Properties

Label 840.2.bt.b.433.4
Level $840$
Weight $2$
Character 840.433
Analytic conductor $6.707$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [840,2,Mod(97,840)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(840, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("840.97"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 840 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 840.bt (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.70743376979\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 433.4
Character \(\chi\) \(=\) 840.433
Dual form 840.2.bt.b.97.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.707107 + 0.707107i) q^{3} +(0.0188126 + 2.23599i) q^{5} +(-1.30388 + 2.30215i) q^{7} -1.00000i q^{9} -5.19499 q^{11} +(0.817355 - 0.817355i) q^{13} +(-1.59439 - 1.56778i) q^{15} +(0.550305 + 0.550305i) q^{17} +1.30741 q^{19} +(-0.705888 - 2.54985i) q^{21} +(-3.04663 - 3.04663i) q^{23} +(-4.99929 + 0.0841295i) q^{25} +(0.707107 + 0.707107i) q^{27} -2.99042i q^{29} -3.89498i q^{31} +(3.67341 - 3.67341i) q^{33} +(-5.17212 - 2.87214i) q^{35} +(0.199077 - 0.199077i) q^{37} +1.15591i q^{39} -2.72993i q^{41} +(1.98342 + 1.98342i) q^{43} +(2.23599 - 0.0188126i) q^{45} +(4.41033 + 4.41033i) q^{47} +(-3.59981 - 6.00344i) q^{49} -0.778249 q^{51} +(-1.09146 - 1.09146i) q^{53} +(-0.0977312 - 11.6159i) q^{55} +(-0.924478 + 0.924478i) q^{57} -13.8935 q^{59} +10.9392i q^{61} +(2.30215 + 1.30388i) q^{63} +(1.84297 + 1.81222i) q^{65} +(-10.0506 + 10.0506i) q^{67} +4.30858 q^{69} -16.2833 q^{71} +(5.32068 - 5.32068i) q^{73} +(3.47554 - 3.59452i) q^{75} +(6.77362 - 11.9597i) q^{77} -8.15872i q^{79} -1.00000 q^{81} +(-7.49447 + 7.49447i) q^{83} +(-1.22012 + 1.24083i) q^{85} +(2.11455 + 2.11455i) q^{87} -16.5546 q^{89} +(0.815946 + 2.94740i) q^{91} +(2.75417 + 2.75417i) q^{93} +(0.0245958 + 2.92335i) q^{95} +(9.70745 + 9.70745i) q^{97} +5.19499i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 8 q^{11} - 16 q^{13} + 4 q^{15} - 20 q^{17} - 8 q^{19} + 24 q^{23} - 4 q^{25} + 4 q^{37} - 16 q^{43} + 4 q^{45} + 24 q^{47} - 36 q^{49} + 16 q^{53} - 28 q^{55} + 4 q^{57} - 8 q^{59} + 4 q^{63} + 24 q^{65}+ \cdots + 28 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/840\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(281\) \(337\) \(421\) \(631\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{3}{4}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.707107 + 0.707107i −0.408248 + 0.408248i
\(4\) 0 0
\(5\) 0.0188126 + 2.23599i 0.00841325 + 0.999965i
\(6\) 0 0
\(7\) −1.30388 + 2.30215i −0.492819 + 0.870132i
\(8\) 0 0
\(9\) 1.00000i 0.333333i
\(10\) 0 0
\(11\) −5.19499 −1.56635 −0.783174 0.621803i \(-0.786400\pi\)
−0.783174 + 0.621803i \(0.786400\pi\)
\(12\) 0 0
\(13\) 0.817355 0.817355i 0.226693 0.226693i −0.584616 0.811310i \(-0.698755\pi\)
0.811310 + 0.584616i \(0.198755\pi\)
\(14\) 0 0
\(15\) −1.59439 1.56778i −0.411669 0.404799i
\(16\) 0 0
\(17\) 0.550305 + 0.550305i 0.133469 + 0.133469i 0.770685 0.637216i \(-0.219914\pi\)
−0.637216 + 0.770685i \(0.719914\pi\)
\(18\) 0 0
\(19\) 1.30741 0.299940 0.149970 0.988691i \(-0.452082\pi\)
0.149970 + 0.988691i \(0.452082\pi\)
\(20\) 0 0
\(21\) −0.705888 2.54985i −0.154037 0.556422i
\(22\) 0 0
\(23\) −3.04663 3.04663i −0.635266 0.635266i 0.314118 0.949384i \(-0.398291\pi\)
−0.949384 + 0.314118i \(0.898291\pi\)
\(24\) 0 0
\(25\) −4.99929 + 0.0841295i −0.999858 + 0.0168259i
\(26\) 0 0
\(27\) 0.707107 + 0.707107i 0.136083 + 0.136083i
\(28\) 0 0
\(29\) 2.99042i 0.555308i −0.960681 0.277654i \(-0.910443\pi\)
0.960681 0.277654i \(-0.0895568\pi\)
\(30\) 0 0
\(31\) 3.89498i 0.699559i −0.936832 0.349780i \(-0.886256\pi\)
0.936832 0.349780i \(-0.113744\pi\)
\(32\) 0 0
\(33\) 3.67341 3.67341i 0.639459 0.639459i
\(34\) 0 0
\(35\) −5.17212 2.87214i −0.874247 0.485481i
\(36\) 0 0
\(37\) 0.199077 0.199077i 0.0327281 0.0327281i −0.690553 0.723281i \(-0.742633\pi\)
0.723281 + 0.690553i \(0.242633\pi\)
\(38\) 0 0
\(39\) 1.15591i 0.185094i
\(40\) 0 0
\(41\) 2.72993i 0.426344i −0.977015 0.213172i \(-0.931621\pi\)
0.977015 0.213172i \(-0.0683795\pi\)
\(42\) 0 0
\(43\) 1.98342 + 1.98342i 0.302469 + 0.302469i 0.841979 0.539510i \(-0.181391\pi\)
−0.539510 + 0.841979i \(0.681391\pi\)
\(44\) 0 0
\(45\) 2.23599 0.0188126i 0.333322 0.00280442i
\(46\) 0 0
\(47\) 4.41033 + 4.41033i 0.643313 + 0.643313i 0.951369 0.308055i \(-0.0996781\pi\)
−0.308055 + 0.951369i \(0.599678\pi\)
\(48\) 0 0
\(49\) −3.59981 6.00344i −0.514259 0.857635i
\(50\) 0 0
\(51\) −0.778249 −0.108977
\(52\) 0 0
\(53\) −1.09146 1.09146i −0.149923 0.149923i 0.628160 0.778084i \(-0.283808\pi\)
−0.778084 + 0.628160i \(0.783808\pi\)
\(54\) 0 0
\(55\) −0.0977312 11.6159i −0.0131781 1.56629i
\(56\) 0 0
\(57\) −0.924478 + 0.924478i −0.122450 + 0.122450i
\(58\) 0 0
\(59\) −13.8935 −1.80878 −0.904392 0.426702i \(-0.859675\pi\)
−0.904392 + 0.426702i \(0.859675\pi\)
\(60\) 0 0
\(61\) 10.9392i 1.40062i 0.713838 + 0.700311i \(0.246955\pi\)
−0.713838 + 0.700311i \(0.753045\pi\)
\(62\) 0 0
\(63\) 2.30215 + 1.30388i 0.290044 + 0.164273i
\(64\) 0 0
\(65\) 1.84297 + 1.81222i 0.228593 + 0.224778i
\(66\) 0 0
\(67\) −10.0506 + 10.0506i −1.22787 + 1.22787i −0.263104 + 0.964767i \(0.584746\pi\)
