Properties

Label 840.2.bt.b.433.1
Level $840$
Weight $2$
Character 840.433
Analytic conductor $6.707$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [840,2,Mod(97,840)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(840, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("840.97"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 840 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 840.bt (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.70743376979\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 433.1
Character \(\chi\) \(=\) 840.433
Dual form 840.2.bt.b.97.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.707107 + 0.707107i) q^{3} +(-2.21371 - 0.315413i) q^{5} +(2.54973 - 0.706295i) q^{7} -1.00000i q^{9} -1.16955 q^{11} +(-1.47521 + 1.47521i) q^{13} +(1.78836 - 1.34230i) q^{15} +(-1.17748 - 1.17748i) q^{17} -2.09803 q^{19} +(-1.30351 + 2.30236i) q^{21} +(-5.33116 - 5.33116i) q^{23} +(4.80103 + 1.39647i) q^{25} +(0.707107 + 0.707107i) q^{27} -1.55395i q^{29} -2.66719i q^{31} +(0.826994 - 0.826994i) q^{33} +(-5.86715 + 0.759313i) q^{35} +(0.549430 - 0.549430i) q^{37} -2.08626i q^{39} -8.59246i q^{41} +(-5.86009 - 5.86009i) q^{43} +(-0.315413 + 2.21371i) q^{45} +(-8.22660 - 8.22660i) q^{47} +(6.00230 - 3.60173i) q^{49} +1.66520 q^{51} +(3.22603 + 3.22603i) q^{53} +(2.58904 + 0.368890i) q^{55} +(1.48353 - 1.48353i) q^{57} -3.54324 q^{59} -4.08335i q^{61} +(-0.706295 - 2.54973i) q^{63} +(3.73099 - 2.80039i) q^{65} +(3.06567 - 3.06567i) q^{67} +7.53940 q^{69} -1.65109 q^{71} +(-6.90630 + 6.90630i) q^{73} +(-4.38229 + 2.40739i) q^{75} +(-2.98203 + 0.826044i) q^{77} -12.6669i q^{79} -1.00000 q^{81} +(-3.91528 + 3.91528i) q^{83} +(2.23520 + 2.97798i) q^{85} +(1.09881 + 1.09881i) q^{87} +11.8136 q^{89} +(-2.71946 + 4.80333i) q^{91} +(1.88599 + 1.88599i) q^{93} +(4.64442 + 0.661744i) q^{95} +(-0.533694 - 0.533694i) q^{97} +1.16955i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 8 q^{11} - 16 q^{13} + 4 q^{15} - 20 q^{17} - 8 q^{19} + 24 q^{23} - 4 q^{25} + 4 q^{37} - 16 q^{43} + 4 q^{45} + 24 q^{47} - 36 q^{49} + 16 q^{53} - 28 q^{55} + 4 q^{57} - 8 q^{59} + 4 q^{63} + 24 q^{65}+ \cdots + 28 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/840\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(281\) \(337\) \(421\) \(631\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{3}{4}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.707107 + 0.707107i −0.408248 + 0.408248i
\(4\) 0 0
\(5\) −2.21371 0.315413i −0.990001 0.141057i
\(6\) 0 0
\(7\) 2.54973 0.706295i 0.963709 0.266954i
\(8\) 0 0
\(9\) 1.00000i 0.333333i
\(10\) 0 0
\(11\) −1.16955 −0.352631 −0.176316 0.984334i \(-0.556418\pi\)
−0.176316 + 0.984334i \(0.556418\pi\)
\(12\) 0 0
\(13\) −1.47521 + 1.47521i −0.409150 + 0.409150i −0.881442 0.472292i \(-0.843427\pi\)
0.472292 + 0.881442i \(0.343427\pi\)
\(14\) 0 0
\(15\) 1.78836 1.34230i 0.461753 0.346580i
\(16\) 0 0
\(17\) −1.17748 1.17748i −0.285580 0.285580i 0.549750 0.835330i \(-0.314723\pi\)
−0.835330 + 0.549750i \(0.814723\pi\)
\(18\) 0 0
\(19\) −2.09803 −0.481320 −0.240660 0.970609i \(-0.577364\pi\)
−0.240660 + 0.970609i \(0.577364\pi\)
\(20\) 0 0
\(21\) −1.30351 + 2.30236i −0.284449 + 0.502416i
\(22\) 0 0
\(23\) −5.33116 5.33116i −1.11162 1.11162i −0.992931 0.118693i \(-0.962130\pi\)
−0.118693 0.992931i \(-0.537870\pi\)
\(24\) 0 0
\(25\) 4.80103 + 1.39647i 0.960206 + 0.279293i
\(26\) 0 0
\(27\) 0.707107 + 0.707107i 0.136083 + 0.136083i
\(28\) 0 0
\(29\) 1.55395i 0.288562i −0.989537 0.144281i \(-0.953913\pi\)
0.989537 0.144281i \(-0.0460869\pi\)
\(30\) 0 0
\(31\) 2.66719i 0.479042i −0.970891 0.239521i \(-0.923010\pi\)
0.970891 0.239521i \(-0.0769904\pi\)
\(32\) 0 0
\(33\) 0.826994 0.826994i 0.143961 0.143961i
\(34\) 0 0
\(35\) −5.86715 + 0.759313i −0.991729 + 0.128347i
\(36\) 0 0
\(37\) 0.549430 0.549430i 0.0903257 0.0903257i −0.660500 0.750826i \(-0.729656\pi\)
0.750826 + 0.660500i \(0.229656\pi\)
\(38\) 0 0
\(39\) 2.08626i 0.334069i
\(40\) 0 0
\(41\) 8.59246i 1.34192i −0.741495 0.670959i \(-0.765883\pi\)
0.741495 0.670959i \(-0.234117\pi\)
\(42\) 0 0
\(43\) −5.86009 5.86009i −0.893656 0.893656i 0.101209 0.994865i \(-0.467729\pi\)
−0.994865 + 0.101209i \(0.967729\pi\)
\(44\) 0 0
\(45\) −0.315413 + 2.21371i −0.0470190 + 0.330000i
\(46\) 0 0
\(47\) −8.22660 8.22660i −1.19997 1.19997i −0.974174 0.225800i \(-0.927500\pi\)
−0.225800 0.974174i \(-0.572500\pi\)
\(48\) 0 0
\(49\) 6.00230 3.60173i 0.857471 0.514533i
\(50\) 0 0
\(51\) 1.66520 0.233175
\(52\) 0 0
\(53\) 3.22603 + 3.22603i 0.443129 + 0.443129i 0.893062 0.449933i \(-0.148552\pi\)
−0.449933 + 0.893062i \(0.648552\pi\)
\(54\) 0 0
\(55\) 2.58904 + 0.368890i 0.349105 + 0.0497411i
\(56\) 0 0
\(57\) 1.48353 1.48353i 0.196498 0.196498i
\(58\) 0 0
\(59\) −3.54324 −0.461291 −0.230646 0.973038i \(-0.574084\pi\)
−0.230646 + 0.973038i \(0.574084\pi\)
\(60\) 0 0
\(61\) 4.08335i 0.522819i −0.965228 0.261409i \(-0.915813\pi\)
0.965228 0.261409i \(-0.0841873\pi\)
\(62\) 0 0
\(63\) −0.706295 2.54973i −0.0889848 0.321236i
\(64\) 0 0
\(65\) 3.73099 2.80039i 0.462772 0.347345i
\(66\) 0 0
\(67\) 3.06567 3.06567i 0.374531 0.374531i −0.494594 0.869124i \(-0.664683\pi\)
