Properties

Label 840.2.bt.a.433.9
Level $840$
Weight $2$
Character 840.433
Analytic conductor $6.707$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [840,2,Mod(97,840)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(840, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("840.97"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 840 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 840.bt (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,0,0,0,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.70743376979\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 433.9
Character \(\chi\) \(=\) 840.433
Dual form 840.2.bt.a.97.9

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.707107 - 0.707107i) q^{3} +(-0.0188126 - 2.23599i) q^{5} +(-2.30215 + 1.30388i) q^{7} -1.00000i q^{9} -5.19499 q^{11} +(-0.817355 + 0.817355i) q^{13} +(-1.59439 - 1.56778i) q^{15} +(-0.550305 - 0.550305i) q^{17} -1.30741 q^{19} +(-0.705888 + 2.54985i) q^{21} +(-3.04663 - 3.04663i) q^{23} +(-4.99929 + 0.0841295i) q^{25} +(-0.707107 - 0.707107i) q^{27} -2.99042i q^{29} +3.89498i q^{31} +(-3.67341 + 3.67341i) q^{33} +(2.95876 + 5.12306i) q^{35} +(0.199077 - 0.199077i) q^{37} +1.15591i q^{39} +2.72993i q^{41} +(1.98342 + 1.98342i) q^{43} +(-2.23599 + 0.0188126i) q^{45} +(-4.41033 - 4.41033i) q^{47} +(3.59981 - 6.00344i) q^{49} -0.778249 q^{51} +(-1.09146 - 1.09146i) q^{53} +(0.0977312 + 11.6159i) q^{55} +(-0.924478 + 0.924478i) q^{57} +13.8935 q^{59} -10.9392i q^{61} +(1.30388 + 2.30215i) q^{63} +(1.84297 + 1.81222i) q^{65} +(-10.0506 + 10.0506i) q^{67} -4.30858 q^{69} -16.2833 q^{71} +(-5.32068 + 5.32068i) q^{73} +(-3.47554 + 3.59452i) q^{75} +(11.9597 - 6.77362i) q^{77} -8.15872i q^{79} -1.00000 q^{81} +(7.49447 - 7.49447i) q^{83} +(-1.22012 + 1.24083i) q^{85} +(-2.11455 - 2.11455i) q^{87} +16.5546 q^{89} +(0.815946 - 2.94740i) q^{91} +(2.75417 + 2.75417i) q^{93} +(0.0245958 + 2.92335i) q^{95} +(-9.70745 - 9.70745i) q^{97} +5.19499i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 4 q^{7} - 8 q^{11} + 16 q^{13} + 4 q^{15} + 20 q^{17} + 8 q^{19} + 24 q^{23} - 4 q^{25} + 4 q^{37} - 16 q^{43} - 4 q^{45} - 24 q^{47} + 36 q^{49} + 16 q^{53} + 28 q^{55} + 4 q^{57} + 8 q^{59} + 24 q^{65}+ \cdots - 28 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/840\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(281\) \(337\) \(421\) \(631\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{3}{4}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.707107 0.707107i 0.408248 0.408248i
\(4\) 0 0
\(5\) −0.0188126 2.23599i −0.00841325 0.999965i
\(6\) 0 0
\(7\) −2.30215 + 1.30388i −0.870132 + 0.492819i
\(8\) 0 0
\(9\) 1.00000i 0.333333i
\(10\) 0 0
\(11\) −5.19499 −1.56635 −0.783174 0.621803i \(-0.786400\pi\)
−0.783174 + 0.621803i \(0.786400\pi\)
\(12\) 0 0
\(13\) −0.817355 + 0.817355i −0.226693 + 0.226693i −0.811310 0.584616i \(-0.801245\pi\)
0.584616 + 0.811310i \(0.301245\pi\)
\(14\) 0 0
\(15\) −1.59439 1.56778i −0.411669 0.404799i
\(16\) 0 0
\(17\) −0.550305 0.550305i −0.133469 0.133469i 0.637216 0.770685i \(-0.280086\pi\)
−0.770685 + 0.637216i \(0.780086\pi\)
\(18\) 0 0
\(19\) −1.30741 −0.299940 −0.149970 0.988691i \(-0.547918\pi\)
−0.149970 + 0.988691i \(0.547918\pi\)
\(20\) 0 0
\(21\) −0.705888 + 2.54985i −0.154037 + 0.556422i
\(22\) 0 0
\(23\) −3.04663 3.04663i −0.635266 0.635266i 0.314118 0.949384i \(-0.398291\pi\)
−0.949384 + 0.314118i \(0.898291\pi\)
\(24\) 0 0
\(25\) −4.99929 + 0.0841295i −0.999858 + 0.0168259i
\(26\) 0 0
\(27\) −0.707107 0.707107i −0.136083 0.136083i
\(28\) 0 0
\(29\) 2.99042i 0.555308i −0.960681 0.277654i \(-0.910443\pi\)
0.960681 0.277654i \(-0.0895568\pi\)
\(30\) 0 0
\(31\) 3.89498i 0.699559i 0.936832 + 0.349780i \(0.113744\pi\)
−0.936832 + 0.349780i \(0.886256\pi\)
\(32\) 0 0
\(33\) −3.67341 + 3.67341i −0.639459 + 0.639459i
\(34\) 0 0
\(35\) 2.95876 + 5.12306i 0.500122 + 0.865955i
\(36\) 0 0
\(37\) 0.199077 0.199077i 0.0327281 0.0327281i −0.690553 0.723281i \(-0.742633\pi\)
0.723281 + 0.690553i \(0.242633\pi\)
\(38\) 0 0
\(39\) 1.15591i 0.185094i
\(40\) 0 0
\(41\) 2.72993i 0.426344i 0.977015 + 0.213172i \(0.0683795\pi\)
−0.977015 + 0.213172i \(0.931621\pi\)
\(42\) 0 0
\(43\) 1.98342 + 1.98342i 0.302469 + 0.302469i 0.841979 0.539510i \(-0.181391\pi\)
−0.539510 + 0.841979i \(0.681391\pi\)
\(44\) 0 0
\(45\) −2.23599 + 0.0188126i −0.333322 + 0.00280442i
\(46\) 0 0
\(47\) −4.41033 4.41033i −0.643313 0.643313i 0.308055 0.951369i \(-0.400322\pi\)
−0.951369 + 0.308055i \(0.900322\pi\)
\(48\) 0 0
\(49\) 3.59981 6.00344i 0.514259 0.857635i
\(50\) 0 0
\(51\) −0.778249 −0.108977
\(52\) 0 0
\(53\) −1.09146 1.09146i −0.149923 0.149923i 0.628160 0.778084i \(-0.283808\pi\)
−0.778084 + 0.628160i \(0.783808\pi\)
\(54\) 0 0
\(55\) 0.0977312 + 11.6159i 0.0131781 + 1.56629i
\(56\) 0 0
\(57\) −0.924478 + 0.924478i −0.122450 + 0.122450i
\(58\) 0 0
\(59\) 13.8935 1.80878 0.904392 0.426702i \(-0.140325\pi\)
0.904392 + 0.426702i \(0.140325\pi\)
\(60\) 0 0
\(61\) 10.9392i 1.40062i −0.713838 0.700311i \(-0.753045\pi\)
0.713838 0.700311i \(-0.246955\pi\)
\(62\) 0 0
\(63\) 1.30388 + 2.30215i 0.164273 + 0.290044i
\(64\) 0 0
\(65\) 1.84297 + 1.81222i 0.228593 + 0.224778i
\(66\) 0 0
