Properties

Label 840.2.bt.a.97.7
Level $840$
Weight $2$
Character 840.97
Analytic conductor $6.707$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [840,2,Mod(97,840)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(840, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("840.97"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 840 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 840.bt (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,0,0,0,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.70743376979\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 97.7
Character \(\chi\) \(=\) 840.97
Dual form 840.2.bt.a.433.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.707107 + 0.707107i) q^{3} +(-2.19074 - 0.447937i) q^{5} +(1.88862 - 1.85286i) q^{7} +1.00000i q^{9} -4.29513 q^{11} +(1.47784 + 1.47784i) q^{13} +(-1.23235 - 1.86583i) q^{15} +(5.17651 - 5.17651i) q^{17} +7.34180 q^{19} +(2.64563 + 0.0252885i) q^{21} +(3.22191 - 3.22191i) q^{23} +(4.59871 + 1.96263i) q^{25} +(-0.707107 + 0.707107i) q^{27} -5.81726i q^{29} +1.72147i q^{31} +(-3.03711 - 3.03711i) q^{33} +(-4.96746 + 3.21316i) q^{35} +(-2.39795 - 2.39795i) q^{37} +2.08998i q^{39} +4.03046i q^{41} +(-1.67864 + 1.67864i) q^{43} +(0.447937 - 2.19074i) q^{45} +(7.92960 - 7.92960i) q^{47} +(0.133808 - 6.99872i) q^{49} +7.32070 q^{51} +(-7.69186 + 7.69186i) q^{53} +(9.40952 + 1.92395i) q^{55} +(5.19144 + 5.19144i) q^{57} +0.775921 q^{59} -9.86457i q^{61} +(1.85286 + 1.88862i) q^{63} +(-2.57558 - 3.89953i) q^{65} +(11.4771 + 11.4771i) q^{67} +4.55646 q^{69} +2.60505 q^{71} +(-8.77273 - 8.77273i) q^{73} +(1.86399 + 4.63956i) q^{75} +(-8.11189 + 7.95828i) q^{77} +0.421125i q^{79} -1.00000 q^{81} +(8.44531 + 8.44531i) q^{83} +(-13.6592 + 9.02166i) q^{85} +(4.11343 - 4.11343i) q^{87} +4.29336 q^{89} +(5.52930 + 0.0528524i) q^{91} +(-1.21726 + 1.21726i) q^{93} +(-16.0840 - 3.28866i) q^{95} +(-7.29681 + 7.29681i) q^{97} -4.29513i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 4 q^{7} - 8 q^{11} + 16 q^{13} + 4 q^{15} + 20 q^{17} + 8 q^{19} + 24 q^{23} - 4 q^{25} + 4 q^{37} - 16 q^{43} - 4 q^{45} - 24 q^{47} + 36 q^{49} + 16 q^{53} + 28 q^{55} + 4 q^{57} + 8 q^{59} + 24 q^{65}+ \cdots - 28 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/840\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(281\) \(337\) \(421\) \(631\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{1}{4}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.707107 + 0.707107i 0.408248 + 0.408248i
\(4\) 0 0
\(5\) −2.19074 0.447937i −0.979730 0.200323i
\(6\) 0 0
\(7\) 1.88862 1.85286i 0.713833 0.700316i
\(8\) 0 0
\(9\) 1.00000i 0.333333i
\(10\) 0 0
\(11\) −4.29513 −1.29503 −0.647515 0.762053i \(-0.724192\pi\)
−0.647515 + 0.762053i \(0.724192\pi\)
\(12\) 0 0
\(13\) 1.47784 + 1.47784i 0.409878 + 0.409878i 0.881696 0.471818i \(-0.156402\pi\)
−0.471818 + 0.881696i \(0.656402\pi\)
\(14\) 0 0
\(15\) −1.23235 1.86583i −0.318191 0.481755i
\(16\) 0 0
\(17\) 5.17651 5.17651i 1.25549 1.25549i 0.302265 0.953224i \(-0.402257\pi\)
0.953224 0.302265i \(-0.0977429\pi\)
\(18\) 0 0
\(19\) 7.34180 1.68432 0.842162 0.539224i \(-0.181282\pi\)
0.842162 + 0.539224i \(0.181282\pi\)
\(20\) 0 0
\(21\) 2.64563 + 0.0252885i 0.577324 + 0.00551840i
\(22\) 0 0
\(23\) 3.22191 3.22191i 0.671814 0.671814i −0.286320 0.958134i \(-0.592432\pi\)
0.958134 + 0.286320i \(0.0924321\pi\)
\(24\) 0 0
\(25\) 4.59871 + 1.96263i 0.919741 + 0.392526i
\(26\) 0 0
\(27\) −0.707107 + 0.707107i −0.136083 + 0.136083i
\(28\) 0 0
\(29\) 5.81726i 1.08024i −0.841588 0.540119i \(-0.818379\pi\)
0.841588 0.540119i \(-0.181621\pi\)
\(30\) 0 0
\(31\) 1.72147i 0.309185i 0.987978 + 0.154593i \(0.0494065\pi\)
−0.987978 + 0.154593i \(0.950594\pi\)
\(32\) 0 0
\(33\) −3.03711 3.03711i −0.528694 0.528694i
\(34\) 0 0
\(35\) −4.96746 + 3.21316i −0.839653 + 0.543123i
\(36\) 0 0
\(37\) −2.39795 2.39795i −0.394220 0.394220i 0.481969 0.876188i \(-0.339922\pi\)
−0.876188 + 0.481969i \(0.839922\pi\)
\(38\) 0 0
\(39\) 2.08998i 0.334664i
\(40\) 0 0
\(41\) 4.03046i 0.629452i 0.949183 + 0.314726i \(0.101913\pi\)
−0.949183 + 0.314726i \(0.898087\pi\)
\(42\) 0 0
\(43\) −1.67864 + 1.67864i −0.255990 + 0.255990i −0.823421 0.567431i \(-0.807937\pi\)
0.567431 + 0.823421i \(0.307937\pi\)
\(44\) 0 0
\(45\) 0.447937 2.19074i 0.0667745 0.326577i
\(46\) 0 0
\(47\) 7.92960 7.92960i 1.15665 1.15665i 0.171459 0.985191i \(-0.445152\pi\)
0.985191 0.171459i \(-0.0548482\pi\)
\(48\) 0 0
\(49\) 0.133808 6.99872i 0.0191154 0.999817i
\(50\) 0 0
\(51\) 7.32070 1.02510
\(52\) 0 0
\(53\) −7.69186 + 7.69186i −1.05656 + 1.05656i −0.0582570 + 0.998302i \(0.518554\pi\)
−0.998302 + 0.0582570i \(0.981446\pi\)
\(54\) 0 0
\(55\) 9.40952 + 1.92395i 1.26878 + 0.259425i
\(56\) 0 0
\(57\) 5.19144 + 5.19144i 0.687623 + 0.687623i
\(58\) 0 0
\(59\) 0.775921 0.101016 0.0505081 0.998724i \(-0.483916\pi\)
0.0505081 + 0.998724i \(0.483916\pi\)
\(60\) 0 0
\(61\) 9.86457i 1.26303i −0.775364 0.631514i \(-0.782434\pi\)
0.775364 0.631514i \(-0.217566\pi\)
\(62\) 0 0
\(63\) 1.85286 + 1.88862i 0.233439 + 0.237944i
\(64\) 0 0
\(65\) −2.57558 3.89953i −0.319461 0.483678i
\(66\) 0 0
\(67\) 11.4771 + 11.4771i 1.40215 + 1.40215i 0.793239 + 0.608911i \(0.208393\pi\)