0.869124 + 0.494594i \(0.164683\pi\)
\(68\) 0 0
\(69\) 7.53940 0.907637
\(70\) 0 0
\(71\) −1.65109 −0.195948 −0.0979739 0.995189i \(-0.531236\pi\)
−0.0979739 + 0.995189i \(0.531236\pi\)
\(72\) 0 0
\(73\) −6.90630 + 6.90630i −0.808321 + 0.808321i −0.984380 0.176059i \(-0.943665\pi\)
0.176059 + 0.984380i \(0.443665\pi\)
\(74\) 0 0
\(75\) −4.38229 + 2.40739i −0.506023 + 0.277982i
\(76\) 0 0
\(77\) −2.98203 + 0.826044i −0.339834 + 0.0941364i
\(78\) 0 0
\(79\) 12.6669i 1.42513i −0.701605 0.712566i \(-0.747533\pi\)
0.701605 0.712566i \(-0.252467\pi\)
\(80\) 0 0
\(81\) −1.00000 −0.111111
\(82\) 0 0
\(83\) −3.91528 + 3.91528i −0.429758 + 0.429758i −0.888546 0.458788i \(-0.848284\pi\)
0.458788 + 0.888546i \(0.348284\pi\)
\(84\) 0 0
\(85\) 2.23520 + 2.97798i 0.242442 + 0.323008i
\(86\) 0 0
\(87\) 1.09881 + 1.09881i 0.117805 + 0.117805i
\(88\) 0 0
\(89\) 11.8136 1.25224 0.626120 0.779727i \(-0.284642\pi\)
0.626120 + 0.779727i \(0.284642\pi\)
\(90\) 0 0
\(91\) −2.71946 + 4.80333i −0.285077 + 0.503526i
\(92\) 0 0
\(93\) 1.88599 + 1.88599i 0.195568 + 0.195568i
\(94\) 0 0
\(95\) 4.64442 + 0.661744i 0.476508 + 0.0678935i
\(96\) 0 0
\(97\) −0.533694 0.533694i −0.0541884 0.0541884i 0.679493 0.733682i \(-0.262200\pi\)
−0.733682 + 0.679493i \(0.762200\pi\)
\(98\) 0 0
\(99\) 1.16955i 0.117544i
\(100\) 0 0
\(101\) 2.20950i 0.219853i −0.993940 0.109927i \(-0.964938\pi\)
0.993940 0.109927i \(-0.0350616\pi\)
\(102\) 0 0
\(103\) −3.10352 + 3.10352i −0.305799 + 0.305799i −0.843278 0.537478i \(-0.819377\pi\)
0.537478 + 0.843278i \(0.319377\pi\)
\(104\) 0 0
\(105\) 3.61179 4.68562i 0.352474 0.457269i
\(106\) 0 0
\(107\) −12.8183 + 12.8183i −1.23919 + 1.23919i −0.278863 + 0.960331i \(0.589958\pi\)
−0.960331 + 0.278863i \(0.910042\pi\)
\(108\) 0 0
\(109\) 10.5750i 1.01290i 0.862269 + 0.506450i \(0.169042\pi\)
−0.862269 + 0.506450i \(0.830958\pi\)
\(110\) 0 0
\(111\) 0.777011i 0.0737506i
\(112\) 0 0
\(113\) 13.4278 + 13.4278i 1.26318 + 1.26318i 0.949545 + 0.313632i \(0.101546\pi\)
0.313632 + 0.949545i \(0.398454\pi\)
\(114\) 0 0
\(115\) 10.1201 + 13.4832i 0.943707 + 1.25731i
\(116\) 0 0
\(117\) 1.47521 + 1.47521i 0.136383 + 0.136383i
\(118\) 0 0
\(119\) −3.83390 2.17061i −0.351453 0.198979i
\(120\) 0 0
\(121\) −9.63216 −0.875651
\(122\) 0 0
\(123\) 6.07579 + 6.07579i 0.547836 + 0.547836i
\(124\) 0 0
\(125\) −10.1876 4.60568i −0.911209 0.411944i
\(126\) 0 0
\(127\) −5.27244 + 5.27244i −0.467854 + 0.467854i −0.901219 0.433365i \(-0.857326\pi\)
0.433365 + 0.901219i \(0.357326\pi\)
\(128\) 0 0
\(129\) 8.28742 0.729667
\(130\) 0 0
\(131\) 8.06509i 0.704650i −0.935878 0.352325i \(-0.885391\pi\)
0.935878 0.352325i \(-0.114609\pi\)
\(132\) 0 0
\(133\) −5.34941 + 1.48182i −0.463852 + 0.128490i
\(134\) 0 0
\(135\) −1.34230 1.78836i −0.115527 0.153918i
\(136\) 0 0
\(137\) −10.8606 + 10.8606i −0.927884 + 0.927884i −0.997569 0.0696853i \(-0.977801\pi\)
0.0696853 + 0.997569i \(0.477801\pi\)
\(138\) 0 0
\(139\) 21.0607 1.78635 0.893175 0.449710i \(-0.148473\pi\)
0.893175 + 0.449710i \(0.148473\pi\)
\(140\) 0 0
\(141\) 11.6342 0.979774
\(142\) 0 0
\(143\) 1.72533 1.72533i 0.144279 0.144279i
\(144\) 0 0
\(145\) −0.490137 + 3.44000i −0.0407037 + 0.285677i
\(146\) 0 0
\(147\) −1.69746 + 6.79107i −0.140004 + 0.560118i
\(148\) 0 0
\(149\) 9.76883i 0.800294i −0.916451 0.400147i \(-0.868959\pi\)
0.916451 0.400147i \(-0.131041\pi\)
\(150\) 0 0
\(151\) 18.6840 1.52049 0.760243 0.649639i \(-0.225080\pi\)
0.760243 + 0.649639i \(0.225080\pi\)
\(152\) 0 0
\(153\) −1.17748 + 1.17748i −0.0951933 + 0.0951933i
\(154\) 0 0
\(155\) −0.841267 + 5.90440i −0.0675722 + 0.474253i
\(156\) 0 0
\(157\) −10.9680 10.9680i −0.875342 0.875342i 0.117707 0.993048i \(-0.462446\pi\)
−0.993048 + 0.117707i \(0.962446\pi\)
\(158\) 0 0
\(159\) −4.56229 −0.361813
\(160\) 0 0
\(161\) −17.3584 9.82768i −1.36803 0.774529i
\(162\) 0 0
\(163\) −5.89745 5.89745i −0.461924 0.461924i 0.437362 0.899286i \(-0.355913\pi\)
−0.899286 + 0.437362i \(0.855913\pi\)
\(164\) 0 0
\(165\) −2.09157 + 1.56988i −0.162828 + 0.122215i
\(166\) 0 0
\(167\) −11.8929 11.8929i −0.920301 0.920301i 0.0767495 0.997050i \(-0.475546\pi\)
−0.997050 + 0.0767495i \(0.975546\pi\)
\(168\) 0 0
\(169\) 8.64751i 0.665193i
\(170\) 0 0
\(171\) 2.09803i 0.160440i
\(172\) 0 0
\(173\) 4.79478 4.79478i 0.364540 0.364540i −0.500941 0.865481i \(-0.667013\pi\)
0.865481 + 0.500941i \(0.167013\pi\)
\(174\) 0 0
\(175\) 13.2277 + 0.169675i 0.999918 + 0.0128262i
\(176\) 0 0
\(177\) 2.50545 2.50545i 0.188321 0.188321i
\(178\) 0 0
\(179\) 20.8432i 1.55790i 0.627089 + 0.778948i \(0.284246\pi\)
−0.627089 + 0.778948i \(0.715754\pi\)
\(180\) 0 0
\(181\) 6.01487i 0.447081i −0.974695 0.223541i \(-0.928238\pi\)
0.974695 0.223541i \(-0.0717616\pi\)
\(182\) 0 0
\(183\) 2.88736 + 2.88736i 0.213440 + 0.213440i
\(184\) 0 0
\(185\) −1.38958 + 1.04298i −0.102164 + 0.0766815i
\(186\) 0 0
\(187\) 1.37711 + 1.37711i 0.100704 + 0.100704i
\(188\) 0 0
\(189\) 2.30236 + 1.30351i 0.167472 + 0.0948163i
\(190\) 0 0
\(191\) 3.91499 0.283279 0.141639 0.989918i \(-0.454763\pi\)
0.141639 + 0.989918i \(0.454763\pi\)
\(192\) 0 0
\(193\) 13.1766 + 13.1766i 0.948474 + 0.948474i 0.998736 0.0502617i \(-0.0160055\pi\)
−0.0502617 + 0.998736i \(0.516006\pi\)
