Properties

Label 1680.2.cz.e.97.12
Level $1680$
Weight $2$
Character 1680.97
Analytic conductor $13.415$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1680,2,Mod(97,1680)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1680, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1680.97"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1680 = 2^{4} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1680.cz (of order \(4\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.4148675396\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(i)\)
Twist minimal: no (minimal twist has level 840)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 97.12
Character \(\chi\) \(=\) 1680.97
Dual form 1680.2.cz.e.433.12

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.707107 + 0.707107i) q^{3} +(2.19074 + 0.447937i) q^{5} +(1.85286 - 1.88862i) q^{7} +1.00000i q^{9} +4.29513 q^{11} +(-1.47784 - 1.47784i) q^{13} +(1.23235 + 1.86583i) q^{15} +(-5.17651 + 5.17651i) q^{17} +7.34180 q^{19} +(2.64563 - 0.0252885i) q^{21} +(-3.22191 + 3.22191i) q^{23} +(4.59871 + 1.96263i) q^{25} +(-0.707107 + 0.707107i) q^{27} -5.81726i q^{29} +1.72147i q^{31} +(3.03711 + 3.03711i) q^{33} +(4.90513 - 3.30753i) q^{35} +(-2.39795 - 2.39795i) q^{37} -2.08998i q^{39} -4.03046i q^{41} +(1.67864 - 1.67864i) q^{43} +(-0.447937 + 2.19074i) q^{45} +(7.92960 - 7.92960i) q^{47} +(-0.133808 - 6.99872i) q^{49} -7.32070 q^{51} +(-7.69186 + 7.69186i) q^{53} +(9.40952 + 1.92395i) q^{55} +(5.19144 + 5.19144i) q^{57} +0.775921 q^{59} +9.86457i q^{61} +(1.88862 + 1.85286i) q^{63} +(-2.57558 - 3.89953i) q^{65} +(-11.4771 - 11.4771i) q^{67} -4.55646 q^{69} -2.60505 q^{71} +(8.77273 + 8.77273i) q^{73} +(1.86399 + 4.63956i) q^{75} +(7.95828 - 8.11189i) q^{77} -0.421125i q^{79} -1.00000 q^{81} +(8.44531 + 8.44531i) q^{83} +(-13.6592 + 9.02166i) q^{85} +(4.11343 - 4.11343i) q^{87} -4.29336 q^{89} +(-5.52930 + 0.0528524i) q^{91} +(-1.21726 + 1.21726i) q^{93} +(16.0840 + 3.28866i) q^{95} +(7.29681 - 7.29681i) q^{97} +4.29513i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 8 q^{11} - 16 q^{13} - 4 q^{15} - 20 q^{17} + 8 q^{19} - 24 q^{23} - 4 q^{25} + 4 q^{37} + 16 q^{43} + 4 q^{45} - 24 q^{47} - 36 q^{49} + 16 q^{53} + 28 q^{55} + 4 q^{57} + 8 q^{59} - 4 q^{63} + 24 q^{65}+ \cdots + 28 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1680\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(337\) \(421\) \(1121\) \(1471\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{4}\right)\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.707107 + 0.707107i 0.408248 + 0.408248i
\(4\) 0 0
\(5\) 2.19074 + 0.447937i 0.979730 + 0.200323i
\(6\) 0 0
\(7\) 1.85286 1.88862i 0.700316 0.713833i
\(8\) 0 0
\(9\) 1.00000i 0.333333i
\(10\) 0 0
\(11\) 4.29513 1.29503 0.647515 0.762053i \(-0.275808\pi\)
0.647515 + 0.762053i \(0.275808\pi\)
\(12\) 0 0
\(13\) −1.47784 1.47784i −0.409878 0.409878i 0.471818 0.881696i \(-0.343598\pi\)
−0.881696 + 0.471818i \(0.843598\pi\)
\(14\) 0 0
\(15\) 1.23235 + 1.86583i 0.318191 + 0.481755i
\(16\) 0 0
\(17\) −5.17651 + 5.17651i −1.25549 + 1.25549i −0.302265 + 0.953224i \(0.597743\pi\)
−0.953224 + 0.302265i \(0.902257\pi\)
\(18\) 0 0
\(19\) 7.34180 1.68432 0.842162 0.539224i \(-0.181282\pi\)
0.842162 + 0.539224i \(0.181282\pi\)
\(20\) 0 0
\(21\) 2.64563 0.0252885i 0.577324 0.00551840i
\(22\) 0 0
\(23\) −3.22191 + 3.22191i −0.671814 + 0.671814i −0.958134 0.286320i \(-0.907568\pi\)
0.286320 + 0.958134i \(0.407568\pi\)
\(24\) 0 0
\(25\) 4.59871 + 1.96263i 0.919741 + 0.392526i
\(26\) 0 0
\(27\) −0.707107 + 0.707107i −0.136083 + 0.136083i
\(28\) 0 0
\(29\) 5.81726i 1.08024i −0.841588 0.540119i \(-0.818379\pi\)
0.841588 0.540119i \(-0.181621\pi\)
\(30\) 0 0
\(31\) 1.72147i 0.309185i 0.987978 + 0.154593i \(0.0494065\pi\)
−0.987978 + 0.154593i \(0.950594\pi\)
\(32\) 0 0
\(33\) 3.03711 + 3.03711i 0.528694 + 0.528694i
\(34\) 0 0
\(35\) 4.90513 3.30753i 0.829118 0.559074i
\(36\) 0 0
\(37\) −2.39795 2.39795i −0.394220 0.394220i 0.481969 0.876188i \(-0.339922\pi\)
−0.876188 + 0.481969i \(0.839922\pi\)
\(38\) 0 0
\(39\) 2.08998i 0.334664i
\(40\) 0 0
\(41\) 4.03046i 0.629452i −0.949183 0.314726i \(-0.898087\pi\)
0.949183 0.314726i \(-0.101913\pi\)
\(42\) 0 0
\(43\) 1.67864 1.67864i 0.255990 0.255990i −0.567431 0.823421i \(-0.692063\pi\)
0.823421 + 0.567431i \(0.192063\pi\)
\(44\) 0 0
\(45\) −0.447937 + 2.19074i −0.0667745 + 0.326577i
\(46\) 0 0
\(47\) 7.92960 7.92960i 1.15665 1.15665i 0.171459 0.985191i \(-0.445152\pi\)
0.985191 0.171459i \(-0.0548482\pi\)
\(48\) 0 0
\(49\) −0.133808 6.99872i −0.0191154 0.999817i
\(50\) 0 0
\(51\) −7.32070 −1.02510
\(52\) 0 0
\(53\) −7.69186 + 7.69186i −1.05656 + 1.05656i −0.0582570 + 0.998302i \(0.518554\pi\)
−0.998302 + 0.0582570i \(0.981446\pi\)
\(54\) 0 0
\(55\) 9.40952 + 1.92395i 1.26878 + 0.259425i
\(56\) 0 0
\(57\) 5.19144 + 5.19144i 0.687623 + 0.687623i
\(58\) 0 0
\(59\) 0.775921 0.101016 0.0505081 0.998724i \(-0.483916\pi\)
0.0505081 + 0.998724i \(0.483916\pi\)
\(60\) 0 0
\(61\) 9.86457i 1.26303i 0.775364 + 0.631514i \(0.217566\pi\)
−0.775364 + 0.631514i \(0.782434\pi\)
\(62\) 0 0
\(63\) 1.88862 + 1.85286i 0.237944 + 0.233439i
\(64\) 0 0