\(67\) −10.0506 + 10.0506i −1.22787 + 1.22787i −0.263104 + 0.964767i \(0.584746\pi\)
−0.964767 + 0.263104i \(0.915254\pi\)
\(68\) 0 0
\(69\) −4.30858 −0.518692
\(70\) 0 0
\(71\) −16.2833 −1.93247 −0.966233 0.257668i \(-0.917046\pi\)
−0.966233 + 0.257668i \(0.917046\pi\)
\(72\) 0 0
\(73\) −5.32068 + 5.32068i −0.622738 + 0.622738i −0.946231 0.323492i \(-0.895143\pi\)
0.323492 + 0.946231i \(0.395143\pi\)
\(74\) 0 0
\(75\) −3.47554 + 3.59452i −0.401321 + 0.415060i
\(76\) 0 0
\(77\) 11.9597 6.77362i 1.36293 0.771926i
\(78\) 0 0
\(79\) 8.15872i 0.917928i −0.888455 0.458964i \(-0.848221\pi\)
0.888455 0.458964i \(-0.151779\pi\)
\(80\) 0 0
\(81\) −1.00000 −0.111111
\(82\) 0 0
\(83\) 7.49447 7.49447i 0.822625 0.822625i −0.163859 0.986484i \(-0.552394\pi\)
0.986484 + 0.163859i \(0.0523943\pi\)
\(84\) 0 0
\(85\) −1.22012 + 1.24083i −0.132341 + 0.134587i
\(86\) 0 0
\(87\) −2.11455 2.11455i −0.226703 0.226703i
\(88\) 0 0
\(89\) 16.5546 1.75478 0.877390 0.479777i \(-0.159283\pi\)
0.877390 + 0.479777i \(0.159283\pi\)
\(90\) 0 0
\(91\) 0.815946 2.94740i 0.0855343 0.308972i
\(92\) 0 0
\(93\) 2.75417 + 2.75417i 0.285594 + 0.285594i
\(94\) 0 0
\(95\) 0.0245958 + 2.92335i 0.00252347 + 0.299930i
\(96\) 0 0
\(97\) −9.70745 9.70745i −0.985642 0.985642i 0.0142566 0.999898i \(-0.495462\pi\)
−0.999898 + 0.0142566i \(0.995462\pi\)
\(98\) 0 0
\(99\) 5.19499i 0.522116i
\(100\) 0 0
\(101\) 17.3275i 1.72415i −0.506777 0.862077i \(-0.669163\pi\)
0.506777 0.862077i \(-0.330837\pi\)
\(102\) 0 0
\(103\) −9.94786 + 9.94786i −0.980191 + 0.980191i −0.999808 0.0196162i \(-0.993756\pi\)
0.0196162 + 0.999808i \(0.493756\pi\)
\(104\) 0 0
\(105\) 5.71471 + 1.53039i 0.557699 + 0.149351i
\(106\) 0 0
\(107\) 4.45880 4.45880i 0.431049 0.431049i −0.457936 0.888985i \(-0.651411\pi\)
0.888985 + 0.457936i \(0.151411\pi\)
\(108\) 0 0
\(109\) 6.76993i 0.648442i −0.945981 0.324221i \(-0.894898\pi\)
0.945981 0.324221i \(-0.105102\pi\)
\(110\) 0 0
\(111\) 0.281538i 0.0267224i
\(112\) 0 0
\(113\) 4.02997 + 4.02997i 0.379107 + 0.379107i 0.870780 0.491673i \(-0.163614\pi\)
−0.491673 + 0.870780i \(0.663614\pi\)
\(114\) 0 0
\(115\) −6.75491 + 6.86954i −0.629899 + 0.640588i
\(116\) 0 0
\(117\) 0.817355 + 0.817355i 0.0755645 + 0.0755645i
\(118\) 0 0
\(119\) 1.98442 + 0.549356i 0.181911 + 0.0503594i
\(120\) 0 0
\(121\) 15.9879 1.45344
\(122\) 0 0
\(123\) 1.93035 + 1.93035i 0.174054 + 0.174054i
\(124\) 0 0
\(125\) 0.282162 + 11.1768i 0.0252374 + 0.999681i
\(126\) 0 0
\(127\) 0.737538 0.737538i 0.0654459 0.0654459i −0.673626 0.739072i \(-0.735264\pi\)
0.739072 + 0.673626i \(0.235264\pi\)
\(128\) 0 0
\(129\) 2.80498 0.246965
\(130\) 0 0
\(131\) 13.6157i 1.18961i −0.803869 0.594806i \(-0.797229\pi\)
0.803869 0.594806i \(-0.202771\pi\)
\(132\) 0 0
\(133\) 3.00986 1.70470i 0.260988 0.147816i
\(134\) 0 0
\(135\) −1.56778 + 1.59439i −0.134933 + 0.137223i
\(136\) 0 0
\(137\) −2.42049 + 2.42049i −0.206797 + 0.206797i −0.802904 0.596108i \(-0.796713\pi\)
0.596108 + 0.802904i \(0.296713\pi\)
\(138\) 0 0
\(139\) −5.93270 −0.503205 −0.251603 0.967831i \(-0.580958\pi\)
−0.251603 + 0.967831i \(0.580958\pi\)
\(140\) 0 0
\(141\) −6.23715 −0.525263
\(142\) 0 0
\(143\) 4.24615 4.24615i 0.355081 0.355081i
\(144\) 0 0
\(145\) −6.68655 + 0.0562577i −0.555288 + 0.00467194i
\(146\) 0 0
\(147\) −1.69962 6.79053i −0.140183 0.560073i
\(148\) 0 0
\(149\) 5.96507i 0.488678i −0.969690 0.244339i \(-0.921429\pi\)
0.969690 0.244339i \(-0.0785709\pi\)
\(150\) 0 0
\(151\) −7.86040 −0.639670 −0.319835 0.947473i \(-0.603628\pi\)
−0.319835 + 0.947473i \(0.603628\pi\)
\(152\) 0 0
\(153\) −0.550305 + 0.550305i −0.0444895 + 0.0444895i
\(154\) 0 0
\(155\) 8.70914 0.0732748i 0.699535 0.00588557i
\(156\) 0 0
\(157\) 9.34553 + 9.34553i 0.745854 + 0.745854i 0.973698 0.227844i \(-0.0731675\pi\)
−0.227844 + 0.973698i \(0.573167\pi\)
\(158\) 0 0
\(159\) −1.54356 −0.122412
\(160\) 0 0
\(161\) 10.9862 + 3.04138i 0.865836 + 0.239694i
\(162\) 0 0
\(163\) 10.7290 + 10.7290i 0.840364 + 0.840364i 0.988906 0.148542i \(-0.0474581\pi\)
−0.148542 + 0.988906i \(0.547458\pi\)
\(164\) 0 0
\(165\) 8.28281 + 8.14460i 0.644816 + 0.634056i
\(166\) 0 0
\(167\) −10.1432 10.1432i −0.784905 0.784905i 0.195749 0.980654i \(-0.437286\pi\)
−0.980654 + 0.195749i \(0.937286\pi\)
\(168\) 0 0
\(169\) 11.6639i 0.897220i
\(170\) 0 0
\(171\) 1.30741i 0.0999801i
\(172\) 0 0
\(173\) 2.09542 2.09542i 0.159312 0.159312i −0.622950 0.782262i \(-0.714066\pi\)
0.782262 + 0.622950i \(0.214066\pi\)
\(174\) 0 0
\(175\) 11.3994 6.71214i 0.861717 0.507390i
\(176\) 0 0
\(177\) 9.82421 9.82421i 0.738433 0.738433i
\(178\) 0 0
\(179\) 19.6465i 1.46845i 0.678909 + 0.734223i \(0.262453\pi\)
−0.678909 + 0.734223i \(0.737547\pi\)
\(180\) 0 0
\(181\) 9.50946i 0.706832i −0.935466 0.353416i \(-0.885020\pi\)
0.935466 0.353416i \(-0.114980\pi\)
\(182\) 0 0
\(183\) −7.73519 7.73519i −0.571802 0.571802i
\(184\) 0 0
\(185\) −0.448880 0.441390i −0.0330023 0.0324516i
\(186\) 0 0
\(187\) 2.85883 + 2.85883i 0.209058 + 0.209058i
\(188\) 0 0
\(189\) 2.54985 + 0.705888i 0.185474 + 0.0513458i
\(190\) 0 0
\(191\) 14.3411 1.03768 0.518842 0.854870i \(-0.326363\pi\)
0.518842 + 0.854870i \(0.326363\pi\)
\(192\) 0 0