\(194\) 0 0
\(195\) −0.658034 + 4.61838i −0.0471228 + 0.330729i
\(196\) 0 0
\(197\) −3.59483 + 3.59483i −0.256121 + 0.256121i −0.823475 0.567353i \(-0.807967\pi\)
0.567353 + 0.823475i \(0.307967\pi\)
\(198\) 0 0
\(199\) 9.84894 0.698173 0.349086 0.937091i \(-0.386492\pi\)
0.349086 + 0.937091i \(0.386492\pi\)
\(200\) 0 0
\(201\) 4.33551i 0.305803i
\(202\) 0 0
\(203\) −1.09755 3.96217i −0.0770329 0.278090i
\(204\) 0 0
\(205\) −2.71017 + 19.0212i −0.189287 + 1.32850i
\(206\) 0 0
\(207\) −5.33116 + 5.33116i −0.370541 + 0.370541i
\(208\) 0 0
\(209\) 2.45374 0.169728
\(210\) 0 0
\(211\) −24.1308 −1.66123 −0.830616 0.556845i \(-0.812012\pi\)
−0.830616 + 0.556845i \(0.812012\pi\)
\(212\) 0 0
\(213\) 1.16749 1.16749i 0.0799954 0.0799954i
\(214\) 0 0
\(215\) 11.1242 + 14.8209i 0.758664 + 1.01078i
\(216\) 0 0
\(217\) −1.88383 6.80064i −0.127882 0.461657i
\(218\) 0 0
\(219\) 9.76698i 0.659991i
\(220\) 0 0
\(221\) 3.47405 0.233690
\(222\) 0 0
\(223\) −1.60954 + 1.60954i −0.107783 + 0.107783i −0.758942 0.651159i \(-0.774283\pi\)
0.651159 + 0.758942i \(0.274283\pi\)
\(224\) 0 0
\(225\) 1.39647 4.80103i 0.0930977 0.320069i
\(226\) 0 0
\(227\) −4.53928 4.53928i −0.301282 0.301282i 0.540233 0.841515i \(-0.318336\pi\)
−0.841515 + 0.540233i \(0.818336\pi\)
\(228\) 0 0
\(229\) 15.1551 1.00148 0.500738 0.865599i \(-0.333062\pi\)
0.500738 + 0.865599i \(0.333062\pi\)
\(230\) 0 0
\(231\) 1.52451 2.69272i 0.100306 0.177168i
\(232\) 0 0
\(233\) −8.24037 8.24037i −0.539844 0.539844i 0.383639 0.923483i \(-0.374671\pi\)
−0.923483 + 0.383639i \(0.874671\pi\)
\(234\) 0 0
\(235\) 15.6165 + 20.8061i 1.01871 + 1.35724i
\(236\) 0 0
\(237\) 8.95682 + 8.95682i 0.581808 + 0.581808i
\(238\) 0 0
\(239\) 8.52067i 0.551156i −0.961279 0.275578i \(-0.911131\pi\)
0.961279 0.275578i \(-0.0888693\pi\)
\(240\) 0 0
\(241\) 17.9877i 1.15869i 0.815082 + 0.579346i \(0.196692\pi\)
−0.815082 + 0.579346i \(0.803308\pi\)
\(242\) 0 0
\(243\) 0.707107 0.707107i 0.0453609 0.0453609i
\(244\) 0 0
\(245\) −14.4234 + 6.07998i −0.921476 + 0.388436i
\(246\) 0 0
\(247\) 3.09503 3.09503i 0.196932 0.196932i
\(248\) 0 0
\(249\) 5.53705i 0.350896i
\(250\) 0 0
\(251\) 9.19362i 0.580296i −0.956982 0.290148i \(-0.906295\pi\)
0.956982 0.290148i \(-0.0937045\pi\)
\(252\) 0 0
\(253\) 6.23503 + 6.23503i 0.391993 + 0.391993i
\(254\) 0 0
\(255\) −3.68628 0.525226i −0.230844 0.0328910i
\(256\) 0 0
\(257\) 20.1040 + 20.1040i 1.25405 + 1.25405i 0.953887 + 0.300167i \(0.0970423\pi\)
0.300167 + 0.953887i \(0.402958\pi\)
\(258\) 0 0
\(259\) 1.01284 1.78896i 0.0629349 0.111161i
\(260\) 0 0
\(261\) −1.55395 −0.0961873
\(262\) 0 0
\(263\) 15.8468 + 15.8468i 0.977154 + 0.977154i 0.999745 0.0225912i \(-0.00719162\pi\)
−0.0225912 + 0.999745i \(0.507192\pi\)
\(264\) 0 0
\(265\) −6.12396 8.15902i −0.376192 0.501205i
\(266\) 0 0
\(267\) −8.35348 + 8.35348i −0.511224 + 0.511224i
\(268\) 0 0
\(269\) 17.6809 1.07802 0.539012 0.842298i \(-0.318798\pi\)
0.539012 + 0.842298i \(0.318798\pi\)
\(270\) 0 0
\(271\) 4.30310i 0.261395i −0.991422 0.130697i \(-0.958278\pi\)
0.991422 0.130697i \(-0.0417217\pi\)
\(272\) 0 0
\(273\) −1.47352 5.31941i −0.0891812 0.321946i
\(274\) 0 0
\(275\) −5.61502 1.63323i −0.338599 0.0984875i
\(276\) 0 0
\(277\) 7.12848 7.12848i 0.428309 0.428309i −0.459743 0.888052i \(-0.652059\pi\)
0.888052 + 0.459743i \(0.152059\pi\)
\(278\) 0 0
\(279\) −2.66719 −0.159681
\(280\) 0 0
\(281\) 0.0128067 0.000763985 0.000381992 1.00000i \(-0.499878\pi\)
0.000381992 1.00000i \(0.499878\pi\)
\(282\) 0 0
\(283\) 22.1980 22.1980i 1.31953 1.31953i 0.405386 0.914146i \(-0.367137\pi\)
0.914146 0.405386i \(-0.132863\pi\)
\(284\) 0 0
\(285\) −3.75202 + 2.81618i −0.222251 + 0.166816i
\(286\) 0 0
\(287\) −6.06881 21.9085i −0.358231 1.29322i
\(288\) 0 0
\(289\) 14.2271i 0.836888i
\(290\) 0 0
\(291\) 0.754757 0.0442446
\(292\) 0 0
\(293\) −18.9408 + 18.9408i −1.10653 + 1.10653i −0.112932 + 0.993603i \(0.536024\pi\)
−0.993603 + 0.112932i \(0.963976\pi\)
\(294\) 0 0
\(295\) 7.84372 + 1.11758i 0.456679 + 0.0650683i
\(296\) 0 0
\(297\) −0.826994 0.826994i −0.0479870 0.0479870i
\(298\) 0 0
\(299\) 15.7292 0.909641
\(300\) 0 0
\(301\) −19.0806 10.8027i −1.09979 0.622659i
\(302\) 0 0
\(303\) 1.56235 + 1.56235i 0.0897547 + 0.0897547i
\(304\) 0 0
\(305\) −1.28794 + 9.03935i −0.0737472 + 0.517591i
\(306\) 0 0
\(307\) 2.64729 + 2.64729i 0.151089 + 0.151089i 0.778604 0.627515i \(-0.215928\pi\)
−0.627515 + 0.778604i \(0.715928\pi\)
\(308\) 0 0
\(309\) 4.38904i 0.249684i
\(310\) 0 0
\(311\) 2.01981i 0.114533i −0.998359 0.0572663i \(-0.981762\pi\)
0.998359 0.0572663i \(-0.0182384\pi\)
\(312\) 0 0
\(313\) −22.5469 + 22.5469i −1.27442 + 1.27442i −0.330682 + 0.943742i \(0.607279\pi\)
−0.943742 + 0.330682i \(0.892721\pi\)
\(314\) 0 0
\(315\) 0.759313 + 5.86715i 0.0427824 + 0.330576i
\(316\) 0 0
\(317\) 7.40527 7.40527i 0.415921 0.415921i −0.467874 0.883795i \(-0.654980\pi\)
0.883795 + 0.467874i \(0.154980\pi\)
\(318\) 0 0
\(319\) 1.81742i 0.101756i
\(320\) 0 0
\(321\) 18.1278i 1.01180i
\(322\) 0 0
\(323\) 2.47038 + 2.47038i 0.137455 + 0.137455i
\(324\) 0 0
\(325\) −9.14261 + 5.02245i −0.507141 + 0.278595i
\(326\) 0 0
\(327\) −7.47764 7.47764i −0.413515 0.413515i