−0.964767 + 0.263104i \(0.915254\pi\)
\(68\) 0 0
\(69\) 4.30858 0.518692
\(70\) 0 0
\(71\) −16.2833 −1.93247 −0.966233 0.257668i \(-0.917046\pi\)
−0.966233 + 0.257668i \(0.917046\pi\)
\(72\) 0 0
\(73\) 5.32068 5.32068i 0.622738 0.622738i −0.323492 0.946231i \(-0.604857\pi\)
0.946231 + 0.323492i \(0.104857\pi\)
\(74\) 0 0
\(75\) 3.47554 3.59452i 0.401321 0.415060i
\(76\) 0 0
\(77\) 6.77362 11.9597i 0.771926 1.36293i
\(78\) 0 0
\(79\) 8.15872i 0.917928i −0.888455 0.458964i \(-0.848221\pi\)
0.888455 0.458964i \(-0.151779\pi\)
\(80\) 0 0
\(81\) −1.00000 −0.111111
\(82\) 0 0
\(83\) −7.49447 + 7.49447i −0.822625 + 0.822625i −0.986484 0.163859i \(-0.947606\pi\)
0.163859 + 0.986484i \(0.447606\pi\)
\(84\) 0 0
\(85\) −1.22012 + 1.24083i −0.132341 + 0.134587i
\(86\) 0 0
\(87\) 2.11455 + 2.11455i 0.226703 + 0.226703i
\(88\) 0 0
\(89\) −16.5546 −1.75478 −0.877390 0.479777i \(-0.840717\pi\)
−0.877390 + 0.479777i \(0.840717\pi\)
\(90\) 0 0
\(91\) 0.815946 + 2.94740i 0.0855343 + 0.308972i
\(92\) 0 0
\(93\) 2.75417 + 2.75417i 0.285594 + 0.285594i
\(94\) 0 0
\(95\) 0.0245958 + 2.92335i 0.00252347 + 0.299930i
\(96\) 0 0
\(97\) 9.70745 + 9.70745i 0.985642 + 0.985642i 0.999898 0.0142566i \(-0.00453816\pi\)
−0.0142566 + 0.999898i \(0.504538\pi\)
\(98\) 0 0
\(99\) 5.19499i 0.522116i
\(100\) 0 0
\(101\) 17.3275i 1.72415i 0.506777 + 0.862077i \(0.330837\pi\)
−0.506777 + 0.862077i \(0.669163\pi\)
\(102\) 0 0
\(103\) 9.94786 9.94786i 0.980191 0.980191i −0.0196162 0.999808i \(-0.506244\pi\)
0.999808 + 0.0196162i \(0.00624444\pi\)
\(104\) 0 0
\(105\) 5.68815 1.62633i 0.555107 0.158713i
\(106\) 0 0
\(107\) 4.45880 4.45880i 0.431049 0.431049i −0.457936 0.888985i \(-0.651411\pi\)
0.888985 + 0.457936i \(0.151411\pi\)
\(108\) 0 0
\(109\) 6.76993i 0.648442i −0.945981 0.324221i \(-0.894898\pi\)
0.945981 0.324221i \(-0.105102\pi\)
\(110\) 0 0
\(111\) 0.281538i 0.0267224i
\(112\) 0 0
\(113\) 4.02997 + 4.02997i 0.379107 + 0.379107i 0.870780 0.491673i \(-0.163614\pi\)
−0.491673 + 0.870780i \(0.663614\pi\)
\(114\) 0 0
\(115\) 6.75491 6.86954i 0.629899 0.640588i
\(116\) 0 0
\(117\) −0.817355 0.817355i −0.0755645 0.0755645i
\(118\) 0 0
\(119\) −1.98442 + 0.549356i −0.181911 + 0.0503594i
\(120\) 0 0
\(121\) 15.9879 1.45344
\(122\) 0 0
\(123\) 1.93035 + 1.93035i 0.174054 + 0.174054i
\(124\) 0 0
\(125\) −0.282162 11.1768i −0.0252374 0.999681i
\(126\) 0 0
\(127\) 0.737538 0.737538i 0.0654459 0.0654459i −0.673626 0.739072i \(-0.735264\pi\)
0.739072 + 0.673626i \(0.235264\pi\)
\(128\) 0 0
\(129\) −2.80498 −0.246965
\(130\) 0 0
\(131\) 13.6157i 1.18961i 0.803869 + 0.594806i \(0.202771\pi\)
−0.803869 + 0.594806i \(0.797229\pi\)
\(132\) 0 0
\(133\) −1.70470 + 3.00986i −0.147816 + 0.260988i
\(134\) 0 0
\(135\) −1.56778 + 1.59439i −0.134933 + 0.137223i
\(136\) 0 0
\(137\) −2.42049 + 2.42049i −0.206797 + 0.206797i −0.802904 0.596108i \(-0.796713\pi\)
0.596108 + 0.802904i \(0.296713\pi\)
\(138\) 0 0
\(139\) 5.93270 0.503205 0.251603 0.967831i \(-0.419042\pi\)
0.251603 + 0.967831i \(0.419042\pi\)
\(140\) 0 0
\(141\) −6.23715 −0.525263
\(142\) 0 0
\(143\) −4.24615 + 4.24615i −0.355081 + 0.355081i
\(144\) 0 0
\(145\) 6.68655 0.0562577i 0.555288 0.00467194i
\(146\) 0 0
\(147\) 6.79053 + 1.69962i 0.560073 + 0.140183i
\(148\) 0 0
\(149\) 5.96507i 0.488678i −0.969690 0.244339i \(-0.921429\pi\)
0.969690 0.244339i \(-0.0785709\pi\)
\(150\) 0 0
\(151\) −7.86040 −0.639670 −0.319835 0.947473i \(-0.603628\pi\)
−0.319835 + 0.947473i \(0.603628\pi\)
\(152\) 0 0
\(153\) 0.550305 0.550305i 0.0444895 0.0444895i
\(154\) 0 0
\(155\) 8.70914 0.0732748i 0.699535 0.00588557i
\(156\) 0 0
\(157\) −9.34553 9.34553i −0.745854 0.745854i 0.227844 0.973698i \(-0.426833\pi\)
−0.973698 + 0.227844i \(0.926833\pi\)
\(158\) 0 0
\(159\) 1.54356 0.122412
\(160\) 0 0
\(161\) 10.9862 3.04138i 0.865836 0.239694i
\(162\) 0 0
\(163\) 10.7290 + 10.7290i 0.840364 + 0.840364i 0.988906 0.148542i \(-0.0474581\pi\)
−0.148542 + 0.988906i \(0.547458\pi\)
\(164\) 0 0
\(165\) 8.28281 + 8.14460i 0.644816 + 0.634056i
\(166\) 0 0
\(167\) 10.1432 + 10.1432i 0.784905 + 0.784905i 0.980654 0.195749i \(-0.0627139\pi\)
−0.195749 + 0.980654i \(0.562714\pi\)
\(168\) 0 0
\(169\) 11.6639i 0.897220i
\(170\) 0 0
\(171\) 1.30741i 0.0999801i
\(172\) 0 0
\(173\) −2.09542 + 2.09542i −0.159312 + 0.159312i −0.782262 0.622950i \(-0.785934\pi\)
0.622950 + 0.782262i \(0.285934\pi\)
\(174\) 0 0
\(175\) 6.32478 11.6188i 0.478108 0.878301i
\(176\) 0 0
\(177\) 9.82421 9.82421i 0.738433 0.738433i
\(178\) 0 0
\(179\) 19.6465i 1.46845i 0.678909 + 0.734223i \(0.262453\pi\)
−0.678909 + 0.734223i \(0.737547\pi\)
\(180\) 0 0
\(181\) 9.50946i 0.706832i 0.935466 + 0.353416i \(0.114980\pi\)
−0.935466 + 0.353416i \(0.885020\pi\)
\(182\) 0 0
\(183\) −7.73519 7.73519i −0.571802 0.571802i
\(184\) 0 0
\(185\) 0.448880 + 0.441390i 0.0330023 + 0.0324516i
\(186\) 0 0
\(187\) −2.85883 2.85883i −0.209058 0.209058i
\(188\) 0 0
\(189\) −2.54985 + 0.705888i −0.185474 + 0.0513458i
\(190\) 0 0
\(191\) 14.3411 1.03768 0.518842 0.854870i \(-0.326363\pi\)
0.518842 + 0.854870i \(0.326363\pi\)
\(192\) 0 0
\(193\) −2.94208 2.94208i −0.211775 0.211775i 0.593246 0.805021i \(-0.297846\pi\)
−0.805021 + 0.593246i \(0.797846\pi\)