\(193\) −2.94208 2.94208i −0.211775 0.211775i 0.593246 0.805021i \(-0.297846\pi\)
−0.805021 + 0.593246i \(0.797846\pi\)
\(194\) 0 0
\(195\) 2.58461 0.0217458i 0.185088 0.00155725i
\(196\) 0 0
\(197\) −8.66057 + 8.66057i −0.617040 + 0.617040i −0.944771 0.327731i \(-0.893716\pi\)
0.327731 + 0.944771i \(0.393716\pi\)
\(198\) 0 0
\(199\) 4.07354 0.288766 0.144383 0.989522i \(-0.453880\pi\)
0.144383 + 0.989522i \(0.453880\pi\)
\(200\) 0 0
\(201\) 14.2136i 1.00255i
\(202\) 0 0
\(203\) 3.89914 + 6.88441i 0.273666 + 0.483191i
\(204\) 0 0
\(205\) 6.10410 0.0513572i 0.426329 0.00358694i
\(206\) 0 0
\(207\) −3.04663 + 3.04663i −0.211755 + 0.211755i
\(208\) 0 0
\(209\) 6.79198 0.469811
\(210\) 0 0
\(211\) 24.2786 1.67141 0.835704 0.549180i \(-0.185060\pi\)
0.835704 + 0.549180i \(0.185060\pi\)
\(212\) 0 0
\(213\) −11.5140 + 11.5140i −0.788926 + 0.788926i
\(214\) 0 0
\(215\) 4.39760 4.47222i 0.299914 0.305003i
\(216\) 0 0
\(217\) −5.07857 8.96684i −0.344756 0.608709i
\(218\) 0 0
\(219\) 7.52458i 0.508464i
\(220\) 0 0
\(221\) 0.899588 0.0605129
\(222\) 0 0
\(223\) 12.4444 12.4444i 0.833339 0.833339i −0.154633 0.987972i \(-0.549419\pi\)
0.987972 + 0.154633i \(0.0494194\pi\)
\(224\) 0 0
\(225\) 0.0841295 + 4.99929i 0.00560864 + 0.333286i
\(226\) 0 0
\(227\) 0.870542 + 0.870542i 0.0577799 + 0.0577799i 0.735406 0.677626i \(-0.236991\pi\)
−0.677626 + 0.735406i \(0.736991\pi\)
\(228\) 0 0
\(229\) 20.5096 1.35531 0.677655 0.735380i \(-0.262996\pi\)
0.677655 + 0.735380i \(0.262996\pi\)
\(230\) 0 0
\(231\) 3.66708 13.2464i 0.241276 0.871551i
\(232\) 0 0
\(233\) −2.49345 2.49345i −0.163351 0.163351i 0.620698 0.784050i \(-0.286849\pi\)
−0.784050 + 0.620698i \(0.786849\pi\)
\(234\) 0 0
\(235\) −9.77849 + 9.94443i −0.637878 + 0.648703i
\(236\) 0 0
\(237\) −5.76909 5.76909i −0.374743 0.374743i
\(238\) 0 0
\(239\) 23.0468i 1.49078i −0.666631 0.745388i \(-0.732264\pi\)
0.666631 0.745388i \(-0.267736\pi\)
\(240\) 0 0
\(241\) 20.7075i 1.33388i −0.745109 0.666942i \(-0.767603\pi\)
0.745109 0.666942i \(-0.232397\pi\)
\(242\) 0 0
\(243\) −0.707107 + 0.707107i −0.0453609 + 0.0453609i
\(244\) 0 0
\(245\) −13.4914 7.93620i −0.861931 0.507025i
\(246\) 0 0
\(247\) 1.06862 1.06862i 0.0679945 0.0679945i
\(248\) 0 0
\(249\) 10.5988i 0.671670i
\(250\) 0 0
\(251\) 3.12576i 0.197296i 0.995122 + 0.0986481i \(0.0314518\pi\)
−0.995122 + 0.0986481i \(0.968548\pi\)
\(252\) 0 0
\(253\) 15.8272 + 15.8272i 0.995047 + 0.995047i
\(254\) 0 0
\(255\) 0.0146409 + 1.74016i 0.000916848 + 0.108973i
\(256\) 0 0
\(257\) −1.42680 1.42680i −0.0890016 0.0890016i 0.661204 0.750206i \(-0.270046\pi\)
−0.750206 + 0.661204i \(0.770046\pi\)
\(258\) 0 0
\(259\) −0.198734 + 0.717879i −0.0123487 + 0.0446068i
\(260\) 0 0
\(261\) −2.99042 −0.185103
\(262\) 0 0
\(263\) −8.20481 8.20481i −0.505930 0.505930i 0.407344 0.913275i \(-0.366455\pi\)
−0.913275 + 0.407344i \(0.866455\pi\)
\(264\) 0 0
\(265\) −2.41996 + 2.46102i −0.148657 + 0.151179i
\(266\) 0 0
\(267\) 11.7058 11.7058i 0.716386 0.716386i
\(268\) 0 0
\(269\) 9.63912 0.587707 0.293854 0.955850i \(-0.405062\pi\)
0.293854 + 0.955850i \(0.405062\pi\)
\(270\) 0 0
\(271\) 26.5971i 1.61566i 0.589417 + 0.807829i \(0.299357\pi\)
−0.589417 + 0.807829i \(0.700643\pi\)
\(272\) 0 0
\(273\) −1.50717 2.66109i −0.0912180 0.161057i
\(274\) 0 0
\(275\) 25.9713 0.437052i 1.56613 0.0263552i
\(276\) 0 0
\(277\) −19.9489 + 19.9489i −1.19862 + 1.19862i −0.224034 + 0.974581i \(0.571923\pi\)
−0.974581 + 0.224034i \(0.928077\pi\)
\(278\) 0 0
\(279\) 3.89498 0.233186
\(280\) 0 0
\(281\) −15.0938 −0.900422 −0.450211 0.892922i \(-0.648651\pi\)
−0.450211 + 0.892922i \(0.648651\pi\)
\(282\) 0 0
\(283\) 0.163056 0.163056i 0.00969268 0.00969268i −0.702244 0.711937i \(-0.747818\pi\)
0.711937 + 0.702244i \(0.247818\pi\)
\(284\) 0 0
\(285\) 2.08452 + 2.04973i 0.123476 + 0.121416i
\(286\) 0 0
\(287\) −3.55950 6.28472i −0.210110 0.370976i
\(288\) 0 0
\(289\) 16.3943i 0.964372i
\(290\) 0 0
\(291\) −13.7284 −0.804773
\(292\) 0 0
\(293\) −14.0636 + 14.0636i −0.821606 + 0.821606i −0.986338 0.164732i \(-0.947324\pi\)
0.164732 + 0.986338i \(0.447324\pi\)
\(294\) 0 0
\(295\) −0.261374 31.0658i −0.0152178 1.80872i
\(296\) 0 0
\(297\) 3.67341 + 3.67341i 0.213153 + 0.213153i
\(298\) 0 0
\(299\) 4.98035 0.288021
\(300\) 0 0
\(301\) −7.15228 1.98000i −0.412251 0.114126i
\(302\) 0 0
\(303\) −12.2524 12.2524i −0.703883 0.703883i
\(304\) 0 0
\(305\) −24.4599 + 0.205795i −1.40057 + 0.0117838i
\(306\) 0 0
\(307\) −7.28161 7.28161i −0.415584 0.415584i 0.468095 0.883678i \(-0.344941\pi\)
−0.883678 + 0.468095i \(0.844941\pi\)
\(308\) 0 0
\(309\) 14.0684i 0.800323i
\(310\) 0 0
\(311\) 8.14282i 0.461737i 0.972985 + 0.230869i \(0.0741568\pi\)
−0.972985 + 0.230869i \(0.925843\pi\)
\(312\) 0 0
\(313\) −11.6844 + 11.6844i −0.660441 + 0.660441i −0.955484 0.295043i \(-0.904666\pi\)
0.295043 + 0.955484i \(0.404666\pi\)
\(314\) 0 0
\(315\) 5.12306 2.95876i 0.288652 0.166707i
\(316\) 0 0
\(317\) −2.40116 + 2.40116i −0.134863 + 0.134863i −0.771316 0.636453i \(-0.780401\pi\)
0.636453 + 0.771316i \(0.280401\pi\)
\(318\) 0 0
\(319\) 15.5352i 0.869805i
\(320\) 0 0
\(321\) 6.30570i 0.351950i
\(322\) 0 0
\(323\) 0.719474 + 0.719474i 0.0400326 + 0.0400326i
\(324\) 0 0
\(325\) 4.01743 4.15496i 0.222847 0.230476i