\(328\) 0 0
\(329\) −26.7861 15.1653i −1.47676 0.836087i
\(330\) 0 0
\(331\) −19.1118 −1.05048 −0.525239 0.850955i \(-0.676024\pi\)
−0.525239 + 0.850955i \(0.676024\pi\)
\(332\) 0 0
\(333\) −0.549430 0.549430i −0.0301086 0.0301086i
\(334\) 0 0
\(335\) −7.75345 + 5.81955i −0.423616 + 0.317956i
\(336\) 0 0
\(337\) 21.3329 21.3329i 1.16208 1.16208i 0.178056 0.984020i \(-0.443019\pi\)
0.984020 0.178056i \(-0.0569808\pi\)
\(338\) 0 0
\(339\) −18.9897 −1.03138
\(340\) 0 0
\(341\) 3.11941i 0.168925i
\(342\) 0 0
\(343\) 12.7604 13.4228i 0.688996 0.724765i
\(344\) 0 0
\(345\) −16.6901 2.37802i −0.898562 0.128028i
\(346\) 0 0
\(347\) 0.284538 0.284538i 0.0152748 0.0152748i −0.699428 0.714703i \(-0.746562\pi\)
0.714703 + 0.699428i \(0.246562\pi\)
\(348\) 0 0
\(349\) 5.53962 0.296529 0.148265 0.988948i \(-0.452631\pi\)
0.148265 + 0.988948i \(0.452631\pi\)
\(350\) 0 0
\(351\) −2.08626 −0.111356
\(352\) 0 0
\(353\) 10.5628 10.5628i 0.562203 0.562203i −0.367730 0.929933i \(-0.619865\pi\)
0.929933 + 0.367730i \(0.119865\pi\)
\(354\) 0 0
\(355\) 3.65503 + 0.520774i 0.193989 + 0.0276398i
\(356\) 0 0
\(357\) 4.24583 1.17612i 0.224713 0.0622471i
\(358\) 0 0
\(359\) 3.33136i 0.175823i 0.996128 + 0.0879113i \(0.0280192\pi\)
−0.996128 + 0.0879113i \(0.971981\pi\)
\(360\) 0 0
\(361\) −14.5983 −0.768331
\(362\) 0 0
\(363\) 6.81097 6.81097i 0.357483 0.357483i
\(364\) 0 0
\(365\) 17.4669 13.1102i 0.914258 0.686220i
\(366\) 0 0
\(367\) −22.3369 22.3369i −1.16598 1.16598i −0.983144 0.182831i \(-0.941474\pi\)
−0.182831 0.983144i \(-0.558526\pi\)
\(368\) 0 0
\(369\) −8.59246 −0.447306
\(370\) 0 0
\(371\) 10.5040 + 5.94699i 0.545343 + 0.308752i
\(372\) 0 0
\(373\) −20.9830 20.9830i −1.08646 1.08646i −0.995890 0.0905682i \(-0.971132\pi\)
−0.0905682 0.995890i \(-0.528868\pi\)
\(374\) 0 0
\(375\) 10.4604 3.94704i 0.540175 0.203824i
\(376\) 0 0
\(377\) 2.29241 + 2.29241i 0.118065 + 0.118065i
\(378\) 0 0
\(379\) 14.9942i 0.770202i 0.922875 + 0.385101i \(0.125833\pi\)
−0.922875 + 0.385101i \(0.874167\pi\)
\(380\) 0 0
\(381\) 7.45636i 0.382001i
\(382\) 0 0
\(383\) 14.1677 14.1677i 0.723937 0.723937i −0.245468 0.969405i \(-0.578942\pi\)
0.969405 + 0.245468i \(0.0789416\pi\)
\(384\) 0 0
\(385\) 6.86190 0.888051i 0.349715 0.0452593i
\(386\) 0 0
\(387\) −5.86009 + 5.86009i −0.297885 + 0.297885i
\(388\) 0 0
\(389\) 33.0008i 1.67321i −0.547808 0.836604i \(-0.684537\pi\)
0.547808 0.836604i \(-0.315463\pi\)
\(390\) 0 0
\(391\) 12.5546i 0.634915i
\(392\) 0 0
\(393\) 5.70288 + 5.70288i 0.287672 + 0.287672i
\(394\) 0 0
\(395\) −3.99529 + 28.0408i −0.201025 + 1.41088i
\(396\) 0 0
\(397\) −24.2791 24.2791i −1.21853 1.21853i −0.968146 0.250385i \(-0.919443\pi\)
−0.250385 0.968146i \(-0.580557\pi\)
\(398\) 0 0
\(399\) 2.73479 4.83041i 0.136911 0.241823i
\(400\) 0 0
\(401\) 7.14242 0.356676 0.178338 0.983969i \(-0.442928\pi\)
0.178338 + 0.983969i \(0.442928\pi\)
\(402\) 0 0
\(403\) 3.93467 + 3.93467i 0.196000 + 0.196000i
\(404\) 0 0
\(405\) 2.21371 + 0.315413i 0.110000 + 0.0156730i
\(406\) 0 0
\(407\) −0.642583 + 0.642583i −0.0318517 + 0.0318517i
\(408\) 0 0
\(409\) −12.5120 −0.618679 −0.309340 0.950952i \(-0.600108\pi\)
−0.309340 + 0.950952i \(0.600108\pi\)
\(410\) 0 0
\(411\) 15.3592i 0.757614i
\(412\) 0 0
\(413\) −9.03433 + 2.50257i −0.444551 + 0.123144i
\(414\) 0 0
\(415\) 9.90224 7.43237i 0.486082 0.364841i
\(416\) 0 0
\(417\) −14.8922 + 14.8922i −0.729274 + 0.729274i
\(418\) 0 0
\(419\) −1.88070 −0.0918783 −0.0459392 0.998944i \(-0.514628\pi\)
−0.0459392 + 0.998944i \(0.514628\pi\)
\(420\) 0 0
\(421\) −1.76836 −0.0861848 −0.0430924 0.999071i \(-0.513721\pi\)
−0.0430924 + 0.999071i \(0.513721\pi\)
\(422\) 0 0
\(423\) −8.22660 + 8.22660i −0.399991 + 0.399991i
\(424\) 0 0
\(425\) −4.00879 7.29740i −0.194455 0.353976i
\(426\) 0 0
\(427\) −2.88405 10.4114i −0.139569 0.503845i
\(428\) 0 0
\(429\) 2.43998i 0.117803i
\(430\) 0 0
\(431\) 36.9420 1.77943 0.889717 0.456513i \(-0.150902\pi\)
0.889717 + 0.456513i \(0.150902\pi\)
\(432\) 0 0
\(433\) −24.2328 + 24.2328i −1.16456 + 1.16456i −0.181089 + 0.983467i \(0.557962\pi\)
−0.983467 + 0.181089i \(0.942038\pi\)
\(434\) 0 0
\(435\) −2.08587 2.77903i −0.100010 0.133244i
\(436\) 0 0
\(437\) 11.1849 + 11.1849i 0.535047 + 0.535047i
\(438\) 0 0
\(439\) −21.3785 −1.02034 −0.510170 0.860073i \(-0.670418\pi\)
−0.510170 + 0.860073i \(0.670418\pi\)
\(440\) 0 0
\(441\) −3.60173 6.00230i −0.171511 0.285824i
\(442\) 0 0
\(443\) −14.7576 14.7576i −0.701157 0.701157i 0.263502 0.964659i \(-0.415122\pi\)
−0.964659 + 0.263502i \(0.915122\pi\)
\(444\) 0 0
\(445\) −26.1519 3.72616i −1.23972 0.176637i
\(446\) 0 0
\(447\) 6.90761 + 6.90761i 0.326719 + 0.326719i
\(448\) 0 0
\(449\) 12.3378i 0.582258i −0.956684 0.291129i \(-0.905969\pi\)
0.956684 0.291129i \(-0.0940308\pi\)
\(450\) 0 0
\(451\) 10.0493i 0.473202i
\(452\) 0 0
\(453\) −13.2116 + 13.2116i −0.620736 + 0.620736i
\(454\) 0 0
\(455\) 7.53513 9.77542i 0.353252 0.458279i
\(456\) 0 0
\(457\) 8.21102 8.21102i 0.384095 0.384095i −0.488480 0.872575i \(-0.662448\pi\)
0.872575 + 0.488480i \(0.162448\pi\)
\(458\) 0 0
\(459\) 1.66520i 0.0777250i
\(460\) 0 0
\(461\) 12.1207i 0.564518i 0.959338 + 0.282259i \(0.0910837\pi\)
−0.959338 + 0.282259i \(0.908916\pi\)
