Properties

Label 840.2.bt.b.97.1
Level $840$
Weight $2$
Character 840.97
Analytic conductor $6.707$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [840,2,Mod(97,840)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(840, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("840.97"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 840 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 840.bt (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.70743376979\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 97.1
Character \(\chi\) \(=\) 840.97
Dual form 840.2.bt.b.433.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.707107 - 0.707107i) q^{3} +(-2.21371 + 0.315413i) q^{5} +(2.54973 + 0.706295i) q^{7} +1.00000i q^{9} -1.16955 q^{11} +(-1.47521 - 1.47521i) q^{13} +(1.78836 + 1.34230i) q^{15} +(-1.17748 + 1.17748i) q^{17} -2.09803 q^{19} +(-1.30351 - 2.30236i) q^{21} +(-5.33116 + 5.33116i) q^{23} +(4.80103 - 1.39647i) q^{25} +(0.707107 - 0.707107i) q^{27} +1.55395i q^{29} +2.66719i q^{31} +(0.826994 + 0.826994i) q^{33} +(-5.86715 - 0.759313i) q^{35} +(0.549430 + 0.549430i) q^{37} +2.08626i q^{39} +8.59246i q^{41} +(-5.86009 + 5.86009i) q^{43} +(-0.315413 - 2.21371i) q^{45} +(-8.22660 + 8.22660i) q^{47} +(6.00230 + 3.60173i) q^{49} +1.66520 q^{51} +(3.22603 - 3.22603i) q^{53} +(2.58904 - 0.368890i) q^{55} +(1.48353 + 1.48353i) q^{57} -3.54324 q^{59} +4.08335i q^{61} +(-0.706295 + 2.54973i) q^{63} +(3.73099 + 2.80039i) q^{65} +(3.06567 + 3.06567i) q^{67} +7.53940 q^{69} -1.65109 q^{71} +(-6.90630 - 6.90630i) q^{73} +(-4.38229 - 2.40739i) q^{75} +(-2.98203 - 0.826044i) q^{77} +12.6669i q^{79} -1.00000 q^{81} +(-3.91528 - 3.91528i) q^{83} +(2.23520 - 2.97798i) q^{85} +(1.09881 - 1.09881i) q^{87} +11.8136 q^{89} +(-2.71946 - 4.80333i) q^{91} +(1.88599 - 1.88599i) q^{93} +(4.64442 - 0.661744i) q^{95} +(-0.533694 + 0.533694i) q^{97} -1.16955i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 8 q^{11} - 16 q^{13} + 4 q^{15} - 20 q^{17} - 8 q^{19} + 24 q^{23} - 4 q^{25} + 4 q^{37} - 16 q^{43} + 4 q^{45} + 24 q^{47} - 36 q^{49} + 16 q^{53} - 28 q^{55} + 4 q^{57} - 8 q^{59} + 4 q^{63} + 24 q^{65}+ \cdots + 28 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/840\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(281\) \(337\) \(421\) \(631\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{1}{4}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.707107 0.707107i −0.408248 0.408248i
\(4\) 0 0
\(5\) −2.21371 + 0.315413i −0.990001 + 0.141057i
\(6\) 0 0
\(7\) 2.54973 + 0.706295i 0.963709 + 0.266954i
\(8\) 0 0
\(9\) 1.00000i 0.333333i
\(10\) 0 0
\(11\) −1.16955 −0.352631 −0.176316 0.984334i \(-0.556418\pi\)
−0.176316 + 0.984334i \(0.556418\pi\)
\(12\) 0 0
\(13\) −1.47521 1.47521i −0.409150 0.409150i 0.472292 0.881442i \(-0.343427\pi\)
−0.881442 + 0.472292i \(0.843427\pi\)
\(14\) 0 0
\(15\) 1.78836 + 1.34230i 0.461753 + 0.346580i
\(16\) 0 0
\(17\) −1.17748 + 1.17748i −0.285580 + 0.285580i −0.835330 0.549750i \(-0.814723\pi\)
0.549750 + 0.835330i \(0.314723\pi\)
\(18\) 0 0
\(19\) −2.09803 −0.481320 −0.240660 0.970609i \(-0.577364\pi\)
−0.240660 + 0.970609i \(0.577364\pi\)
\(20\) 0 0
\(21\) −1.30351 2.30236i −0.284449 0.502416i
\(22\) 0 0
\(23\) −5.33116 + 5.33116i −1.11162 + 1.11162i −0.118693 + 0.992931i \(0.537870\pi\)
−0.992931 + 0.118693i \(0.962130\pi\)
\(24\) 0 0
\(25\) 4.80103 1.39647i 0.960206 0.279293i
\(26\) 0 0
\(27\) 0.707107 0.707107i 0.136083 0.136083i
\(28\) 0 0
\(29\) 1.55395i 0.288562i 0.989537 + 0.144281i \(0.0460869\pi\)
−0.989537 + 0.144281i \(0.953913\pi\)
\(30\) 0 0
\(31\) 2.66719i 0.479042i 0.970891 + 0.239521i \(0.0769904\pi\)
−0.970891 + 0.239521i \(0.923010\pi\)
\(32\) 0 0
\(33\) 0.826994 + 0.826994i 0.143961 + 0.143961i
\(34\) 0 0
\(35\) −5.86715 0.759313i −0.991729 0.128347i
\(36\) 0 0
\(37\) 0.549430 + 0.549430i 0.0903257 + 0.0903257i 0.750826 0.660500i \(-0.229656\pi\)
−0.660500 + 0.750826i \(0.729656\pi\)
\(38\) 0 0
\(39\) 2.08626i 0.334069i
\(40\) 0 0
\(41\) 8.59246i 1.34192i 0.741495 + 0.670959i \(0.234117\pi\)
−0.741495 + 0.670959i \(0.765883\pi\)
\(42\) 0 0
\(43\) −5.86009 + 5.86009i −0.893656 + 0.893656i −0.994865 0.101209i \(-0.967729\pi\)
0.101209 + 0.994865i \(0.467729\pi\)
\(44\) 0 0
\(45\) −0.315413 2.21371i −0.0470190 0.330000i
\(46\) 0 0
\(47\) −8.22660 + 8.22660i −1.19997 + 1.19997i −0.225800 + 0.974174i \(0.572500\pi\)
−0.974174 + 0.225800i \(0.927500\pi\)
\(48\) 0 0
\(49\) 6.00230 + 3.60173i 0.857471 + 0.514533i
\(50\) 0 0
\(51\) 1.66520 0.233175
\(52\) 0 0
\(53\) 3.22603 3.22603i 0.443129 0.443129i −0.449933 0.893062i \(-0.648552\pi\)
0.893062 + 0.449933i \(0.148552\pi\)
\(54\) 0 0
\(55\) 2.58904 0.368890i 0.349105 0.0497411i
\(56\) 0 0
\(57\) 1.48353 + 1.48353i 0.196498 + 0.196498i
\(58\) 0 0
\(59\) −3.54324 −0.461291 −0.230646 0.973038i \(-0.574084\pi\)
−0.230646 + 0.973038i \(0.574084\pi\)
\(60\) 0 0
\(61\) 4.08335i 0.522819i 0.965228 + 0.261409i \(0.0841873\pi\)
−0.965228 + 0.261409i \(0.915813\pi\)
\(62\) 0 0
\(63\) −0.706295 + 2.54973i −0.0889848 + 0.321236i
\(64\) 0 0
\(65\) 3.73099 + 2.80039i 0.462772 + 0.347345i
\(66\) 0 0
\(67\) 3.06567 + 3.06567i 0.374531 + 0.374531i 0.869124 0.494594i \(-0.164683\pi\)
