Properties

Label 8330.2.a.cw.1.7
Level $8330$
Weight $2$
Character 8330.1
Self dual yes
Analytic conductor $66.515$
Analytic rank $0$
Dimension $10$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8330,2,Mod(1,8330)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8330, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8330.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 8330 = 2 \cdot 5 \cdot 7^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8330.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [10,10,2,10,10,2,0,10,12,10,-2,2,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(66.5153848837\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - 2x^{9} - 19x^{8} + 38x^{7} + 100x^{6} - 194x^{5} - 151x^{4} + 282x^{3} + 85x^{2} - 108x - 28 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.7
Root \(1.35219\) of defining polynomial
Character \(\chi\) \(=\) 8330.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +1.35219 q^{3} +1.00000 q^{4} +1.00000 q^{5} +1.35219 q^{6} +1.00000 q^{8} -1.17159 q^{9} +1.00000 q^{10} -2.93946 q^{11} +1.35219 q^{12} -4.16153 q^{13} +1.35219 q^{15} +1.00000 q^{16} +1.00000 q^{17} -1.17159 q^{18} +2.23113 q^{19} +1.00000 q^{20} -2.93946 q^{22} +8.69719 q^{23} +1.35219 q^{24} +1.00000 q^{25} -4.16153 q^{26} -5.64077 q^{27} +2.53543 q^{29} +1.35219 q^{30} +9.15704 q^{31} +1.00000 q^{32} -3.97470 q^{33} +1.00000 q^{34} -1.17159 q^{36} -0.103526 q^{37} +2.23113 q^{38} -5.62717 q^{39} +1.00000 q^{40} +4.99088 q^{41} +0.552929 q^{43} -2.93946 q^{44} -1.17159 q^{45} +8.69719 q^{46} +9.03880 q^{47} +1.35219 q^{48} +1.00000 q^{50} +1.35219 q^{51} -4.16153 q^{52} -0.109403 q^{53} -5.64077 q^{54} -2.93946 q^{55} +3.01690 q^{57} +2.53543 q^{58} +8.41721 q^{59} +1.35219 q^{60} -6.82353 q^{61} +9.15704 q^{62} +1.00000 q^{64} -4.16153 q^{65} -3.97470 q^{66} +3.16632 q^{67} +1.00000 q^{68} +11.7602 q^{69} +1.49253 q^{71} -1.17159 q^{72} -6.19201 q^{73} -0.103526 q^{74} +1.35219 q^{75} +2.23113 q^{76} -5.62717 q^{78} -6.69724 q^{79} +1.00000 q^{80} -4.11260 q^{81} +4.99088 q^{82} +10.0600 q^{83} +1.00000 q^{85} +0.552929 q^{86} +3.42838 q^{87} -2.93946 q^{88} +1.79218 q^{89} -1.17159 q^{90} +8.69719 q^{92} +12.3820 q^{93} +9.03880 q^{94} +2.23113 q^{95} +1.35219 q^{96} -0.714370 q^{97} +3.44385 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q + 10 q^{2} + 2 q^{3} + 10 q^{4} + 10 q^{5} + 2 q^{6} + 10 q^{8} + 12 q^{9} + 10 q^{10} - 2 q^{11} + 2 q^{12} + 4 q^{13} + 2 q^{15} + 10 q^{16} + 10 q^{17} + 12 q^{18} + 14 q^{19} + 10 q^{20} - 2 q^{22}+ \cdots - 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 1.35219 0.780685 0.390343 0.920670i \(-0.372357\pi\)
0.390343 + 0.920670i \(0.372357\pi\)
\(4\) 1.00000 0.500000
\(5\) 1.00000 0.447214
\(6\) 1.35219 0.552028