\(462\) 0 0
\(463\) −10.1259 10.1259i −0.470590 0.470590i 0.431516 0.902105i \(-0.357979\pi\)
−0.902105 + 0.431516i \(0.857979\pi\)
\(464\) 0 0
\(465\) −3.58017 4.76991i −0.166027 0.221199i
\(466\) 0 0
\(467\) 29.1547 + 29.1547i 1.34912 + 1.34912i 0.886621 + 0.462496i \(0.153046\pi\)
0.462496 + 0.886621i \(0.346954\pi\)
\(468\) 0 0
\(469\) 5.65137 9.98190i 0.260956 0.460921i
\(470\) 0 0
\(471\) 15.5111 0.714714
\(472\) 0 0
\(473\) 6.85364 + 6.85364i 0.315131 + 0.315131i
\(474\) 0 0
\(475\) −10.0727 2.92982i −0.462166 0.134429i
\(476\) 0 0
\(477\) 3.22603 3.22603i 0.147710 0.147710i
\(478\) 0 0
\(479\) −7.98164 −0.364691 −0.182345 0.983235i \(-0.558369\pi\)
−0.182345 + 0.983235i \(0.558369\pi\)
\(480\) 0 0
\(481\) 1.62105i 0.0739134i
\(482\) 0 0
\(483\) 19.2235 5.32504i 0.874698 0.242298i
\(484\) 0 0
\(485\) 1.01311 + 1.34978i 0.0460029 + 0.0612902i
\(486\) 0 0
\(487\) 20.2029 20.2029i 0.915480 0.915480i −0.0812164 0.996696i \(-0.525881\pi\)
0.996696 + 0.0812164i \(0.0258805\pi\)
\(488\) 0 0
\(489\) 8.34026 0.377160
\(490\) 0 0
\(491\) −12.8079 −0.578013 −0.289006 0.957327i \(-0.593325\pi\)
−0.289006 + 0.957327i \(0.593325\pi\)
\(492\) 0 0
\(493\) −1.82974 + 1.82974i −0.0824075 + 0.0824075i
\(494\) 0 0
\(495\) 0.368890 2.58904i 0.0165804 0.116368i
\(496\) 0 0
\(497\) −4.20983 + 1.16615i −0.188837 + 0.0523091i
\(498\) 0 0
\(499\) 1.54064i 0.0689687i −0.999405 0.0344844i \(-0.989021\pi\)
0.999405 0.0344844i \(-0.0109789\pi\)
\(500\) 0 0
\(501\) 16.8191 0.751423
\(502\) 0 0
\(503\) −23.3462 + 23.3462i −1.04096 + 1.04096i −0.0418326 + 0.999125i \(0.513320\pi\)
−0.999125 + 0.0418326i \(0.986680\pi\)
\(504\) 0 0
\(505\) −0.696904 + 4.89119i −0.0310118 + 0.217655i
\(506\) 0 0
\(507\) −6.11471 6.11471i −0.271564 0.271564i
\(508\) 0 0
\(509\) 16.4830 0.730595 0.365297 0.930891i \(-0.380967\pi\)
0.365297 + 0.930891i \(0.380967\pi\)
\(510\) 0 0
\(511\) −12.7313 + 22.4871i −0.563202 + 0.994771i
\(512\) 0 0
\(513\) −1.48353 1.48353i −0.0654994 0.0654994i
\(514\) 0 0
\(515\) 7.84919 5.89141i 0.345877 0.259607i
\(516\) 0 0
\(517\) 9.62139 + 9.62139i 0.423148 + 0.423148i
\(518\) 0 0
\(519\) 6.78084i 0.297646i
\(520\) 0 0
\(521\) 9.53921i 0.417920i −0.977924 0.208960i \(-0.932992\pi\)
0.977924 0.208960i \(-0.0670079\pi\)
\(522\) 0 0
\(523\) −15.0269 + 15.0269i −0.657081 + 0.657081i −0.954688 0.297607i \(-0.903811\pi\)
0.297607 + 0.954688i \(0.403811\pi\)
\(524\) 0 0
\(525\) −9.47335 + 9.23340i −0.413451 + 0.402978i
\(526\) 0 0
\(527\) −3.14056 + 3.14056i −0.136805 + 0.136805i
\(528\) 0 0
\(529\) 33.8426i 1.47142i
\(530\) 0 0
\(531\) 3.54324i 0.153764i
\(532\) 0 0
\(533\) 12.6757 + 12.6757i 0.549045 + 0.549045i
\(534\) 0 0
\(535\) 32.4191 24.3330i 1.40160 1.05201i
\(536\) 0 0
\(537\) −14.7384 14.7384i −0.636008 0.636008i
\(538\) 0 0
\(539\) −7.01996 + 4.21238i −0.302371 + 0.181440i
\(540\) 0 0
\(541\) 9.59097 0.412348 0.206174 0.978515i \(-0.433899\pi\)
0.206174 + 0.978515i \(0.433899\pi\)
\(542\) 0 0
\(543\) 4.25315 + 4.25315i 0.182520 + 0.182520i
\(544\) 0 0
\(545\) 3.33549 23.4100i 0.142876 1.00277i
\(546\) 0 0
\(547\) 7.34333 7.34333i 0.313978 0.313978i −0.532470 0.846449i \(-0.678736\pi\)
0.846449 + 0.532470i \(0.178736\pi\)
\(548\) 0 0
\(549\) −4.08335 −0.174273
\(550\) 0 0
\(551\) 3.26023i 0.138891i
\(552\) 0 0
\(553\) −8.94653 32.2971i −0.380445 1.37341i
\(554\) 0 0
\(555\) 0.245079 1.72008i 0.0104030 0.0730132i
\(556\) 0 0
\(557\) −4.35752 + 4.35752i −0.184634 + 0.184634i −0.793372 0.608738i \(-0.791676\pi\)
0.608738 + 0.793372i \(0.291676\pi\)
\(558\) 0 0
\(559\) 17.2897 0.731278
\(560\) 0 0
\(561\) −1.94753 −0.0822248
\(562\) 0 0
\(563\) 9.52617 9.52617i 0.401480 0.401480i −0.477274 0.878754i \(-0.658375\pi\)
0.878754 + 0.477274i \(0.158375\pi\)
\(564\) 0 0
\(565\) −25.4899 33.9604i −1.07237 1.42873i
\(566\) 0 0
\(567\) −2.54973 + 0.706295i −0.107079 + 0.0296616i
\(568\) 0 0
\(569\) 45.4914i 1.90710i −0.301234 0.953550i \(-0.597398\pi\)
0.301234 0.953550i \(-0.402602\pi\)
\(570\) 0 0
\(571\) −1.58586 −0.0663662 −0.0331831 0.999449i \(-0.510564\pi\)
−0.0331831 + 0.999449i \(0.510564\pi\)
\(572\) 0 0
\(573\) −2.76832 + 2.76832i −0.115648 + 0.115648i
\(574\) 0 0
\(575\) −18.1503 33.0398i −0.756919 1.37786i
\(576\) 0 0
\(577\) −0.0900964 0.0900964i −0.00375076 0.00375076i 0.705229 0.708980i \(-0.250844\pi\)
−0.708980 + 0.705229i \(0.750844\pi\)
\(578\) 0 0
\(579\) −18.6346 −0.774426
\(580\) 0 0
\(581\) −7.21759 + 12.7483i −0.299436 + 0.528888i
\(582\) 0 0
\(583\) −3.77299 3.77299i −0.156261 0.156261i
\(584\) 0 0
\(585\) −2.80039 3.73099i −0.115782 0.154257i
\(586\) 0 0
\(587\) 19.4877 + 19.4877i 0.804343 + 0.804343i 0.983771 0.179428i \(-0.0574248\pi\)
−0.179428 + 0.983771i \(0.557425\pi\)
\(588\) 0 0
\(589\) 5.59584i 0.230573i
\(590\) 0 0
\(591\) 5.08386i 0.209122i
\(592\) 0 0
\(593\) 3.32187 3.32187i 0.136413 0.136413i −0.635603 0.772016i \(-0.719248\pi\)
0.772016 + 0.635603i \(0.219248\pi\)
\(594\) 0 0
\(595\) 7.80250 + 6.01436i 0.319871 + 0.246565i
\(596\) 0 0
\(597\) −6.96425 + 6.96425i −0.285028 + 0.285028i
\(598\) 0 0
\(599\) 9.57594i 0.391262i 0.980678 + 0.195631i \(0.0626755\pi\)
−0.980678 + 0.195631i \(0.937324\pi\)
\(600\) 0 0