0.608911 + 0.793239i \(0.291607\pi\)
\(68\) 0 0
\(69\) 4.55646 0.548534
\(70\) 0 0
\(71\) 2.60505 0.309163 0.154581 0.987980i \(-0.450597\pi\)
0.154581 + 0.987980i \(0.450597\pi\)
\(72\) 0 0
\(73\) −8.77273 8.77273i −1.02677 1.02677i −0.999632 0.0271389i \(-0.991360\pi\)
−0.0271389 0.999632i \(-0.508640\pi\)
\(74\) 0 0
\(75\) 1.86399 + 4.63956i 0.215235 + 0.535731i
\(76\) 0 0
\(77\) −8.11189 + 7.95828i −0.924435 + 0.906930i
\(78\) 0 0
\(79\) 0.421125i 0.0473802i 0.999719 + 0.0236901i \(0.00754150\pi\)
−0.999719 + 0.0236901i \(0.992458\pi\)
\(80\) 0 0
\(81\) −1.00000 −0.111111
\(82\) 0 0
\(83\) 8.44531 + 8.44531i 0.926993 + 0.926993i 0.997511 0.0705172i \(-0.0224650\pi\)
−0.0705172 + 0.997511i \(0.522465\pi\)
\(84\) 0 0
\(85\) −13.6592 + 9.02166i −1.48154 + 0.978536i
\(86\) 0 0
\(87\) 4.11343 4.11343i 0.441006 0.441006i
\(88\) 0 0
\(89\) 4.29336 0.455095 0.227548 0.973767i \(-0.426929\pi\)
0.227548 + 0.973767i \(0.426929\pi\)
\(90\) 0 0
\(91\) 5.52930 + 0.0528524i 0.579628 + 0.00554043i
\(92\) 0 0
\(93\) −1.21726 + 1.21726i −0.126224 + 0.126224i
\(94\) 0 0
\(95\) −16.0840 3.28866i −1.65018 0.337410i
\(96\) 0 0
\(97\) −7.29681 + 7.29681i −0.740878 + 0.740878i −0.972747 0.231869i \(-0.925516\pi\)
0.231869 + 0.972747i \(0.425516\pi\)
\(98\) 0 0
\(99\) 4.29513i 0.431677i
\(100\) 0 0
\(101\) 0.162882i 0.0162074i −0.999967 0.00810368i \(-0.997420\pi\)
0.999967 0.00810368i \(-0.00257951\pi\)
\(102\) 0 0
\(103\) −4.46455 4.46455i −0.439906 0.439906i 0.452075 0.891980i \(-0.350684\pi\)
−0.891980 + 0.452075i \(0.850684\pi\)
\(104\) 0 0
\(105\) −5.78457 1.24048i −0.564516 0.121058i
\(106\) 0 0
\(107\) −9.78150 9.78150i −0.945614 0.945614i 0.0529817 0.998595i \(-0.483127\pi\)
−0.998595 + 0.0529817i \(0.983127\pi\)
\(108\) 0 0
\(109\) 7.32115i 0.701239i −0.936518 0.350619i \(-0.885971\pi\)
0.936518 0.350619i \(-0.114029\pi\)
\(110\) 0 0
\(111\) 3.39121i 0.321879i
\(112\) 0 0
\(113\) −13.2348 + 13.2348i −1.24502 + 1.24502i −0.287131 + 0.957891i \(0.592702\pi\)
−0.957891 + 0.287131i \(0.907298\pi\)
\(114\) 0 0
\(115\) −8.50158 + 5.61516i −0.792776 + 0.523616i
\(116\) 0 0
\(117\) −1.47784 + 1.47784i −0.136626 + 0.136626i
\(118\) 0 0
\(119\) 0.185129 19.3679i 0.0169708 1.77545i
\(120\) 0 0
\(121\) 7.44813 0.677102
\(122\) 0 0
\(123\) −2.84997 + 2.84997i −0.256973 + 0.256973i
\(124\) 0 0
\(125\) −9.19545 6.35954i −0.822466 0.568815i
\(126\) 0 0
\(127\) 12.8515 + 12.8515i 1.14038 + 1.14038i 0.988380 + 0.152002i \(0.0485720\pi\)
0.152002 + 0.988380i \(0.451428\pi\)
\(128\) 0 0
\(129\) −2.37395 −0.209015
\(130\) 0 0
\(131\) 13.8264i 1.20802i 0.796978 + 0.604008i \(0.206431\pi\)
−0.796978 + 0.604008i \(0.793569\pi\)
\(132\) 0 0
\(133\) 13.8659 13.6033i 1.20233 1.17956i
\(134\) 0 0
\(135\) 1.86583 1.23235i 0.160585 0.106064i
\(136\) 0 0
\(137\) 5.53271 + 5.53271i 0.472691 + 0.472691i 0.902784 0.430093i \(-0.141519\pi\)
−0.430093 + 0.902784i \(0.641519\pi\)
\(138\) 0 0
\(139\) −9.70449 −0.823124 −0.411562 0.911382i \(-0.635017\pi\)
−0.411562 + 0.911382i \(0.635017\pi\)
\(140\) 0 0
\(141\) 11.2141 0.944401
\(142\) 0 0
\(143\) −6.34749 6.34749i −0.530804 0.530804i
\(144\) 0 0
\(145\) −2.60577 + 12.7441i −0.216397 + 1.05834i
\(146\) 0 0
\(147\) 5.04346 4.85423i 0.415978 0.400370i
\(148\) 0 0
\(149\) 9.48071i 0.776690i −0.921514 0.388345i \(-0.873047\pi\)
0.921514 0.388345i \(-0.126953\pi\)
\(150\) 0 0
\(151\) −2.70016 −0.219736 −0.109868 0.993946i \(-0.535043\pi\)
−0.109868 + 0.993946i \(0.535043\pi\)
\(152\) 0 0
\(153\) 5.17651 + 5.17651i 0.418496 + 0.418496i
\(154\) 0 0
\(155\) 0.771109 3.77130i 0.0619370 0.302918i
\(156\) 0 0
\(157\) −2.20080 + 2.20080i −0.175643 + 0.175643i −0.789453 0.613811i \(-0.789636\pi\)
0.613811 + 0.789453i \(0.289636\pi\)
\(158\) 0 0
\(159\) −10.8779 −0.862676
\(160\) 0 0
\(161\) 0.115226 12.0547i 0.00908109 0.950045i
\(162\) 0 0
\(163\) 4.16776 4.16776i 0.326444 0.326444i −0.524788 0.851233i \(-0.675856\pi\)
0.851233 + 0.524788i \(0.175856\pi\)
\(164\) 0 0
\(165\) 5.29310 + 8.01397i 0.412067 + 0.623887i
\(166\) 0 0
\(167\) −3.38827 + 3.38827i −0.262192 + 0.262192i −0.825944 0.563752i \(-0.809357\pi\)
0.563752 + 0.825944i \(0.309357\pi\)
\(168\) 0 0
\(169\) 8.63200i 0.664000i
\(170\) 0 0
\(171\) 7.34180i 0.561442i
\(172\) 0 0
\(173\) −3.89903 3.89903i −0.296438 0.296438i 0.543179 0.839617i \(-0.317220\pi\)
−0.839617 + 0.543179i \(0.817220\pi\)
\(174\) 0 0
\(175\) 12.3217 4.81410i 0.931434 0.363912i
\(176\) 0 0
\(177\) 0.548659 + 0.548659i 0.0412397 + 0.0412397i
\(178\) 0 0
\(179\) 9.75005i 0.728753i 0.931252 + 0.364376i \(0.118718\pi\)
−0.931252 + 0.364376i \(0.881282\pi\)
\(180\) 0 0
\(181\) 3.48489i 0.259030i −0.991577 0.129515i \(-0.958658\pi\)
0.991577 0.129515i \(-0.0413420\pi\)
\(182\) 0 0
\(183\) 6.97531 6.97531i 0.515629 0.515629i
\(184\) 0 0
\(185\) 4.17915 + 6.32741i 0.307257 + 0.465200i
\(186\) 0 0
\(187\) −22.2338 + 22.2338i −1.62590 + 1.62590i
\(188\) 0 0
\(189\) −0.0252885 + 2.64563i −0.00183947 + 0.192441i
\(190\) 0 0
\(191\) 1.84660 0.133615 0.0668077 0.997766i \(-0.478719\pi\)
0.0668077 + 0.997766i \(0.478719\pi\)
\(192\) 0 0
\(193\) −11.3415 + 11.3415i −0.816378 + 0.816378i −0.985581 0.169203i \(-0.945881\pi\)