\(65\) −2.57558 3.89953i −0.319461 0.483678i
\(66\) 0 0
\(67\) −11.4771 11.4771i −1.40215 1.40215i −0.793239 0.608911i \(-0.791607\pi\)
−0.608911 0.793239i \(-0.708393\pi\)
\(68\) 0 0
\(69\) −4.55646 −0.548534
\(70\) 0 0
\(71\) −2.60505 −0.309163 −0.154581 0.987980i \(-0.549403\pi\)
−0.154581 + 0.987980i \(0.549403\pi\)
\(72\) 0 0
\(73\) 8.77273 + 8.77273i 1.02677 + 1.02677i 0.999632 + 0.0271389i \(0.00863965\pi\)
0.0271389 + 0.999632i \(0.491360\pi\)
\(74\) 0 0
\(75\) 1.86399 + 4.63956i 0.215235 + 0.535731i
\(76\) 0 0
\(77\) 7.95828 8.11189i 0.906930 0.924435i
\(78\) 0 0
\(79\) 0.421125i 0.0473802i −0.999719 0.0236901i \(-0.992458\pi\)
0.999719 0.0236901i \(-0.00754150\pi\)
\(80\) 0 0
\(81\) −1.00000 −0.111111
\(82\) 0 0
\(83\) 8.44531 + 8.44531i 0.926993 + 0.926993i 0.997511 0.0705172i \(-0.0224650\pi\)
−0.0705172 + 0.997511i \(0.522465\pi\)
\(84\) 0 0
\(85\) −13.6592 + 9.02166i −1.48154 + 0.978536i
\(86\) 0 0
\(87\) 4.11343 4.11343i 0.441006 0.441006i
\(88\) 0 0
\(89\) −4.29336 −0.455095 −0.227548 0.973767i \(-0.573071\pi\)
−0.227548 + 0.973767i \(0.573071\pi\)
\(90\) 0 0
\(91\) −5.52930 + 0.0528524i −0.579628 + 0.00554043i
\(92\) 0 0
\(93\) −1.21726 + 1.21726i −0.126224 + 0.126224i
\(94\) 0 0
\(95\) 16.0840 + 3.28866i 1.65018 + 0.337410i
\(96\) 0 0
\(97\) 7.29681 7.29681i 0.740878 0.740878i −0.231869 0.972747i \(-0.574484\pi\)
0.972747 + 0.231869i \(0.0744840\pi\)
\(98\) 0 0
\(99\) 4.29513i 0.431677i
\(100\) 0 0
\(101\) 0.162882i 0.0162074i 0.999967 + 0.00810368i \(0.00257951\pi\)
−0.999967 + 0.00810368i \(0.997420\pi\)
\(102\) 0 0
\(103\) −4.46455 4.46455i −0.439906 0.439906i 0.452075 0.891980i \(-0.350684\pi\)
−0.891980 + 0.452075i \(0.850684\pi\)
\(104\) 0 0
\(105\) 5.80722 + 1.12967i 0.566727 + 0.110245i
\(106\) 0 0
\(107\) 9.78150 + 9.78150i 0.945614 + 0.945614i 0.998595 0.0529817i \(-0.0168725\pi\)
−0.0529817 + 0.998595i \(0.516873\pi\)
\(108\) 0 0
\(109\) 7.32115i 0.701239i −0.936518 0.350619i \(-0.885971\pi\)
0.936518 0.350619i \(-0.114029\pi\)
\(110\) 0 0
\(111\) 3.39121i 0.321879i
\(112\) 0 0
\(113\) −13.2348 + 13.2348i −1.24502 + 1.24502i −0.287131 + 0.957891i \(0.592702\pi\)
−0.957891 + 0.287131i \(0.907298\pi\)
\(114\) 0 0
\(115\) −8.50158 + 5.61516i −0.792776 + 0.523616i
\(116\) 0 0
\(117\) 1.47784 1.47784i 0.136626 0.136626i
\(118\) 0 0
\(119\) 0.185129 + 19.3679i 0.0169708 + 1.77545i
\(120\) 0 0
\(121\) 7.44813 0.677102
\(122\) 0 0
\(123\) 2.84997 2.84997i 0.256973 0.256973i
\(124\) 0 0
\(125\) 9.19545 + 6.35954i 0.822466 + 0.568815i
\(126\) 0 0
\(127\) −12.8515 12.8515i −1.14038 1.14038i −0.988380 0.152002i \(-0.951428\pi\)
−0.152002 0.988380i \(-0.548572\pi\)
\(128\) 0 0
\(129\) 2.37395 0.209015
\(130\) 0 0
\(131\) 13.8264i 1.20802i 0.796978 + 0.604008i \(0.206431\pi\)
−0.796978 + 0.604008i \(0.793569\pi\)
\(132\) 0 0
\(133\) 13.6033 13.8659i 1.17956 1.20233i
\(134\) 0 0
\(135\) −1.86583 + 1.23235i −0.160585 + 0.106064i
\(136\) 0 0
\(137\) 5.53271 + 5.53271i 0.472691 + 0.472691i 0.902784 0.430093i \(-0.141519\pi\)
−0.430093 + 0.902784i \(0.641519\pi\)
\(138\) 0 0
\(139\) −9.70449 −0.823124 −0.411562 0.911382i \(-0.635017\pi\)
−0.411562 + 0.911382i \(0.635017\pi\)
\(140\) 0 0
\(141\) 11.2141 0.944401
\(142\) 0 0
\(143\) −6.34749 6.34749i −0.530804 0.530804i
\(144\) 0 0
\(145\) 2.60577 12.7441i 0.216397 1.05834i
\(146\) 0 0
\(147\) 4.85423 5.04346i 0.400370 0.415978i
\(148\) 0 0
\(149\) 9.48071i 0.776690i −0.921514 0.388345i \(-0.873047\pi\)
0.921514 0.388345i \(-0.126953\pi\)
\(150\) 0 0
\(151\) 2.70016 0.219736 0.109868 0.993946i \(-0.464957\pi\)
0.109868 + 0.993946i \(0.464957\pi\)
\(152\) 0 0
\(153\) −5.17651 5.17651i −0.418496 0.418496i
\(154\) 0 0
\(155\) −0.771109 + 3.77130i −0.0619370 + 0.302918i
\(156\) 0 0
\(157\) 2.20080 2.20080i 0.175643 0.175643i −0.613811 0.789453i \(-0.710364\pi\)
0.789453 + 0.613811i \(0.210364\pi\)
\(158\) 0 0
\(159\) −10.8779 −0.862676
\(160\) 0 0
\(161\) 0.115226 + 12.0547i 0.00908109 + 0.950045i
\(162\) 0 0
\(163\) −4.16776 + 4.16776i −0.326444 + 0.326444i −0.851233 0.524788i \(-0.824144\pi\)
0.524788 + 0.851233i \(0.324144\pi\)
\(164\) 0 0
\(165\) 5.29310 + 8.01397i 0.412067 + 0.623887i
\(166\) 0 0
\(167\) −3.38827 + 3.38827i −0.262192 + 0.262192i −0.825944 0.563752i \(-0.809357\pi\)
0.563752 + 0.825944i \(0.309357\pi\)
\(168\) 0 0
\(169\) 8.63200i 0.664000i
\(170\) 0 0
\(171\) 7.34180i 0.561442i
\(172\) 0 0
\(173\) 3.89903 + 3.89903i 0.296438 + 0.296438i 0.839617 0.543179i \(-0.182780\pi\)
−0.543179 + 0.839617i \(0.682780\pi\)
\(174\) 0 0
\(175\) 12.2274 5.04875i 0.924307 0.381650i
\(176\) 0 0
\(177\) 0.548659 + 0.548659i 0.0412397 + 0.0412397i
\(178\) 0 0
\(179\) 9.75005i 0.728753i −0.931252 0.364376i \(-0.881282\pi\)
0.931252 0.364376i \(-0.118718\pi\)
\(180\) 0 0
\(181\) 3.48489i 0.259030i 0.991577 + 0.129515i \(0.0413420\pi\)
−0.991577 + 0.129515i \(0.958658\pi\)
\(182\) 0 0
\(183\) −6.97531 + 6.97531i −0.515629 + 0.515629i
\(184\) 0 0
\(185\) −4.17915 6.32741i −0.307257 0.465200i
\(186\) 0 0
\(187\) −22.2338 + 22.2338i −1.62590 + 1.62590i
\(188\) 0 0
\(189\) 0.0252885 + 2.64563i 0.00183947 + 0.192441i
\(190\) 0 0
\(191\) −1.84660 −0.133615 −0.0668077 0.997766i \(-0.521281\pi\)
−0.0668077 + 0.997766i \(0.521281\pi\)