\(601\) 1.74051i 0.0709968i 0.999370 + 0.0354984i \(0.0113019\pi\)
−0.999370 + 0.0354984i \(0.988698\pi\)
\(602\) 0 0
\(603\) −3.06567 3.06567i −0.124844 0.124844i
\(604\) 0 0
\(605\) 21.3228 + 3.03811i 0.866896 + 0.123517i
\(606\) 0 0
\(607\) −17.3146 17.3146i −0.702780 0.702780i 0.262227 0.965006i \(-0.415543\pi\)
−0.965006 + 0.262227i \(0.915543\pi\)
\(608\) 0 0
\(609\) 3.57776 + 2.02559i 0.144978 + 0.0820812i
\(610\) 0 0
\(611\) 24.2719 0.981938
\(612\) 0 0
\(613\) −29.7369 29.7369i −1.20106 1.20106i −0.973843 0.227220i \(-0.927036\pi\)
−0.227220 0.973843i \(-0.572964\pi\)
\(614\) 0 0
\(615\) −11.5337 15.3664i −0.465082 0.619634i
\(616\) 0 0
\(617\) −11.9800 + 11.9800i −0.482299 + 0.482299i −0.905865 0.423566i \(-0.860778\pi\)
0.423566 + 0.905865i \(0.360778\pi\)
\(618\) 0 0
\(619\) −49.2792 −1.98070 −0.990350 0.138591i \(-0.955743\pi\)
−0.990350 + 0.138591i \(0.955743\pi\)
\(620\) 0 0
\(621\) 7.53940i 0.302546i
\(622\) 0 0
\(623\) 30.1215 8.34388i 1.20679 0.334291i
\(624\) 0 0
\(625\) 21.0998 + 13.4089i 0.843991 + 0.536358i
\(626\) 0 0
\(627\) −1.73505 + 1.73505i −0.0692913 + 0.0692913i
\(628\) 0 0
\(629\) −1.29388 −0.0515904
\(630\) 0 0
\(631\) −4.70534 −0.187317 −0.0936583 0.995604i \(-0.529856\pi\)
−0.0936583 + 0.995604i \(0.529856\pi\)
\(632\) 0 0
\(633\) 17.0630 17.0630i 0.678195 0.678195i
\(634\) 0 0
\(635\) 13.3347 10.0087i 0.529170 0.397182i
\(636\) 0 0
\(637\) −3.54134 + 14.1680i −0.140313 + 0.561355i
\(638\) 0 0
\(639\) 1.65109i 0.0653160i
\(640\) 0 0
\(641\) 4.12279 0.162840 0.0814201 0.996680i \(-0.474054\pi\)
0.0814201 + 0.996680i \(0.474054\pi\)
\(642\) 0 0
\(643\) 22.0559 22.0559i 0.869798 0.869798i −0.122651 0.992450i \(-0.539140\pi\)
0.992450 + 0.122651i \(0.0391397\pi\)
\(644\) 0 0
\(645\) −18.3460 2.61396i −0.722371 0.102925i
\(646\) 0 0
\(647\) 3.13686 + 3.13686i 0.123323 + 0.123323i 0.766075 0.642752i \(-0.222207\pi\)
−0.642752 + 0.766075i \(0.722207\pi\)
\(648\) 0 0
\(649\) 4.14399 0.162666
\(650\) 0 0
\(651\) 6.14084 + 3.47671i 0.240679 + 0.136263i
\(652\) 0 0
\(653\) 24.2492 + 24.2492i 0.948945 + 0.948945i 0.998759 0.0498138i \(-0.0158628\pi\)
−0.0498138 + 0.998759i \(0.515863\pi\)
\(654\) 0 0
\(655\) −2.54383 + 17.8538i −0.0993958 + 0.697605i
\(656\) 0 0
\(657\) 6.90630 + 6.90630i 0.269440 + 0.269440i
\(658\) 0 0
\(659\) 29.8530i 1.16291i 0.813579 + 0.581454i \(0.197516\pi\)
−0.813579 + 0.581454i \(0.802484\pi\)
\(660\) 0 0
\(661\) 19.9011i 0.774063i −0.922066 0.387032i \(-0.873500\pi\)
0.922066 0.387032i \(-0.126500\pi\)
\(662\) 0 0
\(663\) −2.45652 + 2.45652i −0.0954035 + 0.0954035i
\(664\) 0 0
\(665\) 12.3094 1.59306i 0.477339 0.0617761i
\(666\) 0 0
\(667\) −8.28438 + 8.28438i −0.320772 + 0.320772i
\(668\) 0 0
\(669\) 2.27624i 0.0880044i
\(670\) 0 0
\(671\) 4.77566i 0.184362i
\(672\) 0 0
\(673\) 28.0668 + 28.0668i 1.08190 + 1.08190i 0.996333 + 0.0855648i \(0.0272695\pi\)
0.0855648 + 0.996333i \(0.472731\pi\)
\(674\) 0 0
\(675\) 2.40739 + 4.38229i 0.0926605 + 0.168674i
\(676\) 0 0
\(677\) 16.1832 + 16.1832i 0.621970 + 0.621970i 0.946035 0.324065i \(-0.105050\pi\)
−0.324065 + 0.946035i \(0.605050\pi\)
\(678\) 0 0
\(679\) −1.73772 0.983832i −0.0666877 0.0377560i
\(680\) 0 0
\(681\) 6.41951 0.245996
\(682\) 0 0
\(683\) −22.7744 22.7744i −0.871438 0.871438i 0.121192 0.992629i \(-0.461328\pi\)
−0.992629 + 0.121192i \(0.961328\pi\)
\(684\) 0 0
\(685\) 27.4678 20.6167i 1.04949 0.787722i
\(686\) 0 0
\(687\) −10.7163 + 10.7163i −0.408851 + 0.408851i
\(688\) 0 0
\(689\) −9.51814 −0.362612
\(690\) 0 0
\(691\) 19.1625i 0.728977i 0.931208 + 0.364489i \(0.118756\pi\)
−0.931208 + 0.364489i \(0.881244\pi\)
\(692\) 0 0
\(693\) 0.826044 + 2.98203i 0.0313788 + 0.113278i
\(694\) 0 0
\(695\) −46.6224 6.64283i −1.76849 0.251977i
\(696\) 0 0
\(697\) −10.1174 + 10.1174i −0.383225 + 0.383225i
\(698\) 0 0
\(699\) 11.6536 0.440781
\(700\) 0 0
\(701\) 24.1293 0.911350 0.455675 0.890146i \(-0.349398\pi\)
0.455675 + 0.890146i \(0.349398\pi\)
\(702\) 0 0
\(703\) −1.15272 + 1.15272i −0.0434756 + 0.0434756i
\(704\) 0 0
\(705\) −25.7547 3.66957i −0.969978 0.138204i
\(706\) 0 0
\(707\) −1.56056 5.63363i −0.0586908 0.211875i
\(708\) 0 0
\(709\) 39.3631i 1.47831i 0.673534 + 0.739157i \(0.264776\pi\)
−0.673534 + 0.739157i \(0.735224\pi\)
\(710\) 0 0
\(711\) −12.6669 −0.475044
\(712\) 0 0
\(713\) −14.2192 + 14.2192i −0.532515 + 0.532515i
\(714\) 0 0
\(715\) −4.36356 + 3.27518i −0.163188 + 0.122485i
\(716\) 0 0
\(717\) 6.02502 + 6.02502i 0.225009 + 0.225009i
\(718\) 0 0
\(719\) 40.3865 1.50616 0.753081 0.657928i \(-0.228567\pi\)
0.753081 + 0.657928i \(0.228567\pi\)
\(720\) 0 0
\(721\) −5.72116 + 10.1052i −0.213067 + 0.376336i
\(722\) 0 0
\(723\) −12.7193 12.7193i −0.473034 0.473034i
\(724\) 0 0
\(725\) 2.17004 7.46058i 0.0805934 0.277079i
\(726\) 0 0
\(727\) −0.406979 0.406979i −0.0150940 0.0150940i 0.699519 0.714614i \(-0.253397\pi\)
−0.714614 + 0.699519i \(0.753397\pi\)
\(728\) 0 0
\(729\) 1.00000i 0.0370370i
\(730\) 0 0
\(731\) 13.8002i 0.510420i
\(732\) 0 0
\(733\) 25.6665 25.6665i 0.948015 0.948015i −0.0506988 0.998714i \(-0.516145\pi\)
0.998714 + 0.0506988i \(0.0161448\pi\)
\(734\) 0 0
\(735\) 5.89967 14.4981i 0.217613 0.534769i
\(736\) 0 0
\(737\) −3.58544 + 3.58544i −0.132071 + 0.132071i
