\) 0 0
\(829\) −25.7696 −0.895014 −0.447507 0.894280i \(-0.647688\pi\)
−0.447507 + 0.894280i \(0.647688\pi\)
\(830\) 0 0
\(831\) 28.2121i 0.978665i
\(832\) 0 0
\(833\) 1.32273 + 5.28472i 0.0458299 + 0.183105i
\(834\) 0 0
\(835\) −22.4893 22.8709i −0.778273 0.791481i
\(836\) 0 0
\(837\) 2.75417 + 2.75417i 0.0951980 + 0.0951980i
\(838\) 0 0
\(839\) 18.0163 0.621990 0.310995 0.950411i \(-0.399338\pi\)
0.310995 + 0.950411i \(0.399338\pi\)
\(840\) 0 0
\(841\) 20.0574 0.691633
\(842\) 0 0
\(843\) 10.6729 + 10.6729i 0.367596 + 0.367596i
\(844\) 0 0
\(845\) −26.0803 0.219428i −0.897188 0.00754854i
\(846\) 0 0
\(847\) −20.8462 36.8066i −0.716285 1.26469i
\(848\) 0 0
\(849\) 0.230596i 0.00791404i
\(850\) 0 0
\(851\) −1.21303 −0.0415821
\(852\) 0 0
\(853\) −17.0643 17.0643i −0.584271 0.584271i 0.351803 0.936074i \(-0.385569\pi\)
−0.936074 + 0.351803i \(0.885569\pi\)
\(854\) 0 0
\(855\) 2.92335 + 0.0245958i 0.0999766 + 0.000841158i
\(856\) 0 0
\(857\) 4.20254 4.20254i 0.143556 0.143556i −0.631676 0.775232i \(-0.717633\pi\)
0.775232 + 0.631676i \(0.217633\pi\)
\(858\) 0 0
\(859\) −31.7205 −1.08229 −0.541145 0.840929i \(-0.682009\pi\)
−0.541145 + 0.840929i \(0.682009\pi\)
\(860\) 0 0
\(861\) −6.96091 1.92703i −0.237227 0.0656729i
\(862\) 0 0
\(863\) 23.4690 23.4690i 0.798894 0.798894i −0.184027 0.982921i \(-0.558913\pi\)
0.982921 + 0.184027i \(0.0589134\pi\)
\(864\) 0 0
\(865\) −4.72476 + 4.64592i −0.160647 + 0.157966i
\(866\) 0 0
\(867\) 11.5925 11.5925i 0.393703 0.393703i
\(868\) 0 0
\(869\) 42.3845i 1.43779i
\(870\) 0 0
\(871\) 16.4297i 0.556701i
\(872\) 0 0
\(873\) 9.70745 + 9.70745i 0.328547 + 0.328547i
\(874\) 0 0
\(875\) 26.0986 13.9236i 0.882292 0.470702i
\(876\) 0 0
\(877\) −15.6871 15.6871i −0.529715 0.529715i 0.390773 0.920487i \(-0.372208\pi\)
−0.920487 + 0.390773i \(0.872208\pi\)
\(878\) 0 0
\(879\) 19.8890i 0.670839i
\(880\) 0 0
\(881\) 30.4222i 1.02495i 0.858702 + 0.512475i \(0.171271\pi\)
−0.858702 + 0.512475i \(0.828729\pi\)
\(882\) 0 0
\(883\) −25.2219 + 25.2219i −0.848786 + 0.848786i −0.989982 0.141196i \(-0.954905\pi\)
0.141196 + 0.989982i \(0.454905\pi\)
\(884\) 0 0
\(885\) 22.1517 21.7820i 0.744620 0.732194i
\(886\) 0 0
\(887\) 3.90707 3.90707i 0.131187 0.131187i −0.638465 0.769651i \(-0.720430\pi\)
0.769651 + 0.638465i \(0.220430\pi\)
\(888\) 0 0