\(7\) 0 0
\(8\) 1.00000 0.353553
\(9\) −1.17159 −0.390530
\(10\) 1.00000 0.316228
\(11\) −2.93946 −0.886280 −0.443140 0.896452i \(-0.646136\pi\)
−0.443140 + 0.896452i \(0.646136\pi\)
\(12\) 1.35219 0.390343
\(13\) −4.16153 −1.15420 −0.577101 0.816673i \(-0.695816\pi\)
−0.577101 + 0.816673i \(0.695816\pi\)
\(14\) 0 0
\(15\) 1.35219 0.349133
\(16\) 1.00000 0.250000
\(17\) 1.00000 0.242536
\(18\) −1.17159 −0.276147
\(19\) 2.23113 0.511856 0.255928 0.966696i \(-0.417619\pi\)
0.255928 + 0.966696i \(0.417619\pi\)
\(20\) 1.00000 0.223607
\(21\) 0 0
\(22\) −2.93946 −0.626695
\(23\) 8.69719 1.81349 0.906745 0.421679i \(-0.138559\pi\)
0.906745 + 0.421679i \(0.138559\pi\)
\(24\) 1.35219 0.276014
\(25\) 1.00000 0.200000
\(26\) −4.16153 −0.816143
\(27\) −5.64077 −1.08557
\(28\) 0 0
\(29\) 2.53543 0.470818 0.235409 0.971896i \(-0.424357\pi\)
0.235409 + 0.971896i \(0.424357\pi\)
\(30\) 1.35219 0.246874
\(31\) 9.15704 1.64465 0.822327 0.569016i \(-0.192676\pi\)
0.822327 + 0.569016i \(0.192676\pi\)
\(32\) 1.00000 0.176777
\(33\) −3.97470 −0.691906
\(34\) 1.00000 0.171499
\(35\) 0 0
\(36\) −1.17159 −0.195265
\(37\) −0.103526 −0.0170195 −0.00850975 0.999964i \(-0.502709\pi\)
−0.00850975 + 0.999964i \(0.502709\pi\)
\(38\) 2.23113 0.361937
\(39\) −5.62717 −0.901068
\(40\) 1.00000 0.158114
\(41\) 4.99088 0.779445 0.389722 0.920932i \(-0.372571\pi\)
0.389722 + 0.920932i \(0.372571\pi\)
\(42\) 0 0
\(43\) 0.552929 0.0843209 0.0421604 0.999111i \(-0.486576\pi\)
0.0421604 + 0.999111i \(0.486576\pi\)
\(44\) −2.93946 −0.443140
\(45\) −1.17159 −0.174651
\(46\) 8.69719 1.28233
\(47\) 9.03880 1.31844 0.659222 0.751948i \(-0.270886\pi\)
0.659222 + 0.751948i \(0.270886\pi\)
\(48\) 1.35219 0.195171
\(49\) 0 0
\(50\) 1.00000 0.141421
\(51\) 1.35219 0.189344
\(52\) −4.16153 −0.577101
\(53\) −0.109403 −0.0150277 −0.00751383 0.999972i \(-0.502392\pi\)
−0.00751383 + 0.999972i \(0.502392\pi\)
\(54\) −5.64077 −0.767612
\(55\) −2.93946 −0.396357
\(56\) 0 0
\(57\) 3.01690 0.399598
\(58\) 2.53543 0.332919
\(59\) 8.41721 1.09583 0.547913 0.836535i \(-0.315422\pi\)
0.547913 + 0.836535i \(0.315422\pi\)
\(60\) 1.35219 0.174567
\(61\) −6.82353 −0.873663 −0.436832 0.899543i \(-0.643899\pi\)
−0.436832 + 0.899543i \(0.643899\pi\)
\(62\) 9.15704 1.16295
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −4.16153 −0.516174
\(66\) −3.97470 −0.489251
\(67\) 3.16632 0.386828 0.193414 0.981117i \(-0.438044\pi\)
0.193414 + 0.981117i \(0.438044\pi\)
\(68\) 1.00000 0.121268
\(69\) 11.7602 1.41576
\(70\) 0 0
\(71\) 1.49253 0.177131 0.0885656 0.996070i \(-0.471772\pi\)
0.0885656 + 0.996070i \(0.471772\pi\)
\(72\) −1.17159 −0.138073
\(73\) −6.19201 −0.724720 −0.362360 0.932038i \(-0.618029\pi\)
−0.362360 + 0.932038i \(0.618029\pi\)
\(74\) −0.103526 −0.0120346
