Properties

Label 1680.2.cz.f.97.1
Level $1680$
Weight $2$
Character 1680.97
Analytic conductor $13.415$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1680,2,Mod(97,1680)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1680, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1680.97"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1680 = 2^{4} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1680.cz (of order \(4\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,0,0,0,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.4148675396\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(i)\)
Twist minimal: no (minimal twist has level 840)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 97.1
Character \(\chi\) \(=\) 1680.97
Dual form 1680.2.cz.f.433.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.707107 - 0.707107i) q^{3} +(-2.19074 - 0.447937i) q^{5} +(-1.88862 + 1.85286i) q^{7} +1.00000i q^{9} +4.29513 q^{11} +(1.47784 + 1.47784i) q^{13} +(1.23235 + 1.86583i) q^{15} +(5.17651 - 5.17651i) q^{17} -7.34180 q^{19} +(2.64563 + 0.0252885i) q^{21} +(-3.22191 + 3.22191i) q^{23} +(4.59871 + 1.96263i) q^{25} +(0.707107 - 0.707107i) q^{27} -5.81726i q^{29} -1.72147i q^{31} +(-3.03711 - 3.03711i) q^{33} +(4.96746 - 3.21316i) q^{35} +(-2.39795 - 2.39795i) q^{37} -2.08998i q^{39} +4.03046i q^{41} +(1.67864 - 1.67864i) q^{43} +(0.447937 - 2.19074i) q^{45} +(-7.92960 + 7.92960i) q^{47} +(0.133808 - 6.99872i) q^{49} -7.32070 q^{51} +(-7.69186 + 7.69186i) q^{53} +(-9.40952 - 1.92395i) q^{55} +(5.19144 + 5.19144i) q^{57} -0.775921 q^{59} -9.86457i q^{61} +(-1.85286 - 1.88862i) q^{63} +(-2.57558 - 3.89953i) q^{65} +(-11.4771 - 11.4771i) q^{67} +4.55646 q^{69} -2.60505 q^{71} +(-8.77273 - 8.77273i) q^{73} +(-1.86399 - 4.63956i) q^{75} +(-8.11189 + 7.95828i) q^{77} -0.421125i q^{79} -1.00000 q^{81} +(-8.44531 - 8.44531i) q^{83} +(-13.6592 + 9.02166i) q^{85} +(-4.11343 + 4.11343i) q^{87} +4.29336 q^{89} +(-5.52930 - 0.0528524i) q^{91} +(-1.21726 + 1.21726i) q^{93} +(16.0840 + 3.28866i) q^{95} +(-7.29681 + 7.29681i) q^{97} +4.29513i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 4 q^{7} + 8 q^{11} + 16 q^{13} - 4 q^{15} + 20 q^{17} - 8 q^{19} - 24 q^{23} - 4 q^{25} + 4 q^{37} + 16 q^{43} - 4 q^{45} + 24 q^{47} + 36 q^{49} + 16 q^{53} - 28 q^{55} + 4 q^{57} - 8 q^{59} + 24 q^{65}+ \cdots - 28 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1680\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(337\) \(421\) \(1121\) \(1471\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{4}\right)\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.707107 0.707107i −0.408248 0.408248i
\(4\) 0 0
\(5\) −2.19074 0.447937i −0.979730 0.200323i
\(6\) 0 0
\(7\) −1.88862 + 1.85286i −0.713833 + 0.700316i
\(8\) 0 0
\(9\) 1.00000i 0.333333i
\(10\) 0 0
\(11\) 4.29513 1.29503 0.647515 0.762053i \(-0.275808\pi\)
0.647515 + 0.762053i \(0.275808\pi\)
\(12\) 0 0
\(13\) 1.47784 + 1.47784i 0.409878 + 0.409878i 0.881696 0.471818i \(-0.156402\pi\)
−0.471818 + 0.881696i \(0.656402\pi\)
\(14\) 0 0
\(15\) 1.23235 + 1.86583i 0.318191 + 0.481755i
\(16\) 0 0
\(17\) 5.17651 5.17651i 1.25549 1.25549i 0.302265 0.953224i \(-0.402257\pi\)
0.953224 0.302265i \(-0.0977429\pi\)
\(18\) 0 0
\(19\) −7.34180 −1.68432 −0.842162 0.539224i \(-0.818718\pi\)
−0.842162 + 0.539224i \(0.818718\pi\)
\(20\) 0 0
\(21\) 2.64563 + 0.0252885i 0.577324 + 0.00551840i
\(22\) 0 0
\(23\) −3.22191 + 3.22191i −0.671814 + 0.671814i −0.958134 0.286320i \(-0.907568\pi\)
0.286320 + 0.958134i \(0.407568\pi\)
\(24\) 0 0
\(25\) 4.59871 + 1.96263i 0.919741 + 0.392526i
\(26\) 0 0
\(27\) 0.707107 0.707107i 0.136083 0.136083i
\(28\) 0 0
\(29\) 5.81726i 1.08024i −0.841588 0.540119i \(-0.818379\pi\)
0.841588 0.540119i \(-0.181621\pi\)
\(30\) 0 0
\(31\) 1.72147i 0.309185i −0.987978 0.154593i \(-0.950594\pi\)
0.987978 0.154593i \(-0.0494065\pi\)
\(32\) 0 0
\(33\) −3.03711 3.03711i −0.528694 0.528694i
\(34\) 0 0
\(35\) 4.96746 3.21316i 0.839653 0.543123i
\(36\) 0 0
\(37\) −2.39795 2.39795i −0.394220 0.394220i 0.481969 0.876188i \(-0.339922\pi\)
−0.876188 + 0.481969i \(0.839922\pi\)
\(38\) 0 0
\(39\) 2.08998i 0.334664i
\(40\) 0 0
\(41\) 4.03046i 0.629452i 0.949183 + 0.314726i \(0.101913\pi\)
−0.949183 + 0.314726i \(0.898087\pi\)
\(42\) 0 0
\(43\) 1.67864 1.67864i 0.255990 0.255990i −0.567431 0.823421i \(-0.692063\pi\)
0.823421 + 0.567431i \(0.192063\pi\)
\(44\) 0 0
\(45\) 0.447937 2.19074i 0.0667745 0.326577i
\(46\) 0 0
\(47\) −7.92960 + 7.92960i −1.15665 + 1.15665i −0.171459 + 0.985191i \(0.554848\pi\)
−0.985191 + 0.171459i \(0.945152\pi\)
\(48\) 0 0
\(49\) 0.133808 6.99872i 0.0191154 0.999817i
\(50\) 0 0
\(51\) −7.32070 −1.02510
\(52\) 0 0
\(53\) −7.69186 + 7.69186i −1.05656 + 1.05656i −0.0582570 + 0.998302i \(0.518554\pi\)
−0.998302 + 0.0582570i \(0.981446\pi\)
\(54\) 0 0
\(55\) −9.40952 1.92395i −1.26878 0.259425i
\(56\) 0 0
\(57\) 5.19144 + 5.19144i 0.687623 + 0.687623i
\(58\) 0 0
\(59\) −0.775921 −0.101016 −0.0505081 0.998724i \(-0.516084\pi\)
−0.0505081 + 0.998724i \(0.516084\pi\)
\(60\) 0 0
\(61\) 9.86457i 1.26303i −0.775364 0.631514i \(-0.782434\pi\)
0.775364 0.631514i \(-0.217566\pi\)
\(62\) 0 0
\(63\) −1.85286 1.88862i −0.233439 0.237944i