\(192\) 0 0
\(193\) −11.3415 + 11.3415i −0.816378 + 0.816378i −0.985581 0.169203i \(-0.945881\pi\)
0.169203 + 0.985581i \(0.445881\pi\)
\(194\) 0 0
\(195\) 0.936177 4.57860i 0.0670410 0.327880i
\(196\) 0 0
\(197\) −9.51224 9.51224i −0.677719 0.677719i 0.281765 0.959484i \(-0.409080\pi\)
−0.959484 + 0.281765i \(0.909080\pi\)
\(198\) 0 0
\(199\) 13.5954 0.963750 0.481875 0.876240i \(-0.339956\pi\)
0.481875 + 0.876240i \(0.339956\pi\)
\(200\) 0 0
\(201\) 16.2311i 1.14485i
\(202\) 0 0
\(203\) −10.9866 10.7786i −0.771110 0.756508i
\(204\) 0 0
\(205\) 1.80539 8.82970i 0.126094 0.616693i
\(206\) 0 0
\(207\) −3.22191 3.22191i −0.223938 0.223938i
\(208\) 0 0
\(209\) 31.5340 2.18125
\(210\) 0 0
\(211\) 1.14759 0.0790036 0.0395018 0.999219i \(-0.487423\pi\)
0.0395018 + 0.999219i \(0.487423\pi\)
\(212\) 0 0
\(213\) −1.84205 1.84205i −0.126215 0.126215i
\(214\) 0 0
\(215\) 4.42938 2.92554i 0.302081 0.199520i
\(216\) 0 0
\(217\) 3.25121 + 3.18965i 0.220707 + 0.216527i
\(218\) 0 0
\(219\) 12.4065i 0.838355i
\(220\) 0 0
\(221\) 15.3001 1.02919
\(222\) 0 0
\(223\) −4.38157 4.38157i −0.293411 0.293411i 0.545015 0.838426i \(-0.316524\pi\)
−0.838426 + 0.545015i \(0.816524\pi\)
\(224\) 0 0
\(225\) −1.96263 + 4.59871i −0.130842 + 0.306580i
\(226\) 0 0
\(227\) −13.5718 + 13.5718i −0.900794 + 0.900794i −0.995505 0.0947104i \(-0.969807\pi\)
0.0947104 + 0.995505i \(0.469807\pi\)
\(228\) 0 0
\(229\) 5.23268 0.345785 0.172893 0.984941i \(-0.444689\pi\)
0.172893 + 0.984941i \(0.444689\pi\)
\(230\) 0 0
\(231\) 11.3633 0.108617i 0.747652 0.00714650i
\(232\) 0 0
\(233\) 1.49743 1.49743i 0.0980999 0.0980999i −0.656354 0.754453i \(-0.727902\pi\)
0.754453 + 0.656354i \(0.227902\pi\)
\(234\) 0 0
\(235\) 20.9237 13.8197i 1.36491 0.901501i
\(236\) 0 0
\(237\) 0.297780 0.297780i 0.0193429 0.0193429i
\(238\) 0 0
\(239\) 9.51664i 0.615580i −0.951454 0.307790i \(-0.900411\pi\)
0.951454 0.307790i \(-0.0995895\pi\)
\(240\) 0 0
\(241\) 0.132939i 0.00856333i 0.999991 + 0.00428167i \(0.00136290\pi\)
−0.999991 + 0.00428167i \(0.998637\pi\)
\(242\) 0 0
\(243\) −0.707107 0.707107i −0.0453609 0.0453609i
\(244\) 0 0
\(245\) 2.84184 15.3923i 0.181559 0.983380i
\(246\) 0 0
\(247\) −10.8500 10.8500i −0.690367 0.690367i
\(248\) 0 0
\(249\) 11.9435i 0.756887i
\(250\) 0 0
\(251\) 4.07694i 0.257334i 0.991688 + 0.128667i \(0.0410699\pi\)
−0.991688 + 0.128667i \(0.958930\pi\)
\(252\) 0 0
\(253\) −13.8385 + 13.8385i −0.870019 + 0.870019i
\(254\) 0 0
\(255\) −16.0378 3.27921i −1.00432 0.205352i
\(256\) 0 0
\(257\) −11.8584 + 11.8584i −0.739709 + 0.739709i −0.972522 0.232812i \(-0.925207\pi\)
0.232812 + 0.972522i \(0.425207\pi\)
\(258\) 0 0
\(259\) −8.97188 + 0.0857585i −0.557485 + 0.00532878i
\(260\) 0 0
\(261\) 5.81726 0.360080
\(262\) 0 0
\(263\) 19.9161 19.9161i 1.22808 1.22808i 0.263389 0.964690i \(-0.415160\pi\)
0.964690 0.263389i \(-0.0848402\pi\)
\(264\) 0 0
\(265\) −20.2964 + 13.4054i −1.24680 + 0.823489i
\(266\) 0 0
\(267\) −3.03587 3.03587i −0.185792 0.185792i
\(268\) 0 0
\(269\) −2.26182 −0.137906 −0.0689528 0.997620i \(-0.521966\pi\)
−0.0689528 + 0.997620i \(0.521966\pi\)
\(270\) 0 0
\(271\) 10.5437i 0.640484i −0.947336 0.320242i \(-0.896236\pi\)
0.947336 0.320242i \(-0.103764\pi\)
\(272\) 0 0
\(273\) −3.94718 3.87244i −0.238894 0.234370i
\(274\) 0 0
\(275\) 19.7520 + 8.42974i 1.19109 + 0.508332i
\(276\) 0 0
\(277\) −10.2777 10.2777i −0.617528 0.617528i 0.327369 0.944897i \(-0.393838\pi\)
−0.944897 + 0.327369i \(0.893838\pi\)
\(278\) 0 0
\(279\) −1.72147 −0.103062
\(280\) 0 0
\(281\) −19.8867 −1.18634 −0.593170 0.805077i \(-0.702124\pi\)
−0.593170 + 0.805077i \(0.702124\pi\)
\(282\) 0 0
\(283\) 8.04861 + 8.04861i 0.478440 + 0.478440i 0.904632 0.426193i \(-0.140145\pi\)
−0.426193 + 0.904632i \(0.640145\pi\)
\(284\) 0 0
\(285\) 9.04767 + 13.6985i 0.535938 + 0.811431i
\(286\) 0 0
\(287\) −7.61203 7.46789i −0.449324 0.440815i
\(288\) 0 0
\(289\) 36.5926i 2.15251i
\(290\) 0 0
\(291\) 10.3192 0.604925
\(292\) 0 0
\(293\) −21.7244 21.7244i −1.26915 1.26915i −0.946527 0.322625i \(-0.895435\pi\)
−0.322625 0.946527i \(-0.604565\pi\)
\(294\) 0 0
\(295\) 1.69984 + 0.347563i 0.0989686 + 0.0202359i
\(296\) 0 0
\(297\) −3.03711 + 3.03711i −0.176231 + 0.176231i
\(298\) 0 0
\(299\) 9.52290 0.550723
\(300\) 0 0
\(301\) −0.0600337 6.28060i −0.00346028 0.362008i
\(302\) 0 0
\(303\) −0.115175 + 0.115175i −0.00661662 + 0.00661662i
\(304\) 0 0
\(305\) −4.41870 + 21.6107i −0.253014 + 1.23743i
\(306\) 0 0
\(307\) 2.27695 2.27695i 0.129952 0.129952i −0.639139 0.769091i \(-0.720709\pi\)
0.769091 + 0.639139i \(0.220709\pi\)
\(308\) 0 0
\(309\) 6.31383i 0.359181i
\(310\) 0 0
\(311\) 11.5995i 0.657745i −0.944374 0.328872i \(-0.893331\pi\)
0.944374 0.328872i \(-0.106669\pi\)
\(312\) 0 0
\(313\) −15.3739 15.3739i −0.868986 0.868986i 0.123374 0.992360i \(-0.460628\pi\)
−0.992360 + 0.123374i \(0.960628\pi\)
\(314\) 0 0
\(315\) 3.30753 + 4.90513i 0.186358 + 0.276373i
\(316\) 0 0
\(317\) 21.7956 + 21.7956i 1.22416 + 1.22416i 0.966139 + 0.258023i \(0.0830710\pi\)
0.258023 + 0.966139i \(0.416929\pi\)
\(318\) 0 0
\(319\) 24.9859i 1.39894i
\(320\) 0 0
\(321\) 13.8331i 0.772090i
\(322\) 0 0
\(323\) −38.0049 + 38.0049i −2.11465 + 2.11465i
\(324\) 0 0