\(738\) 0 0
\(739\) 34.8421i 1.28169i 0.767672 + 0.640843i \(0.221415\pi\)
−0.767672 + 0.640843i \(0.778585\pi\)
\(740\) 0 0
\(741\) 4.37703i 0.160794i
\(742\) 0 0
\(743\) −17.2110 17.2110i −0.631409 0.631409i 0.317012 0.948421i \(-0.397320\pi\)
−0.948421 + 0.317012i \(0.897320\pi\)
\(744\) 0 0
\(745\) −3.08122 + 21.6254i −0.112887 + 0.792292i
\(746\) 0 0
\(747\) 3.91528 + 3.91528i 0.143253 + 0.143253i
\(748\) 0 0
\(749\) −23.6298 + 41.7368i −0.863414 + 1.52503i
\(750\) 0 0
\(751\) −8.12809 −0.296598 −0.148299 0.988943i \(-0.547380\pi\)
−0.148299 + 0.988943i \(0.547380\pi\)
\(752\) 0 0
\(753\) 6.50087 + 6.50087i 0.236905 + 0.236905i
\(754\) 0 0
\(755\) −41.3611 5.89318i −1.50528 0.214475i
\(756\) 0 0
\(757\) 29.3910 29.3910i 1.06824 1.06824i 0.0707411 0.997495i \(-0.477464\pi\)
0.997495 0.0707411i \(-0.0225364\pi\)
\(758\) 0 0
\(759\) −8.81767 −0.320061
\(760\) 0 0
\(761\) 33.1696i 1.20240i 0.799100 + 0.601198i \(0.205310\pi\)
−0.799100 + 0.601198i \(0.794690\pi\)
\(762\) 0 0
\(763\) 7.46905 + 26.9634i 0.270398 + 0.976141i
\(764\) 0 0
\(765\) 2.97798 2.23520i 0.107669 0.0808139i
\(766\) 0 0
\(767\) 5.22703 5.22703i 0.188737 0.188737i
\(768\) 0 0
\(769\) 42.5161 1.53317 0.766584 0.642144i \(-0.221955\pi\)
0.766584 + 0.642144i \(0.221955\pi\)
\(770\) 0 0
\(771\) −28.4314 −1.02393
\(772\) 0 0
\(773\) 11.4240 11.4240i 0.410894 0.410894i −0.471156 0.882050i \(-0.656163\pi\)
0.882050 + 0.471156i \(0.156163\pi\)
\(774\) 0 0
\(775\) 3.72464 12.8053i 0.133793 0.459979i
\(776\) 0 0
\(777\) 0.548799 + 1.98117i 0.0196880 + 0.0710741i
\(778\) 0 0
\(779\) 18.0272i 0.645892i
\(780\) 0 0
\(781\) 1.93102 0.0690973
\(782\) 0 0
\(783\) 1.09881 1.09881i 0.0392683 0.0392683i
\(784\) 0 0
\(785\) 20.8205 + 27.7394i 0.743117 + 0.990063i
\(786\) 0 0
\(787\) 15.4459 + 15.4459i 0.550586 + 0.550586i 0.926610 0.376024i \(-0.122709\pi\)
−0.376024 + 0.926610i \(0.622709\pi\)
\(788\) 0 0
\(789\) −22.4107 −0.797843
\(790\) 0 0
\(791\) 43.7212 + 24.7533i 1.55455 + 0.880125i
\(792\) 0 0
\(793\) 6.02379 + 6.02379i 0.213911 + 0.213911i
\(794\) 0 0
\(795\) 10.0996 + 1.43901i 0.358196 + 0.0510363i
\(796\) 0 0
\(797\) 25.0499 + 25.0499i 0.887314 + 0.887314i 0.994264 0.106951i \(-0.0341087\pi\)
−0.106951 + 0.994264i \(0.534109\pi\)
\(798\) 0 0
\(799\) 19.3733i 0.685377i
\(800\) 0 0
\(801\) 11.8136i 0.417413i
\(802\) 0 0
\(803\) 8.07723 8.07723i 0.285039 0.285039i
\(804\) 0 0
\(805\) 35.3267 + 27.2307i 1.24510 + 0.959756i
\(806\) 0 0
\(807\) −12.5023 + 12.5023i −0.440102 + 0.440102i
\(808\) 0 0
\(809\) 1.93007i 0.0678577i −0.999424 0.0339288i \(-0.989198\pi\)
0.999424 0.0339288i \(-0.0108020\pi\)
\(810\) 0 0
\(811\) 16.6713i 0.585410i −0.956203 0.292705i \(-0.905445\pi\)
0.956203 0.292705i \(-0.0945554\pi\)
\(812\) 0 0
\(813\) 3.04275 + 3.04275i 0.106714 + 0.106714i
\(814\) 0 0
\(815\) 11.1951 + 14.9154i 0.392148 + 0.522463i
\(816\) 0 0
\(817\) 12.2946 + 12.2946i 0.430134 + 0.430134i
\(818\) 0 0
\(819\) 4.80333 + 2.71946i 0.167842 + 0.0950257i
\(820\) 0 0
\(821\) −8.32072 −0.290395 −0.145198 0.989403i \(-0.546382\pi\)
−0.145198 + 0.989403i \(0.546382\pi\)
\(822\) 0 0
\(823\) −27.4683 27.4683i −0.957486 0.957486i 0.0416468 0.999132i \(-0.486740\pi\)
−0.999132 + 0.0416468i \(0.986740\pi\)
\(824\) 0 0
\(825\) 5.12529 2.81555i 0.178440 0.0980250i
\(826\) 0 0
\(827\) 3.01076 3.01076i 0.104695 0.104695i −0.652819 0.757514i \(-0.726414\pi\)
0.757514 + 0.652819i \(0.226414\pi\)
\(828\) 0 0
\(829\) −17.6623 −0.613438 −0.306719 0.951800i \(-0.599231\pi\)
−0.306719 + 0.951800i \(0.599231\pi\)
\(830\) 0 0
\(831\) 10.0812i 0.349713i
\(832\) 0 0
\(833\) −11.3085 2.82661i −0.391817 0.0979363i
\(834\) 0 0
\(835\) 22.5763 + 30.0786i 0.781284 + 1.04091i
\(836\) 0 0
\(837\) 1.88599 1.88599i 0.0651894 0.0651894i
\(838\) 0 0
\(839\) −23.0587 −0.796075 −0.398038 0.917369i \(-0.630309\pi\)
−0.398038 + 0.917369i \(0.630309\pi\)
\(840\) 0 0
\(841\) 26.5852 0.916732
\(842\) 0 0
\(843\) −0.00905572 + 0.00905572i −0.000311895 + 0.000311895i
\(844\) 0 0
\(845\) 2.72754 19.1431i 0.0938301 0.658542i
\(846\) 0 0
\(847\) −24.5595 + 6.80315i −0.843873 + 0.233759i
\(848\) 0 0
\(849\) 31.3927i 1.07739i
\(850\) 0 0
\(851\) −5.85820 −0.200816
\(852\) 0 0
\(853\) −29.7111 + 29.7111i −1.01729 + 1.01729i −0.0174392 + 0.999848i \(0.505551\pi\)
−0.999848 + 0.0174392i \(0.994449\pi\)
\(854\) 0 0
\(855\) 0.661744 4.64442i 0.0226312 0.158836i
\(856\) 0 0
\(857\) 14.7575 + 14.7575i 0.504107 + 0.504107i 0.912712 0.408604i \(-0.133984\pi\)
−0.408604 + 0.912712i \(0.633984\pi\)
\(858\) 0 0
\(859\) −32.9265 −1.12344 −0.561720 0.827328i \(-0.689860\pi\)
−0.561720 + 0.827328i \(0.689860\pi\)
\(860\) 0 0
\(861\) 19.7830 + 11.2004i 0.674201 + 0.381707i
\(862\) 0 0
\(863\) 20.2394 + 20.2394i 0.688959 + 0.688959i 0.962002 0.273043i \(-0.0880301\pi\)
−0.273043 + 0.962002i \(0.588030\pi\)
\(864\) 0 0
\(865\) −12.1266 + 9.10192i −0.412316 + 0.309475i
\(866\) 0 0
\(867\) 10.0601 + 10.0601i 0.341658 + 0.341658i
\(868\) 0 0
\(869\) 14.8145i 0.502546i
\(870\) 0 0
\(871\) 9.04500i 0.306478i
\(872\) 0 0
\(873\) −0.533694 + 0.533694i −0.0180628 + 0.0180628i
\(874\) 0 0
\(875\) −29.2287 4.54779i −0.988111 0.153743i
\(876\) 0 0