−0.494594 + 0.869124i \(0.664683\pi\)
\(68\) 0 0
\(69\) 7.53940 0.907637
\(70\) 0 0
\(71\) −1.65109 −0.195948 −0.0979739 0.995189i \(-0.531236\pi\)
−0.0979739 + 0.995189i \(0.531236\pi\)
\(72\) 0 0
\(73\) −6.90630 6.90630i −0.808321 0.808321i 0.176059 0.984380i \(-0.443665\pi\)
−0.984380 + 0.176059i \(0.943665\pi\)
\(74\) 0 0
\(75\) −4.38229 2.40739i −0.506023 0.277982i
\(76\) 0 0
\(77\) −2.98203 0.826044i −0.339834 0.0941364i
\(78\) 0 0
\(79\) 12.6669i 1.42513i 0.701605 + 0.712566i \(0.252467\pi\)
−0.701605 + 0.712566i \(0.747533\pi\)
\(80\) 0 0
\(81\) −1.00000 −0.111111
\(82\) 0 0
\(83\) −3.91528 3.91528i −0.429758 0.429758i 0.458788 0.888546i \(-0.348284\pi\)
−0.888546 + 0.458788i \(0.848284\pi\)
\(84\) 0 0
\(85\) 2.23520 2.97798i 0.242442 0.323008i
\(86\) 0 0
\(87\) 1.09881 1.09881i 0.117805 0.117805i
\(88\) 0 0
\(89\) 11.8136 1.25224 0.626120 0.779727i \(-0.284642\pi\)
0.626120 + 0.779727i \(0.284642\pi\)
\(90\) 0 0
\(91\) −2.71946 4.80333i −0.285077 0.503526i
\(92\) 0 0
\(93\) 1.88599 1.88599i 0.195568 0.195568i
\(94\) 0 0
\(95\) 4.64442 0.661744i 0.476508 0.0678935i
\(96\) 0 0
\(97\) −0.533694 + 0.533694i −0.0541884 + 0.0541884i −0.733682 0.679493i \(-0.762200\pi\)
0.679493 + 0.733682i \(0.262200\pi\)
\(98\) 0 0
\(99\) 1.16955i 0.117544i
\(100\) 0 0
\(101\) 2.20950i 0.219853i 0.993940 + 0.109927i \(0.0350616\pi\)
−0.993940 + 0.109927i \(0.964938\pi\)
\(102\) 0 0
\(103\) −3.10352 3.10352i −0.305799 0.305799i 0.537478 0.843278i \(-0.319377\pi\)
−0.843278 + 0.537478i \(0.819377\pi\)
\(104\) 0 0
\(105\) 3.61179 + 4.68562i 0.352474 + 0.457269i
\(106\) 0 0
\(107\) −12.8183 12.8183i −1.23919 1.23919i −0.960331 0.278863i \(-0.910042\pi\)
−0.278863 0.960331i \(-0.589958\pi\)
\(108\) 0 0
\(109\) 10.5750i 1.01290i −0.862269 0.506450i \(-0.830958\pi\)
0.862269 0.506450i \(-0.169042\pi\)
\(110\) 0 0
\(111\) 0.777011i 0.0737506i
\(112\) 0 0
\(113\) 13.4278 13.4278i 1.26318 1.26318i 0.313632 0.949545i \(-0.398454\pi\)
0.949545 0.313632i \(-0.101546\pi\)
\(114\) 0 0
\(115\) 10.1201 13.4832i 0.943707 1.25731i
\(116\) 0 0
\(117\) 1.47521 1.47521i 0.136383 0.136383i
\(118\) 0 0
\(119\) −3.83390 + 2.17061i −0.351453 + 0.198979i
\(120\) 0 0
\(121\) −9.63216 −0.875651
\(122\) 0 0
\(123\) 6.07579 6.07579i 0.547836 0.547836i
\(124\) 0 0
\(125\) −10.1876 + 4.60568i −0.911209 + 0.411944i
\(126\) 0 0
\(127\) −5.27244 5.27244i −0.467854 0.467854i 0.433365 0.901219i \(-0.357326\pi\)
−0.901219 + 0.433365i \(0.857326\pi\)
\(128\) 0 0
\(129\) 8.28742 0.729667
\(130\) 0 0
\(131\) 8.06509i 0.704650i 0.935878 + 0.352325i \(0.114609\pi\)
−0.935878 + 0.352325i \(0.885391\pi\)
\(132\) 0 0
\(133\) −5.34941 1.48182i −0.463852 0.128490i
\(134\) 0 0
\(135\) −1.34230 + 1.78836i −0.115527 + 0.153918i
\(136\) 0 0
\(137\) −10.8606 10.8606i −0.927884 0.927884i 0.0696853 0.997569i \(-0.477801\pi\)
−0.997569 + 0.0696853i \(0.977801\pi\)
\(138\) 0 0
\(139\) 21.0607 1.78635 0.893175 0.449710i \(-0.148473\pi\)
0.893175 + 0.449710i \(0.148473\pi\)
\(140\) 0 0
\(141\) 11.6342 0.979774
\(142\) 0 0
\(143\) 1.72533 + 1.72533i 0.144279 + 0.144279i
\(144\) 0 0
\(145\) −0.490137 3.44000i −0.0407037 0.285677i
\(146\) 0 0
\(147\) −1.69746 6.79107i −0.140004 0.560118i
\(148\) 0 0
\(149\) 9.76883i 0.800294i 0.916451 + 0.400147i \(0.131041\pi\)
−0.916451 + 0.400147i \(0.868959\pi\)
\(150\) 0 0
\(151\) 18.6840 1.52049 0.760243 0.649639i \(-0.225080\pi\)
0.760243 + 0.649639i \(0.225080\pi\)
\(152\) 0 0
\(153\) −1.17748 1.17748i −0.0951933 0.0951933i
\(154\) 0 0
\(155\) −0.841267 5.90440i −0.0675722 0.474253i
\(156\) 0 0
\(157\) −10.9680 + 10.9680i −0.875342 + 0.875342i −0.993048 0.117707i \(-0.962446\pi\)
0.117707 + 0.993048i \(0.462446\pi\)
\(158\) 0 0
\(159\) −4.56229 −0.361813
\(160\) 0 0
\(161\) −17.3584 + 9.82768i −1.36803 + 0.774529i
\(162\) 0 0
\(163\) −5.89745 + 5.89745i −0.461924 + 0.461924i −0.899286 0.437362i \(-0.855913\pi\)
0.437362 + 0.899286i \(0.355913\pi\)
\(164\) 0 0
\(165\) −2.09157 1.56988i −0.162828 0.122215i
\(166\) 0 0
\(167\) −11.8929 + 11.8929i −0.920301 + 0.920301i −0.997050 0.0767495i \(-0.975546\pi\)
0.0767495 + 0.997050i \(0.475546\pi\)
\(168\) 0 0
\(169\) 8.64751i 0.665193i
\(170\) 0 0
\(171\) 2.09803i 0.160440i
\(172\) 0 0
\(173\) 4.79478 + 4.79478i 0.364540 + 0.364540i 0.865481 0.500941i \(-0.167013\pi\)
−0.500941 + 0.865481i \(0.667013\pi\)
\(174\) 0 0
\(175\) 13.2277 0.169675i 0.999918 0.0128262i
\(176\) 0 0
\(177\) 2.50545 + 2.50545i 0.188321 + 0.188321i
\(178\) 0 0
\(179\) 20.8432i 1.55790i −0.627089 0.778948i \(-0.715754\pi\)
0.627089 0.778948i \(-0.284246\pi\)
\(180\) 0 0
\(181\) 6.01487i 0.447081i 0.974695 + 0.223541i \(0.0717616\pi\)
−0.974695 + 0.223541i \(0.928238\pi\)
\(182\) 0 0
\(183\) 2.88736 2.88736i 0.213440 0.213440i
\(184\) 0 0
\(185\) −1.38958 1.04298i −0.102164 0.0766815i
\(186\) 0 0
\(187\) 1.37711 1.37711i 0.100704 0.100704i
\(188\) 0 0
\(189\) 2.30236 1.30351i 0.167472 0.0948163i
\(190\) 0 0
\(191\) 3.91499 0.283279 0.141639 0.989918i \(-0.454763\pi\)
0.141639 + 0.989918i \(0.454763\pi\)
\(192\) 0 0
\(193\) 13.1766 13.1766i 0.948474 0.948474i −0.0502617 0.998736i \(-0.516006\pi\)
0.998736 + 0.0502617i \(0.0160055\pi\)
\(194\) 0 0