\(194\) 0 0
\(195\) −2.58461 + 0.0217458i −0.185088 + 0.00155725i
\(196\) 0 0
\(197\) −8.66057 + 8.66057i −0.617040 + 0.617040i −0.944771 0.327731i \(-0.893716\pi\)
0.327731 + 0.944771i \(0.393716\pi\)
\(198\) 0 0
\(199\) −4.07354 −0.288766 −0.144383 0.989522i \(-0.546120\pi\)
−0.144383 + 0.989522i \(0.546120\pi\)
\(200\) 0 0
\(201\) 14.2136i 1.00255i
\(202\) 0 0
\(203\) 6.88441 + 3.89914i 0.483191 + 0.273666i
\(204\) 0 0
\(205\) 6.10410 0.0513572i 0.426329 0.00358694i
\(206\) 0 0
\(207\) −3.04663 + 3.04663i −0.211755 + 0.211755i
\(208\) 0 0
\(209\) −6.79198 −0.469811
\(210\) 0 0
\(211\) 24.2786 1.67141 0.835704 0.549180i \(-0.185060\pi\)
0.835704 + 0.549180i \(0.185060\pi\)
\(212\) 0 0
\(213\) 11.5140 11.5140i 0.788926 0.788926i
\(214\) 0 0
\(215\) −4.39760 + 4.47222i −0.299914 + 0.305003i
\(216\) 0 0
\(217\) 8.96684 + 5.07857i 0.608709 + 0.344756i
\(218\) 0 0
\(219\) 7.52458i 0.508464i
\(220\) 0 0
\(221\) 0.899588 0.0605129
\(222\) 0 0
\(223\) −12.4444 + 12.4444i −0.833339 + 0.833339i −0.987972 0.154633i \(-0.950581\pi\)
0.154633 + 0.987972i \(0.450581\pi\)
\(224\) 0 0
\(225\) 0.0841295 + 4.99929i 0.00560864 + 0.333286i
\(226\) 0 0
\(227\) −0.870542 0.870542i −0.0577799 0.0577799i 0.677626 0.735406i \(-0.263009\pi\)
−0.735406 + 0.677626i \(0.763009\pi\)
\(228\) 0 0
\(229\) −20.5096 −1.35531 −0.677655 0.735380i \(-0.737004\pi\)
−0.677655 + 0.735380i \(0.737004\pi\)
\(230\) 0 0
\(231\) 3.66708 + 13.2464i 0.241276 + 0.871551i
\(232\) 0 0
\(233\) −2.49345 2.49345i −0.163351 0.163351i 0.620698 0.784050i \(-0.286849\pi\)
−0.784050 + 0.620698i \(0.786849\pi\)
\(234\) 0 0
\(235\) −9.77849 + 9.94443i −0.637878 + 0.648703i
\(236\) 0 0
\(237\) 5.76909 + 5.76909i 0.374743 + 0.374743i
\(238\) 0 0
\(239\) 23.0468i 1.49078i −0.666631 0.745388i \(-0.732264\pi\)
0.666631 0.745388i \(-0.267736\pi\)
\(240\) 0 0
\(241\) 20.7075i 1.33388i 0.745109 + 0.666942i \(0.232397\pi\)
−0.745109 + 0.666942i \(0.767603\pi\)
\(242\) 0 0
\(243\) 0.707107 0.707107i 0.0453609 0.0453609i
\(244\) 0 0
\(245\) 13.3559 8.16208i 0.853278 0.521456i
\(246\) 0 0
\(247\) 1.06862 1.06862i 0.0679945 0.0679945i
\(248\) 0 0
\(249\) 10.5988i 0.671670i
\(250\) 0 0
\(251\) 3.12576i 0.197296i −0.995122 0.0986481i \(-0.968548\pi\)
0.995122 0.0986481i \(-0.0314518\pi\)
\(252\) 0 0
\(253\) 15.8272 + 15.8272i 0.995047 + 0.995047i
\(254\) 0 0
\(255\) −0.0146409 1.74016i −0.000916848 0.108973i
\(256\) 0 0
\(257\) 1.42680 + 1.42680i 0.0890016 + 0.0890016i 0.750206 0.661204i \(-0.229954\pi\)
−0.661204 + 0.750206i \(0.729954\pi\)
\(258\) 0 0
\(259\) 0.198734 + 0.717879i 0.0123487 + 0.0446068i
\(260\) 0 0
\(261\) −2.99042 −0.185103
\(262\) 0 0
\(263\) −8.20481 8.20481i −0.505930 0.505930i 0.407344 0.913275i \(-0.366455\pi\)
−0.913275 + 0.407344i \(0.866455\pi\)
\(264\) 0 0
\(265\) 2.41996 2.46102i 0.148657 0.151179i
\(266\) 0 0
\(267\) 11.7058 11.7058i 0.716386 0.716386i
\(268\) 0 0
\(269\) −9.63912 −0.587707 −0.293854 0.955850i \(-0.594938\pi\)
−0.293854 + 0.955850i \(0.594938\pi\)
\(270\) 0 0
\(271\) 26.5971i 1.61566i −0.589417 0.807829i \(-0.700643\pi\)
0.589417 0.807829i \(-0.299357\pi\)
\(272\) 0 0
\(273\) −2.66109 1.50717i −0.161057 0.0912180i
\(274\) 0 0
\(275\) 25.9713 0.437052i 1.56613 0.0263552i
\(276\) 0 0
\(277\) −19.9489 + 19.9489i −1.19862 + 1.19862i −0.224034 + 0.974581i \(0.571923\pi\)
−0.974581 + 0.224034i \(0.928077\pi\)
\(278\) 0 0
\(279\) −3.89498 −0.233186
\(280\) 0 0
\(281\) −15.0938 −0.900422 −0.450211 0.892922i \(-0.648651\pi\)
−0.450211 + 0.892922i \(0.648651\pi\)
\(282\) 0 0
\(283\) −0.163056 + 0.163056i −0.00969268 + 0.00969268i −0.711937 0.702244i \(-0.752182\pi\)
0.702244 + 0.711937i \(0.252182\pi\)
\(284\) 0 0
\(285\) −2.08452 2.04973i −0.123476 0.121416i
\(286\) 0 0
\(287\) 6.28472 + 3.55950i 0.370976 + 0.210110i
\(288\) 0 0
\(289\) 16.3943i 0.964372i
\(290\) 0 0
\(291\) −13.7284 −0.804773
\(292\) 0 0
\(293\) 14.0636 14.0636i 0.821606 0.821606i −0.164732 0.986338i \(-0.552676\pi\)
0.986338 + 0.164732i \(0.0526760\pi\)
\(294\) 0 0
\(295\) −0.261374 31.0658i −0.0152178 1.80872i
\(296\) 0 0
\(297\) −3.67341 3.67341i −0.213153 0.213153i
\(298\) 0 0
\(299\) −4.98035 −0.288021
\(300\) 0 0
\(301\) −7.15228 + 1.98000i −0.412251 + 0.114126i
\(302\) 0 0
\(303\) −12.2524 12.2524i −0.703883 0.703883i
\(304\) 0 0
\(305\) −24.4599 + 0.205795i −1.40057 + 0.0117838i
\(306\) 0 0
\(307\) 7.28161 + 7.28161i 0.415584 + 0.415584i 0.883678 0.468095i \(-0.155059\pi\)
−0.468095 + 0.883678i \(0.655059\pi\)
\(308\) 0 0
\(309\) 14.0684i 0.800323i
\(310\) 0 0
\(311\) 8.14282i 0.461737i −0.972985 0.230869i \(-0.925843\pi\)
0.972985 0.230869i \(-0.0741568\pi\)
\(312\) 0 0
\(313\) 11.6844 11.6844i 0.660441 0.660441i −0.295043 0.955484i \(-0.595334\pi\)
0.955484 + 0.295043i \(0.0953340\pi\)
\(314\) 0 0
\(315\) −2.87214 + 5.17212i −0.161827 + 0.291416i
\(316\) 0 0
\(317\) −2.40116 + 2.40116i −0.134863 + 0.134863i −0.771316 0.636453i \(-0.780401\pi\)
0.636453 + 0.771316i \(0.280401\pi\)
\(318\) 0 0
\(319\) 15.5352i 0.869805i
\(320\) 0 0
\(321\) 6.30570i 0.351950i
\(322\) 0 0
\(323\) 0.719474 + 0.719474i 0.0400326 + 0.0400326i
\(324\) 0 0
\(325\) −4.01743 + 4.15496i −0.222847 + 0.230476i
\(326\) 0 0
\(327\) 4.78706 + 4.78706i 0.264725 + 0.264725i