\(64\) 0 0
\(65\) −2.57558 3.89953i −0.319461 0.483678i
\(66\) 0 0
\(67\) −11.4771 11.4771i −1.40215 1.40215i −0.793239 0.608911i \(-0.791607\pi\)
−0.608911 0.793239i \(-0.708393\pi\)
\(68\) 0 0
\(69\) 4.55646 0.548534
\(70\) 0 0
\(71\) −2.60505 −0.309163 −0.154581 0.987980i \(-0.549403\pi\)
−0.154581 + 0.987980i \(0.549403\pi\)
\(72\) 0 0
\(73\) −8.77273 8.77273i −1.02677 1.02677i −0.999632 0.0271389i \(-0.991360\pi\)
−0.0271389 0.999632i \(-0.508640\pi\)
\(74\) 0 0
\(75\) −1.86399 4.63956i −0.215235 0.535731i
\(76\) 0 0
\(77\) −8.11189 + 7.95828i −0.924435 + 0.906930i
\(78\) 0 0
\(79\) 0.421125i 0.0473802i −0.999719 0.0236901i \(-0.992458\pi\)
0.999719 0.0236901i \(-0.00754150\pi\)
\(80\) 0 0
\(81\) −1.00000 −0.111111
\(82\) 0 0
\(83\) −8.44531 8.44531i −0.926993 0.926993i 0.0705172 0.997511i \(-0.477535\pi\)
−0.997511 + 0.0705172i \(0.977535\pi\)
\(84\) 0 0
\(85\) −13.6592 + 9.02166i −1.48154 + 0.978536i
\(86\) 0 0
\(87\) −4.11343 + 4.11343i −0.441006 + 0.441006i
\(88\) 0 0
\(89\) 4.29336 0.455095 0.227548 0.973767i \(-0.426929\pi\)
0.227548 + 0.973767i \(0.426929\pi\)
\(90\) 0 0
\(91\) −5.52930 0.0528524i −0.579628 0.00554043i
\(92\) 0 0
\(93\) −1.21726 + 1.21726i −0.126224 + 0.126224i
\(94\) 0 0
\(95\) 16.0840 + 3.28866i 1.65018 + 0.337410i
\(96\) 0 0
\(97\) −7.29681 + 7.29681i −0.740878 + 0.740878i −0.972747 0.231869i \(-0.925516\pi\)
0.231869 + 0.972747i \(0.425516\pi\)
\(98\) 0 0
\(99\) 4.29513i 0.431677i
\(100\) 0 0
\(101\) 0.162882i 0.0162074i −0.999967 0.00810368i \(-0.997420\pi\)
0.999967 0.00810368i \(-0.00257951\pi\)
\(102\) 0 0
\(103\) 4.46455 + 4.46455i 0.439906 + 0.439906i 0.891980 0.452075i \(-0.149316\pi\)
−0.452075 + 0.891980i \(0.649316\pi\)
\(104\) 0 0
\(105\) −5.78457 1.24048i −0.564516 0.121058i
\(106\) 0 0
\(107\) 9.78150 + 9.78150i 0.945614 + 0.945614i 0.998595 0.0529817i \(-0.0168725\pi\)
−0.0529817 + 0.998595i \(0.516873\pi\)
\(108\) 0 0
\(109\) 7.32115i 0.701239i −0.936518 0.350619i \(-0.885971\pi\)
0.936518 0.350619i \(-0.114029\pi\)
\(110\) 0 0
\(111\) 3.39121i 0.321879i
\(112\) 0 0
\(113\) −13.2348 + 13.2348i −1.24502 + 1.24502i −0.287131 + 0.957891i \(0.592702\pi\)
−0.957891 + 0.287131i \(0.907298\pi\)
\(114\) 0 0
\(115\) 8.50158 5.61516i 0.792776 0.523616i
\(116\) 0 0
\(117\) −1.47784 + 1.47784i −0.136626 + 0.136626i
\(118\) 0 0
\(119\) −0.185129 + 19.3679i −0.0169708 + 1.77545i
\(120\) 0 0
\(121\) 7.44813 0.677102
\(122\) 0 0
\(123\) 2.84997 2.84997i 0.256973 0.256973i
\(124\) 0 0
\(125\) −9.19545 6.35954i −0.822466 0.568815i
\(126\) 0 0
\(127\) −12.8515 12.8515i −1.14038 1.14038i −0.988380 0.152002i \(-0.951428\pi\)
−0.152002 0.988380i \(-0.548572\pi\)
\(128\) 0 0
\(129\) −2.37395 −0.209015
\(130\) 0 0
\(131\) 13.8264i 1.20802i −0.796978 0.604008i \(-0.793569\pi\)
0.796978 0.604008i \(-0.206431\pi\)
\(132\) 0 0
\(133\) 13.8659 13.6033i 1.20233 1.17956i
\(134\) 0 0
\(135\) −1.86583 + 1.23235i −0.160585 + 0.106064i
\(136\) 0 0
\(137\) 5.53271 + 5.53271i 0.472691 + 0.472691i 0.902784 0.430093i \(-0.141519\pi\)
−0.430093 + 0.902784i \(0.641519\pi\)
\(138\) 0 0
\(139\) 9.70449 0.823124 0.411562 0.911382i \(-0.364983\pi\)
0.411562 + 0.911382i \(0.364983\pi\)
\(140\) 0 0
\(141\) 11.2141 0.944401
\(142\) 0 0
\(143\) 6.34749 + 6.34749i 0.530804 + 0.530804i
\(144\) 0 0
\(145\) −2.60577 + 12.7441i −0.216397 + 1.05834i
\(146\) 0 0
\(147\) −5.04346 + 4.85423i −0.415978 + 0.400370i
\(148\) 0 0
\(149\) 9.48071i 0.776690i −0.921514 0.388345i \(-0.873047\pi\)
0.921514 0.388345i \(-0.126953\pi\)
\(150\) 0 0
\(151\) 2.70016 0.219736 0.109868 0.993946i \(-0.464957\pi\)
0.109868 + 0.993946i \(0.464957\pi\)
\(152\) 0 0
\(153\) 5.17651 + 5.17651i 0.418496 + 0.418496i
\(154\) 0 0
\(155\) −0.771109 + 3.77130i −0.0619370 + 0.302918i
\(156\) 0 0
\(157\) −2.20080 + 2.20080i −0.175643 + 0.175643i −0.789453 0.613811i \(-0.789636\pi\)
0.613811 + 0.789453i \(0.289636\pi\)
\(158\) 0 0
\(159\) 10.8779 0.862676
\(160\) 0 0
\(161\) 0.115226 12.0547i 0.00908109 0.950045i
\(162\) 0 0
\(163\) −4.16776 + 4.16776i −0.326444 + 0.326444i −0.851233 0.524788i \(-0.824144\pi\)
0.524788 + 0.851233i \(0.324144\pi\)
\(164\) 0 0
\(165\) 5.29310 + 8.01397i 0.412067 + 0.623887i
\(166\) 0 0
\(167\) 3.38827 3.38827i 0.262192 0.262192i −0.563752 0.825944i \(-0.690643\pi\)
0.825944 + 0.563752i \(0.190643\pi\)
\(168\) 0 0
\(169\) 8.63200i 0.664000i
\(170\) 0 0
\(171\) 7.34180i 0.561442i
\(172\) 0 0
\(173\) −3.89903 3.89903i −0.296438 0.296438i 0.543179 0.839617i \(-0.317220\pi\)
−0.839617 + 0.543179i \(0.817220\pi\)
\(174\) 0 0
\(175\) −12.3217 + 4.81410i −0.931434 + 0.363912i
\(176\) 0 0
\(177\) 0.548659 + 0.548659i 0.0412397 + 0.0412397i
\(178\) 0 0
\(179\) 9.75005i 0.728753i −0.931252 0.364376i \(-0.881282\pi\)
0.931252 0.364376i \(-0.118718\pi\)
\(180\) 0 0
\(181\) 3.48489i 0.259030i −0.991577 0.129515i \(-0.958658\pi\)
0.991577 0.129515i \(-0.0413420\pi\)
\(182\) 0 0
\(183\) −6.97531 + 6.97531i −0.515629 + 0.515629i
\(184\) 0 0
\(185\) 4.17915 + 6.32741i 0.307257 + 0.465200i
\(186\) 0 0
\(187\) 22.2338 22.2338i 1.62590 1.62590i
\(188\) 0 0
\(189\) −0.0252885 + 2.64563i −0.00183947 + 0.192441i
\(190\) 0 0
\(191\) −1.84660 −0.133615 −0.0668077 0.997766i \(-0.521281\pi\)