\(326\) 0 0
\(327\) −4.78706 4.78706i −0.264725 0.264725i
\(328\) 0 0
\(329\) 15.9038 + 4.40273i 0.876804 + 0.242730i
\(330\) 0 0
\(331\) 19.9270 1.09529 0.547644 0.836711i \(-0.315525\pi\)
0.547644 + 0.836711i \(0.315525\pi\)
\(332\) 0 0
\(333\) −0.199077 0.199077i −0.0109094 0.0109094i
\(334\) 0 0
\(335\) 22.6620 + 22.2839i 1.23816 + 1.21750i
\(336\) 0 0
\(337\) −14.2601 + 14.2601i −0.776798 + 0.776798i −0.979285 0.202487i \(-0.935098\pi\)
0.202487 + 0.979285i \(0.435098\pi\)
\(338\) 0 0
\(339\) 5.69923 0.309540
\(340\) 0 0
\(341\) 20.2344i 1.09575i
\(342\) 0 0
\(343\) −0.459569 + 18.5146i −0.0248144 + 0.999692i
\(344\) 0 0
\(345\) 0.0810556 + 9.63394i 0.00436389 + 0.518674i
\(346\) 0 0
\(347\) −10.8252 + 10.8252i −0.581126 + 0.581126i −0.935213 0.354087i \(-0.884792\pi\)
0.354087 + 0.935213i \(0.384792\pi\)
\(348\) 0 0
\(349\) 11.2159 0.600373 0.300186 0.953881i \(-0.402951\pi\)
0.300186 + 0.953881i \(0.402951\pi\)
\(350\) 0 0
\(351\) 1.15591 0.0616981
\(352\) 0 0
\(353\) −25.4175 + 25.4175i −1.35283 + 1.35283i −0.470360 + 0.882475i \(0.655876\pi\)
−0.882475 + 0.470360i \(0.844124\pi\)
\(354\) 0 0
\(355\) 0.306330 + 36.4092i 0.0162583 + 1.93240i
\(356\) 0 0
\(357\) 1.79165 1.01474i 0.0948240 0.0537057i
\(358\) 0 0
\(359\) 28.3149i 1.49440i −0.664597 0.747202i \(-0.731397\pi\)
0.664597 0.747202i \(-0.268603\pi\)
\(360\) 0 0
\(361\) −17.2907 −0.910036
\(362\) 0 0
\(363\) 11.3051 11.3051i 0.593366 0.593366i
\(364\) 0 0
\(365\) 11.9971 + 11.7969i 0.627956 + 0.617477i
\(366\) 0 0
\(367\) −21.3444 21.3444i −1.11417 1.11417i −0.992581 0.121587i \(-0.961202\pi\)
−0.121587 0.992581i \(-0.538798\pi\)
\(368\) 0 0
\(369\) 2.72993 0.142115
\(370\) 0 0
\(371\) 3.93583 + 1.08958i 0.204338 + 0.0565680i
\(372\) 0 0
\(373\) −4.99355 4.99355i −0.258556 0.258556i 0.565911 0.824467i \(-0.308525\pi\)
−0.824467 + 0.565911i \(0.808525\pi\)
\(374\) 0 0
\(375\) 8.10270 + 7.70366i 0.418421 + 0.397815i
\(376\) 0 0
\(377\) 2.44424 + 2.44424i 0.125885 + 0.125885i
\(378\) 0 0
\(379\) 6.22172i 0.319588i 0.987150 + 0.159794i \(0.0510830\pi\)
−0.987150 + 0.159794i \(0.948917\pi\)
\(380\) 0 0
\(381\) 1.04304i 0.0534364i
\(382\) 0 0
\(383\) 23.9817 23.9817i 1.22541 1.22541i 0.259723 0.965683i \(-0.416369\pi\)
0.965683 0.259723i \(-0.0836313\pi\)
\(384\) 0 0
\(385\) −15.3707 26.6142i −0.783365 1.35639i
\(386\) 0 0
\(387\) 1.98342 1.98342i 0.100823 0.100823i
\(388\) 0 0
\(389\) 13.0476i 0.661541i 0.943711 + 0.330771i \(0.107309\pi\)
−0.943711 + 0.330771i \(0.892691\pi\)
\(390\) 0 0
\(391\) 3.35315i 0.169576i
\(392\) 0 0
\(393\) −9.62778 9.62778i −0.485657 0.485657i
\(394\) 0 0
\(395\) −18.2428 + 0.153487i −0.917895 + 0.00772276i
\(396\) 0 0
\(397\) −0.363615 0.363615i −0.0182493 0.0182493i 0.697923 0.716173i \(-0.254108\pi\)
−0.716173 + 0.697923i \(0.754108\pi\)
\(398\) 0 0
\(399\) 0.922885 3.33370i 0.0462020 0.166894i
\(400\) 0 0
\(401\) 5.54793 0.277050 0.138525 0.990359i \(-0.455764\pi\)
0.138525 + 0.990359i \(0.455764\pi\)
\(402\) 0 0
\(403\) −3.18358 3.18358i −0.158585 0.158585i
\(404\) 0 0
\(405\) 0.0188126 + 2.23599i 0.000934806 + 0.111107i
\(406\) 0 0
\(407\) −1.03420 + 1.03420i −0.0512636 + 0.0512636i
\(408\) 0 0
\(409\) 15.4786 0.765369 0.382684 0.923879i \(-0.375000\pi\)
0.382684 + 0.923879i \(0.375000\pi\)
\(410\) 0 0
\(411\) 3.42309i 0.168849i
\(412\) 0 0
\(413\) −31.9850 + 18.1155i −1.57388 + 0.891403i
\(414\) 0 0
\(415\) −16.8985 16.6166i −0.829516 0.815675i
\(416\) 0 0
\(417\) −4.19506 + 4.19506i −0.205433 + 0.205433i
\(418\) 0 0
\(419\) −34.2957 −1.67546 −0.837728 0.546088i \(-0.816116\pi\)
−0.837728 + 0.546088i \(0.816116\pi\)
\(420\) 0 0
\(421\) −27.0249 −1.31711 −0.658556 0.752532i \(-0.728832\pi\)
−0.658556 + 0.752532i \(0.728832\pi\)
\(422\) 0 0
\(423\) −4.41033 + 4.41033i −0.214438 + 0.214438i
\(424\) 0 0
\(425\) 2.79743 + 2.70484i 0.135695 + 0.131204i
\(426\) 0 0
\(427\) 14.2634 + 25.1837i 0.690253 + 1.21873i
\(428\) 0 0
\(429\) 6.00496i 0.289922i
\(430\) 0 0
\(431\) −17.0803 −0.822731 −0.411366 0.911470i \(-0.634948\pi\)
−0.411366 + 0.911470i \(0.634948\pi\)
\(432\) 0 0
\(433\) 23.6189 23.6189i 1.13505 1.13505i 0.145725 0.989325i \(-0.453449\pi\)
0.989325 0.145725i \(-0.0465515\pi\)
\(434\) 0 0
\(435\) −4.68833 + 4.76789i −0.224788 + 0.228603i
\(436\) 0 0
\(437\) 3.98319 + 3.98319i 0.190542 + 0.190542i
\(438\) 0 0
\(439\) −12.2095 −0.582729 −0.291365 0.956612i \(-0.594109\pi\)
−0.291365 + 0.956612i \(0.594109\pi\)
\(440\) 0 0
\(441\) −6.00344 3.59981i −0.285878 0.171420i
\(442\) 0 0
\(443\) −10.4501 10.4501i −0.496500 0.496500i 0.413847 0.910347i \(-0.364185\pi\)
−0.910347 + 0.413847i \(0.864185\pi\)
\(444\) 0 0
\(445\) −0.311435 37.0158i −0.0147634 1.75472i
\(446\) 0 0
\(447\) −4.21794 4.21794i −0.199502 0.199502i
\(448\) 0 0
\(449\) 27.4726i 1.29651i 0.761423 + 0.648255i \(0.224501\pi\)
−0.761423 + 0.648255i \(0.775499\pi\)
\(450\) 0 0
\(451\) 14.1820i 0.667803i
\(452\) 0 0
\(453\) −5.55814 + 5.55814i −0.261144 + 0.261144i
\(454\) 0 0
\(455\) −6.60571 1.76900i −0.309681 0.0829319i
\(456\) 0 0
\(457\) −21.3864 + 21.3864i −1.00042 + 1.00042i −0.000415123 1.00000i \(0.500132\pi\)
−1.00000 0.000415123i \(0.999868\pi\)
\(458\) 0 0
\(459\) 0.778249i 0.0363255i
\(460\) 0 0