\(195\) −0.658034 4.61838i −0.0471228 0.330729i
\(196\) 0 0
\(197\) −3.59483 3.59483i −0.256121 0.256121i 0.567353 0.823475i \(-0.307967\pi\)
−0.823475 + 0.567353i \(0.807967\pi\)
\(198\) 0 0
\(199\) 9.84894 0.698173 0.349086 0.937091i \(-0.386492\pi\)
0.349086 + 0.937091i \(0.386492\pi\)
\(200\) 0 0
\(201\) 4.33551i 0.305803i
\(202\) 0 0
\(203\) −1.09755 + 3.96217i −0.0770329 + 0.278090i
\(204\) 0 0
\(205\) −2.71017 19.0212i −0.189287 1.32850i
\(206\) 0 0
\(207\) −5.33116 5.33116i −0.370541 0.370541i
\(208\) 0 0
\(209\) 2.45374 0.169728
\(210\) 0 0
\(211\) −24.1308 −1.66123 −0.830616 0.556845i \(-0.812012\pi\)
−0.830616 + 0.556845i \(0.812012\pi\)
\(212\) 0 0
\(213\) 1.16749 + 1.16749i 0.0799954 + 0.0799954i
\(214\) 0 0
\(215\) 11.1242 14.8209i 0.758664 1.01078i
\(216\) 0 0
\(217\) −1.88383 + 6.80064i −0.127882 + 0.461657i
\(218\) 0 0
\(219\) 9.76698i 0.659991i
\(220\) 0 0
\(221\) 3.47405 0.233690
\(222\) 0 0
\(223\) −1.60954 1.60954i −0.107783 0.107783i 0.651159 0.758942i \(-0.274283\pi\)
−0.758942 + 0.651159i \(0.774283\pi\)
\(224\) 0 0
\(225\) 1.39647 + 4.80103i 0.0930977 + 0.320069i
\(226\) 0 0
\(227\) −4.53928 + 4.53928i −0.301282 + 0.301282i −0.841515 0.540233i \(-0.818336\pi\)
0.540233 + 0.841515i \(0.318336\pi\)
\(228\) 0 0
\(229\) 15.1551 1.00148 0.500738 0.865599i \(-0.333062\pi\)
0.500738 + 0.865599i \(0.333062\pi\)
\(230\) 0 0
\(231\) 1.52451 + 2.69272i 0.100306 + 0.177168i
\(232\) 0 0
\(233\) −8.24037 + 8.24037i −0.539844 + 0.539844i −0.923483 0.383639i \(-0.874671\pi\)
0.383639 + 0.923483i \(0.374671\pi\)
\(234\) 0 0
\(235\) 15.6165 20.8061i 1.01871 1.35724i
\(236\) 0 0
\(237\) 8.95682 8.95682i 0.581808 0.581808i
\(238\) 0 0
\(239\) 8.52067i 0.551156i 0.961279 + 0.275578i \(0.0888693\pi\)
−0.961279 + 0.275578i \(0.911131\pi\)
\(240\) 0 0
\(241\) 17.9877i 1.15869i −0.815082 0.579346i \(-0.803308\pi\)
0.815082 0.579346i \(-0.196692\pi\)
\(242\) 0 0
\(243\) 0.707107 + 0.707107i 0.0453609 + 0.0453609i
\(244\) 0 0
\(245\) −14.4234 6.07998i −0.921476 0.388436i
\(246\) 0 0
\(247\) 3.09503 + 3.09503i 0.196932 + 0.196932i
\(248\) 0 0
\(249\) 5.53705i 0.350896i
\(250\) 0 0
\(251\) 9.19362i 0.580296i 0.956982 + 0.290148i \(0.0937045\pi\)
−0.956982 + 0.290148i \(0.906295\pi\)
\(252\) 0 0
\(253\) 6.23503 6.23503i 0.391993 0.391993i
\(254\) 0 0
\(255\) −3.68628 + 0.525226i −0.230844 + 0.0328910i
\(256\) 0 0
\(257\) 20.1040 20.1040i 1.25405 1.25405i 0.300167 0.953887i \(-0.402958\pi\)
0.953887 0.300167i \(-0.0970423\pi\)
\(258\) 0 0
\(259\) 1.01284 + 1.78896i 0.0629349 + 0.111161i
\(260\) 0 0
\(261\) −1.55395 −0.0961873
\(262\) 0 0
\(263\) 15.8468 15.8468i 0.977154 0.977154i −0.0225912 0.999745i \(-0.507192\pi\)
0.999745 + 0.0225912i \(0.00719162\pi\)
\(264\) 0 0
\(265\) −6.12396 + 8.15902i −0.376192 + 0.501205i
\(266\) 0 0
\(267\) −8.35348 8.35348i −0.511224 0.511224i
\(268\) 0 0
\(269\) 17.6809 1.07802 0.539012 0.842298i \(-0.318798\pi\)
0.539012 + 0.842298i \(0.318798\pi\)
\(270\) 0 0
\(271\) 4.30310i 0.261395i 0.991422 + 0.130697i \(0.0417217\pi\)
−0.991422 + 0.130697i \(0.958278\pi\)
\(272\) 0 0
\(273\) −1.47352 + 5.31941i −0.0891812 + 0.321946i
\(274\) 0 0
\(275\) −5.61502 + 1.63323i −0.338599 + 0.0984875i
\(276\) 0 0
\(277\) 7.12848 + 7.12848i 0.428309 + 0.428309i 0.888052 0.459743i \(-0.152059\pi\)
−0.459743 + 0.888052i \(0.652059\pi\)
\(278\) 0 0
\(279\) −2.66719 −0.159681
\(280\) 0 0
\(281\) 0.0128067 0.000763985 0.000381992 1.00000i \(-0.499878\pi\)
0.000381992 1.00000i \(0.499878\pi\)
\(282\) 0 0
\(283\) 22.1980 + 22.1980i 1.31953 + 1.31953i 0.914146 + 0.405386i \(0.132863\pi\)
0.405386 + 0.914146i \(0.367137\pi\)
\(284\) 0 0
\(285\) −3.75202 2.81618i −0.222251 0.166816i
\(286\) 0 0
\(287\) −6.06881 + 21.9085i −0.358231 + 1.29322i
\(288\) 0 0
\(289\) 14.2271i 0.836888i
\(290\) 0 0
\(291\) 0.754757 0.0442446
\(292\) 0 0
\(293\) −18.9408 18.9408i −1.10653 1.10653i −0.993603 0.112932i \(-0.963976\pi\)
−0.112932 0.993603i \(-0.536024\pi\)
\(294\) 0 0
\(295\) 7.84372 1.11758i 0.456679 0.0650683i
\(296\) 0 0
\(297\) −0.826994 + 0.826994i −0.0479870 + 0.0479870i
\(298\) 0 0
\(299\) 15.7292 0.909641
\(300\) 0 0
\(301\) −19.0806 + 10.8027i −1.09979 + 0.622659i
\(302\) 0 0
\(303\) 1.56235 1.56235i 0.0897547 0.0897547i
\(304\) 0 0
\(305\) −1.28794 9.03935i −0.0737472 0.517591i
\(306\) 0 0
\(307\) 2.64729 2.64729i 0.151089 0.151089i −0.627515 0.778604i \(-0.715928\pi\)
0.778604 + 0.627515i \(0.215928\pi\)
\(308\) 0 0
\(309\) 4.38904i 0.249684i
\(310\) 0 0
\(311\) 2.01981i 0.114533i 0.998359 + 0.0572663i \(0.0182384\pi\)
−0.998359 + 0.0572663i \(0.981762\pi\)
\(312\) 0 0
\(313\) −22.5469 22.5469i −1.27442 1.27442i −0.943742 0.330682i \(-0.892721\pi\)
−0.330682 0.943742i \(-0.607279\pi\)
\(314\) 0 0
\(315\) 0.759313 5.86715i 0.0427824 0.330576i
\(316\) 0 0
\(317\) 7.40527 + 7.40527i 0.415921 + 0.415921i 0.883795 0.467874i \(-0.154980\pi\)
−0.467874 + 0.883795i \(0.654980\pi\)
\(318\) 0 0
\(319\) 1.81742i 0.101756i
\(320\) 0 0
\(321\) 18.1278i 1.01180i
\(322\) 0 0
\(323\) 2.47038 2.47038i 0.137455 0.137455i
\(324\) 0 0
\(325\) −9.14261 5.02245i −0.507141 0.278595i
\(326\) 0 0
\(327\) −7.47764 + 7.47764i −0.413515 + 0.413515i
\(328\) 0 0
\(329\) −26.7861 + 15.1653i −1.47676 + 0.836087i