\(325\) −3.89569 9.69657i −0.216094 0.537869i
\(326\) 0 0
\(327\) 5.17683 5.17683i 0.286280 0.286280i
\(328\) 0 0
\(329\) −0.283589 29.6685i −0.0156348 1.63568i
\(330\) 0 0
\(331\) −32.7968 −1.80268 −0.901338 0.433116i \(-0.857414\pi\)
−0.901338 + 0.433116i \(0.857414\pi\)
\(332\) 0 0
\(333\) 2.39795 2.39795i 0.131407 0.131407i
\(334\) 0 0
\(335\) −20.0023 30.2844i −1.09284 1.65461i
\(336\) 0 0
\(337\) −3.05599 3.05599i −0.166470 0.166470i 0.618956 0.785426i \(-0.287556\pi\)
−0.785426 + 0.618956i \(0.787556\pi\)
\(338\) 0 0
\(339\) −18.7168 −1.01656
\(340\) 0 0
\(341\) 7.39393i 0.400404i
\(342\) 0 0
\(343\) −13.4659 12.7149i −0.727090 0.686543i
\(344\) 0 0
\(345\) −9.98204 2.04101i −0.537415 0.109884i
\(346\) 0 0
\(347\) −9.03562 9.03562i −0.485058 0.485058i 0.421685 0.906742i \(-0.361439\pi\)
−0.906742 + 0.421685i \(0.861439\pi\)
\(348\) 0 0
\(349\) −28.0691 −1.50251 −0.751253 0.660014i \(-0.770550\pi\)
−0.751253 + 0.660014i \(0.770550\pi\)
\(350\) 0 0
\(351\) 2.08998 0.111555
\(352\) 0 0
\(353\) −9.07254 9.07254i −0.482883 0.482883i 0.423168 0.906051i \(-0.360918\pi\)
−0.906051 + 0.423168i \(0.860918\pi\)
\(354\) 0 0
\(355\) −5.70700 1.16690i −0.302896 0.0619325i
\(356\) 0 0
\(357\) −13.5642 + 13.8261i −0.717896 + 0.731752i
\(358\) 0 0
\(359\) 19.5255i 1.03052i 0.857035 + 0.515258i \(0.172304\pi\)
−0.857035 + 0.515258i \(0.827696\pi\)
\(360\) 0 0
\(361\) 34.9020 1.83695
\(362\) 0 0
\(363\) 5.26662 + 5.26662i 0.276426 + 0.276426i
\(364\) 0 0
\(365\) 15.2892 + 23.1484i 0.800272 + 1.21164i
\(366\) 0 0
\(367\) 8.27119 8.27119i 0.431753 0.431753i −0.457472 0.889224i \(-0.651245\pi\)
0.889224 + 0.457472i \(0.151245\pi\)
\(368\) 0 0
\(369\) 4.03046 0.209817
\(370\) 0 0
\(371\) 0.275087 + 28.7790i 0.0142818 + 1.49413i
\(372\) 0 0
\(373\) −25.5882 + 25.5882i −1.32491 + 1.32491i −0.415157 + 0.909750i \(0.636273\pi\)
−0.909750 + 0.415157i \(0.863727\pi\)
\(374\) 0 0
\(375\) 2.00529 + 10.9990i 0.103553 + 0.567988i
\(376\) 0 0
\(377\) −8.59696 + 8.59696i −0.442766 + 0.442766i
\(378\) 0 0
\(379\) 6.19850i 0.318396i 0.987247 + 0.159198i \(0.0508908\pi\)
−0.987247 + 0.159198i \(0.949109\pi\)
\(380\) 0 0
\(381\) 18.1747i 0.931118i
\(382\) 0 0
\(383\) 20.2892 + 20.2892i 1.03673 + 1.03673i 0.999299 + 0.0374314i \(0.0119176\pi\)
0.0374314 + 0.999299i \(0.488082\pi\)
\(384\) 0 0
\(385\) 21.0681 14.2062i 1.07373 0.724018i
\(386\) 0 0
\(387\) 1.67864 + 1.67864i 0.0853299 + 0.0853299i
\(388\) 0 0
\(389\) 5.15659i 0.261450i −0.991419 0.130725i \(-0.958270\pi\)
0.991419 0.130725i \(-0.0417304\pi\)
\(390\) 0 0
\(391\) 33.3565i 1.68691i
\(392\) 0 0
\(393\) −9.77673 + 9.77673i −0.493171 + 0.493171i
\(394\) 0 0
\(395\) 0.188637 0.922576i 0.00949137 0.0464198i
\(396\) 0 0
\(397\) 12.5558 12.5558i 0.630155 0.630155i −0.317952 0.948107i \(-0.602995\pi\)
0.948107 + 0.317952i \(0.102995\pi\)
\(398\) 0 0
\(399\) 19.4237 0.185663i 0.972401 0.00929478i
\(400\) 0 0
\(401\) 21.4175 1.06954 0.534768 0.844999i \(-0.320399\pi\)
0.534768 + 0.844999i \(0.320399\pi\)
\(402\) 0 0
\(403\) 2.54405 2.54405i 0.126728 0.126728i
\(404\) 0 0
\(405\) −2.19074 0.447937i −0.108859 0.0222582i
\(406\) 0 0
\(407\) −10.2995 10.2995i −0.510526 0.510526i
\(408\) 0 0
\(409\) −7.32725 −0.362309 −0.181154 0.983455i \(-0.557983\pi\)
−0.181154 + 0.983455i \(0.557983\pi\)
\(410\) 0 0
\(411\) 7.82443i 0.385951i
\(412\) 0 0
\(413\) 1.43767 1.46542i 0.0707433 0.0721088i
\(414\) 0 0
\(415\) 14.7185 + 22.2845i 0.722505 + 1.09390i
\(416\) 0 0
\(417\) −6.86211 6.86211i −0.336039 0.336039i
\(418\) 0 0
\(419\) −20.1356 −0.983687 −0.491843 0.870684i \(-0.663677\pi\)
−0.491843 + 0.870684i \(0.663677\pi\)
\(420\) 0 0
\(421\) −15.1868 −0.740157 −0.370079 0.929000i \(-0.620669\pi\)
−0.370079 + 0.929000i \(0.620669\pi\)
\(422\) 0 0
\(423\) 7.92960 + 7.92960i 0.385550 + 0.385550i
\(424\) 0 0
\(425\) −33.9648 + 13.6457i −1.64754 + 0.661913i
\(426\) 0 0
\(427\) 18.6305 + 18.2777i 0.901592 + 0.884519i
\(428\) 0 0
\(429\) 8.97671i 0.433400i
\(430\) 0 0
\(431\) 9.87897 0.475853 0.237927 0.971283i \(-0.423532\pi\)
0.237927 + 0.971283i \(0.423532\pi\)
\(432\) 0 0
\(433\) 11.3585 + 11.3585i 0.545857 + 0.545857i 0.925240 0.379383i \(-0.123864\pi\)
−0.379383 + 0.925240i \(0.623864\pi\)
\(434\) 0 0
\(435\) 10.8540 7.16890i 0.520410 0.343723i
\(436\) 0 0
\(437\) −23.6546 + 23.6546i −1.13155 + 1.13155i
\(438\) 0 0
\(439\) −26.3204 −1.25620 −0.628102 0.778131i \(-0.716168\pi\)
−0.628102 + 0.778131i \(0.716168\pi\)
\(440\) 0 0
\(441\) 6.99872 0.133808i 0.333272 0.00637181i
\(442\) 0 0
\(443\) −4.91583 + 4.91583i −0.233558 + 0.233558i −0.814176 0.580618i \(-0.802811\pi\)
0.580618 + 0.814176i \(0.302811\pi\)
\(444\) 0 0
\(445\) −9.40565 1.92315i −0.445871 0.0911663i
\(446\) 0 0
\(447\) 6.70387 6.70387i 0.317082 0.317082i
\(448\) 0 0
\(449\) 23.4220i 1.10535i 0.833395 + 0.552677i \(0.186394\pi\)
−0.833395 + 0.552677i \(0.813606\pi\)
\(450\) 0 0
\(451\) 17.3113i 0.815159i
\(452\) 0 0
\(453\) 1.90930 + 1.90930i 0.0897068 + 0.0897068i
\(454\) 0 0
\(455\) −12.1370 2.36099i −0.568989 0.110685i
\(456\) 0 0
\(457\) −26.7882 26.7882i −1.25310 1.25310i −0.954323 0.298777i \(-0.903421\pi\)
−0.298777 0.954323i \(-0.596579\pi\)
\(458\) 0 0
\(459\) 7.32070i 0.341701i
\(460\) 0 0