\(461\) 27.9120i 1.29999i 0.759939 + 0.649995i \(0.225229\pi\)
−0.759939 + 0.649995i \(0.774771\pi\)
\(462\) 0 0
\(463\) −20.8693 20.8693i −0.969877 0.969877i 0.0296827 0.999559i \(-0.490550\pi\)
−0.999559 + 0.0296827i \(0.990550\pi\)
\(464\) 0 0
\(465\) 6.10648 6.21010i 0.283181 0.287987i
\(466\) 0 0
\(467\) −26.6658 26.6658i −1.23395 1.23395i −0.962435 0.271511i \(-0.912477\pi\)
−0.271511 0.962435i \(-0.587523\pi\)
\(468\) 0 0
\(469\) 10.0332 36.2426i 0.463292 1.67353i
\(470\) 0 0
\(471\) 13.2166 0.608987
\(472\) 0 0
\(473\) −10.3039 10.3039i −0.473772 0.473772i
\(474\) 0 0
\(475\) 6.53612 0.109992i 0.299898 0.00504677i
\(476\) 0 0
\(477\) −1.09146 + 1.09146i −0.0499744 + 0.0499744i
\(478\) 0 0
\(479\) −18.8257 −0.860166 −0.430083 0.902789i \(-0.641516\pi\)
−0.430083 + 0.902789i \(0.641516\pi\)
\(480\) 0 0
\(481\) 0.325434i 0.0148385i
\(482\) 0 0
\(483\) 9.91901 5.61786i 0.451331 0.255621i
\(484\) 0 0
\(485\) −21.5231 + 21.8884i −0.977314 + 0.993899i
\(486\) 0 0
\(487\) −3.79308 + 3.79308i −0.171881 + 0.171881i −0.787805 0.615924i \(-0.788783\pi\)
0.615924 + 0.787805i \(0.288783\pi\)
\(488\) 0 0
\(489\) 15.1732 0.686154
\(490\) 0 0
\(491\) −31.0544 −1.40146 −0.700732 0.713425i \(-0.747143\pi\)
−0.700732 + 0.713425i \(0.747143\pi\)
\(492\) 0 0
\(493\) −1.64564 + 1.64564i −0.0741161 + 0.0741161i
\(494\) 0 0
\(495\) 11.6159 0.0977312i 0.522097 0.00439269i
\(496\) 0 0
\(497\) 37.4865 21.2314i 1.68150 0.952356i
\(498\) 0 0
\(499\) 19.4573i 0.871029i −0.900182 0.435514i \(-0.856566\pi\)
0.900182 0.435514i \(-0.143434\pi\)
\(500\) 0 0
\(501\) −14.3447 −0.640872
\(502\) 0 0
\(503\) −15.4448 + 15.4448i −0.688647 + 0.688647i −0.961933 0.273286i \(-0.911890\pi\)
0.273286 + 0.961933i \(0.411890\pi\)
\(504\) 0 0
\(505\) −38.7442 + 0.325976i −1.72409 + 0.0145057i
\(506\) 0 0
\(507\) 8.24760 + 8.24760i 0.366289 + 0.366289i
\(508\) 0 0
\(509\) −31.6165 −1.40138 −0.700689 0.713467i \(-0.747124\pi\)
−0.700689 + 0.713467i \(0.747124\pi\)
\(510\) 0 0
\(511\) 5.31151 19.1865i 0.234967 0.848762i
\(512\) 0 0
\(513\) 0.924478 + 0.924478i 0.0408167 + 0.0408167i
\(514\) 0 0
\(515\) 22.4304 + 22.0561i 0.988403 + 0.971910i
\(516\) 0 0
\(517\) 22.9116 + 22.9116i 1.00765 + 1.00765i
\(518\) 0 0
\(519\) 2.96337i 0.130078i
\(520\) 0 0
\(521\) 2.87693i 0.126041i −0.998012 0.0630203i \(-0.979927\pi\)
0.998012 0.0630203i \(-0.0200733\pi\)
\(522\) 0 0
\(523\) 29.2446 29.2446i 1.27878 1.27878i 0.337424 0.941353i \(-0.390444\pi\)
0.941353 0.337424i \(-0.109556\pi\)
\(524\) 0 0
\(525\) 3.31442 12.8068i 0.144653 0.558935i
\(526\) 0 0
\(527\) 2.14343 2.14343i 0.0933692 0.0933692i
\(528\) 0 0
\(529\) 4.43613i 0.192875i
\(530\) 0 0
\(531\) 13.8935i 0.602928i
\(532\) 0 0
\(533\) −2.23132 2.23132i −0.0966494 0.0966494i
\(534\) 0 0
\(535\) −10.0537 9.88595i −0.434660 0.427407i
\(536\) 0 0
\(537\) 13.8921 + 13.8921i 0.599490 + 0.599490i
\(538\) 0 0
\(539\) −18.7010 + 31.1878i −0.805508 + 1.34335i
\(540\) 0 0
\(541\) −1.43266 −0.0615950 −0.0307975 0.999526i \(-0.509805\pi\)
−0.0307975 + 0.999526i \(0.509805\pi\)
\(542\) 0 0
\(543\) −6.72420 6.72420i −0.288563 0.288563i
\(544\) 0 0
\(545\) −15.1375 + 0.127360i −0.648419 + 0.00545551i
\(546\) 0 0
\(547\) 2.35459 2.35459i 0.100675 0.100675i −0.654975 0.755650i \(-0.727321\pi\)
0.755650 + 0.654975i \(0.227321\pi\)
\(548\) 0 0
\(549\) −10.9392 −0.466874
\(550\) 0 0
\(551\) 3.90971i 0.166559i
\(552\) 0 0
\(553\) 10.6380 + 18.7826i 0.452372 + 0.798718i
\(554\) 0 0
\(555\) −0.629516 + 0.00529646i −0.0267214 + 0.000224822i
\(556\) 0 0
\(557\) 23.6125 23.6125i 1.00050 1.00050i 0.000495740 1.00000i \(-0.499842\pi\)
1.00000 0.000495740i \(-0.000157799\pi\)
\(558\) 0 0
\(559\) −3.24232 −0.137135
\(560\) 0 0
\(561\) 4.04299 0.170695
\(562\) 0 0
\(563\) 0.952567 0.952567i 0.0401459 0.0401459i −0.686749 0.726895i \(-0.740963\pi\)
0.726895 + 0.686749i \(0.240963\pi\)
\(564\) 0 0
\(565\) 8.93514 9.08677i 0.375904 0.382283i
\(566\) 0 0
\(567\) 2.30215 1.30388i 0.0966813 0.0547577i
\(568\) 0 0
\(569\) 47.6344i 1.99694i 0.0553320 + 0.998468i \(0.482378\pi\)
−0.0553320 + 0.998468i \(0.517622\pi\)
\(570\) 0 0
\(571\) 26.5737 1.11208 0.556038 0.831157i \(-0.312321\pi\)
0.556038 + 0.831157i \(0.312321\pi\)
\(572\) 0 0
\(573\) 10.1407 10.1407i 0.423633 0.423633i
\(574\) 0 0
\(575\) 15.4873 + 14.9747i 0.645865 + 0.624487i
\(576\) 0 0
\(577\) 21.9280 + 21.9280i 0.912875 + 0.912875i 0.996498 0.0836224i \(-0.0266490\pi\)
−0.0836224 + 0.996498i \(0.526649\pi\)
\(578\) 0 0
\(579\) −4.16073 −0.172914
\(580\) 0 0
\(581\) −7.48155 + 27.0253i −0.310387 + 1.12120i
\(582\) 0 0
\(583\) 5.67011 + 5.67011i 0.234832 + 0.234832i
\(584\) 0 0
\(585\) 1.81222 1.84297i 0.0749260 0.0761975i
\(586\) 0 0
\(587\) 24.0864 + 24.0864i 0.994151 + 0.994151i 0.999983 0.00583245i \(-0.00185654\pi\)
−0.00583245 + 0.999983i \(0.501857\pi\)
\(588\) 0 0
\(589\) 5.09234i 0.209826i
\(590\) 0 0
\(591\) 12.2479i 0.503811i
\(592\) 0 0
\(593\) 16.0709 16.0709i 0.659954 0.659954i −0.295415 0.955369i \(-0.595458\pi\)
0.955369 + 0.295415i \(0.0954579\pi\)
\(594\) 0 0
\(595\) 1.19102 4.44746i 0.0488272 0.182328i
\(596\) 0 0
\(597\) 2.88043 2.88043i 0.117888 0.117888i
\(598\) 0 0
\(599\) 7.55382i 0.308641i −0.988021 0.154320i \(-0.950681\pi\)
