L(s) = 1 | + (−0.707 + 0.707i)3-s + (−2.21 − 0.315i)5-s + (2.54 − 0.706i)7-s − 1.00i·9-s − 1.16·11-s + (−1.47 + 1.47i)13-s + (1.78 − 1.34i)15-s + (−1.17 − 1.17i)17-s − 2.09·19-s + (−1.30 + 2.30i)21-s + (−5.33 − 5.33i)23-s + (4.80 + 1.39i)25-s + (0.707 + 0.707i)27-s − 1.55i·29-s − 2.66i·31-s + ⋯ |
L(s) = 1 | + (−0.408 + 0.408i)3-s + (−0.990 − 0.141i)5-s + (0.963 − 0.266i)7-s − 0.333i·9-s − 0.352·11-s + (−0.409 + 0.409i)13-s + (0.461 − 0.346i)15-s + (−0.285 − 0.285i)17-s − 0.481·19-s + (−0.284 + 0.502i)21-s + (−1.11 − 1.11i)23-s + (0.960 + 0.279i)25-s + (0.136 + 0.136i)27-s − 0.288i·29-s − 0.479i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.412 + 0.911i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 840 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.412 + 0.911i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.290757 - 0.450677i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.290757 - 0.450677i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (0.707 - 0.707i)T \) |
| 5 | \( 1 + (2.21 + 0.315i)T \) |
| 7 | \( 1 + (-2.54 + 0.706i)T \) |
good | 11 | \( 1 + 1.16T + 11T^{2} \) |
| 13 | \( 1 + (1.47 - 1.47i)T - 13iT^{2} \) |
| 17 | \( 1 + (1.17 + 1.17i)T + 17iT^{2} \) |
| 19 | \( 1 + 2.09T + 19T^{2} \) |
| 23 | \( 1 + (5.33 + 5.33i)T + 23iT^{2} \) |
| 29 | \( 1 + 1.55iT - 29T^{2} \) |
| 31 | \( 1 + 2.66iT - 31T^{2} \) |
| 37 | \( 1 + (-0.549 + 0.549i)T - 37iT^{2} \) |
| 41 | \( 1 + 8.59iT - 41T^{2} \) |
| 43 | \( 1 + (5.86 + 5.86i)T + 43iT^{2} \) |
| 47 | \( 1 + (8.22 + 8.22i)T + 47iT^{2} \) |
| 53 | \( 1 + (-3.22 - 3.22i)T + 53iT^{2} \) |
| 59 | \( 1 + 3.54T + 59T^{2} \) |
| 61 | \( 1 + 4.08iT - 61T^{2} \) |
| 67 | \( 1 + (-3.06 + 3.06i)T - 67iT^{2} \) |
| 71 | \( 1 + 1.65T + 71T^{2} \) |
| 73 | \( 1 + (6.90 - 6.90i)T - 73iT^{2} \) |
| 79 | \( 1 + 12.6iT - 79T^{2} \) |
| 83 | \( 1 + (3.91 - 3.91i)T - 83iT^{2} \) |
| 89 | \( 1 - 11.8T + 89T^{2} \) |
| 97 | \( 1 + (0.533 + 0.533i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.20476824915215523597637637680, −8.946618883647464786153838032333, −8.241218992573956692159054582815, −7.45473992402066353792922313122, −6.53115903899405614562944247479, −5.24110924945651433714144074186, −4.51012686166930430004051415626, −3.78782158447303897214600817516, −2.16711614103122466680089113880, −0.27614216579845488982072952568,
1.57142391081683224519946664030, 2.98052213670058746894600526070, 4.30996713408608543512248336736, 5.09313190655047213180513377803, 6.13272972596589038146831996981, 7.19134489930116888533281304862, 8.001837122858006726279278381607, 8.368085295998125159594817178250, 9.719797629363897375559342247234, 10.71953903777705016938574593573