\(877\) 2.09834 2.09834i 0.0708560 0.0708560i −0.670791 0.741647i \(-0.734045\pi\)
0.741647 + 0.670791i \(0.234045\pi\)
\(878\) 0 0
\(879\) 26.7864i 0.903481i
\(880\) 0 0
\(881\) 37.2576i 1.25524i −0.778519 0.627621i \(-0.784029\pi\)
0.778519 0.627621i \(-0.215971\pi\)
\(882\) 0 0
\(883\) −25.0295 25.0295i −0.842309 0.842309i 0.146850 0.989159i \(-0.453087\pi\)
−0.989159 + 0.146850i \(0.953087\pi\)
\(884\) 0 0
\(885\) −6.33660 + 4.75609i −0.213002 + 0.159874i
\(886\) 0 0
\(887\) 20.4997 + 20.4997i 0.688313 + 0.688313i 0.961859 0.273546i \(-0.0881965\pi\)
−0.273546 + 0.961859i \(0.588197\pi\)
\(888\) 0 0
\(889\) −9.71943 + 17.1672i −0.325979 + 0.575770i
\(890\) 0 0
\(891\) 1.16955 0.0391812
\(892\) 0 0
\(893\) 17.2596 + 17.2596i 0.577571 + 0.577571i
\(894\) 0 0
\(895\) 6.57422 46.1408i 0.219752 1.54232i
\(896\) 0 0
\(897\) −11.1222 + 11.1222i −0.371359 + 0.371359i
\(898\) 0 0
\(899\) −4.14470 −0.138233
\(900\) 0 0
\(901\) 7.59714i 0.253098i
\(902\) 0 0
\(903\) 21.1307 5.85336i 0.703187 0.194788i
\(904\) 0 0
\(905\) −1.89717 + 13.3152i −0.0630639 + 0.442611i
\(906\) 0 0
\(907\) 19.6072 19.6072i 0.651045 0.651045i −0.302199 0.953245i \(-0.597721\pi\)
0.953245 + 0.302199i \(0.0977208\pi\)
\(908\) 0 0
\(909\) −2.20950 −0.0732844
\(910\) 0 0
\(911\) −22.6134 −0.749217 −0.374608 0.927183i \(-0.622223\pi\)
−0.374608 + 0.927183i \(0.622223\pi\)
\(912\) 0 0
\(913\) 4.57910 4.57910i 0.151546 0.151546i
\(914\) 0 0
\(915\) −5.48107 7.30249i −0.181199 0.241413i
\(916\) 0 0
\(917\) −5.69633 20.5638i −0.188109 0.679078i
\(918\) 0 0
\(919\) 10.6164i 0.350204i −0.984550 0.175102i \(-0.943975\pi\)
0.984550 0.175102i \(-0.0560255\pi\)
\(920\) 0 0
\(921\) −3.74383 −0.123364
\(922\) 0 0
\(923\) 2.43570 2.43570i 0.0801720 0.0801720i
\(924\) 0 0
\(925\) 3.40509 1.87057i 0.111959 0.0615039i
\(926\) 0 0
\(927\) 3.10352 + 3.10352i 0.101933 + 0.101933i
\(928\) 0 0
\(929\) 15.3896 0.504917 0.252458 0.967608i \(-0.418761\pi\)
0.252458 + 0.967608i \(0.418761\pi\)
\(930\) 0 0
\(931\) −12.5930 + 7.55652i −0.412718 + 0.247655i
\(932\) 0 0
\(933\) 1.42822 + 1.42822i 0.0467578 + 0.0467578i
\(934\) 0 0
\(935\) −2.61417 3.48289i −0.0854925 0.113903i
\(936\) 0 0
\(937\) 32.6586 + 32.6586i 1.06691 + 1.06691i 0.997595 + 0.0693155i \(0.0220815\pi\)
0.0693155 + 0.997595i \(0.477918\pi\)
\(938\) 0 0
\(939\) 31.8861i 1.04056i
\(940\) 0 0
\(941\) 35.7168i 1.16433i 0.813069 + 0.582167i \(0.197795\pi\)
−0.813069 + 0.582167i \(0.802205\pi\)
\(942\) 0 0
\(943\) −45.8078 + 45.8078i −1.49171 + 1.49171i
\(944\) 0 0
\(945\) −4.68562 3.61179i −0.152423 0.117491i
\(946\) 0 0
\(947\) 28.1597 28.1597i 0.915067 0.915067i −0.0815980 0.996665i \(-0.526002\pi\)
0.996665 + 0.0815980i \(0.0260023\pi\)
\(948\) 0 0
\(949\) 20.3765i 0.661448i
\(950\) 0 0
\(951\) 10.4726i 0.339598i
\(952\) 0 0
\(953\) −28.0790 28.0790i −0.909569 0.909569i 0.0866684 0.996237i \(-0.472378\pi\)
−0.996237 + 0.0866684i \(0.972378\pi\)
\(954\) 0 0
\(955\) −8.66666 1.23484i −0.280446 0.0399584i
\(956\) 0 0
\(957\) −1.28511 1.28511i −0.0415417 0.0415417i
\(958\) 0 0
\(959\) −20.0209 + 35.3624i −0.646508 + 1.14191i
\(960\) 0 0
\(961\) 23.8861 0.770518
\(962\) 0 0
\(963\) 12.8183 + 12.8183i 0.413065 + 0.413065i
\(964\) 0 0
\(965\) −25.0132 33.3253i −0.805202 1.07278i
\(966\) 0 0
\(967\) −3.67710 + 3.67710i −0.118248 + 0.118248i −0.763755 0.645507i \(-0.776646\pi\)
0.645507 + 0.763755i \(0.276646\pi\)
\(968\) 0 0
\(969\) −3.49364 −0.112232
\(970\) 0 0
\(971\) 50.0511i 1.60622i −0.595834 0.803108i \(-0.703178\pi\)
0.595834 0.803108i \(-0.296822\pi\)
\(972\) 0 0
\(973\) 53.6993 14.8751i 1.72152 0.476874i
\(974\) 0 0
\(975\) 2.91339 10.0162i 0.0933032 0.320775i
\(976\) 0 0
\(977\) −22.4734 + 22.4734i −0.718986 + 0.718986i −0.968398 0.249411i \(-0.919763\pi\)
0.249411 + 0.968398i \(0.419763\pi\)
\(978\) 0 0
\(979\) −13.8165 −0.441579
\(980\) 0 0
\(981\) 10.5750 0.337633
\(982\) 0 0
\(983\) 22.7861 22.7861i 0.726763 0.726763i −0.243210 0.969974i \(-0.578201\pi\)
0.969974 + 0.243210i \(0.0782005\pi\)
\(984\) 0 0
\(985\) 9.09178 6.82406i 0.289688 0.217433i
\(986\) 0 0
\(987\) 29.6641 8.21716i 0.944218 0.261555i
\(988\) 0 0
\(989\) 62.4822i 1.98682i
\(990\) 0 0
\(991\) −34.5490 −1.09749 −0.548743 0.835991i \(-0.684893\pi\)
−0.548743 + 0.835991i \(0.684893\pi\)
\(992\) 0 0
\(993\) 13.5141 13.5141i 0.428856 0.428856i
\(994\) 0 0
\(995\) −21.8027 3.10648i −0.691192 0.0984821i
\(996\) 0 0
\(997\) −19.9762 19.9762i −0.632653 0.632653i 0.316079 0.948733i \(-0.397633\pi\)
−0.948733 + 0.316079i \(0.897633\pi\)
\(998\) 0 0
\(999\) 0.777011 0.0245835
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 840.2.bt.b.433.1 yes 24
4.3 odd 2 1680.2.cz.e.433.10 24
5.2 odd 4 840.2.bt.a.97.12 24
7.6 odd 2 840.2.bt.a.433.12 yes 24
20.7 even 4 1680.2.cz.f.97.3 24
28.27 even 2 1680.2.cz.f.433.3 24
35.27 even 4 inner 840.2.bt.b.97.1 yes 24
140.27 odd 4 1680.2.cz.e.97.10 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
840.2.bt.a.97.12 24 5.2 odd 4
840.2.bt.a.433.12 yes 24 7.6 odd 2
840.2.bt.b.97.1 yes 24 35.27 even 4 inner
840.2.bt.b.433.1 yes 24 1.1 even 1 trivial
1680.2.cz.e.97.10 24 140.27 odd 4
1680.2.cz.e.433.10 24 4.3 odd 2
1680.2.cz.f.97.3 24 20.7 even 4
1680.2.cz.f.433.3 24 28.27 even 2