0.988021 0.154320i \(-0.0493188\pi\)
\(600\) 0 0
\(601\) 3.81675i 0.155689i 0.996966 + 0.0778443i \(0.0248037\pi\)
−0.996966 + 0.0778443i \(0.975196\pi\)
\(602\) 0 0
\(603\) 10.0506 + 10.0506i 0.409291 + 0.409291i
\(604\) 0 0
\(605\) −0.300774 35.7487i −0.0122282 1.45339i
\(606\) 0 0
\(607\) 14.1224 + 14.1224i 0.573211 + 0.573211i 0.933024 0.359814i \(-0.117160\pi\)
−0.359814 + 0.933024i \(0.617160\pi\)
\(608\) 0 0
\(609\) 7.62512 + 2.11090i 0.308986 + 0.0855381i
\(610\) 0 0
\(611\) 7.20961 0.291670
\(612\) 0 0
\(613\) 21.4072 + 21.4072i 0.864628 + 0.864628i 0.991872 0.127243i \(-0.0406129\pi\)
−0.127243 + 0.991872i \(0.540613\pi\)
\(614\) 0 0
\(615\) 4.27994 4.35257i 0.172584 0.175512i
\(616\) 0 0
\(617\) 1.82038 1.82038i 0.0732859 0.0732859i −0.669514 0.742800i \(-0.733497\pi\)
0.742800 + 0.669514i \(0.233497\pi\)
\(618\) 0 0
\(619\) −11.7390 −0.471831 −0.235916 0.971774i \(-0.575809\pi\)
−0.235916 + 0.971774i \(0.575809\pi\)
\(620\) 0 0
\(621\) 4.30858i 0.172897i
\(622\) 0 0
\(623\) −38.1111 + 21.5851i −1.52689 + 0.864789i
\(624\) 0 0
\(625\) 24.9858 0.841176i 0.999434 0.0336471i
\(626\) 0 0
\(627\) 4.80265 4.80265i 0.191799 0.191799i
\(628\) 0 0
\(629\) −0.219106 −0.00873635
\(630\) 0 0
\(631\) 16.0788 0.640085 0.320043 0.947403i \(-0.396303\pi\)
0.320043 + 0.947403i \(0.396303\pi\)
\(632\) 0 0
\(633\) 17.1676 17.1676i 0.682349 0.682349i
\(634\) 0 0
\(635\) −1.66300 1.63525i −0.0659942 0.0648930i
\(636\) 0 0
\(637\) 1.96462 + 7.84927i 0.0778411 + 0.310999i
\(638\) 0 0
\(639\) 16.2833i 0.644156i
\(640\) 0 0
\(641\) −7.16795 −0.283117 −0.141559 0.989930i \(-0.545211\pi\)
−0.141559 + 0.989930i \(0.545211\pi\)
\(642\) 0 0
\(643\) 17.8589 17.8589i 0.704287 0.704287i −0.261041 0.965328i \(-0.584066\pi\)
0.965328 + 0.261041i \(0.0840657\pi\)
\(644\) 0 0
\(645\) −0.0527690 6.27191i −0.00207778 0.246956i
\(646\) 0 0
\(647\) −9.02595 9.02595i −0.354847 0.354847i 0.507062 0.861909i \(-0.330731\pi\)
−0.861909 + 0.507062i \(0.830731\pi\)
\(648\) 0 0
\(649\) −72.1767 −2.83318
\(650\) 0 0
\(651\) −9.93161 2.74942i −0.389250 0.107758i
\(652\) 0 0
\(653\) −1.90663 1.90663i −0.0746123 0.0746123i 0.668816 0.743428i \(-0.266801\pi\)
−0.743428 + 0.668816i \(0.766801\pi\)
\(654\) 0 0
\(655\) −30.4446 + 0.256147i −1.18957 + 0.0100085i
\(656\) 0 0
\(657\) 5.32068 + 5.32068i 0.207579 + 0.207579i
\(658\) 0 0
\(659\) 42.8056i 1.66747i −0.552165 0.833735i \(-0.686198\pi\)
0.552165 0.833735i \(-0.313802\pi\)
\(660\) 0 0
\(661\) 45.0781i 1.75334i 0.481095 + 0.876668i \(0.340239\pi\)
−0.481095 + 0.876668i \(0.659761\pi\)
\(662\) 0 0
\(663\) 0.636105 0.636105i 0.0247043 0.0247043i
\(664\) 0 0
\(665\) −3.86832 6.69794i −0.150007 0.259735i
\(666\) 0 0
\(667\) −9.11070 + 9.11070i −0.352768 + 0.352768i
\(668\) 0 0
\(669\) 17.5991i 0.680419i
\(670\) 0 0
\(671\) 56.8290i 2.19386i
\(672\) 0 0
\(673\) 22.0502 + 22.0502i 0.849974 + 0.849974i 0.990130 0.140155i \(-0.0447602\pi\)
−0.140155 + 0.990130i \(0.544760\pi\)
\(674\) 0 0
\(675\) 3.59452 + 3.47554i 0.138353 + 0.133774i
\(676\) 0 0
\(677\) −15.0980 15.0980i −0.580264 0.580264i 0.354712 0.934976i \(-0.384579\pi\)
−0.934976 + 0.354712i \(0.884579\pi\)
\(678\) 0 0
\(679\) 35.0053 + 9.69071i 1.34338 + 0.371895i
\(680\) 0 0
\(681\) 1.23113 0.0471771
\(682\) 0 0
\(683\) 4.73943 + 4.73943i 0.181349 + 0.181349i 0.791944 0.610594i \(-0.209069\pi\)
−0.610594 + 0.791944i \(0.709069\pi\)
\(684\) 0 0
\(685\) 5.45773 + 5.36666i 0.208529 + 0.205049i
\(686\) 0 0
\(687\) 14.5025 14.5025i 0.553303 0.553303i
\(688\) 0 0
\(689\) 1.78422 0.0679733
\(690\) 0 0
\(691\) 6.10818i 0.232366i 0.993228 + 0.116183i \(0.0370659\pi\)
−0.993228 + 0.116183i \(0.962934\pi\)
\(692\) 0 0
\(693\) −6.77362 11.9597i −0.257309 0.454310i
\(694\) 0 0
\(695\) 0.111610 + 13.2655i 0.00423359 + 0.503188i
\(696\) 0 0
\(697\) 1.50230 1.50230i 0.0569035 0.0569035i
\(698\) 0 0
\(699\) −3.52627 −0.133376
\(700\) 0 0
\(701\) 28.4319 1.07386 0.536929 0.843628i \(-0.319584\pi\)
0.536929 + 0.843628i \(0.319584\pi\)
\(702\) 0 0
\(703\) −0.260276 + 0.260276i −0.00981648 + 0.00981648i
\(704\) 0 0
\(705\) 0.117337 + 13.9462i 0.00441917 + 0.525245i
\(706\) 0 0
\(707\) 22.5930 + 39.8906i 0.849696 + 1.50024i
\(708\) 0 0
\(709\) 11.7255i 0.440359i −0.975459 0.220180i \(-0.929336\pi\)
0.975459 0.220180i \(-0.0706643\pi\)
\(710\) 0 0
\(711\) −8.15872 −0.305976
\(712\) 0 0
\(713\) 11.8666 11.8666i 0.444406 0.444406i
\(714\) 0 0
\(715\) −9.57422 9.41445i −0.358055 0.352081i
\(716\) 0 0
\(717\) −16.2966 16.2966i −0.608607 0.608607i
\(718\) 0 0
\(719\) −19.4579 −0.725656 −0.362828 0.931856i \(-0.618189\pi\)
−0.362828 + 0.931856i \(0.618189\pi\)
\(720\) 0 0
\(721\) 9.93071 35.8723i 0.369839 1.33595i
\(722\) 0 0
\(723\) −14.6424 14.6424i −0.544556 0.544556i
\(724\) 0 0
\(725\) 0.251583 + 14.9500i 0.00934356 + 0.555229i
\(726\) 0 0
\(727\) −22.3113 22.3113i −0.827481 0.827481i 0.159686 0.987168i \(-0.448952\pi\)
−0.987168 + 0.159686i \(0.948952\pi\)
\(728\) 0 0
\(729\) 1.00000i 0.0370370i
\(730\) 0 0
\(731\) 2.18297i 0.0807402i
\(732\) 0 0
\(733\) 9.17722 9.17722i 0.338968 0.338968i −0.517011 0.855979i \(-0.672955\pi\)
0.855979 + 0.517011i \(0.172955\pi\)
\(734\) 0 0
\(735\) −15.1516 + 3.92809i −0.558874 + 0.144890i
\(736\) 0 0