\(330\) 0 0
\(331\) −19.1118 −1.05048 −0.525239 0.850955i \(-0.676024\pi\)
−0.525239 + 0.850955i \(0.676024\pi\)
\(332\) 0 0
\(333\) −0.549430 + 0.549430i −0.0301086 + 0.0301086i
\(334\) 0 0
\(335\) −7.75345 5.81955i −0.423616 0.317956i
\(336\) 0 0
\(337\) 21.3329 + 21.3329i 1.16208 + 1.16208i 0.984020 + 0.178056i \(0.0569808\pi\)
0.178056 + 0.984020i \(0.443019\pi\)
\(338\) 0 0
\(339\) −18.9897 −1.03138
\(340\) 0 0
\(341\) 3.11941i 0.168925i
\(342\) 0 0
\(343\) 12.7604 + 13.4228i 0.688996 + 0.724765i
\(344\) 0 0
\(345\) −16.6901 + 2.37802i −0.898562 + 0.128028i
\(346\) 0 0
\(347\) 0.284538 + 0.284538i 0.0152748 + 0.0152748i 0.714703 0.699428i \(-0.246562\pi\)
−0.699428 + 0.714703i \(0.746562\pi\)
\(348\) 0 0
\(349\) 5.53962 0.296529 0.148265 0.988948i \(-0.452631\pi\)
0.148265 + 0.988948i \(0.452631\pi\)
\(350\) 0 0
\(351\) −2.08626 −0.111356
\(352\) 0 0
\(353\) 10.5628 + 10.5628i 0.562203 + 0.562203i 0.929933 0.367730i \(-0.119865\pi\)
−0.367730 + 0.929933i \(0.619865\pi\)
\(354\) 0 0
\(355\) 3.65503 0.520774i 0.193989 0.0276398i
\(356\) 0 0
\(357\) 4.24583 + 1.17612i 0.224713 + 0.0622471i
\(358\) 0 0
\(359\) 3.33136i 0.175823i −0.996128 0.0879113i \(-0.971981\pi\)
0.996128 0.0879113i \(-0.0280192\pi\)
\(360\) 0 0
\(361\) −14.5983 −0.768331
\(362\) 0 0
\(363\) 6.81097 + 6.81097i 0.357483 + 0.357483i
\(364\) 0 0
\(365\) 17.4669 + 13.1102i 0.914258 + 0.686220i
\(366\) 0 0
\(367\) −22.3369 + 22.3369i −1.16598 + 1.16598i −0.182831 + 0.983144i \(0.558526\pi\)
−0.983144 + 0.182831i \(0.941474\pi\)
\(368\) 0 0
\(369\) −8.59246 −0.447306
\(370\) 0 0
\(371\) 10.5040 5.94699i 0.545343 0.308752i
\(372\) 0 0
\(373\) −20.9830 + 20.9830i −1.08646 + 1.08646i −0.0905682 + 0.995890i \(0.528868\pi\)
−0.995890 + 0.0905682i \(0.971132\pi\)
\(374\) 0 0
\(375\) 10.4604 + 3.94704i 0.540175 + 0.203824i
\(376\) 0 0
\(377\) 2.29241 2.29241i 0.118065 0.118065i
\(378\) 0 0
\(379\) 14.9942i 0.770202i −0.922875 0.385101i \(-0.874167\pi\)
0.922875 0.385101i \(-0.125833\pi\)
\(380\) 0 0
\(381\) 7.45636i 0.382001i
\(382\) 0 0
\(383\) 14.1677 + 14.1677i 0.723937 + 0.723937i 0.969405 0.245468i \(-0.0789416\pi\)
−0.245468 + 0.969405i \(0.578942\pi\)
\(384\) 0 0
\(385\) 6.86190 + 0.888051i 0.349715 + 0.0452593i
\(386\) 0 0
\(387\) −5.86009 5.86009i −0.297885 0.297885i
\(388\) 0 0
\(389\) 33.0008i 1.67321i 0.547808 + 0.836604i \(0.315463\pi\)
−0.547808 + 0.836604i \(0.684537\pi\)
\(390\) 0 0
\(391\) 12.5546i 0.634915i
\(392\) 0 0
\(393\) 5.70288 5.70288i 0.287672 0.287672i
\(394\) 0 0
\(395\) −3.99529 28.0408i −0.201025 1.41088i
\(396\) 0 0
\(397\) −24.2791 + 24.2791i −1.21853 + 1.21853i −0.250385 + 0.968146i \(0.580557\pi\)
−0.968146 + 0.250385i \(0.919443\pi\)
\(398\) 0 0
\(399\) 2.73479 + 4.83041i 0.136911 + 0.241823i
\(400\) 0 0
\(401\) 7.14242 0.356676 0.178338 0.983969i \(-0.442928\pi\)
0.178338 + 0.983969i \(0.442928\pi\)
\(402\) 0 0
\(403\) 3.93467 3.93467i 0.196000 0.196000i
\(404\) 0 0
\(405\) 2.21371 0.315413i 0.110000 0.0156730i
\(406\) 0 0
\(407\) −0.642583 0.642583i −0.0318517 0.0318517i
\(408\) 0 0
\(409\) −12.5120 −0.618679 −0.309340 0.950952i \(-0.600108\pi\)
−0.309340 + 0.950952i \(0.600108\pi\)
\(410\) 0 0
\(411\) 15.3592i 0.757614i
\(412\) 0 0
\(413\) −9.03433 2.50257i −0.444551 0.123144i
\(414\) 0 0
\(415\) 9.90224 + 7.43237i 0.486082 + 0.364841i
\(416\) 0 0
\(417\) −14.8922 14.8922i −0.729274 0.729274i
\(418\) 0 0
\(419\) −1.88070 −0.0918783 −0.0459392 0.998944i \(-0.514628\pi\)
−0.0459392 + 0.998944i \(0.514628\pi\)
\(420\) 0 0
\(421\) −1.76836 −0.0861848 −0.0430924 0.999071i \(-0.513721\pi\)
−0.0430924 + 0.999071i \(0.513721\pi\)
\(422\) 0 0
\(423\) −8.22660 8.22660i −0.399991 0.399991i
\(424\) 0 0
\(425\) −4.00879 + 7.29740i −0.194455 + 0.353976i
\(426\) 0 0
\(427\) −2.88405 + 10.4114i −0.139569 + 0.503845i
\(428\) 0 0
\(429\) 2.43998i 0.117803i
\(430\) 0 0
\(431\) 36.9420 1.77943 0.889717 0.456513i \(-0.150902\pi\)
0.889717 + 0.456513i \(0.150902\pi\)
\(432\) 0 0
\(433\) −24.2328 24.2328i −1.16456 1.16456i −0.983467 0.181089i \(-0.942038\pi\)
−0.181089 0.983467i \(-0.557962\pi\)
\(434\) 0 0
\(435\) −2.08587 + 2.77903i −0.100010 + 0.133244i
\(436\) 0 0
\(437\) 11.1849 11.1849i 0.535047 0.535047i
\(438\) 0 0
\(439\) −21.3785 −1.02034 −0.510170 0.860073i \(-0.670418\pi\)
−0.510170 + 0.860073i \(0.670418\pi\)
\(440\) 0 0
\(441\) −3.60173 + 6.00230i −0.171511 + 0.285824i
\(442\) 0 0
\(443\) −14.7576 + 14.7576i −0.701157 + 0.701157i −0.964659 0.263502i \(-0.915122\pi\)
0.263502 + 0.964659i \(0.415122\pi\)
\(444\) 0 0
\(445\) −26.1519 + 3.72616i −1.23972 + 0.176637i
\(446\) 0 0
\(447\) 6.90761 6.90761i 0.326719 0.326719i
\(448\) 0 0
\(449\) 12.3378i 0.582258i 0.956684 + 0.291129i \(0.0940308\pi\)
−0.956684 + 0.291129i \(0.905969\pi\)
\(450\) 0 0
\(451\) 10.0493i 0.473202i
\(452\) 0 0
\(453\) −13.2116 13.2116i −0.620736 0.620736i
\(454\) 0 0
\(455\) 7.53513 + 9.77542i 0.353252 + 0.458279i
\(456\) 0 0
\(457\) 8.21102 + 8.21102i 0.384095 + 0.384095i 0.872575 0.488480i \(-0.162448\pi\)
−0.488480 + 0.872575i \(0.662448\pi\)
\(458\) 0 0
\(459\) 1.66520i 0.0777250i
\(460\) 0 0
\(461\) 12.1207i 0.564518i −0.959338 0.282259i \(-0.908916\pi\)