−0.0668077 + 0.997766i \(0.521281\pi\)
\(192\) 0 0
\(193\) −11.3415 + 11.3415i −0.816378 + 0.816378i −0.985581 0.169203i \(-0.945881\pi\)
0.169203 + 0.985581i \(0.445881\pi\)
\(194\) 0 0
\(195\) −0.936177 + 4.57860i −0.0670410 + 0.327880i
\(196\) 0 0
\(197\) −9.51224 9.51224i −0.677719 0.677719i 0.281765 0.959484i \(-0.409080\pi\)
−0.959484 + 0.281765i \(0.909080\pi\)
\(198\) 0 0
\(199\) −13.5954 −0.963750 −0.481875 0.876240i \(-0.660044\pi\)
−0.481875 + 0.876240i \(0.660044\pi\)
\(200\) 0 0
\(201\) 16.2311i 1.14485i
\(202\) 0 0
\(203\) 10.7786 + 10.9866i 0.756508 + 0.771110i
\(204\) 0 0
\(205\) 1.80539 8.82970i 0.126094 0.616693i
\(206\) 0 0
\(207\) −3.22191 3.22191i −0.223938 0.223938i
\(208\) 0 0
\(209\) −31.5340 −2.18125
\(210\) 0 0
\(211\) 1.14759 0.0790036 0.0395018 0.999219i \(-0.487423\pi\)
0.0395018 + 0.999219i \(0.487423\pi\)
\(212\) 0 0
\(213\) 1.84205 + 1.84205i 0.126215 + 0.126215i
\(214\) 0 0
\(215\) −4.42938 + 2.92554i −0.302081 + 0.199520i
\(216\) 0 0
\(217\) 3.18965 + 3.25121i 0.216527 + 0.220707i
\(218\) 0 0
\(219\) 12.4065i 0.838355i
\(220\) 0 0
\(221\) 15.3001 1.02919
\(222\) 0 0
\(223\) 4.38157 + 4.38157i 0.293411 + 0.293411i 0.838426 0.545015i \(-0.183476\pi\)
−0.545015 + 0.838426i \(0.683476\pi\)
\(224\) 0 0
\(225\) −1.96263 + 4.59871i −0.130842 + 0.306580i
\(226\) 0 0
\(227\) 13.5718 13.5718i 0.900794 0.900794i −0.0947104 0.995505i \(-0.530193\pi\)
0.995505 + 0.0947104i \(0.0301925\pi\)
\(228\) 0 0
\(229\) −5.23268 −0.345785 −0.172893 0.984941i \(-0.555311\pi\)
−0.172893 + 0.984941i \(0.555311\pi\)
\(230\) 0 0
\(231\) 11.3633 + 0.108617i 0.747652 + 0.00714650i
\(232\) 0 0
\(233\) 1.49743 1.49743i 0.0980999 0.0980999i −0.656354 0.754453i \(-0.727902\pi\)
0.754453 + 0.656354i \(0.227902\pi\)
\(234\) 0 0
\(235\) 20.9237 13.8197i 1.36491 0.901501i
\(236\) 0 0
\(237\) −0.297780 + 0.297780i −0.0193429 + 0.0193429i
\(238\) 0 0
\(239\) 9.51664i 0.615580i −0.951454 0.307790i \(-0.900411\pi\)
0.951454 0.307790i \(-0.0995895\pi\)
\(240\) 0 0
\(241\) 0.132939i 0.00856333i −0.999991 0.00428167i \(-0.998637\pi\)
0.999991 0.00428167i \(-0.00136290\pi\)
\(242\) 0 0
\(243\) 0.707107 + 0.707107i 0.0453609 + 0.0453609i
\(244\) 0 0
\(245\) −3.42812 + 15.2725i −0.219015 + 0.975722i
\(246\) 0 0
\(247\) −10.8500 10.8500i −0.690367 0.690367i
\(248\) 0 0
\(249\) 11.9435i 0.756887i
\(250\) 0 0
\(251\) 4.07694i 0.257334i −0.991688 0.128667i \(-0.958930\pi\)
0.991688 0.128667i \(-0.0410699\pi\)
\(252\) 0 0
\(253\) −13.8385 + 13.8385i −0.870019 + 0.870019i
\(254\) 0 0
\(255\) 16.0378 + 3.27921i 1.00432 + 0.205352i
\(256\) 0 0
\(257\) 11.8584 11.8584i 0.739709 0.739709i −0.232812 0.972522i \(-0.574793\pi\)
0.972522 + 0.232812i \(0.0747928\pi\)
\(258\) 0 0
\(259\) 8.97188 + 0.0857585i 0.557485 + 0.00532878i
\(260\) 0 0
\(261\) 5.81726 0.360080
\(262\) 0 0
\(263\) 19.9161 19.9161i 1.22808 1.22808i 0.263389 0.964690i \(-0.415160\pi\)
0.964690 0.263389i \(-0.0848402\pi\)
\(264\) 0 0
\(265\) 20.2964 13.4054i 1.24680 0.823489i
\(266\) 0 0
\(267\) −3.03587 3.03587i −0.185792 0.185792i
\(268\) 0 0
\(269\) 2.26182 0.137906 0.0689528 0.997620i \(-0.478034\pi\)
0.0689528 + 0.997620i \(0.478034\pi\)
\(270\) 0 0
\(271\) 10.5437i 0.640484i 0.947336 + 0.320242i \(0.103764\pi\)
−0.947336 + 0.320242i \(0.896236\pi\)
\(272\) 0 0
\(273\) 3.87244 + 3.94718i 0.234370 + 0.238894i
\(274\) 0 0
\(275\) 19.7520 + 8.42974i 1.19109 + 0.508332i
\(276\) 0 0
\(277\) −10.2777 10.2777i −0.617528 0.617528i 0.327369 0.944897i \(-0.393838\pi\)
−0.944897 + 0.327369i \(0.893838\pi\)
\(278\) 0 0
\(279\) 1.72147 0.103062
\(280\) 0 0
\(281\) −19.8867 −1.18634 −0.593170 0.805077i \(-0.702124\pi\)
−0.593170 + 0.805077i \(0.702124\pi\)
\(282\) 0 0
\(283\) −8.04861 8.04861i −0.478440 0.478440i 0.426193 0.904632i \(-0.359855\pi\)
−0.904632 + 0.426193i \(0.859855\pi\)
\(284\) 0 0
\(285\) −9.04767 13.6985i −0.535938 0.811431i
\(286\) 0 0
\(287\) −7.46789 7.61203i −0.440815 0.449324i
\(288\) 0 0
\(289\) 36.5926i 2.15251i
\(290\) 0 0
\(291\) 10.3192 0.604925
\(292\) 0 0
\(293\) 21.7244 + 21.7244i 1.26915 + 1.26915i 0.946527 + 0.322625i \(0.104565\pi\)
0.322625 + 0.946527i \(0.395435\pi\)
\(294\) 0 0
\(295\) 1.69984 + 0.347563i 0.0989686 + 0.0202359i
\(296\) 0 0
\(297\) 3.03711 3.03711i 0.176231 0.176231i
\(298\) 0 0
\(299\) −9.52290 −0.550723
\(300\) 0 0
\(301\) −0.0600337 + 6.28060i −0.00346028 + 0.362008i
\(302\) 0 0
\(303\) −0.115175 + 0.115175i −0.00661662 + 0.00661662i
\(304\) 0 0
\(305\) −4.41870 + 21.6107i −0.253014 + 1.23743i
\(306\) 0 0
\(307\) −2.27695 + 2.27695i −0.129952 + 0.129952i −0.769091 0.639139i \(-0.779291\pi\)
0.639139 + 0.769091i \(0.279291\pi\)
\(308\) 0 0
\(309\) 6.31383i 0.359181i
\(310\) 0 0
\(311\) 11.5995i 0.657745i 0.944374 + 0.328872i \(0.106669\pi\)
−0.944374 + 0.328872i \(0.893331\pi\)
\(312\) 0 0
\(313\) 15.3739 + 15.3739i 0.868986 + 0.868986i 0.992360 0.123374i \(-0.0393716\pi\)
−0.123374 + 0.992360i \(0.539372\pi\)
\(314\) 0 0
\(315\) 3.21316 + 4.96746i 0.181041 + 0.279884i
\(316\) 0 0
\(317\) 21.7956 + 21.7956i 1.22416 + 1.22416i 0.966139 + 0.258023i \(0.0830710\pi\)
0.258023 + 0.966139i \(0.416929\pi\)
\(318\) 0 0
\(319\) 24.9859i 1.39894i
\(320\) 0 0
\(321\) 13.8331i 0.772090i
\(322\) 0 0