\(328\) 0 0
\(329\) −15.9038 + 4.40273i −0.876804 + 0.242730i
\(330\) 0 0
\(331\) 19.9270 1.09529 0.547644 0.836711i \(-0.315525\pi\)
0.547644 + 0.836711i \(0.315525\pi\)
\(332\) 0 0
\(333\) −0.199077 0.199077i −0.0109094 0.0109094i
\(334\) 0 0
\(335\) −22.6620 22.2839i −1.23816 1.21750i
\(336\) 0 0
\(337\) −14.2601 + 14.2601i −0.776798 + 0.776798i −0.979285 0.202487i \(-0.935098\pi\)
0.202487 + 0.979285i \(0.435098\pi\)
\(338\) 0 0
\(339\) −5.69923 −0.309540
\(340\) 0 0
\(341\) 20.2344i 1.09575i
\(342\) 0 0
\(343\) 18.5146 0.459569i 0.999692 0.0248144i
\(344\) 0 0
\(345\) 0.0810556 + 9.63394i 0.00436389 + 0.518674i
\(346\) 0 0
\(347\) −10.8252 + 10.8252i −0.581126 + 0.581126i −0.935213 0.354087i \(-0.884792\pi\)
0.354087 + 0.935213i \(0.384792\pi\)
\(348\) 0 0
\(349\) −11.2159 −0.600373 −0.300186 0.953881i \(-0.597049\pi\)
−0.300186 + 0.953881i \(0.597049\pi\)
\(350\) 0 0
\(351\) 1.15591 0.0616981
\(352\) 0 0
\(353\) 25.4175 25.4175i 1.35283 1.35283i 0.470360 0.882475i \(-0.344124\pi\)
0.882475 0.470360i \(-0.155876\pi\)
\(354\) 0 0
\(355\) −0.306330 36.4092i −0.0162583 1.93240i
\(356\) 0 0
\(357\) 1.01474 1.79165i 0.0537057 0.0948240i
\(358\) 0 0
\(359\) 28.3149i 1.49440i −0.664597 0.747202i \(-0.731397\pi\)
0.664597 0.747202i \(-0.268603\pi\)
\(360\) 0 0
\(361\) −17.2907 −0.910036
\(362\) 0 0
\(363\) −11.3051 + 11.3051i −0.593366 + 0.593366i
\(364\) 0 0
\(365\) 11.9971 + 11.7969i 0.627956 + 0.617477i
\(366\) 0 0
\(367\) 21.3444 + 21.3444i 1.11417 + 1.11417i 0.992581 + 0.121587i \(0.0387983\pi\)
0.121587 + 0.992581i \(0.461202\pi\)
\(368\) 0 0
\(369\) −2.72993 −0.142115
\(370\) 0 0
\(371\) 3.93583 1.08958i 0.204338 0.0565680i
\(372\) 0 0
\(373\) −4.99355 4.99355i −0.258556 0.258556i 0.565911 0.824467i \(-0.308525\pi\)
−0.824467 + 0.565911i \(0.808525\pi\)
\(374\) 0 0
\(375\) 8.10270 + 7.70366i 0.418421 + 0.397815i
\(376\) 0 0
\(377\) −2.44424 2.44424i −0.125885 0.125885i
\(378\) 0 0
\(379\) 6.22172i 0.319588i 0.987150 + 0.159794i \(0.0510830\pi\)
−0.987150 + 0.159794i \(0.948917\pi\)
\(380\) 0 0
\(381\) 1.04304i 0.0534364i
\(382\) 0 0
\(383\) −23.9817 + 23.9817i −1.22541 + 1.22541i −0.259723 + 0.965683i \(0.583631\pi\)
−0.965683 + 0.259723i \(0.916369\pi\)
\(384\) 0 0
\(385\) 26.8691 + 14.9207i 1.36938 + 0.760432i
\(386\) 0 0
\(387\) 1.98342 1.98342i 0.100823 0.100823i
\(388\) 0 0
\(389\) 13.0476i 0.661541i 0.943711 + 0.330771i \(0.107309\pi\)
−0.943711 + 0.330771i \(0.892691\pi\)
\(390\) 0 0
\(391\) 3.35315i 0.169576i
\(392\) 0 0
\(393\) −9.62778 9.62778i −0.485657 0.485657i
\(394\) 0 0
\(395\) 18.2428 0.153487i 0.917895 0.00772276i
\(396\) 0 0
\(397\) 0.363615 + 0.363615i 0.0182493 + 0.0182493i 0.716173 0.697923i \(-0.245892\pi\)
−0.697923 + 0.716173i \(0.745892\pi\)
\(398\) 0 0
\(399\) −0.922885 3.33370i −0.0462020 0.166894i
\(400\) 0 0
\(401\) 5.54793 0.277050 0.138525 0.990359i \(-0.455764\pi\)
0.138525 + 0.990359i \(0.455764\pi\)
\(402\) 0 0
\(403\) −3.18358 3.18358i −0.158585 0.158585i
\(404\) 0 0
\(405\) −0.0188126 2.23599i −0.000934806 0.111107i
\(406\) 0 0
\(407\) −1.03420 + 1.03420i −0.0512636 + 0.0512636i
\(408\) 0 0
\(409\) −15.4786 −0.765369 −0.382684 0.923879i \(-0.625000\pi\)
−0.382684 + 0.923879i \(0.625000\pi\)
\(410\) 0 0
\(411\) 3.42309i 0.168849i
\(412\) 0 0
\(413\) 18.1155 31.9850i 0.891403 1.57388i
\(414\) 0 0
\(415\) −16.8985 16.6166i −0.829516 0.815675i
\(416\) 0 0
\(417\) −4.19506 + 4.19506i −0.205433 + 0.205433i
\(418\) 0 0
\(419\) 34.2957 1.67546 0.837728 0.546088i \(-0.183884\pi\)
0.837728 + 0.546088i \(0.183884\pi\)
\(420\) 0 0
\(421\) −27.0249 −1.31711 −0.658556 0.752532i \(-0.728832\pi\)
−0.658556 + 0.752532i \(0.728832\pi\)
\(422\) 0 0
\(423\) 4.41033 4.41033i 0.214438 0.214438i
\(424\) 0 0
\(425\) −2.79743 2.70484i −0.135695 0.131204i
\(426\) 0 0
\(427\) −25.1837 14.2634i −1.21873 0.690253i
\(428\) 0 0
\(429\) 6.00496i 0.289922i
\(430\) 0 0
\(431\) −17.0803 −0.822731 −0.411366 0.911470i \(-0.634948\pi\)
−0.411366 + 0.911470i \(0.634948\pi\)
\(432\) 0 0
\(433\) −23.6189 + 23.6189i −1.13505 + 1.13505i −0.145725 + 0.989325i \(0.546551\pi\)
−0.989325 + 0.145725i \(0.953449\pi\)
\(434\) 0 0
\(435\) −4.68833 + 4.76789i −0.224788 + 0.228603i
\(436\) 0 0
\(437\) −3.98319 3.98319i −0.190542 0.190542i
\(438\) 0 0
\(439\) 12.2095 0.582729 0.291365 0.956612i \(-0.405891\pi\)
0.291365 + 0.956612i \(0.405891\pi\)
\(440\) 0 0
\(441\) −6.00344 + 3.59981i −0.285878 + 0.171420i
\(442\) 0 0
\(443\) −10.4501 10.4501i −0.496500 0.496500i 0.413847 0.910347i \(-0.364185\pi\)
−0.910347 + 0.413847i \(0.864185\pi\)
\(444\) 0 0
\(445\) −0.311435 37.0158i −0.0147634 1.75472i
\(446\) 0 0
\(447\) 4.21794 + 4.21794i 0.199502 + 0.199502i
\(448\) 0 0
\(449\) 27.4726i 1.29651i 0.761423 + 0.648255i \(0.224501\pi\)
−0.761423 + 0.648255i \(0.775499\pi\)
\(450\) 0 0
\(451\) 14.1820i 0.667803i
\(452\) 0 0
\(453\) 5.55814 5.55814i 0.261144 0.261144i
\(454\) 0 0
\(455\) −6.57501 + 1.87989i −0.308241 + 0.0881308i
\(456\) 0 0
\(457\) −21.3864 + 21.3864i −1.00042 + 1.00042i −0.000415123 1.00000i \(0.500132\pi\)
−1.00000 0.000415123i \(0.999868\pi\)
\(458\) 0 0
\(459\) 0.778249i 0.0363255i
\(460\) 0 0
\(461\) 27.9120i 1.29999i −0.759939 0.649995i \(-0.774771\pi\)