\(889\) 0.736267 2.65958i 0.0246936 0.0891996i
\(890\) 0 0
\(891\) 5.19499 0.174039
\(892\) 0 0
\(893\) 5.76611 5.76611i 0.192956 0.192956i
\(894\) 0 0
\(895\) −43.9293 0.369601i −1.46839 0.0123544i
\(896\) 0 0
\(897\) 3.52164 + 3.52164i 0.117584 + 0.117584i
\(898\) 0 0
\(899\) −11.6476 −0.388471
\(900\) 0 0
\(901\) 1.20127i 0.0400201i
\(902\) 0 0
\(903\) 3.65735 + 6.45750i 0.121709 + 0.214892i
\(904\) 0 0
\(905\) −21.2630 0.178898i −0.706807 0.00594676i
\(906\) 0 0
\(907\) 27.4534 + 27.4534i 0.911576 + 0.911576i 0.996396 0.0848205i \(-0.0270317\pi\)
−0.0848205 + 0.996396i \(0.527032\pi\)
\(908\) 0 0
\(909\) 17.3275 0.574718
\(910\) 0 0
\(911\) 32.7134 1.08384 0.541922 0.840429i \(-0.317697\pi\)
0.541922 + 0.840429i \(0.317697\pi\)
\(912\) 0 0
\(913\) 38.9337 + 38.9337i 1.28852 + 1.28852i
\(914\) 0 0
\(915\) 17.1503 + 17.4413i 0.566971 + 0.576592i
\(916\) 0 0
\(917\) −31.3455 + 17.7532i −1.03512 + 0.586263i
\(918\) 0 0
\(919\) 13.8174i 0.455793i 0.973685 + 0.227897i \(0.0731848\pi\)
−0.973685 + 0.227897i \(0.926815\pi\)
\(920\) 0 0
\(921\) −10.2978 −0.339323
\(922\) 0 0
\(923\) −13.3092 13.3092i −0.438077 0.438077i
\(924\) 0 0
\(925\) −0.978498 1.01199i −0.0321728 0.0332742i
\(926\) 0 0
\(927\) −9.94786 + 9.94786i −0.326730 + 0.326730i
\(928\) 0 0
\(929\) −12.1425 −0.398381 −0.199191 0.979961i \(-0.563831\pi\)
−0.199191 + 0.979961i \(0.563831\pi\)
\(930\) 0 0
\(931\) −4.70643 + 7.84896i −0.154247 + 0.257239i
\(932\) 0 0
\(933\) 5.75785 5.75785i 0.188503 0.188503i
\(934\) 0 0
\(935\) 6.33852 + 6.44609i 0.207292 + 0.210810i
\(936\) 0 0
\(937\) 11.4188 11.4188i 0.373036 0.373036i −0.495546 0.868582i \(-0.665032\pi\)
0.868582 + 0.495546i \(0.165032\pi\)
\(938\) 0 0
\(939\) 16.5242i 0.539248i
\(940\) 0 0
\(941\) 21.2998i 0.694353i −0.937800 0.347176i \(-0.887140\pi\)
0.937800 0.347176i \(-0.112860\pi\)
\(942\) 0 0
\(943\) −8.31709 8.31709i −0.270842 0.270842i
\(944\) 0 0
\(945\) −1.62633 + 5.68815i −0.0529044 + 0.185036i
\(946\) 0 0
\(947\) −38.6453 38.6453i −1.25580 1.25580i −0.953078 0.302726i \(-0.902103\pi\)
−0.302726 0.953078i \(-0.597897\pi\)
\(948\) 0 0
\(949\) 8.69776i 0.282341i
\(950\) 0 0
\(951\) 3.39576i 0.110115i
\(952\) 0 0
\(953\) −12.2652 + 12.2652i −0.397308 + 0.397308i −0.877283 0.479974i \(-0.840646\pi\)
0.479974 + 0.877283i \(0.340646\pi\)
\(954\) 0 0