0.169203 + 0.985581i \(0.445881\pi\)
\(194\) 0 0
\(195\) 0.936177 4.57860i 0.0670410 0.327880i
\(196\) 0 0
\(197\) −9.51224 9.51224i −0.677719 0.677719i 0.281765 0.959484i \(-0.409080\pi\)
−0.959484 + 0.281765i \(0.909080\pi\)
\(198\) 0 0
\(199\) 13.5954 0.963750 0.481875 0.876240i \(-0.339956\pi\)
0.481875 + 0.876240i \(0.339956\pi\)
\(200\) 0 0
\(201\) 16.2311i 1.14485i
\(202\) 0 0
\(203\) −10.7786 10.9866i −0.756508 0.771110i
\(204\) 0 0
\(205\) 1.80539 8.82970i 0.126094 0.616693i
\(206\) 0 0
\(207\) 3.22191 + 3.22191i 0.223938 + 0.223938i
\(208\) 0 0
\(209\) −31.5340 −2.18125
\(210\) 0 0
\(211\) −1.14759 −0.0790036 −0.0395018 0.999219i \(-0.512577\pi\)
−0.0395018 + 0.999219i \(0.512577\pi\)
\(212\) 0 0
\(213\) 1.84205 + 1.84205i 0.126215 + 0.126215i
\(214\) 0 0
\(215\) 4.42938 2.92554i 0.302081 0.199520i
\(216\) 0 0
\(217\) 3.18965 + 3.25121i 0.216527 + 0.220707i
\(218\) 0 0
\(219\) 12.4065i 0.838355i
\(220\) 0 0
\(221\) 15.3001 1.02919
\(222\) 0 0
\(223\) −4.38157 4.38157i −0.293411 0.293411i 0.545015 0.838426i \(-0.316524\pi\)
−0.838426 + 0.545015i \(0.816524\pi\)
\(224\) 0 0
\(225\) −1.96263 + 4.59871i −0.130842 + 0.306580i
\(226\) 0 0
\(227\) −13.5718 + 13.5718i −0.900794 + 0.900794i −0.995505 0.0947104i \(-0.969807\pi\)
0.0947104 + 0.995505i \(0.469807\pi\)
\(228\) 0 0
\(229\) −5.23268 −0.345785 −0.172893 0.984941i \(-0.555311\pi\)
−0.172893 + 0.984941i \(0.555311\pi\)
\(230\) 0 0
\(231\) −11.3633 0.108617i −0.747652 0.00714650i
\(232\) 0 0
\(233\) 1.49743 1.49743i 0.0980999 0.0980999i −0.656354 0.754453i \(-0.727902\pi\)
0.754453 + 0.656354i \(0.227902\pi\)
\(234\) 0 0
\(235\) −20.9237 + 13.8197i −1.36491 + 0.901501i
\(236\) 0 0
\(237\) −0.297780 + 0.297780i −0.0193429 + 0.0193429i
\(238\) 0 0
\(239\) 9.51664i 0.615580i 0.951454 + 0.307790i \(0.0995895\pi\)
−0.951454 + 0.307790i \(0.900411\pi\)
\(240\) 0 0
\(241\) 0.132939i 0.00856333i −0.999991 0.00428167i \(-0.998637\pi\)
0.999991 0.00428167i \(-0.00136290\pi\)
\(242\) 0 0
\(243\) −0.707107 0.707107i −0.0453609 0.0453609i
\(244\) 0 0
\(245\) −3.42812 + 15.2725i −0.219015 + 0.975722i
\(246\) 0 0
\(247\) 10.8500 + 10.8500i 0.690367 + 0.690367i
\(248\) 0 0
\(249\) 11.9435i 0.756887i
\(250\) 0 0
\(251\) 4.07694i 0.257334i 0.991688 + 0.128667i \(0.0410699\pi\)
−0.991688 + 0.128667i \(0.958930\pi\)
\(252\) 0 0
\(253\) −13.8385 + 13.8385i −0.870019 + 0.870019i
\(254\) 0 0
\(255\) −16.0378 3.27921i −1.00432 0.205352i
\(256\) 0 0
\(257\) 11.8584 11.8584i 0.739709 0.739709i −0.232812 0.972522i \(-0.574793\pi\)
0.972522 + 0.232812i \(0.0747928\pi\)
\(258\) 0 0
\(259\) −8.97188 0.0857585i −0.557485 0.00532878i
\(260\) 0 0
\(261\) 5.81726 0.360080
\(262\) 0 0
\(263\) −19.9161 + 19.9161i −1.22808 + 1.22808i −0.263389 + 0.964690i \(0.584840\pi\)
−0.964690 + 0.263389i \(0.915160\pi\)
\(264\) 0 0
\(265\) 20.2964 13.4054i 1.24680 0.823489i
\(266\) 0 0
\(267\) 3.03587 + 3.03587i 0.185792 + 0.185792i
\(268\) 0 0
\(269\) 2.26182 0.137906 0.0689528 0.997620i \(-0.478034\pi\)
0.0689528 + 0.997620i \(0.478034\pi\)
\(270\) 0 0
\(271\) 10.5437i 0.640484i −0.947336 0.320242i \(-0.896236\pi\)
0.947336 0.320242i \(-0.103764\pi\)
\(272\) 0 0
\(273\) 3.87244 + 3.94718i 0.234370 + 0.238894i
\(274\) 0 0
\(275\) −19.7520 8.42974i −1.19109 0.508332i
\(276\) 0 0
\(277\) −10.2777 10.2777i −0.617528 0.617528i 0.327369 0.944897i \(-0.393838\pi\)
−0.944897 + 0.327369i \(0.893838\pi\)
\(278\) 0 0
\(279\) −1.72147 −0.103062
\(280\) 0 0
\(281\) −19.8867 −1.18634 −0.593170 0.805077i \(-0.702124\pi\)
−0.593170 + 0.805077i \(0.702124\pi\)
\(282\) 0 0
\(283\) 8.04861 + 8.04861i 0.478440 + 0.478440i 0.904632 0.426193i \(-0.140145\pi\)
−0.426193 + 0.904632i \(0.640145\pi\)
\(284\) 0 0
\(285\) −9.04767 13.6985i −0.535938 0.811431i
\(286\) 0 0
\(287\) 7.46789 + 7.61203i 0.440815 + 0.449324i
\(288\) 0 0
\(289\) 36.5926i 2.15251i
\(290\) 0 0
\(291\) −10.3192 −0.604925
\(292\) 0 0
\(293\) 21.7244 + 21.7244i 1.26915 + 1.26915i 0.946527 + 0.322625i \(0.104565\pi\)
0.322625 + 0.946527i \(0.395435\pi\)
\(294\) 0 0
\(295\) −1.69984 0.347563i −0.0989686 0.0202359i
\(296\) 0 0
\(297\) 3.03711 3.03711i 0.176231 0.176231i
\(298\) 0 0
\(299\) 9.52290 0.550723
\(300\) 0 0
\(301\) −0.0600337 + 6.28060i −0.00346028 + 0.362008i
\(302\) 0 0
\(303\) 0.115175 0.115175i 0.00661662 0.00661662i
\(304\) 0 0
\(305\) −4.41870 + 21.6107i −0.253014 + 1.23743i
\(306\) 0 0
\(307\) 2.27695 2.27695i 0.129952 0.129952i −0.639139 0.769091i \(-0.720709\pi\)
0.769091 + 0.639139i \(0.220709\pi\)
\(308\) 0 0
\(309\) 6.31383i 0.359181i
\(310\) 0 0
\(311\) 11.5995i 0.657745i −0.944374 0.328872i \(-0.893331\pi\)
0.944374 0.328872i \(-0.106669\pi\)
\(312\) 0 0
\(313\) 15.3739 + 15.3739i 0.868986 + 0.868986i 0.992360 0.123374i \(-0.0393716\pi\)
−0.123374 + 0.992360i \(0.539372\pi\)
\(314\) 0 0
\(315\) −3.21316 4.96746i −0.181041 0.279884i
\(316\) 0 0
\(317\) 21.7956 + 21.7956i 1.22416 + 1.22416i 0.966139 + 0.258023i \(0.0830710\pi\)
0.258023 + 0.966139i \(0.416929\pi\)
\(318\) 0 0
\(319\) 24.9859i 1.39894i
\(320\) 0 0
\(321\) 13.8331i 0.772090i
\(322\) 0 0
\(323\) 38.0049 38.0049i 2.11465 2.11465i
\(324\) 0 0
\(325\) 3.89569 + 9.69657i 0.216094 + 0.537869i
\(326\) 0 0