0.959338 0.282259i \(-0.0910837\pi\)
\(462\) 0 0
\(463\) −10.1259 + 10.1259i −0.470590 + 0.470590i −0.902105 0.431516i \(-0.857979\pi\)
0.431516 + 0.902105i \(0.357979\pi\)
\(464\) 0 0
\(465\) −3.58017 + 4.76991i −0.166027 + 0.221199i
\(466\) 0 0
\(467\) 29.1547 29.1547i 1.34912 1.34912i 0.462496 0.886621i \(-0.346954\pi\)
0.886621 0.462496i \(-0.153046\pi\)
\(468\) 0 0
\(469\) 5.65137 + 9.98190i 0.260956 + 0.460921i
\(470\) 0 0
\(471\) 15.5111 0.714714
\(472\) 0 0
\(473\) 6.85364 6.85364i 0.315131 0.315131i
\(474\) 0 0
\(475\) −10.0727 + 2.92982i −0.462166 + 0.134429i
\(476\) 0 0
\(477\) 3.22603 + 3.22603i 0.147710 + 0.147710i
\(478\) 0 0
\(479\) −7.98164 −0.364691 −0.182345 0.983235i \(-0.558369\pi\)
−0.182345 + 0.983235i \(0.558369\pi\)
\(480\) 0 0
\(481\) 1.62105i 0.0739134i
\(482\) 0 0
\(483\) 19.2235 + 5.32504i 0.874698 + 0.242298i
\(484\) 0 0
\(485\) 1.01311 1.34978i 0.0460029 0.0612902i
\(486\) 0 0
\(487\) 20.2029 + 20.2029i 0.915480 + 0.915480i 0.996696 0.0812164i \(-0.0258805\pi\)
−0.0812164 + 0.996696i \(0.525881\pi\)
\(488\) 0 0
\(489\) 8.34026 0.377160
\(490\) 0 0
\(491\) −12.8079 −0.578013 −0.289006 0.957327i \(-0.593325\pi\)
−0.289006 + 0.957327i \(0.593325\pi\)
\(492\) 0 0
\(493\) −1.82974 1.82974i −0.0824075 0.0824075i
\(494\) 0 0
\(495\) 0.368890 + 2.58904i 0.0165804 + 0.116368i
\(496\) 0 0
\(497\) −4.20983 1.16615i −0.188837 0.0523091i
\(498\) 0 0
\(499\) 1.54064i 0.0689687i 0.999405 + 0.0344844i \(0.0109789\pi\)
−0.999405 + 0.0344844i \(0.989021\pi\)
\(500\) 0 0
\(501\) 16.8191 0.751423
\(502\) 0 0
\(503\) −23.3462 23.3462i −1.04096 1.04096i −0.999125 0.0418326i \(-0.986680\pi\)
−0.0418326 0.999125i \(-0.513320\pi\)
\(504\) 0 0
\(505\) −0.696904 4.89119i −0.0310118 0.217655i
\(506\) 0 0
\(507\) −6.11471 + 6.11471i −0.271564 + 0.271564i
\(508\) 0 0
\(509\) 16.4830 0.730595 0.365297 0.930891i \(-0.380967\pi\)
0.365297 + 0.930891i \(0.380967\pi\)
\(510\) 0 0
\(511\) −12.7313 22.4871i −0.563202 0.994771i
\(512\) 0 0
\(513\) −1.48353 + 1.48353i −0.0654994 + 0.0654994i
\(514\) 0 0
\(515\) 7.84919 + 5.89141i 0.345877 + 0.259607i
\(516\) 0 0
\(517\) 9.62139 9.62139i 0.423148 0.423148i
\(518\) 0 0
\(519\) 6.78084i 0.297646i
\(520\) 0 0
\(521\) 9.53921i 0.417920i 0.977924 + 0.208960i \(0.0670079\pi\)
−0.977924 + 0.208960i \(0.932992\pi\)
\(522\) 0 0
\(523\) −15.0269 15.0269i −0.657081 0.657081i 0.297607 0.954688i \(-0.403811\pi\)
−0.954688 + 0.297607i \(0.903811\pi\)
\(524\) 0 0
\(525\) −9.47335 9.23340i −0.413451 0.402978i
\(526\) 0 0
\(527\) −3.14056 3.14056i −0.136805 0.136805i
\(528\) 0 0
\(529\) 33.8426i 1.47142i
\(530\) 0 0
\(531\) 3.54324i 0.153764i
\(532\) 0 0
\(533\) 12.6757 12.6757i 0.549045 0.549045i
\(534\) 0 0
\(535\) 32.4191 + 24.3330i 1.40160 + 1.05201i
\(536\) 0 0
\(537\) −14.7384 + 14.7384i −0.636008 + 0.636008i
\(538\) 0 0
\(539\) −7.01996 4.21238i −0.302371 0.181440i
\(540\) 0 0
\(541\) 9.59097 0.412348 0.206174 0.978515i \(-0.433899\pi\)
0.206174 + 0.978515i \(0.433899\pi\)
\(542\) 0 0
\(543\) 4.25315 4.25315i 0.182520 0.182520i
\(544\) 0 0
\(545\) 3.33549 + 23.4100i 0.142876 + 1.00277i
\(546\) 0 0
\(547\) 7.34333 + 7.34333i 0.313978 + 0.313978i 0.846449 0.532470i \(-0.178736\pi\)
−0.532470 + 0.846449i \(0.678736\pi\)
\(548\) 0 0
\(549\) −4.08335 −0.174273
\(550\) 0 0
\(551\) 3.26023i 0.138891i
\(552\) 0 0
\(553\) −8.94653 + 32.2971i −0.380445 + 1.37341i
\(554\) 0 0
\(555\) 0.245079 + 1.72008i 0.0104030 + 0.0730132i
\(556\) 0 0
\(557\) −4.35752 4.35752i −0.184634 0.184634i 0.608738 0.793372i \(-0.291676\pi\)
−0.793372 + 0.608738i \(0.791676\pi\)
\(558\) 0 0
\(559\) 17.2897 0.731278
\(560\) 0 0
\(561\) −1.94753 −0.0822248
\(562\) 0 0
\(563\) 9.52617 + 9.52617i 0.401480 + 0.401480i 0.878754 0.477274i \(-0.158375\pi\)
−0.477274 + 0.878754i \(0.658375\pi\)
\(564\) 0 0
\(565\) −25.4899 + 33.9604i −1.07237 + 1.42873i
\(566\) 0 0
\(567\) −2.54973 0.706295i −0.107079 0.0296616i
\(568\) 0 0
\(569\) 45.4914i 1.90710i 0.301234 + 0.953550i \(0.402602\pi\)
−0.301234 + 0.953550i \(0.597398\pi\)
\(570\) 0 0
\(571\) −1.58586 −0.0663662 −0.0331831 0.999449i \(-0.510564\pi\)
−0.0331831 + 0.999449i \(0.510564\pi\)
\(572\) 0 0
\(573\) −2.76832 2.76832i −0.115648 0.115648i
\(574\) 0 0
\(575\) −18.1503 + 33.0398i −0.756919 + 1.37786i
\(576\) 0 0
\(577\) −0.0900964 + 0.0900964i −0.00375076 + 0.00375076i −0.708980 0.705229i \(-0.750844\pi\)
0.705229 + 0.708980i \(0.250844\pi\)
\(578\) 0 0
\(579\) −18.6346 −0.774426
\(580\) 0 0
\(581\) −7.21759 12.7483i −0.299436 0.528888i
\(582\) 0 0
\(583\) −3.77299 + 3.77299i −0.156261 + 0.156261i
\(584\) 0 0
\(585\) −2.80039 + 3.73099i −0.115782 + 0.154257i
\(586\) 0 0
\(587\) 19.4877 19.4877i 0.804343 0.804343i −0.179428 0.983771i \(-0.557425\pi\)
0.983771 + 0.179428i \(0.0574248\pi\)
\(588\) 0 0
\(589\) 5.59584i 0.230573i
\(590\) 0 0
\(591\) 5.08386i 0.209122i
\(592\) 0 0
\(593\) 3.32187 + 3.32187i 0.136413 + 0.136413i 0.772016 0.635603i \(-0.219248\pi\)
−0.635603 + 0.772016i \(0.719248\pi\)
\(594\) 0 0
\(595\) 7.80250 6.01436i 0.319871 0.246565i
\(596\) 0 0
\(597\) −6.96425 6.96425i −0.285028 0.285028i
\(598\) 0 0
\(599\) 9.57594i 0.391262i −0.980678 0.195631i \(-0.937324\pi\)
0.980678 0.195631i \(-0.0626755\pi\)
\(600\) 0 0