\(323\) −38.0049 + 38.0049i −2.11465 + 2.11465i
\(324\) 0 0
\(325\) 3.89569 + 9.69657i 0.216094 + 0.537869i
\(326\) 0 0
\(327\) −5.17683 + 5.17683i −0.286280 + 0.286280i
\(328\) 0 0
\(329\) 0.283589 29.6685i 0.0156348 1.63568i
\(330\) 0 0
\(331\) −32.7968 −1.80268 −0.901338 0.433116i \(-0.857414\pi\)
−0.901338 + 0.433116i \(0.857414\pi\)
\(332\) 0 0
\(333\) 2.39795 2.39795i 0.131407 0.131407i
\(334\) 0 0
\(335\) 20.0023 + 30.2844i 1.09284 + 1.65461i
\(336\) 0 0
\(337\) −3.05599 3.05599i −0.166470 0.166470i 0.618956 0.785426i \(-0.287556\pi\)
−0.785426 + 0.618956i \(0.787556\pi\)
\(338\) 0 0
\(339\) 18.7168 1.01656
\(340\) 0 0
\(341\) 7.39393i 0.400404i
\(342\) 0 0
\(343\) 12.7149 + 13.4659i 0.686543 + 0.727090i
\(344\) 0 0
\(345\) −9.98204 2.04101i −0.537415 0.109884i
\(346\) 0 0
\(347\) −9.03562 9.03562i −0.485058 0.485058i 0.421685 0.906742i \(-0.361439\pi\)
−0.906742 + 0.421685i \(0.861439\pi\)
\(348\) 0 0
\(349\) 28.0691 1.50251 0.751253 0.660014i \(-0.229450\pi\)
0.751253 + 0.660014i \(0.229450\pi\)
\(350\) 0 0
\(351\) 2.08998 0.111555
\(352\) 0 0
\(353\) 9.07254 + 9.07254i 0.482883 + 0.482883i 0.906051 0.423168i \(-0.139082\pi\)
−0.423168 + 0.906051i \(0.639082\pi\)
\(354\) 0 0
\(355\) 5.70700 + 1.16690i 0.302896 + 0.0619325i
\(356\) 0 0
\(357\) 13.8261 13.5642i 0.731752 0.717896i
\(358\) 0 0
\(359\) 19.5255i 1.03052i 0.857035 + 0.515258i \(0.172304\pi\)
−0.857035 + 0.515258i \(0.827696\pi\)
\(360\) 0 0
\(361\) 34.9020 1.83695
\(362\) 0 0
\(363\) −5.26662 5.26662i −0.276426 0.276426i
\(364\) 0 0
\(365\) 15.2892 + 23.1484i 0.800272 + 1.21164i
\(366\) 0 0
\(367\) −8.27119 + 8.27119i −0.431753 + 0.431753i −0.889224 0.457472i \(-0.848755\pi\)
0.457472 + 0.889224i \(0.348755\pi\)
\(368\) 0 0
\(369\) −4.03046 −0.209817
\(370\) 0 0
\(371\) 0.275087 28.7790i 0.0142818 1.49413i
\(372\) 0 0
\(373\) −25.5882 + 25.5882i −1.32491 + 1.32491i −0.415157 + 0.909750i \(0.636273\pi\)
−0.909750 + 0.415157i \(0.863727\pi\)
\(374\) 0 0
\(375\) 2.00529 + 10.9990i 0.103553 + 0.567988i
\(376\) 0 0
\(377\) 8.59696 8.59696i 0.442766 0.442766i
\(378\) 0 0
\(379\) 6.19850i 0.318396i 0.987247 + 0.159198i \(0.0508908\pi\)
−0.987247 + 0.159198i \(0.949109\pi\)
\(380\) 0 0
\(381\) 18.1747i 0.931118i
\(382\) 0 0
\(383\) −20.2892 20.2892i −1.03673 1.03673i −0.999299 0.0374314i \(-0.988082\pi\)
−0.0374314 0.999299i \(-0.511918\pi\)
\(384\) 0 0
\(385\) 21.3359 13.8009i 1.08738 0.703360i
\(386\) 0 0
\(387\) 1.67864 + 1.67864i 0.0853299 + 0.0853299i
\(388\) 0 0
\(389\) 5.15659i 0.261450i −0.991419 0.130725i \(-0.958270\pi\)
0.991419 0.130725i \(-0.0417304\pi\)
\(390\) 0 0
\(391\) 33.3565i 1.68691i
\(392\) 0 0
\(393\) −9.77673 + 9.77673i −0.493171 + 0.493171i
\(394\) 0 0
\(395\) −0.188637 + 0.922576i −0.00949137 + 0.0464198i
\(396\) 0 0
\(397\) −12.5558 + 12.5558i −0.630155 + 0.630155i −0.948107 0.317952i \(-0.897005\pi\)
0.317952 + 0.948107i \(0.397005\pi\)
\(398\) 0 0
\(399\) −19.4237 0.185663i −0.972401 0.00929478i
\(400\) 0 0
\(401\) 21.4175 1.06954 0.534768 0.844999i \(-0.320399\pi\)
0.534768 + 0.844999i \(0.320399\pi\)
\(402\) 0 0
\(403\) 2.54405 2.54405i 0.126728 0.126728i
\(404\) 0 0
\(405\) 2.19074 + 0.447937i 0.108859 + 0.0222582i
\(406\) 0 0
\(407\) −10.2995 10.2995i −0.510526 0.510526i
\(408\) 0 0
\(409\) 7.32725 0.362309 0.181154 0.983455i \(-0.442017\pi\)
0.181154 + 0.983455i \(0.442017\pi\)
\(410\) 0 0
\(411\) 7.82443i 0.385951i
\(412\) 0 0
\(413\) 1.46542 1.43767i 0.0721088 0.0707433i
\(414\) 0 0
\(415\) 14.7185 + 22.2845i 0.722505 + 1.09390i
\(416\) 0 0
\(417\) −6.86211 6.86211i −0.336039 0.336039i
\(418\) 0 0
\(419\) 20.1356 0.983687 0.491843 0.870684i \(-0.336323\pi\)
0.491843 + 0.870684i \(0.336323\pi\)
\(420\) 0 0
\(421\) −15.1868 −0.740157 −0.370079 0.929000i \(-0.620669\pi\)
−0.370079 + 0.929000i \(0.620669\pi\)
\(422\) 0 0
\(423\) −7.92960 7.92960i −0.385550 0.385550i
\(424\) 0 0
\(425\) 33.9648 13.6457i 1.64754 0.661913i
\(426\) 0 0
\(427\) 18.2777 + 18.6305i 0.884519 + 0.901592i
\(428\) 0 0
\(429\) 8.97671i 0.433400i
\(430\) 0 0
\(431\) 9.87897 0.475853 0.237927 0.971283i \(-0.423532\pi\)
0.237927 + 0.971283i \(0.423532\pi\)
\(432\) 0 0
\(433\) −11.3585 11.3585i −0.545857 0.545857i 0.379383 0.925240i \(-0.376136\pi\)
−0.925240 + 0.379383i \(0.876136\pi\)
\(434\) 0 0
\(435\) 10.8540 7.16890i 0.520410 0.343723i
\(436\) 0 0
\(437\) 23.6546 23.6546i 1.13155 1.13155i
\(438\) 0 0
\(439\) 26.3204 1.25620 0.628102 0.778131i \(-0.283832\pi\)
0.628102 + 0.778131i \(0.283832\pi\)
\(440\) 0 0
\(441\) 6.99872 + 0.133808i 0.333272 + 0.00637181i
\(442\) 0 0
\(443\) −4.91583 + 4.91583i −0.233558 + 0.233558i −0.814176 0.580618i \(-0.802811\pi\)
0.580618 + 0.814176i \(0.302811\pi\)
\(444\) 0 0
\(445\) −9.40565 1.92315i −0.445871 0.0911663i
\(446\) 0 0
\(447\) −6.70387 + 6.70387i −0.317082 + 0.317082i
\(448\) 0 0
\(449\) 23.4220i 1.10535i 0.833395 + 0.552677i \(0.186394\pi\)
−0.833395 + 0.552677i \(0.813606\pi\)
\(450\) 0 0
\(451\) 17.3113i 0.815159i
\(452\) 0 0
\(453\) −1.90930 1.90930i −0.0897068 0.0897068i
\(454\) 0 0
\(455\) 12.0896 + 2.59256i 0.566769 + 0.121541i
\(456\) 0 0
\(457\) −26.7882 26.7882i −1.25310 1.25310i −0.954323 0.298777i \(-0.903421\pi\)
−0.298777 0.954323i \(-0.596579\pi\)
\(458\) 0 0