\(75\) 1.35219 0.156137
\(76\) 2.23113 0.255928
\(77\) 0 0
\(78\) −5.62717 −0.637151
\(79\) −6.69724 −0.753498 −0.376749 0.926315i \(-0.622958\pi\)
−0.376749 + 0.926315i \(0.622958\pi\)
\(80\) 1.00000 0.111803
\(81\) −4.11260 −0.456955
\(82\) 4.99088 0.551151
\(83\) 10.0600 1.10423 0.552116 0.833767i \(-0.313821\pi\)
0.552116 + 0.833767i \(0.313821\pi\)
\(84\) 0 0
\(85\) 1.00000 0.108465
\(86\) 0.552929 0.0596239
\(87\) 3.42838 0.367561
\(88\) −2.93946 −0.313347
\(89\) 1.79218 0.189971 0.0949856 0.995479i \(-0.469720\pi\)
0.0949856 + 0.995479i \(0.469720\pi\)
\(90\) −1.17159 −0.123497
\(91\) 0 0
\(92\) 8.69719 0.906745
\(93\) 12.3820 1.28396
\(94\) 9.03880 0.932281
\(95\) 2.23113 0.228909
\(96\) 1.35219 0.138007
\(97\) −0.714370 −0.0725333 −0.0362667 0.999342i \(-0.511547\pi\)
−0.0362667 + 0.999342i \(0.511547\pi\)
\(98\) 0 0
\(99\) 3.44385 0.346119
\(100\) 1.00000 0.100000
\(101\) −3.36397 −0.334728 −0.167364 0.985895i \(-0.553525\pi\)
−0.167364 + 0.985895i \(0.553525\pi\)
\(102\) 1.35219 0.133886
\(103\) −9.40703 −0.926902 −0.463451 0.886122i \(-0.653389\pi\)
−0.463451 + 0.886122i \(0.653389\pi\)
\(104\) −4.16153 −0.408072
\(105\) 0 0
\(106\) −0.109403 −0.0106262
\(107\) 17.8174 1.72248 0.861238 0.508202i \(-0.169690\pi\)
0.861238 + 0.508202i \(0.169690\pi\)
\(108\) −5.64077 −0.542783
\(109\) 6.96113 0.666755 0.333378 0.942793i \(-0.391812\pi\)
0.333378 + 0.942793i \(0.391812\pi\)
\(110\) −2.93946 −0.280266
\(111\) −0.139986 −0.0132869
\(112\) 0 0
\(113\) 7.97609 0.750327 0.375164 0.926959i \(-0.377586\pi\)
0.375164 + 0.926959i \(0.377586\pi\)
\(114\) 3.01690 0.282559
\(115\) 8.69719 0.811017
\(116\) 2.53543 0.235409
\(117\) 4.87561 0.450751
\(118\) 8.41721 0.774867
\(119\) 0 0
\(120\) 1.35219 0.123437
\(121\) −2.35958 −0.214507
\(122\) −6.82353 −0.617773
\(123\) 6.74860 0.608501
\(124\) 9.15704 0.822327
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) 15.3160 1.35907 0.679536 0.733642i \(-0.262181\pi\)
0.679536 + 0.733642i \(0.262181\pi\)
\(128\) 1.00000 0.0883883
\(129\) 0.747663 0.0658281
\(130\) −4.16153 −0.364990
\(131\) 4.22974 0.369555 0.184777 0.982780i \(-0.440844\pi\)
0.184777 + 0.982780i \(0.440844\pi\)
\(132\) −3.97470 −0.345953
\(133\) 0 0
\(134\) 3.16632 0.273528
\(135\) −5.64077 −0.485480
\(136\) 1.00000 0.0857493
\(137\) −6.95264 −0.594004 −0.297002 0.954877i \(-0.595987\pi\)
−0.297002 + 0.954877i \(0.595987\pi\)
\(138\) 11.7602 1.00110
\(139\) −12.6339 −1.07159 −0.535795 0.844348i \(-0.679988\pi\)
−0.535795 + 0.844348i \(0.679988\pi\)
\(140\) 0 0
\(141\) 12.2221 1.02929
\(142\) 1.49253 0.125251
\(143\) 12.2327 1.02295
\(144\) −1.17159 −0.0976326
\(145\) 2.53543 0.210556
\(146\) −6.19201 −0.512454
\(147\) 0 0
\(148\) −0.103526 −0.00850975
\(149\) 4.41845 0.361974 0.180987 0.983486i \(-0.442071\pi\)