0.759939 0.649995i \(-0.225229\pi\)
\(462\) 0 0
\(463\) −20.8693 20.8693i −0.969877 0.969877i 0.0296827 0.999559i \(-0.490550\pi\)
−0.999559 + 0.0296827i \(0.990550\pi\)
\(464\) 0 0
\(465\) −6.10648 + 6.21010i −0.283181 + 0.287987i
\(466\) 0 0
\(467\) 26.6658 + 26.6658i 1.23395 + 1.23395i 0.962435 + 0.271511i \(0.0875232\pi\)
0.271511 + 0.962435i \(0.412477\pi\)
\(468\) 0 0
\(469\) −10.0332 36.2426i −0.463292 1.67353i
\(470\) 0 0
\(471\) 13.2166 0.608987
\(472\) 0 0
\(473\) −10.3039 10.3039i −0.473772 0.473772i
\(474\) 0 0
\(475\) −6.53612 + 0.109992i −0.299898 + 0.00504677i
\(476\) 0 0
\(477\) −1.09146 + 1.09146i −0.0499744 + 0.0499744i
\(478\) 0 0
\(479\) 18.8257 0.860166 0.430083 0.902789i \(-0.358484\pi\)
0.430083 + 0.902789i \(0.358484\pi\)
\(480\) 0 0
\(481\) 0.325434i 0.0148385i
\(482\) 0 0
\(483\) −5.61786 + 9.91901i −0.255621 + 0.451331i
\(484\) 0 0
\(485\) −21.5231 + 21.8884i −0.977314 + 0.993899i
\(486\) 0 0
\(487\) −3.79308 + 3.79308i −0.171881 + 0.171881i −0.787805 0.615924i \(-0.788783\pi\)
0.615924 + 0.787805i \(0.288783\pi\)
\(488\) 0 0
\(489\) −15.1732 −0.686154
\(490\) 0 0
\(491\) −31.0544 −1.40146 −0.700732 0.713425i \(-0.747143\pi\)
−0.700732 + 0.713425i \(0.747143\pi\)
\(492\) 0 0
\(493\) 1.64564 1.64564i 0.0741161 0.0741161i
\(494\) 0 0
\(495\) −11.6159 + 0.0977312i −0.522097 + 0.00439269i
\(496\) 0 0
\(497\) 21.2314 37.4865i 0.952356 1.68150i
\(498\) 0 0
\(499\) 19.4573i 0.871029i −0.900182 0.435514i \(-0.856566\pi\)
0.900182 0.435514i \(-0.143434\pi\)
\(500\) 0 0
\(501\) −14.3447 −0.640872
\(502\) 0 0
\(503\) 15.4448 15.4448i 0.688647 0.688647i −0.273286 0.961933i \(-0.588110\pi\)
0.961933 + 0.273286i \(0.0881104\pi\)
\(504\) 0 0
\(505\) −38.7442 + 0.325976i −1.72409 + 0.0145057i
\(506\) 0 0
\(507\) −8.24760 8.24760i −0.366289 0.366289i
\(508\) 0 0
\(509\) 31.6165 1.40138 0.700689 0.713467i \(-0.252876\pi\)
0.700689 + 0.713467i \(0.252876\pi\)
\(510\) 0 0
\(511\) 5.31151 + 19.1865i 0.234967 + 0.848762i
\(512\) 0 0
\(513\) 0.924478 + 0.924478i 0.0408167 + 0.0408167i
\(514\) 0 0
\(515\) 22.4304 + 22.0561i 0.988403 + 0.971910i
\(516\) 0 0
\(517\) −22.9116 22.9116i −1.00765 1.00765i
\(518\) 0 0
\(519\) 2.96337i 0.130078i
\(520\) 0 0
\(521\) 2.87693i 0.126041i 0.998012 + 0.0630203i \(0.0200733\pi\)
−0.998012 + 0.0630203i \(0.979927\pi\)
\(522\) 0 0
\(523\) −29.2446 + 29.2446i −1.27878 + 1.27878i −0.337424 + 0.941353i \(0.609556\pi\)
−0.941353 + 0.337424i \(0.890444\pi\)
\(524\) 0 0
\(525\) 3.74346 + 12.6880i 0.163378 + 0.553752i
\(526\) 0 0
\(527\) 2.14343 2.14343i 0.0933692 0.0933692i
\(528\) 0 0
\(529\) 4.43613i 0.192875i
\(530\) 0 0
\(531\) 13.8935i 0.602928i
\(532\) 0 0
\(533\) −2.23132 2.23132i −0.0966494 0.0966494i
\(534\) 0 0
\(535\) 10.0537 + 9.88595i 0.434660 + 0.427407i
\(536\) 0 0
\(537\) −13.8921 13.8921i −0.599490 0.599490i
\(538\) 0 0
\(539\) 18.7010 + 31.1878i 0.805508 + 1.34335i
\(540\) 0 0
\(541\) −1.43266 −0.0615950 −0.0307975 0.999526i \(-0.509805\pi\)
−0.0307975 + 0.999526i \(0.509805\pi\)
\(542\) 0 0
\(543\) −6.72420 6.72420i −0.288563 0.288563i
\(544\) 0 0
\(545\) 15.1375 0.127360i 0.648419 0.00545551i
\(546\) 0 0
\(547\) 2.35459 2.35459i 0.100675 0.100675i −0.654975 0.755650i \(-0.727321\pi\)
0.755650 + 0.654975i \(0.227321\pi\)
\(548\) 0 0
\(549\) 10.9392 0.466874
\(550\) 0 0
\(551\) 3.90971i 0.166559i
\(552\) 0 0
\(553\) 18.7826 + 10.6380i 0.798718 + 0.452372i
\(554\) 0 0
\(555\) −0.629516 + 0.00529646i −0.0267214 + 0.000224822i
\(556\) 0 0
\(557\) 23.6125 23.6125i 1.00050 1.00050i 0.000495740 1.00000i \(-0.499842\pi\)
1.00000 0.000495740i \(-0.000157799\pi\)
\(558\) 0 0
\(559\) 3.24232 0.137135
\(560\) 0 0
\(561\) 4.04299 0.170695
\(562\) 0 0
\(563\) −0.952567 + 0.952567i −0.0401459 + 0.0401459i −0.726895 0.686749i \(-0.759037\pi\)
0.686749 + 0.726895i \(0.259037\pi\)
\(564\) 0 0
\(565\) −8.93514 + 9.08677i −0.375904 + 0.382283i
\(566\) 0 0
\(567\) 1.30388 2.30215i 0.0547577 0.0966813i
\(568\) 0 0
\(569\) 47.6344i 1.99694i 0.0553320 + 0.998468i \(0.482378\pi\)
−0.0553320 + 0.998468i \(0.517622\pi\)
\(570\) 0 0
\(571\) 26.5737 1.11208 0.556038 0.831157i \(-0.312321\pi\)
0.556038 + 0.831157i \(0.312321\pi\)
\(572\) 0 0
\(573\) −10.1407 + 10.1407i −0.423633 + 0.423633i
\(574\) 0 0
\(575\) 15.4873 + 14.9747i 0.645865 + 0.624487i
\(576\) 0 0
\(577\) −21.9280 21.9280i −0.912875 0.912875i 0.0836224 0.996498i \(-0.473351\pi\)
−0.996498 + 0.0836224i \(0.973351\pi\)
\(578\) 0 0
\(579\) 4.16073 0.172914
\(580\) 0 0
\(581\) −7.48155 27.0253i −0.310387 1.12120i
\(582\) 0 0
\(583\) 5.67011 + 5.67011i 0.234832 + 0.234832i
\(584\) 0 0
\(585\) 1.81222 1.84297i 0.0749260 0.0761975i
\(586\) 0 0
\(587\) −24.0864 24.0864i −0.994151 0.994151i 0.00583245 0.999983i \(-0.498143\pi\)
−0.999983 + 0.00583245i \(0.998143\pi\)
\(588\) 0 0
\(589\) 5.09234i 0.209826i
\(590\) 0 0
\(591\) 12.2479i 0.503811i
\(592\) 0 0
\(593\) −16.0709 + 16.0709i −0.659954 + 0.659954i −0.955369 0.295415i \(-0.904542\pi\)
0.295415 + 0.955369i \(0.404542\pi\)
\(594\) 0 0
\(595\) −1.26569 4.42680i −0.0518881 0.181481i
\(596\) 0 0
\(597\) 2.88043 2.88043i 0.117888 0.117888i
\(598\) 0 0
\(599\) 7.55382i 0.308641i −0.988021 0.154320i \(-0.950681\pi\)
0.988021 0.154320i \(-0.0493188\pi\)
\(600\) 0 0