\(459\) 7.32070i 0.341701i
\(460\) 0 0
\(461\) 1.75228i 0.0816116i −0.999167 0.0408058i \(-0.987008\pi\)
0.999167 0.0408058i \(-0.0129925\pi\)
\(462\) 0 0
\(463\) 0.630432 0.630432i 0.0292986 0.0292986i −0.692306 0.721604i \(-0.743405\pi\)
0.721604 + 0.692306i \(0.243405\pi\)
\(464\) 0 0
\(465\) 3.21197 2.12145i 0.148951 0.0983800i
\(466\) 0 0
\(467\) −16.6699 + 16.6699i −0.771390 + 0.771390i −0.978350 0.206959i \(-0.933643\pi\)
0.206959 + 0.978350i \(0.433643\pi\)
\(468\) 0 0
\(469\) 42.9414 + 0.410459i 1.98285 + 0.0189532i
\(470\) 0 0
\(471\) 3.11239 0.143412
\(472\) 0 0
\(473\) 7.20996 7.20996i 0.331514 0.331514i
\(474\) 0 0
\(475\) −33.7628 14.4092i −1.54914 0.661140i
\(476\) 0 0
\(477\) −7.69186 7.69186i −0.352186 0.352186i
\(478\) 0 0
\(479\) −36.3230 −1.65964 −0.829820 0.558031i \(-0.811557\pi\)
−0.829820 + 0.558031i \(0.811557\pi\)
\(480\) 0 0
\(481\) 7.08754i 0.323164i
\(482\) 0 0
\(483\) −8.60545 + 8.44250i −0.391562 + 0.384147i
\(484\) 0 0
\(485\) 19.2539 12.7169i 0.874276 0.577445i
\(486\) 0 0
\(487\) −7.25362 7.25362i −0.328693 0.328693i 0.523396 0.852089i \(-0.324665\pi\)
−0.852089 + 0.523396i \(0.824665\pi\)
\(488\) 0 0
\(489\) 5.89410 0.266541
\(490\) 0 0
\(491\) 0.696840 0.0314480 0.0157240 0.999876i \(-0.494995\pi\)
0.0157240 + 0.999876i \(0.494995\pi\)
\(492\) 0 0
\(493\) −30.1132 30.1132i −1.35623 1.35623i
\(494\) 0 0
\(495\) 1.92395 9.40952i 0.0864749 0.422926i
\(496\) 0 0
\(497\) 4.91997 4.82680i 0.220691 0.216512i
\(498\) 0 0
\(499\) 31.9174i 1.42882i −0.699728 0.714409i \(-0.746696\pi\)
0.699728 0.714409i \(-0.253304\pi\)
\(500\) 0 0
\(501\) −4.79174 −0.214079
\(502\) 0 0
\(503\) 11.7973 + 11.7973i 0.526018 + 0.526018i 0.919382 0.393365i \(-0.128689\pi\)
−0.393365 + 0.919382i \(0.628689\pi\)
\(504\) 0 0
\(505\) −0.0729608 + 0.356832i −0.00324671 + 0.0158788i
\(506\) 0 0
\(507\) −6.10375 + 6.10375i −0.271077 + 0.271077i
\(508\) 0 0
\(509\) 11.9546 0.529880 0.264940 0.964265i \(-0.414648\pi\)
0.264940 + 0.964265i \(0.414648\pi\)
\(510\) 0 0
\(511\) 32.8231 + 0.313742i 1.45201 + 0.0138791i
\(512\) 0 0
\(513\) −5.19144 + 5.19144i −0.229208 + 0.229208i
\(514\) 0 0
\(515\) −7.78085 11.7805i −0.342865 0.519112i
\(516\) 0 0
\(517\) −34.0586 + 34.0586i −1.49790 + 1.49790i
\(518\) 0 0
\(519\) 5.51406i 0.242040i
\(520\) 0 0
\(521\) 35.3147i 1.54716i 0.633696 + 0.773582i \(0.281537\pi\)
−0.633696 + 0.773582i \(0.718463\pi\)
\(522\) 0 0
\(523\) 10.7252 + 10.7252i 0.468981 + 0.468981i 0.901584 0.432603i \(-0.142405\pi\)
−0.432603 + 0.901584i \(0.642405\pi\)
\(524\) 0 0
\(525\) 12.1168 + 5.30868i 0.528822 + 0.231690i
\(526\) 0 0
\(527\) −8.91121 8.91121i −0.388179 0.388179i
\(528\) 0 0
\(529\) 2.23863i 0.0973319i
\(530\) 0 0
\(531\) 0.775921i 0.0336721i
\(532\) 0 0
\(533\) −5.95636 + 5.95636i −0.257999 + 0.257999i
\(534\) 0 0
\(535\) −17.0473 25.8103i −0.737017 1.11587i
\(536\) 0 0
\(537\) −6.89433 + 6.89433i −0.297512 + 0.297512i
\(538\) 0 0
\(539\) 0.574723 30.0604i 0.0247551 1.29479i
\(540\) 0 0
\(541\) −28.3891 −1.22054 −0.610271 0.792193i \(-0.708939\pi\)
−0.610271 + 0.792193i \(0.708939\pi\)
\(542\) 0 0
\(543\) −2.46419 + 2.46419i −0.105748 + 0.105748i
\(544\) 0 0
\(545\) −3.27941 + 16.0388i −0.140475 + 0.687025i
\(546\) 0 0
\(547\) −4.10546 4.10546i −0.175537 0.175537i 0.613870 0.789407i \(-0.289612\pi\)
−0.789407 + 0.613870i \(0.789612\pi\)
\(548\) 0 0
\(549\) 9.86457 0.421010
\(550\) 0 0
\(551\) 42.7092i 1.81947i
\(552\) 0 0
\(553\) 0.780286 + 0.795347i 0.0331811 + 0.0338216i
\(554\) 0 0
\(555\) 1.51905 7.42926i 0.0644799 0.315355i
\(556\) 0 0
\(557\) −0.765661 0.765661i −0.0324421 0.0324421i 0.690700 0.723142i \(-0.257303\pi\)
−0.723142 + 0.690700i \(0.757303\pi\)
\(558\) 0 0
\(559\) 4.96150 0.209849
\(560\) 0 0
\(561\) −31.4433 −1.32754
\(562\) 0 0
\(563\) 18.0357 + 18.0357i 0.760114 + 0.760114i 0.976343 0.216229i \(-0.0693757\pi\)
−0.216229 + 0.976343i \(0.569376\pi\)
\(564\) 0 0
\(565\) 34.9223 23.0656i 1.46919 0.970379i
\(566\) 0 0
\(567\) 1.88862 1.85286i 0.0793148 0.0778129i
\(568\) 0 0
\(569\) 22.3471i 0.936838i 0.883506 + 0.468419i \(0.155176\pi\)
−0.883506 + 0.468419i \(0.844824\pi\)
\(570\) 0 0
\(571\) 31.1779 1.30475 0.652376 0.757895i \(-0.273772\pi\)
0.652376 + 0.757895i \(0.273772\pi\)
\(572\) 0 0
\(573\) 1.30574 + 1.30574i 0.0545482 + 0.0545482i
\(574\) 0 0
\(575\) −21.1400 + 8.49320i −0.881599 + 0.354191i
\(576\) 0 0
\(577\) −15.4967 + 15.4967i −0.645137 + 0.645137i −0.951814 0.306677i \(-0.900783\pi\)
0.306677 + 0.951814i \(0.400783\pi\)
\(578\) 0 0
\(579\) 16.0393 0.666570
\(580\) 0 0
\(581\) 31.5980 + 0.302033i 1.31091 + 0.0125304i
\(582\) 0 0
\(583\) −33.0375 + 33.0375i −1.36827 + 1.36827i
\(584\) 0 0
\(585\) 3.89953 2.57558i 0.161226 0.106487i
\(586\) 0 0
\(587\) 19.3419 19.3419i 0.798326 0.798326i −0.184506 0.982831i \(-0.559068\pi\)
0.982831 + 0.184506i \(0.0590684\pi\)
\(588\) 0 0
\(589\) 12.6387i 0.520768i
\(590\) 0 0
\(591\) 13.4523i 0.553355i
\(592\) 0 0
\(593\) 8.53226 + 8.53226i 0.350378 + 0.350378i 0.860250 0.509872i \(-0.170307\pi\)
−0.509872 + 0.860250i \(0.670307\pi\)
\(594\) 0 0
\(595\) 9.08114 42.3471i 0.372291 1.73606i
\(596\) 0 0
\(597\) 9.61338 + 9.61338i 0.393449 + 0.393449i
\(598\) 0 0