\(737\) 52.2125 52.2125i 1.92327 1.92327i
\(738\) 0 0
\(739\) 18.5498i 0.682366i 0.939997 + 0.341183i \(0.110828\pi\)
−0.939997 + 0.341183i \(0.889172\pi\)
\(740\) 0 0
\(741\) 1.51125i 0.0555173i
\(742\) 0 0
\(743\) 25.0521 + 25.0521i 0.919072 + 0.919072i 0.996962 0.0778896i \(-0.0248182\pi\)
−0.0778896 + 0.996962i \(0.524818\pi\)
\(744\) 0 0
\(745\) −13.3378 + 0.112218i −0.488660 + 0.00411137i
\(746\) 0 0
\(747\) −7.49447 7.49447i −0.274208 0.274208i
\(748\) 0 0
\(749\) −4.45112 + 16.0786i −0.162640 + 0.587498i
\(750\) 0 0
\(751\) 2.07100 0.0755720 0.0377860 0.999286i \(-0.487969\pi\)
0.0377860 + 0.999286i \(0.487969\pi\)
\(752\) 0 0
\(753\) 2.21025 + 2.21025i 0.0805459 + 0.0805459i
\(754\) 0 0
\(755\) 0.147875 + 17.5758i 0.00538171 + 0.639648i
\(756\) 0 0
\(757\) 2.35793 2.35793i 0.0857003 0.0857003i −0.662957 0.748657i \(-0.730699\pi\)
0.748657 + 0.662957i \(0.230699\pi\)
\(758\) 0 0
\(759\) 22.3830 0.812452
\(760\) 0 0
\(761\) 26.2514i 0.951614i −0.879550 0.475807i \(-0.842156\pi\)
0.879550 0.475807i \(-0.157844\pi\)
\(762\) 0 0
\(763\) 8.82715 + 15.5854i 0.319564 + 0.564230i
\(764\) 0 0
\(765\) 1.24083 + 1.22012i 0.0448622 + 0.0441136i
\(766\) 0 0
\(767\) −11.3559 + 11.3559i −0.410039 + 0.410039i
\(768\) 0 0
\(769\) −36.8140 −1.32755 −0.663773 0.747934i \(-0.731046\pi\)
−0.663773 + 0.747934i \(0.731046\pi\)
\(770\) 0 0
\(771\) −2.01780 −0.0726695
\(772\) 0 0
\(773\) 2.82574 2.82574i 0.101635 0.101635i −0.654461 0.756096i \(-0.727104\pi\)
0.756096 + 0.654461i \(0.227104\pi\)
\(774\) 0 0
\(775\) −0.327683 19.4722i −0.0117707 0.699460i
\(776\) 0 0
\(777\) 0.367091 + 0.648143i 0.0131693 + 0.0232520i
\(778\) 0 0
\(779\) 3.56914i 0.127878i
\(780\) 0 0
\(781\) 84.5913 3.02691
\(782\) 0 0
\(783\) −2.11455 + 2.11455i −0.0755678 + 0.0755678i
\(784\) 0 0
\(785\) 20.7207 21.0723i 0.739553 0.752103i
\(786\) 0 0
\(787\) 20.2284 + 20.2284i 0.721065 + 0.721065i 0.968822 0.247757i \(-0.0796934\pi\)
−0.247757 + 0.968822i \(0.579693\pi\)
\(788\) 0 0
\(789\) −11.6034 −0.413090
\(790\) 0 0
\(791\) −14.5322 4.02302i −0.516705 0.143042i
\(792\) 0 0
\(793\) 8.94121 + 8.94121i 0.317512 + 0.317512i
\(794\) 0 0
\(795\) 0.0290383 + 3.45137i 0.00102988 + 0.122408i
\(796\) 0 0
\(797\) −35.7989 35.7989i −1.26806 1.26806i −0.947089 0.320972i \(-0.895990\pi\)
−0.320972 0.947089i \(-0.604010\pi\)
\(798\) 0 0
\(799\) 4.85406i 0.171724i
\(800\) 0 0
\(801\) 16.5546i 0.584927i
\(802\) 0 0
\(803\) 27.6409 27.6409i 0.975425 0.975425i
\(804\) 0 0
\(805\) 6.59380 24.6223i 0.232401 0.867822i
\(806\) 0 0
\(807\) 6.81588 6.81588i 0.239930 0.239930i
\(808\) 0 0
\(809\) 30.7500i 1.08111i −0.841308 0.540556i \(-0.818214\pi\)
0.841308 0.540556i \(-0.181786\pi\)
\(810\) 0 0
\(811\) 24.9358i 0.875613i −0.899069 0.437806i \(-0.855756\pi\)
0.899069 0.437806i \(-0.144244\pi\)
\(812\) 0 0
\(813\) 18.8070 + 18.8070i 0.659590 + 0.659590i
\(814\) 0 0
\(815\) 23.7882 24.1919i 0.833264 0.847404i
\(816\) 0 0
\(817\) −2.59315 2.59315i −0.0907227 0.0907227i
\(818\) 0 0
\(819\) −2.94740 0.815946i −0.102991 0.0285114i
\(820\) 0 0
\(821\) −19.5635 −0.682770 −0.341385 0.939924i \(-0.610896\pi\)
−0.341385 + 0.939924i \(0.610896\pi\)
\(822\) 0 0
\(823\) 18.2254 + 18.2254i 0.635297 + 0.635297i 0.949392 0.314094i \(-0.101701\pi\)
−0.314094 + 0.949392i \(0.601701\pi\)
\(824\) 0 0
\(825\) 18.0554 18.6735i 0.628609 0.650128i
\(826\) 0 0
\(827\) 19.7863 19.7863i 0.688038 0.688038i −0.273760 0.961798i \(-0.588268\pi\)
0.961798 + 0.273760i \(0.0882675\pi\)
\(828\) 0 0
\(829\) 25.7696 0.895014 0.447507 0.894280i \(-0.352312\pi\)
0.447507 + 0.894280i \(0.352312\pi\)
\(830\) 0 0
\(831\) 28.2121i 0.978665i
\(832\) 0 0
\(833\) −5.28472 + 1.32273i −0.183105 + 0.0458299i
\(834\) 0 0
\(835\) −22.4893 + 22.8709i −0.778273 + 0.791481i
\(836\) 0 0
\(837\) 2.75417 2.75417i 0.0951980 0.0951980i
\(838\) 0 0
\(839\) −18.0163 −0.621990 −0.310995 0.950411i \(-0.600662\pi\)
−0.310995 + 0.950411i \(0.600662\pi\)
\(840\) 0 0
\(841\) 20.0574 0.691633
\(842\) 0 0
\(843\) −10.6729 + 10.6729i −0.367596 + 0.367596i
\(844\) 0 0
\(845\) 26.0803 0.219428i 0.897188 0.00754854i
\(846\) 0 0
\(847\) −36.8066 + 20.8462i −1.26469 + 0.716285i
\(848\) 0 0
\(849\) 0.230596i 0.00791404i
\(850\) 0 0
\(851\) −1.21303 −0.0415821
\(852\) 0 0
\(853\) 17.0643 17.0643i 0.584271 0.584271i −0.351803 0.936074i \(-0.614431\pi\)
0.936074 + 0.351803i \(0.114431\pi\)
\(854\) 0 0
\(855\) 2.92335 0.0245958i 0.0999766 0.000841158i
\(856\) 0 0
\(857\) −4.20254 4.20254i −0.143556 0.143556i 0.631676 0.775232i \(-0.282367\pi\)
−0.775232 + 0.631676i \(0.782367\pi\)
\(858\) 0 0
\(859\) 31.7205 1.08229 0.541145 0.840929i \(-0.317991\pi\)
0.541145 + 0.840929i \(0.317991\pi\)
\(860\) 0 0
\(861\) −6.96091 1.92703i −0.237227 0.0656729i
\(862\) 0 0
\(863\) 23.4690 + 23.4690i 0.798894 + 0.798894i 0.982921 0.184027i \(-0.0589134\pi\)
−0.184027 + 0.982921i \(0.558913\pi\)
\(864\) 0 0
\(865\) −4.72476 4.64592i −0.160647 0.157966i
\(866\) 0 0
\(867\) −11.5925 11.5925i −0.393703 0.393703i
\(868\) 0 0
\(869\) 42.3845i 1.43779i
\(870\) 0 0
\(871\) 16.4297i 0.556701i
\(872\) 0 0
\(873\) −9.70745 + 9.70745i −0.328547 + 0.328547i
\(874\) 0 0
\(875\) −15.2227 25.3627i −0.514622 0.857417i
\(876\) 0 0