\(601\) 3.81675i 0.155689i −0.996966 0.0778443i \(-0.975196\pi\)
0.996966 0.0778443i \(-0.0248037\pi\)
\(602\) 0 0
\(603\) 10.0506 + 10.0506i 0.409291 + 0.409291i
\(604\) 0 0
\(605\) 0.300774 + 35.7487i 0.0122282 + 1.45339i
\(606\) 0 0
\(607\) −14.1224 14.1224i −0.573211 0.573211i 0.359814 0.933024i \(-0.382840\pi\)
−0.933024 + 0.359814i \(0.882840\pi\)
\(608\) 0 0
\(609\) −7.62512 + 2.11090i −0.308986 + 0.0855381i
\(610\) 0 0
\(611\) 7.20961 0.291670
\(612\) 0 0
\(613\) 21.4072 + 21.4072i 0.864628 + 0.864628i 0.991872 0.127243i \(-0.0406129\pi\)
−0.127243 + 0.991872i \(0.540613\pi\)
\(614\) 0 0
\(615\) −4.27994 + 4.35257i −0.172584 + 0.175512i
\(616\) 0 0
\(617\) 1.82038 1.82038i 0.0732859 0.0732859i −0.669514 0.742800i \(-0.733497\pi\)
0.742800 + 0.669514i \(0.233497\pi\)
\(618\) 0 0
\(619\) 11.7390 0.471831 0.235916 0.971774i \(-0.424191\pi\)
0.235916 + 0.971774i \(0.424191\pi\)
\(620\) 0 0
\(621\) 4.30858i 0.172897i
\(622\) 0 0
\(623\) 21.5851 38.1111i 0.864789 1.52689i
\(624\) 0 0
\(625\) 24.9858 0.841176i 0.999434 0.0336471i
\(626\) 0 0
\(627\) 4.80265 4.80265i 0.191799 0.191799i
\(628\) 0 0
\(629\) 0.219106 0.00873635
\(630\) 0 0
\(631\) 16.0788 0.640085 0.320043 0.947403i \(-0.396303\pi\)
0.320043 + 0.947403i \(0.396303\pi\)
\(632\) 0 0
\(633\) −17.1676 + 17.1676i −0.682349 + 0.682349i
\(634\) 0 0
\(635\) 1.66300 + 1.63525i 0.0659942 + 0.0648930i
\(636\) 0 0
\(637\) −7.84927 1.96462i −0.310999 0.0778411i
\(638\) 0 0
\(639\) 16.2833i 0.644156i
\(640\) 0 0
\(641\) −7.16795 −0.283117 −0.141559 0.989930i \(-0.545211\pi\)
−0.141559 + 0.989930i \(0.545211\pi\)
\(642\) 0 0
\(643\) −17.8589 + 17.8589i −0.704287 + 0.704287i −0.965328 0.261041i \(-0.915934\pi\)
0.261041 + 0.965328i \(0.415934\pi\)
\(644\) 0 0
\(645\) −0.0527690 6.27191i −0.00207778 0.246956i
\(646\) 0 0
\(647\) 9.02595 + 9.02595i 0.354847 + 0.354847i 0.861909 0.507062i \(-0.169269\pi\)
−0.507062 + 0.861909i \(0.669269\pi\)
\(648\) 0 0
\(649\) 72.1767 2.83318
\(650\) 0 0
\(651\) −9.93161 + 2.74942i −0.389250 + 0.107758i
\(652\) 0 0
\(653\) −1.90663 1.90663i −0.0746123 0.0746123i 0.668816 0.743428i \(-0.266801\pi\)
−0.743428 + 0.668816i \(0.766801\pi\)
\(654\) 0 0
\(655\) −30.4446 + 0.256147i −1.18957 + 0.0100085i
\(656\) 0 0
\(657\) −5.32068 5.32068i −0.207579 0.207579i
\(658\) 0 0
\(659\) 42.8056i 1.66747i −0.552165 0.833735i \(-0.686198\pi\)
0.552165 0.833735i \(-0.313802\pi\)
\(660\) 0 0
\(661\) 45.0781i 1.75334i −0.481095 0.876668i \(-0.659761\pi\)
0.481095 0.876668i \(-0.340239\pi\)
\(662\) 0 0
\(663\) −0.636105 + 0.636105i −0.0247043 + 0.0247043i
\(664\) 0 0
\(665\) −6.76208 3.75507i −0.262222 0.145615i
\(666\) 0 0
\(667\) −9.11070 + 9.11070i −0.352768 + 0.352768i
\(668\) 0 0
\(669\) 17.5991i 0.680419i
\(670\) 0 0
\(671\) 56.8290i 2.19386i
\(672\) 0 0
\(673\) 22.0502 + 22.0502i 0.849974 + 0.849974i 0.990130 0.140155i \(-0.0447602\pi\)
−0.140155 + 0.990130i \(0.544760\pi\)
\(674\) 0 0
\(675\) −3.59452 3.47554i −0.138353 0.133774i
\(676\) 0 0
\(677\) 15.0980 + 15.0980i 0.580264 + 0.580264i 0.934976 0.354712i \(-0.115421\pi\)
−0.354712 + 0.934976i \(0.615421\pi\)
\(678\) 0 0
\(679\) −35.0053 + 9.69071i −1.34338 + 0.371895i
\(680\) 0 0
\(681\) 1.23113 0.0471771
\(682\) 0 0
\(683\) 4.73943 + 4.73943i 0.181349 + 0.181349i 0.791944 0.610594i \(-0.209069\pi\)
−0.610594 + 0.791944i \(0.709069\pi\)
\(684\) 0 0
\(685\) −5.45773 5.36666i −0.208529 0.205049i
\(686\) 0 0
\(687\) 14.5025 14.5025i 0.553303 0.553303i
\(688\) 0 0
\(689\) −1.78422 −0.0679733
\(690\) 0 0
\(691\) 6.10818i 0.232366i −0.993228 0.116183i \(-0.962934\pi\)
0.993228 0.116183i \(-0.0370659\pi\)
\(692\) 0 0
\(693\) −11.9597 6.77362i −0.454310 0.257309i
\(694\) 0 0
\(695\) 0.111610 + 13.2655i 0.00423359 + 0.503188i
\(696\) 0 0
\(697\) 1.50230 1.50230i 0.0569035 0.0569035i
\(698\) 0 0
\(699\) 3.52627 0.133376
\(700\) 0 0
\(701\) 28.4319 1.07386 0.536929 0.843628i \(-0.319584\pi\)
0.536929 + 0.843628i \(0.319584\pi\)
\(702\) 0 0
\(703\) 0.260276 0.260276i 0.00981648 0.00981648i
\(704\) 0 0
\(705\) −0.117337 13.9462i −0.00441917 0.525245i
\(706\) 0 0
\(707\) −39.8906 22.5930i −1.50024 0.849696i
\(708\) 0 0
\(709\) 11.7255i 0.440359i −0.975459 0.220180i \(-0.929336\pi\)
0.975459 0.220180i \(-0.0706643\pi\)
\(710\) 0 0
\(711\) −8.15872 −0.305976
\(712\) 0 0
\(713\) −11.8666 + 11.8666i −0.444406 + 0.444406i
\(714\) 0 0
\(715\) −9.57422 9.41445i −0.358055 0.352081i
\(716\) 0 0
\(717\) 16.2966 + 16.2966i 0.608607 + 0.608607i
\(718\) 0 0
\(719\) 19.4579 0.725656 0.362828 0.931856i \(-0.381811\pi\)
0.362828 + 0.931856i \(0.381811\pi\)
\(720\) 0 0
\(721\) 9.93071 + 35.8723i 0.369839 + 1.33595i
\(722\) 0 0
\(723\) −14.6424 14.6424i −0.544556 0.544556i
\(724\) 0 0
\(725\) 0.251583 + 14.9500i 0.00934356 + 0.555229i
\(726\) 0 0
\(727\) 22.3113 + 22.3113i 0.827481 + 0.827481i 0.987168 0.159686i \(-0.0510483\pi\)
−0.159686 + 0.987168i \(0.551048\pi\)
\(728\) 0 0
\(729\) 1.00000i 0.0370370i
\(730\) 0 0
\(731\) 2.18297i 0.0807402i
\(732\) 0 0
\(733\) −9.17722 + 9.17722i −0.338968 + 0.338968i −0.855979 0.517011i \(-0.827045\pi\)
0.517011 + 0.855979i \(0.327045\pi\)
\(734\) 0 0
\(735\) −3.67259 + 15.2155i −0.135466 + 0.561233i
\(736\) 0 0
\(737\) 52.2125 52.2125i 1.92327 1.92327i