\(461\) 1.75228i 0.0816116i 0.999167 + 0.0408058i \(0.0129925\pi\)
−0.999167 + 0.0408058i \(0.987008\pi\)
\(462\) 0 0
\(463\) 0.630432 0.630432i 0.0292986 0.0292986i −0.692306 0.721604i \(-0.743405\pi\)
0.721604 + 0.692306i \(0.243405\pi\)
\(464\) 0 0
\(465\) −3.21197 + 2.12145i −0.148951 + 0.0983800i
\(466\) 0 0
\(467\) 16.6699 16.6699i 0.771390 0.771390i −0.206959 0.978350i \(-0.566357\pi\)
0.978350 + 0.206959i \(0.0663568\pi\)
\(468\) 0 0
\(469\) −42.9414 + 0.410459i −1.98285 + 0.0189532i
\(470\) 0 0
\(471\) 3.11239 0.143412
\(472\) 0 0
\(473\) 7.20996 7.20996i 0.331514 0.331514i
\(474\) 0 0
\(475\) 33.7628 + 14.4092i 1.54914 + 0.661140i
\(476\) 0 0
\(477\) −7.69186 7.69186i −0.352186 0.352186i
\(478\) 0 0
\(479\) 36.3230 1.65964 0.829820 0.558031i \(-0.188443\pi\)
0.829820 + 0.558031i \(0.188443\pi\)
\(480\) 0 0
\(481\) 7.08754i 0.323164i
\(482\) 0 0
\(483\) −8.44250 + 8.60545i −0.384147 + 0.391562i
\(484\) 0 0
\(485\) 19.2539 12.7169i 0.874276 0.577445i
\(486\) 0 0
\(487\) −7.25362 7.25362i −0.328693 0.328693i 0.523396 0.852089i \(-0.324665\pi\)
−0.852089 + 0.523396i \(0.824665\pi\)
\(488\) 0 0
\(489\) −5.89410 −0.266541
\(490\) 0 0
\(491\) 0.696840 0.0314480 0.0157240 0.999876i \(-0.494995\pi\)
0.0157240 + 0.999876i \(0.494995\pi\)
\(492\) 0 0
\(493\) 30.1132 + 30.1132i 1.35623 + 1.35623i
\(494\) 0 0
\(495\) −1.92395 + 9.40952i −0.0864749 + 0.422926i
\(496\) 0 0
\(497\) −4.82680 + 4.91997i −0.216512 + 0.220691i
\(498\) 0 0
\(499\) 31.9174i 1.42882i −0.699728 0.714409i \(-0.746696\pi\)
0.699728 0.714409i \(-0.253304\pi\)
\(500\) 0 0
\(501\) −4.79174 −0.214079
\(502\) 0 0
\(503\) −11.7973 11.7973i −0.526018 0.526018i 0.393365 0.919382i \(-0.371311\pi\)
−0.919382 + 0.393365i \(0.871311\pi\)
\(504\) 0 0
\(505\) −0.0729608 + 0.356832i −0.00324671 + 0.0158788i
\(506\) 0 0
\(507\) 6.10375 6.10375i 0.271077 0.271077i
\(508\) 0 0
\(509\) −11.9546 −0.529880 −0.264940 0.964265i \(-0.585352\pi\)
−0.264940 + 0.964265i \(0.585352\pi\)
\(510\) 0 0
\(511\) 32.8231 0.313742i 1.45201 0.0138791i
\(512\) 0 0
\(513\) −5.19144 + 5.19144i −0.229208 + 0.229208i
\(514\) 0 0
\(515\) −7.78085 11.7805i −0.342865 0.519112i
\(516\) 0 0
\(517\) 34.0586 34.0586i 1.49790 1.49790i
\(518\) 0 0
\(519\) 5.51406i 0.242040i
\(520\) 0 0
\(521\) 35.3147i 1.54716i −0.633696 0.773582i \(-0.718463\pi\)
0.633696 0.773582i \(-0.281537\pi\)
\(522\) 0 0
\(523\) −10.7252 10.7252i −0.468981 0.468981i 0.432603 0.901584i \(-0.357595\pi\)
−0.901584 + 0.432603i \(0.857595\pi\)
\(524\) 0 0
\(525\) 12.2161 + 5.07609i 0.533155 + 0.221539i
\(526\) 0 0
\(527\) −8.91121 8.91121i −0.388179 0.388179i
\(528\) 0 0
\(529\) 2.23863i 0.0973319i
\(530\) 0 0
\(531\) 0.775921i 0.0336721i
\(532\) 0 0
\(533\) −5.95636 + 5.95636i −0.257999 + 0.257999i
\(534\) 0 0
\(535\) 17.0473 + 25.8103i 0.737017 + 1.11587i
\(536\) 0 0
\(537\) 6.89433 6.89433i 0.297512 0.297512i
\(538\) 0 0
\(539\) −0.574723 30.0604i −0.0247551 1.29479i
\(540\) 0 0
\(541\) −28.3891 −1.22054 −0.610271 0.792193i \(-0.708939\pi\)
−0.610271 + 0.792193i \(0.708939\pi\)
\(542\) 0 0
\(543\) −2.46419 + 2.46419i −0.105748 + 0.105748i
\(544\) 0 0
\(545\) 3.27941 16.0388i 0.140475 0.687025i
\(546\) 0 0
\(547\) −4.10546 4.10546i −0.175537 0.175537i 0.613870 0.789407i \(-0.289612\pi\)
−0.789407 + 0.613870i \(0.789612\pi\)
\(548\) 0 0
\(549\) −9.86457 −0.421010
\(550\) 0 0
\(551\) 42.7092i 1.81947i
\(552\) 0 0
\(553\) −0.795347 0.780286i −0.0338216 0.0331811i
\(554\) 0 0
\(555\) 1.51905 7.42926i 0.0644799 0.315355i
\(556\) 0 0
\(557\) −0.765661 0.765661i −0.0324421 0.0324421i 0.690700 0.723142i \(-0.257303\pi\)
−0.723142 + 0.690700i \(0.757303\pi\)
\(558\) 0 0
\(559\) −4.96150 −0.209849
\(560\) 0 0
\(561\) −31.4433 −1.32754
\(562\) 0 0
\(563\) −18.0357 18.0357i −0.760114 0.760114i 0.216229 0.976343i \(-0.430624\pi\)
−0.976343 + 0.216229i \(0.930624\pi\)
\(564\) 0 0
\(565\) −34.9223 + 23.0656i −1.46919 + 0.970379i
\(566\) 0 0
\(567\) −1.85286 + 1.88862i −0.0778129 + 0.0793148i
\(568\) 0 0
\(569\) 22.3471i 0.936838i 0.883506 + 0.468419i \(0.155176\pi\)
−0.883506 + 0.468419i \(0.844824\pi\)
\(570\) 0 0
\(571\) 31.1779 1.30475 0.652376 0.757895i \(-0.273772\pi\)
0.652376 + 0.757895i \(0.273772\pi\)
\(572\) 0 0
\(573\) −1.30574 1.30574i −0.0545482 0.0545482i
\(574\) 0 0
\(575\) −21.1400 + 8.49320i −0.881599 + 0.354191i
\(576\) 0 0
\(577\) 15.4967 15.4967i 0.645137 0.645137i −0.306677 0.951814i \(-0.599217\pi\)
0.951814 + 0.306677i \(0.0992171\pi\)
\(578\) 0 0
\(579\) −16.0393 −0.666570
\(580\) 0 0
\(581\) 31.5980 0.302033i 1.31091 0.0125304i
\(582\) 0 0
\(583\) −33.0375 + 33.0375i −1.36827 + 1.36827i
\(584\) 0 0
\(585\) 3.89953 2.57558i 0.161226 0.106487i
\(586\) 0 0
\(587\) −19.3419 + 19.3419i −0.798326 + 0.798326i −0.982831 0.184506i \(-0.940932\pi\)
0.184506 + 0.982831i \(0.440932\pi\)
\(588\) 0 0
\(589\) 12.6387i 0.520768i
\(590\) 0 0
\(591\) 13.4523i 0.553355i
\(592\) 0 0
\(593\) −8.53226 8.53226i −0.350378 0.350378i 0.509872 0.860250i \(-0.329693\pi\)
−0.860250 + 0.509872i \(0.829693\pi\)
\(594\) 0 0
\(595\) −8.27000 + 42.5129i −0.339037 + 1.74286i
\(596\) 0 0
\(597\) 9.61338 + 9.61338i 0.393449 + 0.393449i
\(598\) 0 0
\(599\) 0.751539i 0.0307070i 0.999882 + 0.0153535i \(0.00488737\pi\)