\(877\) −15.6871 + 15.6871i −0.529715 + 0.529715i −0.920487 0.390773i \(-0.872208\pi\)
0.390773 + 0.920487i \(0.372208\pi\)
\(878\) 0 0
\(879\) 19.8890i 0.670839i
\(880\) 0 0
\(881\) 30.4222i 1.02495i 0.858702 + 0.512475i \(0.171271\pi\)
−0.858702 + 0.512475i \(0.828729\pi\)
\(882\) 0 0
\(883\) −25.2219 25.2219i −0.848786 0.848786i 0.141196 0.989982i \(-0.454905\pi\)
−0.989982 + 0.141196i \(0.954905\pi\)
\(884\) 0 0
\(885\) −22.1517 21.7820i −0.744620 0.732194i
\(886\) 0 0
\(887\) −3.90707 3.90707i −0.131187 0.131187i 0.638465 0.769651i \(-0.279570\pi\)
−0.769651 + 0.638465i \(0.779570\pi\)
\(888\) 0 0
\(889\) −0.736267 + 2.65958i −0.0246936 + 0.0891996i
\(890\) 0 0
\(891\) 5.19499 0.174039
\(892\) 0 0
\(893\) 5.76611 + 5.76611i 0.192956 + 0.192956i
\(894\) 0 0
\(895\) 43.9293 0.369601i 1.46839 0.0123544i
\(896\) 0 0
\(897\) 3.52164 3.52164i 0.117584 0.117584i
\(898\) 0 0
\(899\) 11.6476 0.388471
\(900\) 0 0
\(901\) 1.20127i 0.0400201i
\(902\) 0 0
\(903\) −6.45750 + 3.65735i −0.214892 + 0.121709i
\(904\) 0 0
\(905\) −21.2630 + 0.178898i −0.706807 + 0.00594676i
\(906\) 0 0
\(907\) 27.4534 27.4534i 0.911576 0.911576i −0.0848205 0.996396i \(-0.527032\pi\)
0.996396 + 0.0848205i \(0.0270317\pi\)
\(908\) 0 0
\(909\) −17.3275 −0.574718
\(910\) 0 0
\(911\) 32.7134 1.08384 0.541922 0.840429i \(-0.317697\pi\)
0.541922 + 0.840429i \(0.317697\pi\)
\(912\) 0 0
\(913\) −38.9337 + 38.9337i −1.28852 + 1.28852i
\(914\) 0 0
\(915\) −17.1503 + 17.4413i −0.566971 + 0.576592i
\(916\) 0 0
\(917\) 17.7532 + 31.3455i 0.586263 + 1.03512i
\(918\) 0 0
\(919\) 13.8174i 0.455793i −0.973685 0.227897i \(-0.926815\pi\)
0.973685 0.227897i \(-0.0731848\pi\)
\(920\) 0 0
\(921\) −10.2978 −0.339323
\(922\) 0 0
\(923\) 13.3092 13.3092i 0.438077 0.438077i
\(924\) 0 0
\(925\) −0.978498 + 1.01199i −0.0321728 + 0.0332742i
\(926\) 0 0
\(927\) 9.94786 + 9.94786i 0.326730 + 0.326730i
\(928\) 0 0
\(929\) 12.1425 0.398381 0.199191 0.979961i \(-0.436169\pi\)
0.199191 + 0.979961i \(0.436169\pi\)
\(930\) 0 0
\(931\) −4.70643 + 7.84896i −0.154247 + 0.257239i
\(932\) 0 0
\(933\) 5.75785 + 5.75785i 0.188503 + 0.188503i
\(934\) 0 0
\(935\) 6.33852 6.44609i 0.207292 0.210810i
\(936\) 0 0
\(937\) −11.4188 11.4188i −0.373036 0.373036i 0.495546 0.868582i \(-0.334968\pi\)
−0.868582 + 0.495546i \(0.834968\pi\)
\(938\) 0 0
\(939\) 16.5242i 0.539248i
\(940\) 0 0
\(941\) 21.2998i 0.694353i −0.937800 0.347176i \(-0.887140\pi\)
0.937800 0.347176i \(-0.112860\pi\)
\(942\) 0 0
\(943\) 8.31709 8.31709i 0.270842 0.270842i
\(944\) 0 0
\(945\) 1.53039 5.71471i 0.0497835 0.185900i
\(946\) 0 0
\(947\) −38.6453 + 38.6453i −1.25580 + 1.25580i −0.302726 + 0.953078i \(0.597897\pi\)
−0.953078 + 0.302726i \(0.902103\pi\)
\(948\) 0 0
\(949\) 8.69776i 0.282341i
\(950\) 0 0
\(951\) 3.39576i 0.110115i
\(952\) 0 0
\(953\) −12.2652 12.2652i −0.397308 0.397308i 0.479974 0.877283i \(-0.340646\pi\)
−0.877283 + 0.479974i \(0.840646\pi\)
\(954\) 0 0
\(955\) −0.269793 32.0665i −0.00873030 1.03765i
\(956\) 0 0
\(957\) 10.9851 + 10.9851i 0.355096 + 0.355096i
\(958\) 0 0
\(959\) 2.41632 8.72836i 0.0780270 0.281854i
\(960\) 0 0
\(961\) 15.8291 0.510617
\(962\) 0 0
\(963\) −4.45880 4.45880i −0.143683 0.143683i
\(964\) 0 0
\(965\) −6.52311 + 6.63380i −0.209986 + 0.213550i
\(966\) 0 0
\(967\) −2.52230 + 2.52230i −0.0811116 + 0.0811116i −0.746499 0.665387i \(-0.768267\pi\)
0.665387 + 0.746499i \(0.268267\pi\)
\(968\) 0 0
\(969\) 1.01749 0.0326865
\(970\) 0 0
\(971\) 7.22848i 0.231973i 0.993251 + 0.115986i \(0.0370029\pi\)
−0.993251 + 0.115986i \(0.962997\pi\)
\(972\) 0 0
\(973\) 13.6580 7.73551i 0.437855 0.247989i
\(974\) 0 0
\(975\) −0.0972465 5.77875i −0.00311438 0.185068i
\(976\) 0 0
\(977\) 11.4690 11.4690i 0.366925 0.366925i −0.499429 0.866355i \(-0.666457\pi\)
0.866355 + 0.499429i \(0.166457\pi\)
\(978\) 0 0
\(979\) −86.0008 −2.74860
\(980\) 0 0
\(981\) −6.76993 −0.216147
\(982\) 0 0
\(983\) −6.25887 + 6.25887i −0.199627 + 0.199627i −0.799840 0.600213i \(-0.795082\pi\)
0.600213 + 0.799840i \(0.295082\pi\)
\(984\) 0 0
\(985\) 19.5279 + 19.2020i 0.622209 + 0.611827i
\(986\) 0 0
\(987\) 14.3589 8.13248i 0.457048 0.258860i
\(988\) 0 0
\(989\) 12.0855i 0.384296i
\(990\) 0 0
\(991\) 26.2928 0.835219 0.417609 0.908627i \(-0.362868\pi\)
0.417609 + 0.908627i \(0.362868\pi\)
\(992\) 0 0
\(993\) 14.0905 14.0905i 0.447149 0.447149i
\(994\) 0 0
\(995\) −0.0766340 9.10840i −0.00242946 0.288756i
\(996\) 0 0
\(997\) 30.7350 + 30.7350i 0.973386 + 0.973386i 0.999655 0.0262684i \(-0.00836247\pi\)
−0.0262684 + 0.999655i \(0.508362\pi\)
\(998\) 0 0
\(999\) −0.281538 −0.00890746
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 840.2.bt.a.433.9 yes 24
4.3 odd 2 1680.2.cz.f.433.6 24
5.2 odd 4 840.2.bt.b.97.4 yes 24
7.6 odd 2 840.2.bt.b.433.4 yes 24
20.7 even 4 1680.2.cz.e.97.7 24
28.27 even 2 1680.2.cz.e.433.7 24
35.27 even 4 inner 840.2.bt.a.97.9 24
140.27 odd 4 1680.2.cz.f.97.6 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
840.2.bt.a.97.9 24 35.27 even 4 inner
840.2.bt.a.433.9 yes 24 1.1 even 1 trivial
840.2.bt.b.97.4 yes 24 5.2 odd 4
840.2.bt.b.433.4 yes 24 7.6 odd 2
1680.2.cz.e.97.7 24 20.7 even 4
1680.2.cz.e.433.7 24 28.27 even 2
1680.2.cz.f.97.6 24 140.27 odd 4
1680.2.cz.f.433.6 24 4.3 odd 2