\(738\) 0 0
\(739\) 18.5498i 0.682366i 0.939997 + 0.341183i \(0.110828\pi\)
−0.939997 + 0.341183i \(0.889172\pi\)
\(740\) 0 0
\(741\) 1.51125i 0.0555173i
\(742\) 0 0
\(743\) 25.0521 + 25.0521i 0.919072 + 0.919072i 0.996962 0.0778896i \(-0.0248182\pi\)
−0.0778896 + 0.996962i \(0.524818\pi\)
\(744\) 0 0
\(745\) 13.3378 0.112218i 0.488660 0.00411137i
\(746\) 0 0
\(747\) 7.49447 + 7.49447i 0.274208 + 0.274208i
\(748\) 0 0
\(749\) 4.45112 + 16.0786i 0.162640 + 0.587498i
\(750\) 0 0
\(751\) 2.07100 0.0755720 0.0377860 0.999286i \(-0.487969\pi\)
0.0377860 + 0.999286i \(0.487969\pi\)
\(752\) 0 0
\(753\) 2.21025 + 2.21025i 0.0805459 + 0.0805459i
\(754\) 0 0
\(755\) −0.147875 17.5758i −0.00538171 0.639648i
\(756\) 0 0
\(757\) 2.35793 2.35793i 0.0857003 0.0857003i −0.662957 0.748657i \(-0.730699\pi\)
0.748657 + 0.662957i \(0.230699\pi\)
\(758\) 0 0
\(759\) −22.3830 −0.812452
\(760\) 0 0
\(761\) 26.2514i 0.951614i 0.879550 + 0.475807i \(0.157844\pi\)
−0.879550 + 0.475807i \(0.842156\pi\)
\(762\) 0 0
\(763\) 15.5854 + 8.82715i 0.564230 + 0.319564i
\(764\) 0 0
\(765\) 1.24083 + 1.22012i 0.0448622 + 0.0441136i
\(766\) 0 0
\(767\) −11.3559 + 11.3559i −0.410039 + 0.410039i
\(768\) 0 0
\(769\) 36.8140 1.32755 0.663773 0.747934i \(-0.268954\pi\)
0.663773 + 0.747934i \(0.268954\pi\)
\(770\) 0 0
\(771\) −2.01780 −0.0726695
\(772\) 0 0
\(773\) −2.82574 + 2.82574i −0.101635 + 0.101635i −0.756096 0.654461i \(-0.772896\pi\)
0.654461 + 0.756096i \(0.272896\pi\)
\(774\) 0 0
\(775\) 0.327683 + 19.4722i 0.0117707 + 0.699460i
\(776\) 0 0
\(777\) −0.648143 0.367091i −0.0232520 0.0131693i
\(778\) 0 0
\(779\) 3.56914i 0.127878i
\(780\) 0 0
\(781\) 84.5913 3.02691
\(782\) 0 0
\(783\) 2.11455 2.11455i 0.0755678 0.0755678i
\(784\) 0 0
\(785\) 20.7207 21.0723i 0.739553 0.752103i
\(786\) 0 0
\(787\) −20.2284 20.2284i −0.721065 0.721065i 0.247757 0.968822i \(-0.420307\pi\)
−0.968822 + 0.247757i \(0.920307\pi\)
\(788\) 0 0
\(789\) 11.6034 0.413090
\(790\) 0 0
\(791\) −14.5322 + 4.02302i −0.516705 + 0.143042i
\(792\) 0 0
\(793\) 8.94121 + 8.94121i 0.317512 + 0.317512i
\(794\) 0 0
\(795\) 0.0290383 + 3.45137i 0.00102988 + 0.122408i
\(796\) 0 0
\(797\) 35.7989 + 35.7989i 1.26806 + 1.26806i 0.947089 + 0.320972i \(0.104010\pi\)
0.320972 + 0.947089i \(0.395990\pi\)
\(798\) 0 0
\(799\) 4.85406i 0.171724i
\(800\) 0 0
\(801\) 16.5546i 0.584927i
\(802\) 0 0
\(803\) −27.6409 + 27.6409i −0.975425 + 0.975425i
\(804\) 0 0
\(805\) 7.00716 + 24.5079i 0.246970 + 0.863789i
\(806\) 0 0
\(807\) 6.81588 6.81588i 0.239930 0.239930i
\(808\) 0 0
\(809\) 30.7500i 1.08111i −0.841308 0.540556i \(-0.818214\pi\)
0.841308 0.540556i \(-0.181786\pi\)
\(810\) 0 0
\(811\) 24.9358i 0.875613i 0.899069 + 0.437806i \(0.144244\pi\)
−0.899069 + 0.437806i \(0.855756\pi\)
\(812\) 0 0
\(813\) 18.8070 + 18.8070i 0.659590 + 0.659590i
\(814\) 0 0
\(815\) −23.7882 + 24.1919i −0.833264 + 0.847404i
\(816\) 0 0
\(817\) 2.59315 + 2.59315i 0.0907227 + 0.0907227i
\(818\) 0 0
\(819\) 2.94740 0.815946i 0.102991 0.0285114i
\(820\) 0 0
\(821\) −19.5635 −0.682770 −0.341385 0.939924i \(-0.610896\pi\)
−0.341385 + 0.939924i \(0.610896\pi\)
\(822\) 0 0
\(823\) 18.2254 + 18.2254i 0.635297 + 0.635297i 0.949392 0.314094i \(-0.101701\pi\)
−0.314094 + 0.949392i \(0.601701\pi\)
\(824\) 0 0
\(825\) −18.0554 + 18.6735i −0.628609 + 0.650128i
\(826\) 0 0
\(827\) 19.7863 19.7863i 0.688038 0.688038i −0.273760 0.961798i \(-0.588268\pi\)
0.961798 + 0.273760i \(0.0882675\pi\)
\(828\) 0 0
\(829\) −25.7696 −0.895014 −0.447507 0.894280i \(-0.647688\pi\)
−0.447507 + 0.894280i \(0.647688\pi\)
\(830\) 0 0
\(831\) 28.2121i 0.978665i
\(832\) 0 0
\(833\) 1.32273 5.28472i 0.0458299 0.183105i
\(834\) 0 0
\(835\) −22.4893 + 22.8709i −0.778273 + 0.791481i
\(836\) 0 0
\(837\) 2.75417 2.75417i 0.0951980 0.0951980i
\(838\) 0 0
\(839\) 18.0163 0.621990 0.310995 0.950411i \(-0.399338\pi\)
0.310995 + 0.950411i \(0.399338\pi\)
\(840\) 0 0
\(841\) 20.0574 0.691633
\(842\) 0 0
\(843\) 10.6729 10.6729i 0.367596 0.367596i
\(844\) 0 0
\(845\) −26.0803 + 0.219428i −0.897188 + 0.00754854i
\(846\) 0 0
\(847\) −20.8462 + 36.8066i −0.716285 + 1.26469i
\(848\) 0 0
\(849\) 0.230596i 0.00791404i
\(850\) 0 0
\(851\) −1.21303 −0.0415821
\(852\) 0 0
\(853\) −17.0643 + 17.0643i −0.584271 + 0.584271i −0.936074 0.351803i \(-0.885569\pi\)
0.351803 + 0.936074i \(0.385569\pi\)
\(854\) 0 0
\(855\) 2.92335 0.0245958i 0.0999766 0.000841158i
\(856\) 0 0
\(857\) 4.20254 + 4.20254i 0.143556 + 0.143556i 0.775232 0.631676i \(-0.217633\pi\)
−0.631676 + 0.775232i \(0.717633\pi\)
\(858\) 0 0
\(859\) −31.7205 −1.08229 −0.541145 0.840929i \(-0.682009\pi\)
−0.541145 + 0.840929i \(0.682009\pi\)
\(860\) 0 0
\(861\) −6.96091 + 1.92703i −0.237227 + 0.0656729i
\(862\) 0 0
\(863\) 23.4690 + 23.4690i 0.798894 + 0.798894i 0.982921 0.184027i \(-0.0589134\pi\)
−0.184027 + 0.982921i \(0.558913\pi\)
\(864\) 0 0
\(865\) −4.72476 4.64592i −0.160647 0.157966i
\(866\) 0 0
\(867\) 11.5925 + 11.5925i 0.393703 + 0.393703i
\(868\) 0 0
\(869\) 42.3845i 1.43779i
\(870\) 0 0
\(871\) 16.4297i 0.556701i
\(872\) 0 0
\(873\) 9.70745 9.70745i 0.328547 0.328547i
\(874\) 0 0
\(875\) 26.0986 + 13.9236i 0.882292 + 0.470702i
\(876\) 0 0