\(601\) 1.74051i 0.0709968i −0.999370 0.0354984i \(-0.988698\pi\)
0.999370 0.0354984i \(-0.0113019\pi\)
\(602\) 0 0
\(603\) −3.06567 + 3.06567i −0.124844 + 0.124844i
\(604\) 0 0
\(605\) 21.3228 3.03811i 0.866896 0.123517i
\(606\) 0 0
\(607\) −17.3146 + 17.3146i −0.702780 + 0.702780i −0.965006 0.262227i \(-0.915543\pi\)
0.262227 + 0.965006i \(0.415543\pi\)
\(608\) 0 0
\(609\) 3.57776 2.02559i 0.144978 0.0820812i
\(610\) 0 0
\(611\) 24.2719 0.981938
\(612\) 0 0
\(613\) −29.7369 + 29.7369i −1.20106 + 1.20106i −0.227220 + 0.973843i \(0.572964\pi\)
−0.973843 + 0.227220i \(0.927036\pi\)
\(614\) 0 0
\(615\) −11.5337 + 15.3664i −0.465082 + 0.619634i
\(616\) 0 0
\(617\) −11.9800 11.9800i −0.482299 0.482299i 0.423566 0.905865i \(-0.360778\pi\)
−0.905865 + 0.423566i \(0.860778\pi\)
\(618\) 0 0
\(619\) −49.2792 −1.98070 −0.990350 0.138591i \(-0.955743\pi\)
−0.990350 + 0.138591i \(0.955743\pi\)
\(620\) 0 0
\(621\) 7.53940i 0.302546i
\(622\) 0 0
\(623\) 30.1215 + 8.34388i 1.20679 + 0.334291i
\(624\) 0 0
\(625\) 21.0998 13.4089i 0.843991 0.536358i
\(626\) 0 0
\(627\) −1.73505 1.73505i −0.0692913 0.0692913i
\(628\) 0 0
\(629\) −1.29388 −0.0515904
\(630\) 0 0
\(631\) −4.70534 −0.187317 −0.0936583 0.995604i \(-0.529856\pi\)
−0.0936583 + 0.995604i \(0.529856\pi\)
\(632\) 0 0
\(633\) 17.0630 + 17.0630i 0.678195 + 0.678195i
\(634\) 0 0
\(635\) 13.3347 + 10.0087i 0.529170 + 0.397182i
\(636\) 0 0
\(637\) −3.54134 14.1680i −0.140313 0.561355i
\(638\) 0 0
\(639\) 1.65109i 0.0653160i
\(640\) 0 0
\(641\) 4.12279 0.162840 0.0814201 0.996680i \(-0.474054\pi\)
0.0814201 + 0.996680i \(0.474054\pi\)
\(642\) 0 0
\(643\) 22.0559 + 22.0559i 0.869798 + 0.869798i 0.992450 0.122651i \(-0.0391397\pi\)
−0.122651 + 0.992450i \(0.539140\pi\)
\(644\) 0 0
\(645\) −18.3460 + 2.61396i −0.722371 + 0.102925i
\(646\) 0 0
\(647\) 3.13686 3.13686i 0.123323 0.123323i −0.642752 0.766075i \(-0.722207\pi\)
0.766075 + 0.642752i \(0.222207\pi\)
\(648\) 0 0
\(649\) 4.14399 0.162666
\(650\) 0 0
\(651\) 6.14084 3.47671i 0.240679 0.136263i
\(652\) 0 0
\(653\) 24.2492 24.2492i 0.948945 0.948945i −0.0498138 0.998759i \(-0.515863\pi\)
0.998759 + 0.0498138i \(0.0158628\pi\)
\(654\) 0 0
\(655\) −2.54383 17.8538i −0.0993958 0.697605i
\(656\) 0 0
\(657\) 6.90630 6.90630i 0.269440 0.269440i
\(658\) 0 0
\(659\) 29.8530i 1.16291i −0.813579 0.581454i \(-0.802484\pi\)
0.813579 0.581454i \(-0.197516\pi\)
\(660\) 0 0
\(661\) 19.9011i 0.774063i 0.922066 + 0.387032i \(0.126500\pi\)
−0.922066 + 0.387032i \(0.873500\pi\)
\(662\) 0 0
\(663\) −2.45652 2.45652i −0.0954035 0.0954035i
\(664\) 0 0
\(665\) 12.3094 + 1.59306i 0.477339 + 0.0617761i
\(666\) 0 0
\(667\) −8.28438 8.28438i −0.320772 0.320772i
\(668\) 0 0
\(669\) 2.27624i 0.0880044i
\(670\) 0 0
\(671\) 4.77566i 0.184362i
\(672\) 0 0
\(673\) 28.0668 28.0668i 1.08190 1.08190i 0.0855648 0.996333i \(-0.472731\pi\)
0.996333 0.0855648i \(-0.0272695\pi\)
\(674\) 0 0
\(675\) 2.40739 4.38229i 0.0926605 0.168674i
\(676\) 0 0
\(677\) 16.1832 16.1832i 0.621970 0.621970i −0.324065 0.946035i \(-0.605050\pi\)
0.946035 + 0.324065i \(0.105050\pi\)
\(678\) 0 0
\(679\) −1.73772 + 0.983832i −0.0666877 + 0.0377560i
\(680\) 0 0
\(681\) 6.41951 0.245996
\(682\) 0 0
\(683\) −22.7744 + 22.7744i −0.871438 + 0.871438i −0.992629 0.121192i \(-0.961328\pi\)
0.121192 + 0.992629i \(0.461328\pi\)
\(684\) 0 0
\(685\) 27.4678 + 20.6167i 1.04949 + 0.787722i
\(686\) 0 0
\(687\) −10.7163 10.7163i −0.408851 0.408851i
\(688\) 0 0
\(689\) −9.51814 −0.362612
\(690\) 0 0
\(691\) 19.1625i 0.728977i −0.931208 0.364489i \(-0.881244\pi\)
0.931208 0.364489i \(-0.118756\pi\)
\(692\) 0 0
\(693\) 0.826044 2.98203i 0.0313788 0.113278i
\(694\) 0 0
\(695\) −46.6224 + 6.64283i −1.76849 + 0.251977i
\(696\) 0 0
\(697\) −10.1174 10.1174i −0.383225 0.383225i
\(698\) 0 0
\(699\) 11.6536 0.440781
\(700\) 0 0
\(701\) 24.1293 0.911350 0.455675 0.890146i \(-0.349398\pi\)
0.455675 + 0.890146i \(0.349398\pi\)
\(702\) 0 0
\(703\) −1.15272 1.15272i −0.0434756 0.0434756i
\(704\) 0 0
\(705\) −25.7547 + 3.66957i −0.969978 + 0.138204i
\(706\) 0 0
\(707\) −1.56056 + 5.63363i −0.0586908 + 0.211875i
\(708\) 0 0
\(709\) 39.3631i 1.47831i −0.673534 0.739157i \(-0.735224\pi\)
0.673534 0.739157i \(-0.264776\pi\)
\(710\) 0 0
\(711\) −12.6669 −0.475044
\(712\) 0 0
\(713\) −14.2192 14.2192i −0.532515 0.532515i
\(714\) 0 0
\(715\) −4.36356 3.27518i −0.163188 0.122485i
\(716\) 0 0
\(717\) 6.02502 6.02502i 0.225009 0.225009i
\(718\) 0 0
\(719\) 40.3865 1.50616 0.753081 0.657928i \(-0.228567\pi\)
0.753081 + 0.657928i \(0.228567\pi\)
\(720\) 0 0
\(721\) −5.72116 10.1052i −0.213067 0.376336i
\(722\) 0 0
\(723\) −12.7193 + 12.7193i −0.473034 + 0.473034i
\(724\) 0 0
\(725\) 2.17004 + 7.46058i 0.0805934 + 0.277079i
\(726\) 0 0
\(727\) −0.406979 + 0.406979i −0.0150940 + 0.0150940i −0.714614 0.699519i \(-0.753397\pi\)
0.699519 + 0.714614i \(0.253397\pi\)
\(728\) 0 0
\(729\) 1.00000i 0.0370370i
\(730\) 0 0
\(731\) 13.8002i 0.510420i
\(732\) 0 0
\(733\) 25.6665 + 25.6665i 0.948015 + 0.948015i 0.998714 0.0506988i \(-0.0161448\pi\)
−0.0506988 + 0.998714i \(0.516145\pi\)
\(734\) 0 0
\(735\) 5.89967 + 14.4981i 0.217613 + 0.534769i
\(736\) 0 0
\(737\) −3.58544 3.58544i −0.132071 0.132071i