\(599\) 0.751539i 0.0307070i 0.999882 + 0.0153535i \(0.00488737\pi\)
−0.999882 + 0.0153535i \(0.995113\pi\)
\(600\) 0 0
\(601\) 26.6379i 1.08658i −0.839544 0.543292i \(-0.817178\pi\)
0.839544 0.543292i \(-0.182822\pi\)
\(602\) 0 0
\(603\) 11.4771 11.4771i 0.467383 0.467383i
\(604\) 0 0
\(605\) −16.3169 3.33629i −0.663377 0.135639i
\(606\) 0 0
\(607\) 24.0798 24.0798i 0.977367 0.977367i −0.0223823 0.999749i \(-0.507125\pi\)
0.999749 + 0.0223823i \(0.00712512\pi\)
\(608\) 0 0
\(609\) 0.147110 15.3903i 0.00596119 0.623648i
\(610\) 0 0
\(611\) −23.4373 −0.948171
\(612\) 0 0
\(613\) −5.56807 + 5.56807i −0.224892 + 0.224892i −0.810555 0.585663i \(-0.800834\pi\)
0.585663 + 0.810555i \(0.300834\pi\)
\(614\) 0 0
\(615\) −7.52015 + 4.96694i −0.303242 + 0.200286i
\(616\) 0 0
\(617\) −1.34278 1.34278i −0.0540582 0.0540582i 0.679561 0.733619i \(-0.262170\pi\)
−0.733619 + 0.679561i \(0.762170\pi\)
\(618\) 0 0
\(619\) −32.7537 −1.31648 −0.658241 0.752808i \(-0.728699\pi\)
−0.658241 + 0.752808i \(0.728699\pi\)
\(620\) 0 0
\(621\) 4.55646i 0.182845i
\(622\) 0 0
\(623\) −8.10855 + 7.95501i −0.324862 + 0.318711i
\(624\) 0 0
\(625\) 17.2962 + 18.0511i 0.691847 + 0.722044i
\(626\) 0 0
\(627\) 22.2979 + 22.2979i 0.890492 + 0.890492i
\(628\) 0 0
\(629\) −24.8260 −0.989877
\(630\) 0 0
\(631\) −20.6332 −0.821396 −0.410698 0.911772i \(-0.634715\pi\)
−0.410698 + 0.911772i \(0.634715\pi\)
\(632\) 0 0
\(633\) −0.811471 0.811471i −0.0322531 0.0322531i
\(634\) 0 0
\(635\) 22.3976 + 33.9109i 0.888821 + 1.34571i
\(636\) 0 0
\(637\) 10.5407 10.1452i 0.417638 0.401968i
\(638\) 0 0
\(639\) 2.60505i 0.103054i
\(640\) 0 0
\(641\) 18.9477 0.748389 0.374194 0.927350i \(-0.377919\pi\)
0.374194 + 0.927350i \(0.377919\pi\)
\(642\) 0 0
\(643\) −28.6816 28.6816i −1.13109 1.13109i −0.989996 0.141096i \(-0.954937\pi\)
−0.141096 0.989996i \(-0.545063\pi\)
\(644\) 0 0
\(645\) 5.20071 + 1.06338i 0.204778 + 0.0418705i
\(646\) 0 0
\(647\) −12.1999 + 12.1999i −0.479627 + 0.479627i −0.905012 0.425385i \(-0.860139\pi\)
0.425385 + 0.905012i \(0.360139\pi\)
\(648\) 0 0
\(649\) −3.33268 −0.130819
\(650\) 0 0
\(651\) 0.0435334 4.55437i 0.00170621 0.178500i
\(652\) 0 0
\(653\) −13.4392 + 13.4392i −0.525918 + 0.525918i −0.919353 0.393435i \(-0.871287\pi\)
0.393435 + 0.919353i \(0.371287\pi\)
\(654\) 0 0
\(655\) −6.19334 + 30.2900i −0.241994 + 1.18353i
\(656\) 0 0
\(657\) 8.77273 8.77273i 0.342257 0.342257i
\(658\) 0 0
\(659\) 10.0077i 0.389844i −0.980819 0.194922i \(-0.937555\pi\)
0.980819 0.194922i \(-0.0624454\pi\)
\(660\) 0 0
\(661\) 9.82613i 0.382192i 0.981571 + 0.191096i \(0.0612042\pi\)
−0.981571 + 0.191096i \(0.938796\pi\)
\(662\) 0 0
\(663\) −10.8188 10.8188i −0.420167 0.420167i
\(664\) 0 0
\(665\) −36.4701 + 23.5904i −1.41425 + 0.914795i
\(666\) 0 0
\(667\) 18.7427 + 18.7427i 0.725720 + 0.725720i
\(668\) 0 0
\(669\) 6.19647i 0.239569i
\(670\) 0 0
\(671\) 42.3696i 1.63566i
\(672\) 0 0
\(673\) 26.8381 26.8381i 1.03453 1.03453i 0.0351501 0.999382i \(-0.488809\pi\)
0.999382 0.0351501i \(-0.0111909\pi\)
\(674\) 0 0
\(675\) 4.63956 1.86399i 0.178577 0.0717449i
\(676\) 0 0
\(677\) 20.1885 20.1885i 0.775908 0.775908i −0.203224 0.979132i \(-0.565142\pi\)
0.979132 + 0.203224i \(0.0651421\pi\)
\(678\) 0 0
\(679\) 0.260958 27.3009i 0.0100147 1.04771i
\(680\) 0 0
\(681\) −19.1935 −0.735496
\(682\) 0 0
\(683\) −3.48742 + 3.48742i −0.133442 + 0.133442i −0.770673 0.637231i \(-0.780080\pi\)
0.637231 + 0.770673i \(0.280080\pi\)
\(684\) 0 0
\(685\) −9.64243 14.5990i −0.368418 0.557801i
\(686\) 0 0
\(687\) 3.70006 + 3.70006i 0.141166 + 0.141166i
\(688\) 0 0
\(689\) −22.7346 −0.866120
\(690\) 0 0
\(691\) 32.1247i 1.22208i 0.791599 + 0.611041i \(0.209249\pi\)
−0.791599 + 0.611041i \(0.790751\pi\)
\(692\) 0 0
\(693\) −7.95828 8.11189i −0.302310 0.308145i
\(694\) 0 0
\(695\) −21.2600 4.34700i −0.806439 0.164891i
\(696\) 0 0
\(697\) 20.8637 + 20.8637i 0.790270 + 0.790270i
\(698\) 0 0
\(699\) −2.11769 −0.0800982
\(700\) 0 0
\(701\) −19.6054 −0.740486 −0.370243 0.928935i \(-0.620726\pi\)
−0.370243 + 0.928935i \(0.620726\pi\)
\(702\) 0 0
\(703\) 17.6052 + 17.6052i 0.663994 + 0.663994i
\(704\) 0 0
\(705\) −24.5673 5.02323i −0.925258 0.189186i
\(706\) 0 0
\(707\) 0.301798 + 0.307623i 0.0113503 + 0.0115693i
\(708\) 0 0
\(709\) 32.5890i 1.22391i 0.790894 + 0.611953i \(0.209616\pi\)
−0.790894 + 0.611953i \(0.790384\pi\)
\(710\) 0 0
\(711\) 0.421125 0.0157934
\(712\) 0 0
\(713\) 5.54642 + 5.54642i 0.207715 + 0.207715i
\(714\) 0 0
\(715\) −11.0625 16.7490i −0.413712 0.626377i
\(716\) 0 0
\(717\) −6.72928 + 6.72928i −0.251310 + 0.251310i
\(718\) 0 0
\(719\) −28.2155 −1.05226 −0.526129 0.850404i \(-0.676357\pi\)
−0.526129 + 0.850404i \(0.676357\pi\)
\(720\) 0 0
\(721\) −16.7041 0.159667i −0.622092 0.00594633i
\(722\) 0 0
\(723\) −0.0940019 + 0.0940019i −0.00349597 + 0.00349597i
\(724\) 0 0
\(725\) 11.4171 26.7519i 0.424021 0.993540i
\(726\) 0 0
\(727\) 0.621604 0.621604i 0.0230540 0.0230540i −0.695486 0.718540i \(-0.744811\pi\)
0.718540 + 0.695486i \(0.244811\pi\)
\(728\) 0 0
\(729\) 1.00000i 0.0370370i
\(730\) 0 0
\(731\) 17.3790i 0.642784i
\(732\) 0 0
\(733\) −23.8152 23.8152i −0.879636 0.879636i 0.113861 0.993497i \(-0.463678\pi\)
−0.993497 + 0.113861i \(0.963678\pi\)
\(734\) 0 0