\(877\) −15.6871 + 15.6871i −0.529715 + 0.529715i −0.920487 0.390773i \(-0.872208\pi\)
0.390773 + 0.920487i \(0.372208\pi\)
\(878\) 0 0
\(879\) 19.8890i 0.670839i
\(880\) 0 0
\(881\) 30.4222i 1.02495i −0.858702 0.512475i \(-0.828729\pi\)
0.858702 0.512475i \(-0.171271\pi\)
\(882\) 0 0
\(883\) −25.2219 25.2219i −0.848786 0.848786i 0.141196 0.989982i \(-0.454905\pi\)
−0.989982 + 0.141196i \(0.954905\pi\)
\(884\) 0 0
\(885\) 22.1517 + 21.7820i 0.744620 + 0.732194i
\(886\) 0 0
\(887\) 3.90707 + 3.90707i 0.131187 + 0.131187i 0.769651 0.638465i \(-0.220430\pi\)
−0.638465 + 0.769651i \(0.720430\pi\)
\(888\) 0 0
\(889\) 0.736267 + 2.65958i 0.0246936 + 0.0891996i
\(890\) 0 0
\(891\) 5.19499 0.174039
\(892\) 0 0
\(893\) 5.76611 + 5.76611i 0.192956 + 0.192956i
\(894\) 0 0
\(895\) −43.9293 + 0.369601i −1.46839 + 0.0123544i
\(896\) 0 0
\(897\) 3.52164 3.52164i 0.117584 0.117584i
\(898\) 0 0
\(899\) −11.6476 −0.388471
\(900\) 0 0
\(901\) 1.20127i 0.0400201i
\(902\) 0 0
\(903\) 3.65735 6.45750i 0.121709 0.214892i
\(904\) 0 0
\(905\) −21.2630 + 0.178898i −0.706807 + 0.00594676i
\(906\) 0 0
\(907\) 27.4534 27.4534i 0.911576 0.911576i −0.0848205 0.996396i \(-0.527032\pi\)
0.996396 + 0.0848205i \(0.0270317\pi\)
\(908\) 0 0
\(909\) 17.3275 0.574718
\(910\) 0 0
\(911\) 32.7134 1.08384 0.541922 0.840429i \(-0.317697\pi\)
0.541922 + 0.840429i \(0.317697\pi\)
\(912\) 0 0
\(913\) 38.9337 38.9337i 1.28852 1.28852i
\(914\) 0 0
\(915\) 17.1503 17.4413i 0.566971 0.576592i
\(916\) 0 0
\(917\) −31.3455 17.7532i −1.03512 0.586263i
\(918\) 0 0
\(919\) 13.8174i 0.455793i −0.973685 0.227897i \(-0.926815\pi\)
0.973685 0.227897i \(-0.0731848\pi\)
\(920\) 0 0
\(921\) −10.2978 −0.339323
\(922\) 0 0
\(923\) −13.3092 + 13.3092i −0.438077 + 0.438077i
\(924\) 0 0
\(925\) −0.978498 + 1.01199i −0.0321728 + 0.0332742i
\(926\) 0 0
\(927\) −9.94786 9.94786i −0.326730 0.326730i
\(928\) 0 0
\(929\) −12.1425 −0.398381 −0.199191 0.979961i \(-0.563831\pi\)
−0.199191 + 0.979961i \(0.563831\pi\)
\(930\) 0 0
\(931\) −4.70643 7.84896i −0.154247 0.257239i
\(932\) 0 0
\(933\) 5.75785 + 5.75785i 0.188503 + 0.188503i
\(934\) 0 0
\(935\) 6.33852 6.44609i 0.207292 0.210810i
\(936\) 0 0
\(937\) 11.4188 + 11.4188i 0.373036 + 0.373036i 0.868582 0.495546i \(-0.165032\pi\)
−0.495546 + 0.868582i \(0.665032\pi\)
\(938\) 0 0
\(939\) 16.5242i 0.539248i
\(940\) 0 0
\(941\) 21.2998i 0.694353i 0.937800 + 0.347176i \(0.112860\pi\)
−0.937800 + 0.347176i \(0.887140\pi\)
\(942\) 0 0
\(943\) −8.31709 + 8.31709i −0.270842 + 0.270842i
\(944\) 0 0
\(945\) −1.62633 5.68815i −0.0529044 0.185036i
\(946\) 0 0
\(947\) −38.6453 + 38.6453i −1.25580 + 1.25580i −0.302726 + 0.953078i \(0.597897\pi\)
−0.953078 + 0.302726i \(0.902103\pi\)
\(948\) 0 0
\(949\) 8.69776i 0.282341i
\(950\) 0 0
\(951\) 3.39576i 0.110115i
\(952\) 0 0
\(953\) −12.2652 12.2652i −0.397308 0.397308i 0.479974 0.877283i \(-0.340646\pi\)
−0.877283 + 0.479974i \(0.840646\pi\)
\(954\) 0 0
\(955\) 0.269793 + 32.0665i 0.00873030 + 1.03765i
\(956\) 0 0
\(957\) −10.9851 10.9851i −0.355096 0.355096i
\(958\) 0 0
\(959\) −2.41632 8.72836i −0.0780270 0.281854i
\(960\) 0 0
\(961\) 15.8291 0.510617
\(962\) 0 0
\(963\) −4.45880 4.45880i −0.143683 0.143683i
\(964\) 0 0
\(965\) 6.52311 6.63380i 0.209986 0.213550i
\(966\) 0 0
\(967\) −2.52230 + 2.52230i −0.0811116 + 0.0811116i −0.746499 0.665387i \(-0.768267\pi\)
0.665387 + 0.746499i \(0.268267\pi\)
\(968\) 0 0
\(969\) −1.01749 −0.0326865
\(970\) 0 0
\(971\) 7.22848i 0.231973i −0.993251 0.115986i \(-0.962997\pi\)
0.993251 0.115986i \(-0.0370029\pi\)
\(972\) 0 0
\(973\) −7.73551 + 13.6580i −0.247989 + 0.437855i
\(974\) 0 0
\(975\) −0.0972465 5.77875i −0.00311438 0.185068i
\(976\) 0 0
\(977\) 11.4690 11.4690i 0.366925 0.366925i −0.499429 0.866355i \(-0.666457\pi\)
0.866355 + 0.499429i \(0.166457\pi\)
\(978\) 0 0
\(979\) 86.0008 2.74860
\(980\) 0 0
\(981\) −6.76993 −0.216147
\(982\) 0 0
\(983\) 6.25887 6.25887i 0.199627 0.199627i −0.600213 0.799840i \(-0.704918\pi\)
0.799840 + 0.600213i \(0.204918\pi\)
\(984\) 0 0
\(985\) −19.5279 19.2020i −0.622209 0.611827i
\(986\) 0 0
\(987\) 8.13248 14.3589i 0.258860 0.457048i
\(988\) 0 0
\(989\) 12.0855i 0.384296i
\(990\) 0 0
\(991\) 26.2928 0.835219 0.417609 0.908627i \(-0.362868\pi\)
0.417609 + 0.908627i \(0.362868\pi\)
\(992\) 0 0
\(993\) −14.0905 + 14.0905i −0.447149 + 0.447149i
\(994\) 0 0
\(995\) −0.0766340 9.10840i −0.00242946 0.288756i
\(996\) 0 0
\(997\) −30.7350 30.7350i −0.973386 0.973386i 0.0262684 0.999655i \(-0.491638\pi\)
−0.999655 + 0.0262684i \(0.991638\pi\)
\(998\) 0 0
\(999\) 0.281538 0.00890746
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 840.2.bt.b.433.4 yes 24
4.3 odd 2 1680.2.cz.e.433.7 24
5.2 odd 4 840.2.bt.a.97.9 24
7.6 odd 2 840.2.bt.a.433.9 yes 24
20.7 even 4 1680.2.cz.f.97.6 24
28.27 even 2 1680.2.cz.f.433.6 24
35.27 even 4 inner 840.2.bt.b.97.4 yes 24
140.27 odd 4 1680.2.cz.e.97.7 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
840.2.bt.a.97.9 24 5.2 odd 4
840.2.bt.a.433.9 yes 24 7.6 odd 2
840.2.bt.b.97.4 yes 24 35.27 even 4 inner
840.2.bt.b.433.4 yes 24 1.1 even 1 trivial
1680.2.cz.e.97.7 24 140.27 odd 4
1680.2.cz.e.433.7 24 4.3 odd 2
1680.2.cz.f.97.6 24 20.7 even 4
1680.2.cz.f.433.6 24 28.27 even 2