−0.999882 + 0.0153535i \(0.995113\pi\)
\(600\) 0 0
\(601\) 26.6379i 1.08658i 0.839544 + 0.543292i \(0.182822\pi\)
−0.839544 + 0.543292i \(0.817178\pi\)
\(602\) 0 0
\(603\) 11.4771 11.4771i 0.467383 0.467383i
\(604\) 0 0
\(605\) 16.3169 + 3.33629i 0.663377 + 0.135639i
\(606\) 0 0
\(607\) −24.0798 + 24.0798i −0.977367 + 0.977367i −0.999749 0.0223823i \(-0.992875\pi\)
0.0223823 + 0.999749i \(0.492875\pi\)
\(608\) 0 0
\(609\) −0.147110 15.3903i −0.00596119 0.623648i
\(610\) 0 0
\(611\) −23.4373 −0.948171
\(612\) 0 0
\(613\) −5.56807 + 5.56807i −0.224892 + 0.224892i −0.810555 0.585663i \(-0.800834\pi\)
0.585663 + 0.810555i \(0.300834\pi\)
\(614\) 0 0
\(615\) 7.52015 4.96694i 0.303242 0.200286i
\(616\) 0 0
\(617\) −1.34278 1.34278i −0.0540582 0.0540582i 0.679561 0.733619i \(-0.262170\pi\)
−0.733619 + 0.679561i \(0.762170\pi\)
\(618\) 0 0
\(619\) 32.7537 1.31648 0.658241 0.752808i \(-0.271301\pi\)
0.658241 + 0.752808i \(0.271301\pi\)
\(620\) 0 0
\(621\) 4.55646i 0.182845i
\(622\) 0 0
\(623\) −7.95501 + 8.10855i −0.318711 + 0.324862i
\(624\) 0 0
\(625\) 17.2962 + 18.0511i 0.691847 + 0.722044i
\(626\) 0 0
\(627\) 22.2979 + 22.2979i 0.890492 + 0.890492i
\(628\) 0 0
\(629\) 24.8260 0.989877
\(630\) 0 0
\(631\) −20.6332 −0.821396 −0.410698 0.911772i \(-0.634715\pi\)
−0.410698 + 0.911772i \(0.634715\pi\)
\(632\) 0 0
\(633\) 0.811471 + 0.811471i 0.0322531 + 0.0322531i
\(634\) 0 0
\(635\) −22.3976 33.9109i −0.888821 1.34571i
\(636\) 0 0
\(637\) −10.1452 + 10.5407i −0.401968 + 0.417638i
\(638\) 0 0
\(639\) 2.60505i 0.103054i
\(640\) 0 0
\(641\) 18.9477 0.748389 0.374194 0.927350i \(-0.377919\pi\)
0.374194 + 0.927350i \(0.377919\pi\)
\(642\) 0 0
\(643\) 28.6816 + 28.6816i 1.13109 + 1.13109i 0.989996 + 0.141096i \(0.0450626\pi\)
0.141096 + 0.989996i \(0.454937\pi\)
\(644\) 0 0
\(645\) 5.20071 + 1.06338i 0.204778 + 0.0418705i
\(646\) 0 0
\(647\) 12.1999 12.1999i 0.479627 0.479627i −0.425385 0.905012i \(-0.639861\pi\)
0.905012 + 0.425385i \(0.139861\pi\)
\(648\) 0 0
\(649\) 3.33268 0.130819
\(650\) 0 0
\(651\) 0.0435334 + 4.55437i 0.00170621 + 0.178500i
\(652\) 0 0
\(653\) −13.4392 + 13.4392i −0.525918 + 0.525918i −0.919353 0.393435i \(-0.871287\pi\)
0.393435 + 0.919353i \(0.371287\pi\)
\(654\) 0 0
\(655\) −6.19334 + 30.2900i −0.241994 + 1.18353i
\(656\) 0 0
\(657\) −8.77273 + 8.77273i −0.342257 + 0.342257i
\(658\) 0 0
\(659\) 10.0077i 0.389844i −0.980819 0.194922i \(-0.937555\pi\)
0.980819 0.194922i \(-0.0624454\pi\)
\(660\) 0 0
\(661\) 9.82613i 0.382192i −0.981571 0.191096i \(-0.938796\pi\)
0.981571 0.191096i \(-0.0612042\pi\)
\(662\) 0 0
\(663\) 10.8188 + 10.8188i 0.420167 + 0.420167i
\(664\) 0 0
\(665\) 36.0125 24.2832i 1.39650 0.941662i
\(666\) 0 0
\(667\) 18.7427 + 18.7427i 0.725720 + 0.725720i
\(668\) 0 0
\(669\) 6.19647i 0.239569i
\(670\) 0 0
\(671\) 42.3696i 1.63566i
\(672\) 0 0
\(673\) 26.8381 26.8381i 1.03453 1.03453i 0.0351501 0.999382i \(-0.488809\pi\)
0.999382 0.0351501i \(-0.0111909\pi\)
\(674\) 0 0
\(675\) −4.63956 + 1.86399i −0.178577 + 0.0717449i
\(676\) 0 0
\(677\) −20.1885 + 20.1885i −0.775908 + 0.775908i −0.979132 0.203224i \(-0.934858\pi\)
0.203224 + 0.979132i \(0.434858\pi\)
\(678\) 0 0
\(679\) −0.260958 27.3009i −0.0100147 1.04771i
\(680\) 0 0
\(681\) −19.1935 −0.735496
\(682\) 0 0
\(683\) −3.48742 + 3.48742i −0.133442 + 0.133442i −0.770673 0.637231i \(-0.780080\pi\)
0.637231 + 0.770673i \(0.280080\pi\)
\(684\) 0 0
\(685\) 9.64243 + 14.5990i 0.368418 + 0.557801i
\(686\) 0 0
\(687\) 3.70006 + 3.70006i 0.141166 + 0.141166i
\(688\) 0 0
\(689\) 22.7346 0.866120
\(690\) 0 0
\(691\) 32.1247i 1.22208i −0.791599 0.611041i \(-0.790751\pi\)
0.791599 0.611041i \(-0.209249\pi\)
\(692\) 0 0
\(693\) 8.11189 + 7.95828i 0.308145 + 0.302310i
\(694\) 0 0
\(695\) −21.2600 4.34700i −0.806439 0.164891i
\(696\) 0 0
\(697\) 20.8637 + 20.8637i 0.790270 + 0.790270i
\(698\) 0 0
\(699\) 2.11769 0.0800982
\(700\) 0 0
\(701\) −19.6054 −0.740486 −0.370243 0.928935i \(-0.620726\pi\)
−0.370243 + 0.928935i \(0.620726\pi\)
\(702\) 0 0
\(703\) −17.6052 17.6052i −0.663994 0.663994i
\(704\) 0 0
\(705\) 24.5673 + 5.02323i 0.925258 + 0.189186i
\(706\) 0 0
\(707\) 0.307623 + 0.301798i 0.0115693 + 0.0113503i
\(708\) 0 0
\(709\) 32.5890i 1.22391i 0.790894 + 0.611953i \(0.209616\pi\)
−0.790894 + 0.611953i \(0.790384\pi\)
\(710\) 0 0
\(711\) 0.421125 0.0157934
\(712\) 0 0
\(713\) −5.54642 5.54642i −0.207715 0.207715i
\(714\) 0 0
\(715\) −11.0625 16.7490i −0.413712 0.626377i
\(716\) 0 0
\(717\) 6.72928 6.72928i 0.251310 0.251310i
\(718\) 0 0
\(719\) 28.2155 1.05226 0.526129 0.850404i \(-0.323643\pi\)
0.526129 + 0.850404i \(0.323643\pi\)
\(720\) 0 0
\(721\) −16.7041 + 0.159667i −0.622092 + 0.00594633i
\(722\) 0 0
\(723\) −0.0940019 + 0.0940019i −0.00349597 + 0.00349597i
\(724\) 0 0
\(725\) 11.4171 26.7519i 0.424021 0.993540i
\(726\) 0 0
\(727\) −0.621604 + 0.621604i −0.0230540 + 0.0230540i −0.718540 0.695486i \(-0.755189\pi\)
0.695486 + 0.718540i \(0.255189\pi\)
\(728\) 0 0
\(729\) 1.00000i 0.0370370i
\(730\) 0 0
\(731\) 17.3790i 0.642784i
\(732\) 0 0
\(733\) 23.8152 + 23.8152i 0.879636 + 0.879636i 0.993497 0.113861i \(-0.0363217\pi\)
−0.113861 + 0.993497i \(0.536322\pi\)
\(734\) 0 0