\(327\) 5.17683 5.17683i 0.286280 0.286280i
\(328\) 0 0
\(329\) 0.283589 29.6685i 0.0156348 1.63568i
\(330\) 0 0
\(331\) 32.7968 1.80268 0.901338 0.433116i \(-0.142586\pi\)
0.901338 + 0.433116i \(0.142586\pi\)
\(332\) 0 0
\(333\) 2.39795 2.39795i 0.131407 0.131407i
\(334\) 0 0
\(335\) −20.0023 30.2844i −1.09284 1.65461i
\(336\) 0 0
\(337\) −3.05599 3.05599i −0.166470 0.166470i 0.618956 0.785426i \(-0.287556\pi\)
−0.785426 + 0.618956i \(0.787556\pi\)
\(338\) 0 0
\(339\) −18.7168 −1.01656
\(340\) 0 0
\(341\) 7.39393i 0.400404i
\(342\) 0 0
\(343\) −12.7149 13.4659i −0.686543 0.727090i
\(344\) 0 0
\(345\) −9.98204 2.04101i −0.537415 0.109884i
\(346\) 0 0
\(347\) 9.03562 + 9.03562i 0.485058 + 0.485058i 0.906742 0.421685i \(-0.138561\pi\)
−0.421685 + 0.906742i \(0.638561\pi\)
\(348\) 0 0
\(349\) 28.0691 1.50251 0.751253 0.660014i \(-0.229450\pi\)
0.751253 + 0.660014i \(0.229450\pi\)
\(350\) 0 0
\(351\) −2.08998 −0.111555
\(352\) 0 0
\(353\) 9.07254 + 9.07254i 0.482883 + 0.482883i 0.906051 0.423168i \(-0.139082\pi\)
−0.423168 + 0.906051i \(0.639082\pi\)
\(354\) 0 0
\(355\) −5.70700 1.16690i −0.302896 0.0619325i
\(356\) 0 0
\(357\) 13.8261 13.5642i 0.731752 0.717896i
\(358\) 0 0
\(359\) 19.5255i 1.03052i −0.857035 0.515258i \(-0.827696\pi\)
0.857035 0.515258i \(-0.172304\pi\)
\(360\) 0 0
\(361\) 34.9020 1.83695
\(362\) 0 0
\(363\) 5.26662 + 5.26662i 0.276426 + 0.276426i
\(364\) 0 0
\(365\) 15.2892 + 23.1484i 0.800272 + 1.21164i
\(366\) 0 0
\(367\) 8.27119 8.27119i 0.431753 0.431753i −0.457472 0.889224i \(-0.651245\pi\)
0.889224 + 0.457472i \(0.151245\pi\)
\(368\) 0 0
\(369\) −4.03046 −0.209817
\(370\) 0 0
\(371\) −0.275087 + 28.7790i −0.0142818 + 1.49413i
\(372\) 0 0
\(373\) −25.5882 + 25.5882i −1.32491 + 1.32491i −0.415157 + 0.909750i \(0.636273\pi\)
−0.909750 + 0.415157i \(0.863727\pi\)
\(374\) 0 0
\(375\) −2.00529 10.9990i −0.103553 0.567988i
\(376\) 0 0
\(377\) 8.59696 8.59696i 0.442766 0.442766i
\(378\) 0 0
\(379\) 6.19850i 0.318396i −0.987247 0.159198i \(-0.949109\pi\)
0.987247 0.159198i \(-0.0508908\pi\)
\(380\) 0 0
\(381\) 18.1747i 0.931118i
\(382\) 0 0
\(383\) 20.2892 + 20.2892i 1.03673 + 1.03673i 0.999299 + 0.0374314i \(0.0119176\pi\)
0.0374314 + 0.999299i \(0.488082\pi\)
\(384\) 0 0
\(385\) 21.3359 13.8009i 1.08738 0.703360i
\(386\) 0 0
\(387\) −1.67864 1.67864i −0.0853299 0.0853299i
\(388\) 0 0
\(389\) 5.15659i 0.261450i −0.991419 0.130725i \(-0.958270\pi\)
0.991419 0.130725i \(-0.0417304\pi\)
\(390\) 0 0
\(391\) 33.3565i 1.68691i
\(392\) 0 0
\(393\) −9.77673 + 9.77673i −0.493171 + 0.493171i
\(394\) 0 0
\(395\) 0.188637 0.922576i 0.00949137 0.0464198i
\(396\) 0 0
\(397\) −12.5558 + 12.5558i −0.630155 + 0.630155i −0.948107 0.317952i \(-0.897005\pi\)
0.317952 + 0.948107i \(0.397005\pi\)
\(398\) 0 0
\(399\) 19.4237 + 0.185663i 0.972401 + 0.00929478i
\(400\) 0 0
\(401\) 21.4175 1.06954 0.534768 0.844999i \(-0.320399\pi\)
0.534768 + 0.844999i \(0.320399\pi\)
\(402\) 0 0
\(403\) −2.54405 + 2.54405i −0.126728 + 0.126728i
\(404\) 0 0
\(405\) 2.19074 + 0.447937i 0.108859 + 0.0222582i
\(406\) 0 0
\(407\) 10.2995 + 10.2995i 0.510526 + 0.510526i
\(408\) 0 0
\(409\) 7.32725 0.362309 0.181154 0.983455i \(-0.442017\pi\)
0.181154 + 0.983455i \(0.442017\pi\)
\(410\) 0 0
\(411\) 7.82443i 0.385951i
\(412\) 0 0
\(413\) 1.46542 1.43767i 0.0721088 0.0707433i
\(414\) 0 0
\(415\) −14.7185 22.2845i −0.722505 1.09390i
\(416\) 0 0
\(417\) −6.86211 6.86211i −0.336039 0.336039i
\(418\) 0 0
\(419\) −20.1356 −0.983687 −0.491843 0.870684i \(-0.663677\pi\)
−0.491843 + 0.870684i \(0.663677\pi\)
\(420\) 0 0
\(421\) −15.1868 −0.740157 −0.370079 0.929000i \(-0.620669\pi\)
−0.370079 + 0.929000i \(0.620669\pi\)
\(422\) 0 0
\(423\) 7.92960 + 7.92960i 0.385550 + 0.385550i
\(424\) 0 0
\(425\) 33.9648 13.6457i 1.64754 0.661913i
\(426\) 0 0
\(427\) −18.2777 18.6305i −0.884519 0.901592i
\(428\) 0 0
\(429\) 8.97671i 0.433400i
\(430\) 0 0
\(431\) −9.87897 −0.475853 −0.237927 0.971283i \(-0.576468\pi\)
−0.237927 + 0.971283i \(0.576468\pi\)
\(432\) 0 0
\(433\) −11.3585 11.3585i −0.545857 0.545857i 0.379383 0.925240i \(-0.376136\pi\)
−0.925240 + 0.379383i \(0.876136\pi\)
\(434\) 0 0
\(435\) −10.8540 + 7.16890i −0.520410 + 0.343723i
\(436\) 0 0
\(437\) 23.6546 23.6546i 1.13155 1.13155i
\(438\) 0 0
\(439\) −26.3204 −1.25620 −0.628102 0.778131i \(-0.716168\pi\)
−0.628102 + 0.778131i \(0.716168\pi\)
\(440\) 0 0
\(441\) 6.99872 + 0.133808i 0.333272 + 0.00637181i
\(442\) 0 0
\(443\) 4.91583 4.91583i 0.233558 0.233558i −0.580618 0.814176i \(-0.697189\pi\)
0.814176 + 0.580618i \(0.197189\pi\)
\(444\) 0 0
\(445\) −9.40565 1.92315i −0.445871 0.0911663i
\(446\) 0 0
\(447\) 6.70387 6.70387i 0.317082 0.317082i
\(448\) 0 0
\(449\) 23.4220i 1.10535i 0.833395 + 0.552677i \(0.186394\pi\)
−0.833395 + 0.552677i \(0.813606\pi\)
\(450\) 0 0
\(451\) 17.3113i 0.815159i
\(452\) 0 0
\(453\) −1.90930 1.90930i −0.0897068 0.0897068i
\(454\) 0 0
\(455\) −12.0896 2.59256i −0.566769 0.121541i
\(456\) 0 0
\(457\) −26.7882 26.7882i −1.25310 1.25310i −0.954323 0.298777i \(-0.903421\pi\)
−0.298777 0.954323i \(-0.596579\pi\)
\(458\) 0 0
\(459\) 7.32070i 0.341701i
\(460\) 0 0
\(461\) 1.75228i 0.0816116i −0.999167 0.0408058i \(-0.987008\pi\)