\(738\) 0 0
\(739\) 34.8421i 1.28169i −0.767672 0.640843i \(-0.778585\pi\)
0.767672 0.640843i \(-0.221415\pi\)
\(740\) 0 0
\(741\) 4.37703i 0.160794i
\(742\) 0 0
\(743\) −17.2110 + 17.2110i −0.631409 + 0.631409i −0.948421 0.317012i \(-0.897320\pi\)
0.317012 + 0.948421i \(0.397320\pi\)
\(744\) 0 0
\(745\) −3.08122 21.6254i −0.112887 0.792292i
\(746\) 0 0
\(747\) 3.91528 3.91528i 0.143253 0.143253i
\(748\) 0 0
\(749\) −23.6298 41.7368i −0.863414 1.52503i
\(750\) 0 0
\(751\) −8.12809 −0.296598 −0.148299 0.988943i \(-0.547380\pi\)
−0.148299 + 0.988943i \(0.547380\pi\)
\(752\) 0 0
\(753\) 6.50087 6.50087i 0.236905 0.236905i
\(754\) 0 0
\(755\) −41.3611 + 5.89318i −1.50528 + 0.214475i
\(756\) 0 0
\(757\) 29.3910 + 29.3910i 1.06824 + 1.06824i 0.997495 + 0.0707411i \(0.0225364\pi\)
0.0707411 + 0.997495i \(0.477464\pi\)
\(758\) 0 0
\(759\) −8.81767 −0.320061
\(760\) 0 0
\(761\) 33.1696i 1.20240i −0.799100 0.601198i \(-0.794690\pi\)
0.799100 0.601198i \(-0.205310\pi\)
\(762\) 0 0
\(763\) 7.46905 26.9634i 0.270398 0.976141i
\(764\) 0 0
\(765\) 2.97798 + 2.23520i 0.107669 + 0.0808139i
\(766\) 0 0
\(767\) 5.22703 + 5.22703i 0.188737 + 0.188737i
\(768\) 0 0
\(769\) 42.5161 1.53317 0.766584 0.642144i \(-0.221955\pi\)
0.766584 + 0.642144i \(0.221955\pi\)
\(770\) 0 0
\(771\) −28.4314 −1.02393
\(772\) 0 0
\(773\) 11.4240 + 11.4240i 0.410894 + 0.410894i 0.882050 0.471156i \(-0.156163\pi\)
−0.471156 + 0.882050i \(0.656163\pi\)
\(774\) 0 0
\(775\) 3.72464 + 12.8053i 0.133793 + 0.459979i
\(776\) 0 0
\(777\) 0.548799 1.98117i 0.0196880 0.0710741i
\(778\) 0 0
\(779\) 18.0272i 0.645892i
\(780\) 0 0
\(781\) 1.93102 0.0690973
\(782\) 0 0
\(783\) 1.09881 + 1.09881i 0.0392683 + 0.0392683i
\(784\) 0 0
\(785\) 20.8205 27.7394i 0.743117 0.990063i
\(786\) 0 0
\(787\) 15.4459 15.4459i 0.550586 0.550586i −0.376024 0.926610i \(-0.622709\pi\)
0.926610 + 0.376024i \(0.122709\pi\)
\(788\) 0 0
\(789\) −22.4107 −0.797843
\(790\) 0 0
\(791\) 43.7212 24.7533i 1.55455 0.880125i
\(792\) 0 0
\(793\) 6.02379 6.02379i 0.213911 0.213911i
\(794\) 0 0
\(795\) 10.0996 1.43901i 0.358196 0.0510363i
\(796\) 0 0
\(797\) 25.0499 25.0499i 0.887314 0.887314i −0.106951 0.994264i \(-0.534109\pi\)
0.994264 + 0.106951i \(0.0341087\pi\)
\(798\) 0 0
\(799\) 19.3733i 0.685377i
\(800\) 0 0
\(801\) 11.8136i 0.417413i
\(802\) 0 0
\(803\) 8.07723 + 8.07723i 0.285039 + 0.285039i
\(804\) 0 0
\(805\) 35.3267 27.2307i 1.24510 0.959756i
\(806\) 0 0
\(807\) −12.5023 12.5023i −0.440102 0.440102i
\(808\) 0 0
\(809\) 1.93007i 0.0678577i 0.999424 + 0.0339288i \(0.0108020\pi\)
−0.999424 + 0.0339288i \(0.989198\pi\)
\(810\) 0 0
\(811\) 16.6713i 0.585410i 0.956203 + 0.292705i \(0.0945554\pi\)
−0.956203 + 0.292705i \(0.905445\pi\)
\(812\) 0 0
\(813\) 3.04275 3.04275i 0.106714 0.106714i
\(814\) 0 0
\(815\) 11.1951 14.9154i 0.392148 0.522463i
\(816\) 0 0
\(817\) 12.2946 12.2946i 0.430134 0.430134i
\(818\) 0 0
\(819\) 4.80333 2.71946i 0.167842 0.0950257i
\(820\) 0 0
\(821\) −8.32072 −0.290395 −0.145198 0.989403i \(-0.546382\pi\)
−0.145198 + 0.989403i \(0.546382\pi\)
\(822\) 0 0
\(823\) −27.4683 + 27.4683i −0.957486 + 0.957486i −0.999132 0.0416468i \(-0.986740\pi\)
0.0416468 + 0.999132i \(0.486740\pi\)
\(824\) 0 0
\(825\) 5.12529 + 2.81555i 0.178440 + 0.0980250i
\(826\) 0 0
\(827\) 3.01076 + 3.01076i 0.104695 + 0.104695i 0.757514 0.652819i \(-0.226414\pi\)
−0.652819 + 0.757514i \(0.726414\pi\)
\(828\) 0 0
\(829\) −17.6623 −0.613438 −0.306719 0.951800i \(-0.599231\pi\)
−0.306719 + 0.951800i \(0.599231\pi\)
\(830\) 0 0
\(831\) 10.0812i 0.349713i
\(832\) 0 0
\(833\) −11.3085 + 2.82661i −0.391817 + 0.0979363i
\(834\) 0 0
\(835\) 22.5763 30.0786i 0.781284 1.04091i
\(836\) 0 0
\(837\) 1.88599 + 1.88599i 0.0651894 + 0.0651894i
\(838\) 0 0
\(839\) −23.0587 −0.796075 −0.398038 0.917369i \(-0.630309\pi\)
−0.398038 + 0.917369i \(0.630309\pi\)
\(840\) 0 0
\(841\) 26.5852 0.916732
\(842\) 0 0
\(843\) −0.00905572 0.00905572i −0.000311895 0.000311895i
\(844\) 0 0
\(845\) 2.72754 + 19.1431i 0.0938301 + 0.658542i
\(846\) 0 0
\(847\) −24.5595 6.80315i −0.843873 0.233759i
\(848\) 0 0
\(849\) 31.3927i 1.07739i
\(850\) 0 0
\(851\) −5.85820 −0.200816
\(852\) 0 0
\(853\) −29.7111 29.7111i −1.01729 1.01729i −0.999848 0.0174392i \(-0.994449\pi\)
−0.0174392 0.999848i \(-0.505551\pi\)
\(854\) 0 0
\(855\) 0.661744 + 4.64442i 0.0226312 + 0.158836i
\(856\) 0 0
\(857\) 14.7575 14.7575i 0.504107 0.504107i −0.408604 0.912712i \(-0.633984\pi\)
0.912712 + 0.408604i \(0.133984\pi\)
\(858\) 0 0
\(859\) −32.9265 −1.12344 −0.561720 0.827328i \(-0.689860\pi\)
−0.561720 + 0.827328i \(0.689860\pi\)
\(860\) 0 0
\(861\) 19.7830 11.2004i 0.674201 0.381707i
\(862\) 0 0
\(863\) 20.2394 20.2394i 0.688959 0.688959i −0.273043 0.962002i \(-0.588030\pi\)
0.962002 + 0.273043i \(0.0880301\pi\)
\(864\) 0 0
\(865\) −12.1266 9.10192i −0.412316 0.309475i
\(866\) 0 0
\(867\) 10.0601 10.0601i 0.341658 0.341658i
\(868\) 0 0
\(869\) 14.8145i 0.502546i
\(870\) 0 0
\(871\) 9.04500i 0.306478i
\(872\) 0 0
\(873\) −0.533694 0.533694i −0.0180628 0.0180628i
\(874\) 0 0
\(875\) −29.2287 + 4.54779i −0.988111 + 0.153743i
\(876\) 0 0
\(877\) 2.09834 + 2.09834i 0.0708560 + 0.0708560i 0.741647 0.670791i \(-0.234045\pi\)