\(735\) 12.8935 8.87454i 0.475584 0.327342i
\(736\) 0 0
\(737\) −49.2956 49.2956i −1.81583 1.81583i
\(738\) 0 0
\(739\) 12.3116i 0.452889i 0.974024 + 0.226444i \(0.0727102\pi\)
−0.974024 + 0.226444i \(0.927290\pi\)
\(740\) 0 0
\(741\) 15.3442i 0.563683i
\(742\) 0 0
\(743\) 4.86752 4.86752i 0.178572 0.178572i −0.612161 0.790733i \(-0.709700\pi\)
0.790733 + 0.612161i \(0.209700\pi\)
\(744\) 0 0
\(745\) 4.24676 20.7698i 0.155589 0.760946i
\(746\) 0 0
\(747\) −8.44531 + 8.44531i −0.308998 + 0.308998i
\(748\) 0 0
\(749\) 36.5974 0.349819i 1.33724 0.0127821i
\(750\) 0 0
\(751\) 40.8220 1.48962 0.744808 0.667278i \(-0.232541\pi\)
0.744808 + 0.667278i \(0.232541\pi\)
\(752\) 0 0
\(753\) −2.88284 + 2.88284i −0.105056 + 0.105056i
\(754\) 0 0
\(755\) 5.91535 + 1.20950i 0.215282 + 0.0440182i
\(756\) 0 0
\(757\) −6.75219 6.75219i −0.245412 0.245412i 0.573672 0.819085i \(-0.305518\pi\)
−0.819085 + 0.573672i \(0.805518\pi\)
\(758\) 0 0
\(759\) −19.5706 −0.710368
\(760\) 0 0
\(761\) 2.44460i 0.0886166i −0.999018 0.0443083i \(-0.985892\pi\)
0.999018 0.0443083i \(-0.0141084\pi\)
\(762\) 0 0
\(763\) −13.8269 13.5651i −0.500568 0.491089i
\(764\) 0 0
\(765\) −9.02166 13.6592i −0.326179 0.493848i
\(766\) 0 0
\(767\) −1.14668 1.14668i −0.0414043 0.0414043i
\(768\) 0 0
\(769\) 8.96572 0.323312 0.161656 0.986847i \(-0.448316\pi\)
0.161656 + 0.986847i \(0.448316\pi\)
\(770\) 0 0
\(771\) −16.7704 −0.603970
\(772\) 0 0
\(773\) −3.20283 3.20283i −0.115198 0.115198i 0.647158 0.762356i \(-0.275957\pi\)
−0.762356 + 0.647158i \(0.775957\pi\)
\(774\) 0 0
\(775\) −3.37860 + 7.91653i −0.121363 + 0.284370i
\(776\) 0 0
\(777\) −6.40472 6.28344i −0.229768 0.225417i
\(778\) 0 0
\(779\) 29.5908i 1.06020i
\(780\) 0 0
\(781\) −11.1890 −0.400375
\(782\) 0 0
\(783\) 4.11343 + 4.11343i 0.147002 + 0.147002i
\(784\) 0 0
\(785\) 5.80719 3.83556i 0.207268 0.136897i
\(786\) 0 0
\(787\) −13.8309 + 13.8309i −0.493018 + 0.493018i −0.909256 0.416238i \(-0.863348\pi\)
0.416238 + 0.909256i \(0.363348\pi\)
\(788\) 0 0
\(789\) 28.1656 1.00272
\(790\) 0 0
\(791\) 0.473320 + 49.5177i 0.0168293 + 1.76065i
\(792\) 0 0
\(793\) 14.5782 14.5782i 0.517688 0.517688i
\(794\) 0 0
\(795\) −23.8308 4.87263i −0.845190 0.172814i
\(796\) 0 0
\(797\) 22.9449 22.9449i 0.812751 0.812751i −0.172294 0.985046i \(-0.555118\pi\)
0.985046 + 0.172294i \(0.0551180\pi\)
\(798\) 0 0
\(799\) 82.0953i 2.90432i
\(800\) 0 0
\(801\) 4.29336i 0.151698i
\(802\) 0 0
\(803\) 37.6800 + 37.6800i 1.32970 + 1.32970i
\(804\) 0 0
\(805\) −5.14732 + 26.4604i −0.181419 + 0.932607i
\(806\) 0 0
\(807\) −1.59935 1.59935i −0.0562997 0.0562997i
\(808\) 0 0
\(809\) 29.3160i 1.03070i 0.856981 + 0.515348i \(0.172337\pi\)
−0.856981 + 0.515348i \(0.827663\pi\)
\(810\) 0 0
\(811\) 18.7720i 0.659174i 0.944125 + 0.329587i \(0.106909\pi\)
−0.944125 + 0.329587i \(0.893091\pi\)
\(812\) 0 0
\(813\) 7.45552 7.45552i 0.261476 0.261476i
\(814\) 0 0
\(815\) −10.9974 + 7.26360i −0.385222 + 0.254433i
\(816\) 0 0
\(817\) 12.3242 12.3242i 0.431170 0.431170i
\(818\) 0 0
\(819\) −0.0528524 5.52930i −0.00184681 0.193209i
\(820\) 0 0
\(821\) 15.4560 0.539418 0.269709 0.962942i \(-0.413072\pi\)
0.269709 + 0.962942i \(0.413072\pi\)
\(822\) 0 0
\(823\) 39.0741 39.0741i 1.36204 1.36204i 0.490723 0.871316i \(-0.336733\pi\)
0.871316 0.490723i \(-0.163267\pi\)
\(824\) 0 0
\(825\) 8.00607 + 19.9275i 0.278736 + 0.693787i
\(826\) 0 0
\(827\) −14.9880 14.9880i −0.521184 0.521184i 0.396745 0.917929i \(-0.370140\pi\)
−0.917929 + 0.396745i \(0.870140\pi\)
\(828\) 0 0
\(829\) 39.3244 1.36579 0.682896 0.730515i \(-0.260720\pi\)
0.682896 + 0.730515i \(0.260720\pi\)
\(830\) 0 0
\(831\) 14.5349i 0.504209i
\(832\) 0 0
\(833\) 36.9216 + 35.5363i 1.27926 + 1.23126i
\(834\) 0 0
\(835\) −8.94056 + 5.90510i −0.309401 + 0.204354i
\(836\) 0 0
\(837\) −1.21726 1.21726i −0.0420748 0.0420748i
\(838\) 0 0
\(839\) −20.2618 −0.699516 −0.349758 0.936840i \(-0.613736\pi\)
−0.349758 + 0.936840i \(0.613736\pi\)
\(840\) 0 0
\(841\) −4.84056 −0.166916
\(842\) 0 0
\(843\) −14.0620 14.0620i −0.484321 0.484321i
\(844\) 0 0
\(845\) 3.86659 18.9105i 0.133015 0.650541i
\(846\) 0 0
\(847\) 13.8003 14.0667i 0.474186 0.483338i
\(848\) 0 0
\(849\) 11.3824i 0.390645i
\(850\) 0 0
\(851\) 15.4519 0.529685
\(852\) 0 0
\(853\) −9.66947 9.66947i −0.331076 0.331076i 0.521919 0.852995i \(-0.325216\pi\)
−0.852995 + 0.521919i \(0.825216\pi\)
\(854\) 0 0
\(855\) −3.28866 + 16.0840i −0.112470 + 0.550061i
\(856\) 0 0
\(857\) −16.3114 + 16.3114i −0.557187 + 0.557187i −0.928506 0.371319i \(-0.878906\pi\)
0.371319 + 0.928506i \(0.378906\pi\)
\(858\) 0 0
\(859\) 12.9958 0.443411 0.221706 0.975114i \(-0.428838\pi\)
0.221706 + 0.975114i \(0.428838\pi\)
\(860\) 0 0
\(861\) −0.101924 10.6631i −0.00347357 0.363398i
\(862\) 0 0
\(863\) 12.3753 12.3753i 0.421262 0.421262i −0.464376 0.885638i \(-0.653721\pi\)
0.885638 + 0.464376i \(0.153721\pi\)
\(864\) 0 0
\(865\) 6.79525 + 10.2883i 0.231046 + 0.349812i
\(866\) 0 0
\(867\) 25.8749 25.8749i 0.878757 0.878757i
\(868\) 0 0
\(869\) 1.80878i 0.0613588i
\(870\) 0 0
\(871\) 33.9225i 1.14942i
\(872\) 0 0
\(873\) 7.29681 + 7.29681i 0.246959 + 0.246959i
\(874\) 0 0
\(875\) 29.0487 5.58340i 0.982025 0.188753i
\(876\) 0 0