0.999167 0.0408058i \(-0.0129925\pi\)
\(462\) 0 0
\(463\) −0.630432 + 0.630432i −0.0292986 + 0.0292986i −0.721604 0.692306i \(-0.756595\pi\)
0.692306 + 0.721604i \(0.256595\pi\)
\(464\) 0 0
\(465\) 3.21197 2.12145i 0.148951 0.0983800i
\(466\) 0 0
\(467\) 16.6699 16.6699i 0.771390 0.771390i −0.206959 0.978350i \(-0.566357\pi\)
0.978350 + 0.206959i \(0.0663568\pi\)
\(468\) 0 0
\(469\) 42.9414 + 0.410459i 1.98285 + 0.0189532i
\(470\) 0 0
\(471\) −3.11239 −0.143412
\(472\) 0 0
\(473\) 7.20996 7.20996i 0.331514 0.331514i
\(474\) 0 0
\(475\) 33.7628 + 14.4092i 1.54914 + 0.661140i
\(476\) 0 0
\(477\) −7.69186 7.69186i −0.352186 0.352186i
\(478\) 0 0
\(479\) 36.3230 1.65964 0.829820 0.558031i \(-0.188443\pi\)
0.829820 + 0.558031i \(0.188443\pi\)
\(480\) 0 0
\(481\) 7.08754i 0.323164i
\(482\) 0 0
\(483\) 8.60545 8.44250i 0.391562 0.384147i
\(484\) 0 0
\(485\) 19.2539 12.7169i 0.874276 0.577445i
\(486\) 0 0
\(487\) 7.25362 + 7.25362i 0.328693 + 0.328693i 0.852089 0.523396i \(-0.175335\pi\)
−0.523396 + 0.852089i \(0.675335\pi\)
\(488\) 0 0
\(489\) 5.89410 0.266541
\(490\) 0 0
\(491\) −0.696840 −0.0314480 −0.0157240 0.999876i \(-0.505005\pi\)
−0.0157240 + 0.999876i \(0.505005\pi\)
\(492\) 0 0
\(493\) −30.1132 30.1132i −1.35623 1.35623i
\(494\) 0 0
\(495\) −1.92395 + 9.40952i −0.0864749 + 0.422926i
\(496\) 0 0
\(497\) 4.91997 4.82680i 0.220691 0.216512i
\(498\) 0 0
\(499\) 31.9174i 1.42882i 0.699728 + 0.714409i \(0.253304\pi\)
−0.699728 + 0.714409i \(0.746696\pi\)
\(500\) 0 0
\(501\) −4.79174 −0.214079
\(502\) 0 0
\(503\) −11.7973 11.7973i −0.526018 0.526018i 0.393365 0.919382i \(-0.371311\pi\)
−0.919382 + 0.393365i \(0.871311\pi\)
\(504\) 0 0
\(505\) −0.0729608 + 0.356832i −0.00324671 + 0.0158788i
\(506\) 0 0
\(507\) 6.10375 6.10375i 0.271077 0.271077i
\(508\) 0 0
\(509\) 11.9546 0.529880 0.264940 0.964265i \(-0.414648\pi\)
0.264940 + 0.964265i \(0.414648\pi\)
\(510\) 0 0
\(511\) −32.8231 0.313742i −1.45201 0.0138791i
\(512\) 0 0
\(513\) −5.19144 + 5.19144i −0.229208 + 0.229208i
\(514\) 0 0
\(515\) 7.78085 + 11.7805i 0.342865 + 0.519112i
\(516\) 0 0
\(517\) −34.0586 + 34.0586i −1.49790 + 1.49790i
\(518\) 0 0
\(519\) 5.51406i 0.242040i
\(520\) 0 0
\(521\) 35.3147i 1.54716i 0.633696 + 0.773582i \(0.281537\pi\)
−0.633696 + 0.773582i \(0.718463\pi\)
\(522\) 0 0
\(523\) −10.7252 10.7252i −0.468981 0.468981i 0.432603 0.901584i \(-0.357595\pi\)
−0.901584 + 0.432603i \(0.857595\pi\)
\(524\) 0 0
\(525\) 12.1168 + 5.30868i 0.528822 + 0.231690i
\(526\) 0 0
\(527\) 8.91121 + 8.91121i 0.388179 + 0.388179i
\(528\) 0 0
\(529\) 2.23863i 0.0973319i
\(530\) 0 0
\(531\) 0.775921i 0.0336721i
\(532\) 0 0
\(533\) −5.95636 + 5.95636i −0.257999 + 0.257999i
\(534\) 0 0
\(535\) 17.0473 + 25.8103i 0.737017 + 1.11587i
\(536\) 0 0
\(537\) −6.89433 + 6.89433i −0.297512 + 0.297512i
\(538\) 0 0
\(539\) −0.574723 + 30.0604i −0.0247551 + 1.29479i
\(540\) 0 0
\(541\) −28.3891 −1.22054 −0.610271 0.792193i \(-0.708939\pi\)
−0.610271 + 0.792193i \(0.708939\pi\)
\(542\) 0 0
\(543\) 2.46419 2.46419i 0.105748 0.105748i
\(544\) 0 0
\(545\) −3.27941 + 16.0388i −0.140475 + 0.687025i
\(546\) 0 0
\(547\) 4.10546 + 4.10546i 0.175537 + 0.175537i 0.789407 0.613870i \(-0.210388\pi\)
−0.613870 + 0.789407i \(0.710388\pi\)
\(548\) 0 0
\(549\) 9.86457 0.421010
\(550\) 0 0
\(551\) 42.7092i 1.81947i
\(552\) 0 0
\(553\) 0.780286 + 0.795347i 0.0331811 + 0.0338216i
\(554\) 0 0
\(555\) −1.51905 + 7.42926i −0.0644799 + 0.315355i
\(556\) 0 0
\(557\) −0.765661 0.765661i −0.0324421 0.0324421i 0.690700 0.723142i \(-0.257303\pi\)
−0.723142 + 0.690700i \(0.757303\pi\)
\(558\) 0 0
\(559\) −4.96150 −0.209849
\(560\) 0 0
\(561\) −31.4433 −1.32754
\(562\) 0 0
\(563\) −18.0357 18.0357i −0.760114 0.760114i 0.216229 0.976343i \(-0.430624\pi\)
−0.976343 + 0.216229i \(0.930624\pi\)
\(564\) 0 0
\(565\) 34.9223 23.0656i 1.46919 0.970379i
\(566\) 0 0
\(567\) −1.88862 + 1.85286i −0.0793148 + 0.0778129i
\(568\) 0 0
\(569\) 22.3471i 0.936838i 0.883506 + 0.468419i \(0.155176\pi\)
−0.883506 + 0.468419i \(0.844824\pi\)
\(570\) 0 0
\(571\) −31.1779 −1.30475 −0.652376 0.757895i \(-0.726228\pi\)
−0.652376 + 0.757895i \(0.726228\pi\)
\(572\) 0 0
\(573\) 1.30574 + 1.30574i 0.0545482 + 0.0545482i
\(574\) 0 0
\(575\) 21.1400 8.49320i 0.881599 0.354191i
\(576\) 0 0
\(577\) −15.4967 + 15.4967i −0.645137 + 0.645137i −0.951814 0.306677i \(-0.900783\pi\)
0.306677 + 0.951814i \(0.400783\pi\)
\(578\) 0 0
\(579\) −16.0393 −0.666570
\(580\) 0 0
\(581\) 31.5980 + 0.302033i 1.31091 + 0.0125304i
\(582\) 0 0
\(583\) 33.0375 33.0375i 1.36827 1.36827i
\(584\) 0 0
\(585\) 3.89953 2.57558i 0.161226 0.106487i
\(586\) 0 0
\(587\) −19.3419 + 19.3419i −0.798326 + 0.798326i −0.982831 0.184506i \(-0.940932\pi\)
0.184506 + 0.982831i \(0.440932\pi\)
\(588\) 0 0
\(589\) 12.6387i 0.520768i
\(590\) 0 0
\(591\) 13.4523i 0.553355i
\(592\) 0 0
\(593\) 8.53226 + 8.53226i 0.350378 + 0.350378i 0.860250 0.509872i \(-0.170307\pi\)
−0.509872 + 0.860250i \(0.670307\pi\)
\(594\) 0 0
\(595\) −9.08114 + 42.3471i −0.372291 + 1.73606i
\(596\) 0 0
\(597\) 9.61338 + 9.61338i 0.393449 + 0.393449i
\(598\) 0 0
\(599\) 0.751539i 0.0307070i −0.999882 0.0153535i \(-0.995113\pi\)
0.999882 0.0153535i \(-0.00488737\pi\)