\(955\) 0.269793 32.0665i 0.00873030 1.03765i
\(956\) 0 0
\(957\) −10.9851 + 10.9851i −0.355096 + 0.355096i
\(958\) 0 0
\(959\) −2.41632 + 8.72836i −0.0780270 + 0.281854i
\(960\) 0 0
\(961\) 15.8291 0.510617
\(962\) 0 0
\(963\) −4.45880 + 4.45880i −0.143683 + 0.143683i
\(964\) 0 0
\(965\) 6.52311 + 6.63380i 0.209986 + 0.213550i
\(966\) 0 0
\(967\) −2.52230 2.52230i −0.0811116 0.0811116i 0.665387 0.746499i \(-0.268267\pi\)
−0.746499 + 0.665387i \(0.768267\pi\)
\(968\) 0 0
\(969\) −1.01749 −0.0326865
\(970\) 0 0
\(971\) 7.22848i 0.231973i 0.993251 + 0.115986i \(0.0370029\pi\)
−0.993251 + 0.115986i \(0.962997\pi\)
\(972\) 0 0
\(973\) −7.73551 13.6580i −0.247989 0.437855i
\(974\) 0 0
\(975\) −0.0972465 + 5.77875i −0.00311438 + 0.185068i
\(976\) 0 0
\(977\) 11.4690 + 11.4690i 0.366925 + 0.366925i 0.866355 0.499429i \(-0.166457\pi\)
−0.499429 + 0.866355i \(0.666457\pi\)
\(978\) 0 0
\(979\) 86.0008 2.74860
\(980\) 0 0
\(981\) −6.76993 −0.216147
\(982\) 0 0
\(983\) 6.25887 + 6.25887i 0.199627 + 0.199627i 0.799840 0.600213i \(-0.204918\pi\)
−0.600213 + 0.799840i \(0.704918\pi\)
\(984\) 0 0
\(985\) −19.5279 + 19.2020i −0.622209 + 0.611827i
\(986\) 0 0
\(987\) 8.13248 + 14.3589i 0.258860 + 0.457048i
\(988\) 0 0
\(989\) 12.0855i 0.384296i
\(990\) 0 0
\(991\) 26.2928 0.835219 0.417609 0.908627i \(-0.362868\pi\)
0.417609 + 0.908627i \(0.362868\pi\)
\(992\) 0 0
\(993\) −14.0905 14.0905i −0.447149 0.447149i
\(994\) 0 0
\(995\) −0.0766340 + 9.10840i −0.00242946 + 0.288756i
\(996\) 0 0
\(997\) −30.7350 + 30.7350i −0.973386 + 0.973386i −0.999655 0.0262684i \(-0.991638\pi\)
0.0262684 + 0.999655i \(0.491638\pi\)
\(998\) 0 0
\(999\) 0.281538 0.00890746
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 840.2.bt.b.97.4 yes 24
4.3 odd 2 1680.2.cz.e.97.7 24
5.3 odd 4 840.2.bt.a.433.9 yes 24
7.6 odd 2 840.2.bt.a.97.9 24
20.3 even 4 1680.2.cz.f.433.6 24
28.27 even 2 1680.2.cz.f.97.6 24
35.13 even 4 inner 840.2.bt.b.433.4 yes 24
140.83 odd 4 1680.2.cz.e.433.7 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
840.2.bt.a.97.9 24 7.6 odd 2
840.2.bt.a.433.9 yes 24 5.3 odd 4
840.2.bt.b.97.4 yes 24 1.1 even 1 trivial
840.2.bt.b.433.4 yes 24 35.13 even 4 inner
1680.2.cz.e.97.7 24 4.3 odd 2
1680.2.cz.e.433.7 24 140.83 odd 4
1680.2.cz.f.97.6 24 28.27 even 2
1680.2.cz.f.433.6 24 20.3 even 4