\(735\) 13.2233 8.37521i 0.487749 0.308924i
\(736\) 0 0
\(737\) −49.2956 49.2956i −1.81583 1.81583i
\(738\) 0 0
\(739\) 12.3116i 0.452889i 0.974024 + 0.226444i \(0.0727102\pi\)
−0.974024 + 0.226444i \(0.927290\pi\)
\(740\) 0 0
\(741\) 15.3442i 0.563683i
\(742\) 0 0
\(743\) 4.86752 4.86752i 0.178572 0.178572i −0.612161 0.790733i \(-0.709700\pi\)
0.790733 + 0.612161i \(0.209700\pi\)
\(744\) 0 0
\(745\) −4.24676 + 20.7698i −0.155589 + 0.760946i
\(746\) 0 0
\(747\) 8.44531 8.44531i 0.308998 0.308998i
\(748\) 0 0
\(749\) −36.5974 0.349819i −1.33724 0.0127821i
\(750\) 0 0
\(751\) 40.8220 1.48962 0.744808 0.667278i \(-0.232541\pi\)
0.744808 + 0.667278i \(0.232541\pi\)
\(752\) 0 0
\(753\) −2.88284 + 2.88284i −0.105056 + 0.105056i
\(754\) 0 0
\(755\) −5.91535 1.20950i −0.215282 0.0440182i
\(756\) 0 0
\(757\) −6.75219 6.75219i −0.245412 0.245412i 0.573672 0.819085i \(-0.305518\pi\)
−0.819085 + 0.573672i \(0.805518\pi\)
\(758\) 0 0
\(759\) 19.5706 0.710368
\(760\) 0 0
\(761\) 2.44460i 0.0886166i 0.999018 + 0.0443083i \(0.0141084\pi\)
−0.999018 + 0.0443083i \(0.985892\pi\)
\(762\) 0 0
\(763\) 13.5651 + 13.8269i 0.491089 + 0.500568i
\(764\) 0 0
\(765\) −9.02166 13.6592i −0.326179 0.493848i
\(766\) 0 0
\(767\) −1.14668 1.14668i −0.0414043 0.0414043i
\(768\) 0 0
\(769\) −8.96572 −0.323312 −0.161656 0.986847i \(-0.551684\pi\)
−0.161656 + 0.986847i \(0.551684\pi\)
\(770\) 0 0
\(771\) −16.7704 −0.603970
\(772\) 0 0
\(773\) 3.20283 + 3.20283i 0.115198 + 0.115198i 0.762356 0.647158i \(-0.224043\pi\)
−0.647158 + 0.762356i \(0.724043\pi\)
\(774\) 0 0
\(775\) 3.37860 7.91653i 0.121363 0.284370i
\(776\) 0 0
\(777\) −6.28344 6.40472i −0.225417 0.229768i
\(778\) 0 0
\(779\) 29.5908i 1.06020i
\(780\) 0 0
\(781\) −11.1890 −0.400375
\(782\) 0 0
\(783\) −4.11343 4.11343i −0.147002 0.147002i
\(784\) 0 0
\(785\) 5.80719 3.83556i 0.207268 0.136897i
\(786\) 0 0
\(787\) 13.8309 13.8309i 0.493018 0.493018i −0.416238 0.909256i \(-0.636652\pi\)
0.909256 + 0.416238i \(0.136652\pi\)
\(788\) 0 0
\(789\) −28.1656 −1.00272
\(790\) 0 0
\(791\) 0.473320 49.5177i 0.0168293 1.76065i
\(792\) 0 0
\(793\) 14.5782 14.5782i 0.517688 0.517688i
\(794\) 0 0
\(795\) −23.8308 4.87263i −0.845190 0.172814i
\(796\) 0 0
\(797\) −22.9449 + 22.9449i −0.812751 + 0.812751i −0.985046 0.172294i \(-0.944882\pi\)
0.172294 + 0.985046i \(0.444882\pi\)
\(798\) 0 0
\(799\) 82.0953i 2.90432i
\(800\) 0 0
\(801\) 4.29336i 0.151698i
\(802\) 0 0
\(803\) −37.6800 37.6800i −1.32970 1.32970i
\(804\) 0 0
\(805\) −5.65218 + 26.3572i −0.199213 + 0.928968i
\(806\) 0 0
\(807\) −1.59935 1.59935i −0.0562997 0.0562997i
\(808\) 0 0
\(809\) 29.3160i 1.03070i 0.856981 + 0.515348i \(0.172337\pi\)
−0.856981 + 0.515348i \(0.827663\pi\)
\(810\) 0 0
\(811\) 18.7720i 0.659174i −0.944125 0.329587i \(-0.893091\pi\)
0.944125 0.329587i \(-0.106909\pi\)
\(812\) 0 0
\(813\) 7.45552 7.45552i 0.261476 0.261476i
\(814\) 0 0
\(815\) 10.9974 7.26360i 0.385222 0.254433i
\(816\) 0 0
\(817\) −12.3242 + 12.3242i −0.431170 + 0.431170i
\(818\) 0 0
\(819\) 0.0528524 5.52930i 0.00184681 0.193209i
\(820\) 0 0
\(821\) 15.4560 0.539418 0.269709 0.962942i \(-0.413072\pi\)
0.269709 + 0.962942i \(0.413072\pi\)
\(822\) 0 0
\(823\) 39.0741 39.0741i 1.36204 1.36204i 0.490723 0.871316i \(-0.336733\pi\)
0.871316 0.490723i \(-0.163267\pi\)
\(824\) 0 0
\(825\) −8.00607 19.9275i −0.278736 0.693787i
\(826\) 0 0
\(827\) −14.9880 14.9880i −0.521184 0.521184i 0.396745 0.917929i \(-0.370140\pi\)
−0.917929 + 0.396745i \(0.870140\pi\)
\(828\) 0 0
\(829\) −39.3244 −1.36579 −0.682896 0.730515i \(-0.739280\pi\)
−0.682896 + 0.730515i \(0.739280\pi\)
\(830\) 0 0
\(831\) 14.5349i 0.504209i
\(832\) 0 0
\(833\) −35.5363 36.9216i −1.23126 1.27926i
\(834\) 0 0
\(835\) −8.94056 + 5.90510i −0.309401 + 0.204354i
\(836\) 0 0
\(837\) −1.21726 1.21726i −0.0420748 0.0420748i
\(838\) 0 0
\(839\) 20.2618 0.699516 0.349758 0.936840i \(-0.386264\pi\)
0.349758 + 0.936840i \(0.386264\pi\)
\(840\) 0 0
\(841\) −4.84056 −0.166916
\(842\) 0 0
\(843\) 14.0620 + 14.0620i 0.484321 + 0.484321i
\(844\) 0 0
\(845\) −3.86659 + 18.9105i −0.133015 + 0.650541i
\(846\) 0 0
\(847\) −14.0667 + 13.8003i −0.483338 + 0.474186i
\(848\) 0 0
\(849\) 11.3824i 0.390645i
\(850\) 0 0
\(851\) 15.4519 0.529685
\(852\) 0 0
\(853\) 9.66947 + 9.66947i 0.331076 + 0.331076i 0.852995 0.521919i \(-0.174784\pi\)
−0.521919 + 0.852995i \(0.674784\pi\)
\(854\) 0 0
\(855\) −3.28866 + 16.0840i −0.112470 + 0.550061i
\(856\) 0 0
\(857\) 16.3114 16.3114i 0.557187 0.557187i −0.371319 0.928506i \(-0.621094\pi\)
0.928506 + 0.371319i \(0.121094\pi\)
\(858\) 0 0
\(859\) −12.9958 −0.443411 −0.221706 0.975114i \(-0.571162\pi\)
−0.221706 + 0.975114i \(0.571162\pi\)
\(860\) 0 0
\(861\) −0.101924 + 10.6631i −0.00347357 + 0.363398i
\(862\) 0 0
\(863\) 12.3753 12.3753i 0.421262 0.421262i −0.464376 0.885638i \(-0.653721\pi\)
0.885638 + 0.464376i \(0.153721\pi\)
\(864\) 0 0
\(865\) 6.79525 + 10.2883i 0.231046 + 0.349812i
\(866\) 0 0
\(867\) −25.8749 + 25.8749i −0.878757 + 0.878757i
\(868\) 0 0
\(869\) 1.80878i 0.0613588i
\(870\) 0 0
\(871\) 33.9225i 1.14942i
\(872\) 0 0
\(873\) −7.29681 7.29681i −0.246959 0.246959i
\(874\) 0 0
\(875\) 29.1501 5.02710i 0.985453 0.169947i
\(876\) 0 0