\(600\) 0 0
\(601\) 26.6379i 1.08658i −0.839544 0.543292i \(-0.817178\pi\)
0.839544 0.543292i \(-0.182822\pi\)
\(602\) 0 0
\(603\) −11.4771 + 11.4771i −0.467383 + 0.467383i
\(604\) 0 0
\(605\) −16.3169 3.33629i −0.663377 0.135639i
\(606\) 0 0
\(607\) −24.0798 + 24.0798i −0.977367 + 0.977367i −0.999749 0.0223823i \(-0.992875\pi\)
0.0223823 + 0.999749i \(0.492875\pi\)
\(608\) 0 0
\(609\) 0.147110 15.3903i 0.00596119 0.623648i
\(610\) 0 0
\(611\) 23.4373 0.948171
\(612\) 0 0
\(613\) −5.56807 + 5.56807i −0.224892 + 0.224892i −0.810555 0.585663i \(-0.800834\pi\)
0.585663 + 0.810555i \(0.300834\pi\)
\(614\) 0 0
\(615\) 7.52015 4.96694i 0.303242 0.200286i
\(616\) 0 0
\(617\) −1.34278 1.34278i −0.0540582 0.0540582i 0.679561 0.733619i \(-0.262170\pi\)
−0.733619 + 0.679561i \(0.762170\pi\)
\(618\) 0 0
\(619\) 32.7537 1.31648 0.658241 0.752808i \(-0.271301\pi\)
0.658241 + 0.752808i \(0.271301\pi\)
\(620\) 0 0
\(621\) 4.55646i 0.182845i
\(622\) 0 0
\(623\) 8.10855 7.95501i 0.324862 0.318711i
\(624\) 0 0
\(625\) 17.2962 + 18.0511i 0.691847 + 0.722044i
\(626\) 0 0
\(627\) −22.2979 22.2979i −0.890492 0.890492i
\(628\) 0 0
\(629\) −24.8260 −0.989877
\(630\) 0 0
\(631\) 20.6332 0.821396 0.410698 0.911772i \(-0.365285\pi\)
0.410698 + 0.911772i \(0.365285\pi\)
\(632\) 0 0
\(633\) −0.811471 0.811471i −0.0322531 0.0322531i
\(634\) 0 0
\(635\) −22.3976 33.9109i −0.888821 1.34571i
\(636\) 0 0
\(637\) 10.5407 10.1452i 0.417638 0.401968i
\(638\) 0 0
\(639\) 2.60505i 0.103054i
\(640\) 0 0
\(641\) 18.9477 0.748389 0.374194 0.927350i \(-0.377919\pi\)
0.374194 + 0.927350i \(0.377919\pi\)
\(642\) 0 0
\(643\) 28.6816 + 28.6816i 1.13109 + 1.13109i 0.989996 + 0.141096i \(0.0450626\pi\)
0.141096 + 0.989996i \(0.454937\pi\)
\(644\) 0 0
\(645\) 5.20071 + 1.06338i 0.204778 + 0.0418705i
\(646\) 0 0
\(647\) 12.1999 12.1999i 0.479627 0.479627i −0.425385 0.905012i \(-0.639861\pi\)
0.905012 + 0.425385i \(0.139861\pi\)
\(648\) 0 0
\(649\) −3.33268 −0.130819
\(650\) 0 0
\(651\) −0.0435334 + 4.55437i −0.00170621 + 0.178500i
\(652\) 0 0
\(653\) −13.4392 + 13.4392i −0.525918 + 0.525918i −0.919353 0.393435i \(-0.871287\pi\)
0.393435 + 0.919353i \(0.371287\pi\)
\(654\) 0 0
\(655\) 6.19334 30.2900i 0.241994 1.18353i
\(656\) 0 0
\(657\) 8.77273 8.77273i 0.342257 0.342257i
\(658\) 0 0
\(659\) 10.0077i 0.389844i 0.980819 + 0.194922i \(0.0624454\pi\)
−0.980819 + 0.194922i \(0.937555\pi\)
\(660\) 0 0
\(661\) 9.82613i 0.382192i 0.981571 + 0.191096i \(0.0612042\pi\)
−0.981571 + 0.191096i \(0.938796\pi\)
\(662\) 0 0
\(663\) 10.8188 + 10.8188i 0.420167 + 0.420167i
\(664\) 0 0
\(665\) −36.4701 + 23.5904i −1.41425 + 0.914795i
\(666\) 0 0
\(667\) −18.7427 18.7427i −0.725720 0.725720i
\(668\) 0 0
\(669\) 6.19647i 0.239569i
\(670\) 0 0
\(671\) 42.3696i 1.63566i
\(672\) 0 0
\(673\) 26.8381 26.8381i 1.03453 1.03453i 0.0351501 0.999382i \(-0.488809\pi\)
0.999382 0.0351501i \(-0.0111909\pi\)
\(674\) 0 0
\(675\) −4.63956 + 1.86399i −0.178577 + 0.0717449i
\(676\) 0 0
\(677\) 20.1885 20.1885i 0.775908 0.775908i −0.203224 0.979132i \(-0.565142\pi\)
0.979132 + 0.203224i \(0.0651421\pi\)
\(678\) 0 0
\(679\) −0.260958 + 27.3009i −0.0100147 + 1.04771i
\(680\) 0 0
\(681\) −19.1935 −0.735496
\(682\) 0 0
\(683\) 3.48742 3.48742i 0.133442 0.133442i −0.637231 0.770673i \(-0.719920\pi\)
0.770673 + 0.637231i \(0.219920\pi\)
\(684\) 0 0
\(685\) −9.64243 14.5990i −0.368418 0.557801i
\(686\) 0 0
\(687\) −3.70006 3.70006i −0.141166 0.141166i
\(688\) 0 0
\(689\) −22.7346 −0.866120
\(690\) 0 0
\(691\) 32.1247i 1.22208i −0.791599 0.611041i \(-0.790751\pi\)
0.791599 0.611041i \(-0.209249\pi\)
\(692\) 0 0
\(693\) −7.95828 8.11189i −0.302310 0.308145i
\(694\) 0 0
\(695\) 21.2600 + 4.34700i 0.806439 + 0.164891i
\(696\) 0 0
\(697\) 20.8637 + 20.8637i 0.790270 + 0.790270i
\(698\) 0 0
\(699\) 2.11769 0.0800982
\(700\) 0 0
\(701\) −19.6054 −0.740486 −0.370243 0.928935i \(-0.620726\pi\)
−0.370243 + 0.928935i \(0.620726\pi\)
\(702\) 0 0
\(703\) −17.6052 17.6052i −0.663994 0.663994i
\(704\) 0 0
\(705\) −24.5673 5.02323i −0.925258 0.189186i
\(706\) 0 0
\(707\) −0.301798 0.307623i −0.0113503 0.0115693i
\(708\) 0 0
\(709\) 32.5890i 1.22391i 0.790894 + 0.611953i \(0.209616\pi\)
−0.790894 + 0.611953i \(0.790384\pi\)
\(710\) 0 0
\(711\) −0.421125 −0.0157934
\(712\) 0 0
\(713\) 5.54642 + 5.54642i 0.207715 + 0.207715i
\(714\) 0 0
\(715\) 11.0625 + 16.7490i 0.413712 + 0.626377i
\(716\) 0 0
\(717\) −6.72928 + 6.72928i −0.251310 + 0.251310i
\(718\) 0 0
\(719\) 28.2155 1.05226 0.526129 0.850404i \(-0.323643\pi\)
0.526129 + 0.850404i \(0.323643\pi\)
\(720\) 0 0
\(721\) −16.7041 0.159667i −0.622092 0.00594633i
\(722\) 0 0
\(723\) 0.0940019 0.0940019i 0.00349597 0.00349597i
\(724\) 0 0
\(725\) 11.4171 26.7519i 0.424021 0.993540i
\(726\) 0 0
\(727\) −0.621604 + 0.621604i −0.0230540 + 0.0230540i −0.718540 0.695486i \(-0.755189\pi\)
0.695486 + 0.718540i \(0.255189\pi\)
\(728\) 0 0
\(729\) 1.00000i 0.0370370i
\(730\) 0 0
\(731\) 17.3790i 0.642784i
\(732\) 0 0
\(733\) −23.8152 23.8152i −0.879636 0.879636i 0.113861 0.993497i \(-0.463678\pi\)
−0.993497 + 0.113861i \(0.963678\pi\)
\(734\) 0 0
\(735\) −13.2233 + 8.37521i −0.487749 + 0.308924i
\(736\) 0 0
\(737\) −49.2956 49.2956i −1.81583 1.81583i