\(877\) 11.1110 + 11.1110i 0.375191 + 0.375191i 0.869364 0.494173i \(-0.164529\pi\)
−0.494173 + 0.869364i \(0.664529\pi\)
\(878\) 0 0
\(879\) 30.7229i 1.03626i
\(880\) 0 0
\(881\) 21.8179i 0.735065i 0.930011 + 0.367532i \(0.119797\pi\)
−0.930011 + 0.367532i \(0.880203\pi\)
\(882\) 0 0
\(883\) −28.3564 + 28.3564i −0.954268 + 0.954268i −0.998999 0.0447315i \(-0.985757\pi\)
0.0447315 + 0.998999i \(0.485757\pi\)
\(884\) 0 0
\(885\) 0.956206 + 1.44773i 0.0321425 + 0.0486651i
\(886\) 0 0
\(887\) 8.04375 8.04375i 0.270083 0.270083i −0.559051 0.829133i \(-0.688834\pi\)
0.829133 + 0.559051i \(0.188834\pi\)
\(888\) 0 0
\(889\) −48.0835 + 0.459611i −1.61267 + 0.0154149i
\(890\) 0 0
\(891\) −4.29513 −0.143892
\(892\) 0 0
\(893\) 58.2175 58.2175i 1.94818 1.94818i
\(894\) 0 0
\(895\) 4.36740 21.3598i 0.145986 0.713981i
\(896\) 0 0
\(897\) 6.73371 + 6.73371i 0.224832 + 0.224832i
\(898\) 0 0
\(899\) 10.0142 0.333994
\(900\) 0 0
\(901\) 79.6341i 2.65300i
\(902\) 0 0
\(903\) 4.39860 4.48350i 0.146376 0.149202i
\(904\) 0 0
\(905\) −1.56101 + 7.63449i −0.0518897 + 0.253779i
\(906\) 0 0
\(907\) 26.6993 + 26.6993i 0.886535 + 0.886535i 0.994189 0.107653i \(-0.0343336\pi\)
−0.107653 + 0.994189i \(0.534334\pi\)
\(908\) 0 0
\(909\) −0.162882 −0.00540245
\(910\) 0 0
\(911\) 17.7916 0.589461 0.294731 0.955580i \(-0.404770\pi\)
0.294731 + 0.955580i \(0.404770\pi\)
\(912\) 0 0
\(913\) 36.2737 + 36.2737i 1.20048 + 1.20048i
\(914\) 0 0
\(915\) −18.4056 + 12.1566i −0.608470 + 0.401885i
\(916\) 0 0
\(917\) 26.1128 + 25.6184i 0.862322 + 0.845993i
\(918\) 0 0
\(919\) 42.0699i 1.38776i −0.720092 0.693879i \(-0.755900\pi\)
0.720092 0.693879i \(-0.244100\pi\)
\(920\) 0 0
\(921\) 3.22009 0.106106
\(922\) 0 0
\(923\) 3.84984 + 3.84984i 0.126719 + 0.126719i
\(924\) 0 0
\(925\) −6.32117 15.7337i −0.207839 0.517321i
\(926\) 0 0
\(927\) 4.46455 4.46455i 0.146635 0.146635i
\(928\) 0 0
\(929\) 60.7162 1.99203 0.996017 0.0891609i \(-0.0284185\pi\)
0.996017 + 0.0891609i \(0.0284185\pi\)
\(930\) 0 0
\(931\) −0.982392 51.3832i −0.0321966 1.68402i
\(932\) 0 0
\(933\) 8.20205 8.20205i 0.268523 0.268523i
\(934\) 0 0
\(935\) −58.6678 + 38.7492i −1.91864 + 1.26723i
\(936\) 0 0
\(937\) −3.40076 + 3.40076i −0.111098 + 0.111098i −0.760471 0.649372i \(-0.775032\pi\)
0.649372 + 0.760471i \(0.275032\pi\)
\(938\) 0 0
\(939\) 21.7420i 0.709524i
\(940\) 0 0
\(941\) 46.0560i 1.50138i 0.660653 + 0.750691i \(0.270279\pi\)
−0.660653 + 0.750691i \(0.729721\pi\)
\(942\) 0 0
\(943\) 12.9858 + 12.9858i 0.422875 + 0.422875i
\(944\) 0 0
\(945\) −1.12967 + 5.80722i −0.0367483 + 0.188909i
\(946\) 0 0
\(947\) 8.22044 + 8.22044i 0.267128 + 0.267128i 0.827942 0.560814i \(-0.189512\pi\)
−0.560814 + 0.827942i \(0.689512\pi\)
\(948\) 0 0
\(949\) 25.9293i 0.841701i
\(950\) 0 0
\(951\) 30.8236i 0.999524i
\(952\) 0 0
\(953\) −20.0312 + 20.0312i −0.648874 + 0.648874i −0.952721 0.303847i \(-0.901729\pi\)
0.303847 + 0.952721i \(0.401729\pi\)
\(954\) 0 0
\(955\) −4.04543 0.827160i −0.130907 0.0267663i
\(956\) 0 0
\(957\) 17.6677 17.6677i 0.571116 0.571116i
\(958\) 0 0
\(959\) 20.7005 0.197868i 0.668456 0.00638949i
\(960\) 0 0
\(961\) 28.0365 0.904405
\(962\) 0 0
\(963\) −9.78150 + 9.78150i −0.315205 + 0.315205i
\(964\) 0 0
\(965\) −29.9265 + 19.7660i −0.963369 + 0.636290i
\(966\) 0 0
\(967\) 8.15410 + 8.15410i 0.262218 + 0.262218i 0.825955 0.563737i \(-0.190637\pi\)
−0.563737 + 0.825955i \(0.690637\pi\)
\(968\) 0 0
\(969\) −53.7471 −1.72661
\(970\) 0 0
\(971\) 4.11148i 0.131944i 0.997821 + 0.0659718i \(0.0210147\pi\)
−0.997821 + 0.0659718i \(0.978985\pi\)
\(972\) 0 0
\(973\) −17.9811 + 18.3281i −0.576447 + 0.587573i
\(974\) 0 0
\(975\) 4.10184 9.61118i 0.131364 0.307804i
\(976\) 0 0
\(977\) −10.4853 10.4853i −0.335454 0.335454i 0.519199 0.854653i \(-0.326230\pi\)
−0.854653 + 0.519199i \(0.826230\pi\)
\(978\) 0 0
\(979\) −18.4405 −0.589362
\(980\) 0 0
\(981\) 7.32115 0.233746
\(982\) 0 0
\(983\) −4.74100 4.74100i −0.151214 0.151214i 0.627446 0.778660i \(-0.284100\pi\)
−0.778660 + 0.627446i \(0.784100\pi\)
\(984\) 0 0
\(985\) −16.5780 25.0997i −0.528219 0.799744i
\(986\) 0 0
\(987\) 20.7783 21.1793i 0.661379 0.674145i
\(988\) 0 0
\(989\) 10.8168i 0.343955i
\(990\) 0 0
\(991\) 13.9902 0.444413 0.222206 0.975000i \(-0.428674\pi\)
0.222206 + 0.975000i \(0.428674\pi\)
\(992\) 0 0
\(993\) −23.1909 23.1909i −0.735940 0.735940i
\(994\) 0 0
\(995\) 29.7840 + 6.08986i 0.944215 + 0.193062i
\(996\) 0 0
\(997\) 19.6025 19.6025i 0.620819 0.620819i −0.324922 0.945741i \(-0.605338\pi\)
0.945741 + 0.324922i \(0.105338\pi\)
\(998\) 0 0
\(999\) 3.39121 0.107293
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1680.2.cz.e.97.12 24
4.3 odd 2 840.2.bt.b.97.6 yes 24
5.3 odd 4 1680.2.cz.f.433.1 24
7.6 odd 2 1680.2.cz.f.97.1 24
20.3 even 4 840.2.bt.a.433.7 yes 24
28.27 even 2 840.2.bt.a.97.7 24
35.13 even 4 inner 1680.2.cz.e.433.12 24
140.83 odd 4 840.2.bt.b.433.6 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
840.2.bt.a.97.7 24 28.27 even 2
840.2.bt.a.433.7 yes 24 20.3 even 4
840.2.bt.b.97.6 yes 24 4.3 odd 2
840.2.bt.b.433.6 yes 24 140.83 odd 4
1680.2.cz.e.97.12 24 1.1 even 1 trivial
1680.2.cz.e.433.12 24 35.13 even 4 inner
1680.2.cz.f.97.1 24 7.6 odd 2
1680.2.cz.f.433.1 24 5.3 odd 4