−0.670791 + 0.741647i \(0.734045\pi\)
\(878\) 0 0
\(879\) 26.7864i 0.903481i
\(880\) 0 0
\(881\) 37.2576i 1.25524i 0.778519 + 0.627621i \(0.215971\pi\)
−0.778519 + 0.627621i \(0.784029\pi\)
\(882\) 0 0
\(883\) −25.0295 + 25.0295i −0.842309 + 0.842309i −0.989159 0.146850i \(-0.953087\pi\)
0.146850 + 0.989159i \(0.453087\pi\)
\(884\) 0 0
\(885\) −6.33660 4.75609i −0.213002 0.159874i
\(886\) 0 0
\(887\) 20.4997 20.4997i 0.688313 0.688313i −0.273546 0.961859i \(-0.588197\pi\)
0.961859 + 0.273546i \(0.0881965\pi\)
\(888\) 0 0
\(889\) −9.71943 17.1672i −0.325979 0.575770i
\(890\) 0 0
\(891\) 1.16955 0.0391812
\(892\) 0 0
\(893\) 17.2596 17.2596i 0.577571 0.577571i
\(894\) 0 0
\(895\) 6.57422 + 46.1408i 0.219752 + 1.54232i
\(896\) 0 0
\(897\) −11.1222 11.1222i −0.371359 0.371359i
\(898\) 0 0
\(899\) −4.14470 −0.138233
\(900\) 0 0
\(901\) 7.59714i 0.253098i
\(902\) 0 0
\(903\) 21.1307 + 5.85336i 0.703187 + 0.194788i
\(904\) 0 0
\(905\) −1.89717 13.3152i −0.0630639 0.442611i
\(906\) 0 0
\(907\) 19.6072 + 19.6072i 0.651045 + 0.651045i 0.953245 0.302199i \(-0.0977208\pi\)
−0.302199 + 0.953245i \(0.597721\pi\)
\(908\) 0 0
\(909\) −2.20950 −0.0732844
\(910\) 0 0
\(911\) −22.6134 −0.749217 −0.374608 0.927183i \(-0.622223\pi\)
−0.374608 + 0.927183i \(0.622223\pi\)
\(912\) 0 0
\(913\) 4.57910 + 4.57910i 0.151546 + 0.151546i
\(914\) 0 0
\(915\) −5.48107 + 7.30249i −0.181199 + 0.241413i
\(916\) 0 0
\(917\) −5.69633 + 20.5638i −0.188109 + 0.679078i
\(918\) 0 0
\(919\) 10.6164i 0.350204i 0.984550 + 0.175102i \(0.0560255\pi\)
−0.984550 + 0.175102i \(0.943975\pi\)
\(920\) 0 0
\(921\) −3.74383 −0.123364
\(922\) 0 0
\(923\) 2.43570 + 2.43570i 0.0801720 + 0.0801720i
\(924\) 0 0
\(925\) 3.40509 + 1.87057i 0.111959 + 0.0615039i
\(926\) 0 0
\(927\) 3.10352 3.10352i 0.101933 0.101933i
\(928\) 0 0
\(929\) 15.3896 0.504917 0.252458 0.967608i \(-0.418761\pi\)
0.252458 + 0.967608i \(0.418761\pi\)
\(930\) 0 0
\(931\) −12.5930 7.55652i −0.412718 0.247655i
\(932\) 0 0
\(933\) 1.42822 1.42822i 0.0467578 0.0467578i
\(934\) 0 0
\(935\) −2.61417 + 3.48289i −0.0854925 + 0.113903i
\(936\) 0 0
\(937\) 32.6586 32.6586i 1.06691 1.06691i 0.0693155 0.997595i \(-0.477918\pi\)
0.997595 0.0693155i \(-0.0220815\pi\)
\(938\) 0 0
\(939\) 31.8861i 1.04056i
\(940\) 0 0
\(941\) 35.7168i 1.16433i −0.813069 0.582167i \(-0.802205\pi\)
0.813069 0.582167i \(-0.197795\pi\)
\(942\) 0 0
\(943\) −45.8078 45.8078i −1.49171 1.49171i
\(944\) 0 0
\(945\) −4.68562 + 3.61179i −0.152423 + 0.117491i
\(946\) 0 0
\(947\) 28.1597 + 28.1597i 0.915067 + 0.915067i 0.996665 0.0815980i \(-0.0260023\pi\)
−0.0815980 + 0.996665i \(0.526002\pi\)
\(948\) 0 0
\(949\) 20.3765i 0.661448i
\(950\) 0 0
\(951\) 10.4726i 0.339598i
\(952\) 0 0
\(953\) −28.0790 + 28.0790i −0.909569 + 0.909569i −0.996237 0.0866684i \(-0.972378\pi\)
0.0866684 + 0.996237i \(0.472378\pi\)
\(954\) 0 0
\(955\) −8.66666 + 1.23484i −0.280446 + 0.0399584i
\(956\) 0 0
\(957\) −1.28511 + 1.28511i −0.0415417 + 0.0415417i
\(958\) 0 0
\(959\) −20.0209 35.3624i −0.646508 1.14191i
\(960\) 0 0
\(961\) 23.8861 0.770518
\(962\) 0 0
\(963\) 12.8183 12.8183i 0.413065 0.413065i
\(964\) 0 0
\(965\) −25.0132 + 33.3253i −0.805202 + 1.07278i
\(966\) 0 0
\(967\) −3.67710 3.67710i −0.118248 0.118248i 0.645507 0.763755i \(-0.276646\pi\)
−0.763755 + 0.645507i \(0.776646\pi\)
\(968\) 0 0
\(969\) −3.49364 −0.112232
\(970\) 0 0
\(971\) 50.0511i 1.60622i 0.595834 + 0.803108i \(0.296822\pi\)
−0.595834 + 0.803108i \(0.703178\pi\)
\(972\) 0 0
\(973\) 53.6993 + 14.8751i 1.72152 + 0.476874i
\(974\) 0 0
\(975\) 2.91339 + 10.0162i 0.0933032 + 0.320775i
\(976\) 0 0
\(977\) −22.4734 22.4734i −0.718986 0.718986i 0.249411 0.968398i \(-0.419763\pi\)
−0.968398 + 0.249411i \(0.919763\pi\)
\(978\) 0 0
\(979\) −13.8165 −0.441579
\(980\) 0 0
\(981\) 10.5750 0.337633
\(982\) 0 0
\(983\) 22.7861 + 22.7861i 0.726763 + 0.726763i 0.969974 0.243210i \(-0.0782005\pi\)
−0.243210 + 0.969974i \(0.578201\pi\)
\(984\) 0 0
\(985\) 9.09178 + 6.82406i 0.289688 + 0.217433i
\(986\) 0 0
\(987\) 29.6641 + 8.21716i 0.944218 + 0.261555i
\(988\) 0 0
\(989\) 62.4822i 1.98682i
\(990\) 0 0
\(991\) −34.5490 −1.09749 −0.548743 0.835991i \(-0.684893\pi\)
−0.548743 + 0.835991i \(0.684893\pi\)
\(992\) 0 0
\(993\) 13.5141 + 13.5141i 0.428856 + 0.428856i
\(994\) 0 0
\(995\) −21.8027 + 3.10648i −0.691192 + 0.0984821i
\(996\) 0 0
\(997\) −19.9762 + 19.9762i −0.632653 + 0.632653i −0.948733 0.316079i \(-0.897633\pi\)
0.316079 + 0.948733i \(0.397633\pi\)
\(998\) 0 0
\(999\) 0.777011 0.0245835
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 840.2.bt.b.97.1 yes 24
4.3 odd 2 1680.2.cz.e.97.10 24
5.3 odd 4 840.2.bt.a.433.12 yes 24
7.6 odd 2 840.2.bt.a.97.12 24
20.3 even 4 1680.2.cz.f.433.3 24
28.27 even 2 1680.2.cz.f.97.3 24
35.13 even 4 inner 840.2.bt.b.433.1 yes 24
140.83 odd 4 1680.2.cz.e.433.10 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
840.2.bt.a.97.12 24 7.6 odd 2
840.2.bt.a.433.12 yes 24 5.3 odd 4
840.2.bt.b.97.1 yes 24 1.1 even 1 trivial
840.2.bt.b.433.1 yes 24 35.13 even 4 inner
1680.2.cz.e.97.10 24 4.3 odd 2
1680.2.cz.e.433.10 24 140.83 odd 4
1680.2.cz.f.97.3 24 28.27 even 2
1680.2.cz.f.433.3 24 20.3 even 4