\(738\) 0 0
\(739\) 12.3116i 0.452889i −0.974024 0.226444i \(-0.927290\pi\)
0.974024 0.226444i \(-0.0727102\pi\)
\(740\) 0 0
\(741\) 15.3442i 0.563683i
\(742\) 0 0
\(743\) −4.86752 + 4.86752i −0.178572 + 0.178572i −0.790733 0.612161i \(-0.790300\pi\)
0.612161 + 0.790733i \(0.290300\pi\)
\(744\) 0 0
\(745\) −4.24676 + 20.7698i −0.155589 + 0.760946i
\(746\) 0 0
\(747\) −8.44531 + 8.44531i −0.308998 + 0.308998i
\(748\) 0 0
\(749\) −36.5974 0.349819i −1.33724 0.0127821i
\(750\) 0 0
\(751\) −40.8220 −1.48962 −0.744808 0.667278i \(-0.767459\pi\)
−0.744808 + 0.667278i \(0.767459\pi\)
\(752\) 0 0
\(753\) −2.88284 + 2.88284i −0.105056 + 0.105056i
\(754\) 0 0
\(755\) 5.91535 + 1.20950i 0.215282 + 0.0440182i
\(756\) 0 0
\(757\) −6.75219 6.75219i −0.245412 0.245412i 0.573672 0.819085i \(-0.305518\pi\)
−0.819085 + 0.573672i \(0.805518\pi\)
\(758\) 0 0
\(759\) −19.5706 −0.710368
\(760\) 0 0
\(761\) 2.44460i 0.0886166i 0.999018 + 0.0443083i \(0.0141084\pi\)
−0.999018 + 0.0443083i \(0.985892\pi\)
\(762\) 0 0
\(763\) −13.5651 13.8269i −0.491089 0.500568i
\(764\) 0 0
\(765\) −9.02166 13.6592i −0.326179 0.493848i
\(766\) 0 0
\(767\) 1.14668 + 1.14668i 0.0414043 + 0.0414043i
\(768\) 0 0
\(769\) −8.96572 −0.323312 −0.161656 0.986847i \(-0.551684\pi\)
−0.161656 + 0.986847i \(0.551684\pi\)
\(770\) 0 0
\(771\) 16.7704 0.603970
\(772\) 0 0
\(773\) 3.20283 + 3.20283i 0.115198 + 0.115198i 0.762356 0.647158i \(-0.224043\pi\)
−0.647158 + 0.762356i \(0.724043\pi\)
\(774\) 0 0
\(775\) −3.37860 + 7.91653i −0.121363 + 0.284370i
\(776\) 0 0
\(777\) −6.28344 6.40472i −0.225417 0.229768i
\(778\) 0 0
\(779\) 29.5908i 1.06020i
\(780\) 0 0
\(781\) −11.1890 −0.400375
\(782\) 0 0
\(783\) 4.11343 + 4.11343i 0.147002 + 0.147002i
\(784\) 0 0
\(785\) 5.80719 3.83556i 0.207268 0.136897i
\(786\) 0 0
\(787\) −13.8309 + 13.8309i −0.493018 + 0.493018i −0.909256 0.416238i \(-0.863348\pi\)
0.416238 + 0.909256i \(0.363348\pi\)
\(788\) 0 0
\(789\) −28.1656 −1.00272
\(790\) 0 0
\(791\) −0.473320 + 49.5177i −0.0168293 + 1.76065i
\(792\) 0 0
\(793\) 14.5782 14.5782i 0.517688 0.517688i
\(794\) 0 0
\(795\) 23.8308 + 4.87263i 0.845190 + 0.172814i
\(796\) 0 0
\(797\) −22.9449 + 22.9449i −0.812751 + 0.812751i −0.985046 0.172294i \(-0.944882\pi\)
0.172294 + 0.985046i \(0.444882\pi\)
\(798\) 0 0
\(799\) 82.0953i 2.90432i
\(800\) 0 0
\(801\) 4.29336i 0.151698i
\(802\) 0 0
\(803\) 37.6800 + 37.6800i 1.32970 + 1.32970i
\(804\) 0 0
\(805\) −5.65218 + 26.3572i −0.199213 + 0.928968i
\(806\) 0 0
\(807\) 1.59935 + 1.59935i 0.0562997 + 0.0562997i
\(808\) 0 0
\(809\) 29.3160i 1.03070i 0.856981 + 0.515348i \(0.172337\pi\)
−0.856981 + 0.515348i \(0.827663\pi\)
\(810\) 0 0
\(811\) 18.7720i 0.659174i 0.944125 + 0.329587i \(0.106909\pi\)
−0.944125 + 0.329587i \(0.893091\pi\)
\(812\) 0 0
\(813\) 7.45552 7.45552i 0.261476 0.261476i
\(814\) 0 0
\(815\) −10.9974 + 7.26360i −0.385222 + 0.254433i
\(816\) 0 0
\(817\) −12.3242 + 12.3242i −0.431170 + 0.431170i
\(818\) 0 0
\(819\) −0.0528524 + 5.52930i −0.00184681 + 0.193209i
\(820\) 0 0
\(821\) 15.4560 0.539418 0.269709 0.962942i \(-0.413072\pi\)
0.269709 + 0.962942i \(0.413072\pi\)
\(822\) 0 0
\(823\) −39.0741 + 39.0741i −1.36204 + 1.36204i −0.490723 + 0.871316i \(0.663267\pi\)
−0.871316 + 0.490723i \(0.836733\pi\)
\(824\) 0 0
\(825\) −8.00607 19.9275i −0.278736 0.693787i
\(826\) 0 0
\(827\) 14.9880 + 14.9880i 0.521184 + 0.521184i 0.917929 0.396745i \(-0.129860\pi\)
−0.396745 + 0.917929i \(0.629860\pi\)
\(828\) 0 0
\(829\) −39.3244 −1.36579 −0.682896 0.730515i \(-0.739280\pi\)
−0.682896 + 0.730515i \(0.739280\pi\)
\(830\) 0 0
\(831\) 14.5349i 0.504209i
\(832\) 0 0
\(833\) −35.5363 36.9216i −1.23126 1.27926i
\(834\) 0 0
\(835\) 8.94056 5.90510i 0.309401 0.204354i
\(836\) 0 0
\(837\) −1.21726 1.21726i −0.0420748 0.0420748i
\(838\) 0 0
\(839\) −20.2618 −0.699516 −0.349758 0.936840i \(-0.613736\pi\)
−0.349758 + 0.936840i \(0.613736\pi\)
\(840\) 0 0
\(841\) −4.84056 −0.166916
\(842\) 0 0
\(843\) −14.0620 14.0620i −0.484321 0.484321i
\(844\) 0 0
\(845\) −3.86659 + 18.9105i −0.133015 + 0.650541i
\(846\) 0 0
\(847\) 14.0667 13.8003i 0.483338 0.474186i
\(848\) 0 0
\(849\) 11.3824i 0.390645i
\(850\) 0 0
\(851\) −15.4519 −0.529685
\(852\) 0 0
\(853\) 9.66947 + 9.66947i 0.331076 + 0.331076i 0.852995 0.521919i \(-0.174784\pi\)
−0.521919 + 0.852995i \(0.674784\pi\)
\(854\) 0 0
\(855\) 3.28866 16.0840i 0.112470 0.550061i
\(856\) 0 0
\(857\) 16.3114 16.3114i 0.557187 0.557187i −0.371319 0.928506i \(-0.621094\pi\)
0.928506 + 0.371319i \(0.121094\pi\)
\(858\) 0 0
\(859\) 12.9958 0.443411 0.221706 0.975114i \(-0.428838\pi\)
0.221706 + 0.975114i \(0.428838\pi\)
\(860\) 0 0
\(861\) −0.101924 + 10.6631i −0.00347357 + 0.363398i
\(862\) 0 0
\(863\) −12.3753 + 12.3753i −0.421262 + 0.421262i −0.885638 0.464376i \(-0.846279\pi\)
0.464376 + 0.885638i \(0.346279\pi\)
\(864\) 0 0
\(865\) 6.79525 + 10.2883i 0.231046 + 0.349812i
\(866\) 0 0
\(867\) 25.8749 25.8749i 0.878757 0.878757i
\(868\) 0 0
\(869\) 1.80878i 0.0613588i
\(870\) 0 0
\(871\) 33.9225i 1.14942i
\(872\) 0 0
\(873\) −7.29681 7.29681i −0.246959 0.246959i
\(874\) 0 0
\(875\) −29.1501 + 5.02710i −0.985453 + 0.169947i
\(876\) 0 0