\(877\) 11.1110 + 11.1110i 0.375191 + 0.375191i 0.869364 0.494173i \(-0.164529\pi\)
−0.494173 + 0.869364i \(0.664529\pi\)
\(878\) 0 0
\(879\) 30.7229i 1.03626i
\(880\) 0 0
\(881\) 21.8179i 0.735065i −0.930011 0.367532i \(-0.880203\pi\)
0.930011 0.367532i \(-0.119797\pi\)
\(882\) 0 0
\(883\) −28.3564 + 28.3564i −0.954268 + 0.954268i −0.998999 0.0447315i \(-0.985757\pi\)
0.0447315 + 0.998999i \(0.485757\pi\)
\(884\) 0 0
\(885\) −0.956206 1.44773i −0.0321425 0.0486651i
\(886\) 0 0
\(887\) −8.04375 + 8.04375i −0.270083 + 0.270083i −0.829133 0.559051i \(-0.811166\pi\)
0.559051 + 0.829133i \(0.311166\pi\)
\(888\) 0 0
\(889\) 48.0835 + 0.459611i 1.61267 + 0.0154149i
\(890\) 0 0
\(891\) −4.29513 −0.143892
\(892\) 0 0
\(893\) 58.2175 58.2175i 1.94818 1.94818i
\(894\) 0 0
\(895\) −4.36740 + 21.3598i −0.145986 + 0.713981i
\(896\) 0 0
\(897\) 6.73371 + 6.73371i 0.224832 + 0.224832i
\(898\) 0 0
\(899\) −10.0142 −0.333994
\(900\) 0 0
\(901\) 79.6341i 2.65300i
\(902\) 0 0
\(903\) 4.48350 4.39860i 0.149202 0.146376i
\(904\) 0 0
\(905\) −1.56101 + 7.63449i −0.0518897 + 0.253779i
\(906\) 0 0
\(907\) 26.6993 + 26.6993i 0.886535 + 0.886535i 0.994189 0.107653i \(-0.0343336\pi\)
−0.107653 + 0.994189i \(0.534334\pi\)
\(908\) 0 0
\(909\) 0.162882 0.00540245
\(910\) 0 0
\(911\) 17.7916 0.589461 0.294731 0.955580i \(-0.404770\pi\)
0.294731 + 0.955580i \(0.404770\pi\)
\(912\) 0 0
\(913\) −36.2737 36.2737i −1.20048 1.20048i
\(914\) 0 0
\(915\) 18.4056 12.1566i 0.608470 0.401885i
\(916\) 0 0
\(917\) 25.6184 + 26.1128i 0.845993 + 0.862322i
\(918\) 0 0
\(919\) 42.0699i 1.38776i −0.720092 0.693879i \(-0.755900\pi\)
0.720092 0.693879i \(-0.244100\pi\)
\(920\) 0 0
\(921\) 3.22009 0.106106
\(922\) 0 0
\(923\) −3.84984 3.84984i −0.126719 0.126719i
\(924\) 0 0
\(925\) −6.32117 15.7337i −0.207839 0.517321i
\(926\) 0 0
\(927\) −4.46455 + 4.46455i −0.146635 + 0.146635i
\(928\) 0 0
\(929\) −60.7162 −1.99203 −0.996017 0.0891609i \(-0.971581\pi\)
−0.996017 + 0.0891609i \(0.971581\pi\)
\(930\) 0 0
\(931\) −0.982392 + 51.3832i −0.0321966 + 1.68402i
\(932\) 0 0
\(933\) 8.20205 8.20205i 0.268523 0.268523i
\(934\) 0 0
\(935\) −58.6678 + 38.7492i −1.91864 + 1.26723i
\(936\) 0 0
\(937\) 3.40076 3.40076i 0.111098 0.111098i −0.649372 0.760471i \(-0.724968\pi\)
0.760471 + 0.649372i \(0.224968\pi\)
\(938\) 0 0
\(939\) 21.7420i 0.709524i
\(940\) 0 0
\(941\) 46.0560i 1.50138i −0.660653 0.750691i \(-0.729721\pi\)
0.660653 0.750691i \(-0.270279\pi\)
\(942\) 0 0
\(943\) −12.9858 12.9858i −0.422875 0.422875i
\(944\) 0 0
\(945\) 1.24048 5.78457i 0.0403527 0.188172i
\(946\) 0 0
\(947\) 8.22044 + 8.22044i 0.267128 + 0.267128i 0.827942 0.560814i \(-0.189512\pi\)
−0.560814 + 0.827942i \(0.689512\pi\)
\(948\) 0 0
\(949\) 25.9293i 0.841701i
\(950\) 0 0
\(951\) 30.8236i 0.999524i
\(952\) 0 0
\(953\) −20.0312 + 20.0312i −0.648874 + 0.648874i −0.952721 0.303847i \(-0.901729\pi\)
0.303847 + 0.952721i \(0.401729\pi\)
\(954\) 0 0
\(955\) 4.04543 + 0.827160i 0.130907 + 0.0267663i
\(956\) 0 0
\(957\) −17.6677 + 17.6677i −0.571116 + 0.571116i
\(958\) 0 0
\(959\) −20.7005 0.197868i −0.668456 0.00638949i
\(960\) 0 0
\(961\) 28.0365 0.904405
\(962\) 0 0
\(963\) −9.78150 + 9.78150i −0.315205 + 0.315205i
\(964\) 0 0
\(965\) 29.9265 19.7660i 0.963369 0.636290i
\(966\) 0 0
\(967\) 8.15410 + 8.15410i 0.262218 + 0.262218i 0.825955 0.563737i \(-0.190637\pi\)
−0.563737 + 0.825955i \(0.690637\pi\)
\(968\) 0 0
\(969\) 53.7471 1.72661
\(970\) 0 0
\(971\) 4.11148i 0.131944i −0.997821 0.0659718i \(-0.978985\pi\)
0.997821 0.0659718i \(-0.0210147\pi\)
\(972\) 0 0
\(973\) −18.3281 + 17.9811i −0.587573 + 0.576447i
\(974\) 0 0
\(975\) 4.10184 9.61118i 0.131364 0.307804i
\(976\) 0 0
\(977\) −10.4853 10.4853i −0.335454 0.335454i 0.519199 0.854653i \(-0.326230\pi\)
−0.854653 + 0.519199i \(0.826230\pi\)
\(978\) 0 0
\(979\) 18.4405 0.589362
\(980\) 0 0
\(981\) 7.32115 0.233746
\(982\) 0 0
\(983\) 4.74100 + 4.74100i 0.151214 + 0.151214i 0.778660 0.627446i \(-0.215900\pi\)
−0.627446 + 0.778660i \(0.715900\pi\)
\(984\) 0 0
\(985\) 16.5780 + 25.0997i 0.528219 + 0.799744i
\(986\) 0 0
\(987\) −21.1793 + 20.7783i −0.674145 + 0.661379i
\(988\) 0 0
\(989\) 10.8168i 0.343955i
\(990\) 0 0
\(991\) 13.9902 0.444413 0.222206 0.975000i \(-0.428674\pi\)
0.222206 + 0.975000i \(0.428674\pi\)
\(992\) 0 0
\(993\) 23.1909 + 23.1909i 0.735940 + 0.735940i
\(994\) 0 0
\(995\) 29.7840 + 6.08986i 0.944215 + 0.193062i
\(996\) 0 0
\(997\) −19.6025 + 19.6025i −0.620819 + 0.620819i −0.945741 0.324922i \(-0.894662\pi\)
0.324922 + 0.945741i \(0.394662\pi\)
\(998\) 0 0
\(999\) −3.39121 −0.107293
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1680.2.cz.f.97.1 24
4.3 odd 2 840.2.bt.a.97.7 24
5.3 odd 4 1680.2.cz.e.433.12 24
7.6 odd 2 1680.2.cz.e.97.12 24
20.3 even 4 840.2.bt.b.433.6 yes 24
28.27 even 2 840.2.bt.b.97.6 yes 24
35.13 even 4 inner 1680.2.cz.f.433.1 24
140.83 odd 4 840.2.bt.a.433.7 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
840.2.bt.a.97.7 24 4.3 odd 2
840.2.bt.a.433.7 yes 24 140.83 odd 4
840.2.bt.b.97.6 yes 24 28.27 even 2
840.2.bt.b.433.6 yes 24 20.3 even 4
1680.2.cz.e.97.12 24 7.6 odd 2
1680.2.cz.e.433.12 24 5.3 odd 4
1680.2.cz.f.97.1 24 1.1 even 1 trivial
1680.2.cz.f.433.1 24 35.13 even 4 inner