\(877\) 11.1110 + 11.1110i 0.375191 + 0.375191i 0.869364 0.494173i \(-0.164529\pi\)
−0.494173 + 0.869364i \(0.664529\pi\)
\(878\) 0 0
\(879\) 30.7229i 1.03626i
\(880\) 0 0
\(881\) 21.8179i 0.735065i −0.930011 0.367532i \(-0.880203\pi\)
0.930011 0.367532i \(-0.119797\pi\)
\(882\) 0 0
\(883\) 28.3564 28.3564i 0.954268 0.954268i −0.0447315 0.998999i \(-0.514243\pi\)
0.998999 + 0.0447315i \(0.0142432\pi\)
\(884\) 0 0
\(885\) −0.956206 1.44773i −0.0321425 0.0486651i
\(886\) 0 0
\(887\) 8.04375 8.04375i 0.270083 0.270083i −0.559051 0.829133i \(-0.688834\pi\)
0.829133 + 0.559051i \(0.188834\pi\)
\(888\) 0 0
\(889\) 48.0835 + 0.459611i 1.61267 + 0.0154149i
\(890\) 0 0
\(891\) 4.29513 0.143892
\(892\) 0 0
\(893\) 58.2175 58.2175i 1.94818 1.94818i
\(894\) 0 0
\(895\) 4.36740 21.3598i 0.145986 0.713981i
\(896\) 0 0
\(897\) 6.73371 + 6.73371i 0.224832 + 0.224832i
\(898\) 0 0
\(899\) 10.0142 0.333994
\(900\) 0 0
\(901\) 79.6341i 2.65300i
\(902\) 0 0
\(903\) −4.48350 + 4.39860i −0.149202 + 0.146376i
\(904\) 0 0
\(905\) −1.56101 + 7.63449i −0.0518897 + 0.253779i
\(906\) 0 0
\(907\) −26.6993 26.6993i −0.886535 0.886535i 0.107653 0.994189i \(-0.465666\pi\)
−0.994189 + 0.107653i \(0.965666\pi\)
\(908\) 0 0
\(909\) 0.162882 0.00540245
\(910\) 0 0
\(911\) −17.7916 −0.589461 −0.294731 0.955580i \(-0.595230\pi\)
−0.294731 + 0.955580i \(0.595230\pi\)
\(912\) 0 0
\(913\) −36.2737 36.2737i −1.20048 1.20048i
\(914\) 0 0
\(915\) −18.4056 + 12.1566i −0.608470 + 0.401885i
\(916\) 0 0
\(917\) 25.6184 + 26.1128i 0.845993 + 0.862322i
\(918\) 0 0
\(919\) 42.0699i 1.38776i 0.720092 + 0.693879i \(0.244100\pi\)
−0.720092 + 0.693879i \(0.755900\pi\)
\(920\) 0 0
\(921\) 3.22009 0.106106
\(922\) 0 0
\(923\) 3.84984 + 3.84984i 0.126719 + 0.126719i
\(924\) 0 0
\(925\) −6.32117 15.7337i −0.207839 0.517321i
\(926\) 0 0
\(927\) 4.46455 4.46455i 0.146635 0.146635i
\(928\) 0 0
\(929\) −60.7162 −1.99203 −0.996017 0.0891609i \(-0.971581\pi\)
−0.996017 + 0.0891609i \(0.971581\pi\)
\(930\) 0 0
\(931\) 0.982392 51.3832i 0.0321966 1.68402i
\(932\) 0 0
\(933\) 8.20205 8.20205i 0.268523 0.268523i
\(934\) 0 0
\(935\) 58.6678 38.7492i 1.91864 1.26723i
\(936\) 0 0
\(937\) 3.40076 3.40076i 0.111098 0.111098i −0.649372 0.760471i \(-0.724968\pi\)
0.760471 + 0.649372i \(0.224968\pi\)
\(938\) 0 0
\(939\) 21.7420i 0.709524i
\(940\) 0 0
\(941\) 46.0560i 1.50138i −0.660653 0.750691i \(-0.729721\pi\)
0.660653 0.750691i \(-0.270279\pi\)
\(942\) 0 0
\(943\) 12.9858 + 12.9858i 0.422875 + 0.422875i
\(944\) 0 0
\(945\) 1.24048 5.78457i 0.0403527 0.188172i
\(946\) 0 0
\(947\) −8.22044 8.22044i −0.267128 0.267128i 0.560814 0.827942i \(-0.310488\pi\)
−0.827942 + 0.560814i \(0.810488\pi\)
\(948\) 0 0
\(949\) 25.9293i 0.841701i
\(950\) 0 0
\(951\) 30.8236i 0.999524i
\(952\) 0 0
\(953\) −20.0312 + 20.0312i −0.648874 + 0.648874i −0.952721 0.303847i \(-0.901729\pi\)
0.303847 + 0.952721i \(0.401729\pi\)
\(954\) 0 0
\(955\) −4.04543 0.827160i −0.130907 0.0267663i
\(956\) 0 0
\(957\) −17.6677 + 17.6677i −0.571116 + 0.571116i
\(958\) 0 0
\(959\) 20.7005 + 0.197868i 0.668456 + 0.00638949i
\(960\) 0 0
\(961\) 28.0365 0.904405
\(962\) 0 0
\(963\) 9.78150 9.78150i 0.315205 0.315205i
\(964\) 0 0
\(965\) 29.9265 19.7660i 0.963369 0.636290i
\(966\) 0 0
\(967\) −8.15410 8.15410i −0.262218 0.262218i 0.563737 0.825955i \(-0.309363\pi\)
−0.825955 + 0.563737i \(0.809363\pi\)
\(968\) 0 0
\(969\) 53.7471 1.72661
\(970\) 0 0
\(971\) 4.11148i 0.131944i 0.997821 + 0.0659718i \(0.0210147\pi\)
−0.997821 + 0.0659718i \(0.978985\pi\)
\(972\) 0 0
\(973\) −18.3281 + 17.9811i −0.587573 + 0.576447i
\(974\) 0 0
\(975\) −4.10184 + 9.61118i −0.131364 + 0.307804i
\(976\) 0 0
\(977\) −10.4853 10.4853i −0.335454 0.335454i 0.519199 0.854653i \(-0.326230\pi\)
−0.854653 + 0.519199i \(0.826230\pi\)
\(978\) 0 0
\(979\) −18.4405 −0.589362
\(980\) 0 0
\(981\) 7.32115 0.233746
\(982\) 0 0
\(983\) −4.74100 4.74100i −0.151214 0.151214i 0.627446 0.778660i \(-0.284100\pi\)
−0.778660 + 0.627446i \(0.784100\pi\)
\(984\) 0 0
\(985\) 16.5780 + 25.0997i 0.528219 + 0.799744i
\(986\) 0 0
\(987\) 21.1793 20.7783i 0.674145 0.661379i
\(988\) 0 0
\(989\) 10.8168i 0.343955i
\(990\) 0 0
\(991\) −13.9902 −0.444413 −0.222206 0.975000i \(-0.571326\pi\)
−0.222206 + 0.975000i \(0.571326\pi\)
\(992\) 0 0
\(993\) 23.1909 + 23.1909i 0.735940 + 0.735940i
\(994\) 0 0
\(995\) −29.7840 6.08986i −0.944215 0.193062i
\(996\) 0 0
\(997\) −19.6025 + 19.6025i −0.620819 + 0.620819i −0.945741 0.324922i \(-0.894662\pi\)
0.324922 + 0.945741i \(0.394662\pi\)
\(998\) 0 0
\(999\) 3.39121 0.107293
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 840.2.bt.a.97.7 24
4.3 odd 2 1680.2.cz.f.97.1 24
5.3 odd 4 840.2.bt.b.433.6 yes 24
7.6 odd 2 840.2.bt.b.97.6 yes 24
20.3 even 4 1680.2.cz.e.433.12 24
28.27 even 2 1680.2.cz.e.97.12 24
35.13 even 4 inner 840.2.bt.a.433.7 yes 24
140.83 odd 4 1680.2.cz.f.433.1 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
840.2.bt.a.97.7 24 1.1 even 1 trivial
840.2.bt.a.433.7 yes 24 35.13 even 4 inner
840.2.bt.b.97.6 yes 24 7.6 odd 2
840.2.bt.b.433.6 yes 24 5.3 odd 4
1680.2.cz.e.97.12 24 28.27 even 2
1680.2.cz.e.433.12 24 20.3 even 4
1680.2.cz.f.97.1 24 4.3 odd 2
1680.2.cz.f.433.1 24 140.83 odd 4