0.180987 + 0.983486i \(0.442071\pi\)
\(150\) 1.35219 0.110406
\(151\) 6.56833 0.534523 0.267261 0.963624i \(-0.413881\pi\)
0.267261 + 0.963624i \(0.413881\pi\)
\(152\) 2.23113 0.180968
\(153\) −1.17159 −0.0947176
\(154\) 0 0
\(155\) 9.15704 0.735511
\(156\) −5.62717 −0.450534
\(157\) −5.99757 −0.478658 −0.239329 0.970939i \(-0.576927\pi\)
−0.239329 + 0.970939i \(0.576927\pi\)
\(158\) −6.69724 −0.532804
\(159\) −0.147933 −0.0117319
\(160\) 1.00000 0.0790569
\(161\) 0 0
\(162\) −4.11260 −0.323116
\(163\) −0.0850324 −0.00666025 −0.00333013 0.999994i \(-0.501060\pi\)
−0.00333013 + 0.999994i \(0.501060\pi\)
\(164\) 4.99088 0.389722
\(165\) −3.97470 −0.309430
\(166\) 10.0600 0.780810
\(167\) −3.86319 −0.298942 −0.149471 0.988766i \(-0.547757\pi\)
−0.149471 + 0.988766i \(0.547757\pi\)
\(168\) 0 0
\(169\) 4.31834 0.332180
\(170\) 1.00000 0.0766965
\(171\) −2.61397 −0.199895
\(172\) 0.552929 0.0421604
\(173\) −16.8732 −1.28285 −0.641424 0.767186i \(-0.721656\pi\)
−0.641424 + 0.767186i \(0.721656\pi\)
\(174\) 3.42838 0.259905
\(175\) 0 0
\(176\) −2.93946 −0.221570
\(177\) 11.3816 0.855496
\(178\) 1.79218 0.134330
\(179\) −1.41488 −0.105753 −0.0528767 0.998601i \(-0.516839\pi\)
−0.0528767 + 0.998601i \(0.516839\pi\)
\(180\) −1.17159 −0.0873253
\(181\) 1.68884 0.125530 0.0627652 0.998028i \(-0.480008\pi\)
0.0627652 + 0.998028i \(0.480008\pi\)
\(182\) 0 0
\(183\) −9.22669 −0.682056
\(184\) 8.69719 0.641166
\(185\) −0.103526 −0.00761135
\(186\) 12.3820 0.907894
\(187\) −2.93946 −0.214955
\(188\) 9.03880 0.659222
\(189\) 0 0
\(190\) 2.23113 0.161863
\(191\) −0.907269 −0.0656477 −0.0328239 0.999461i \(-0.510450\pi\)
−0.0328239 + 0.999461i \(0.510450\pi\)
\(192\) 1.35219 0.0975857
\(193\) 21.3866 1.53944 0.769722 0.638380i \(-0.220395\pi\)
0.769722 + 0.638380i \(0.220395\pi\)
\(194\) −0.714370 −0.0512888
\(195\) −5.62717 −0.402970
\(196\) 0 0
\(197\) 21.0895 1.50256 0.751281 0.659982i \(-0.229436\pi\)
0.751281 + 0.659982i \(0.229436\pi\)
\(198\) 3.44385 0.244743
\(199\) 14.1982 1.00648 0.503242 0.864146i \(-0.332140\pi\)
0.503242 + 0.864146i \(0.332140\pi\)
\(200\) 1.00000 0.0707107
\(201\) 4.28146 0.301991
\(202\) −3.36397 −0.236688
\(203\) 0 0
\(204\) 1.35219 0.0946720
\(205\) 4.99088 0.348578
\(206\) −9.40703 −0.655419
\(207\) −10.1896 −0.708223
\(208\) −4.16153 −0.288550
\(209\) −6.55831 −0.453648
\(210\) 0 0
\(211\) 26.1407 1.79960 0.899802 0.436299i \(-0.143711\pi\)
0.899802 + 0.436299i \(0.143711\pi\)
\(212\) −0.109403 −0.00751383
\(213\) 2.01818 0.138284
\(214\) 17.8174 1.21797
\(215\) 0.552929 0.0377094
\(216\) −5.64077 −0.383806
\(217\) 0 0
\(218\) 6.96113 0.471467
\(219\) −8.37275 −0.565778
\(220\) −2.93946 −0.198178
\(221\) −4.16153 −0.279935
\(222\) −0.139986 −0.00939524
\(223\) −16.9592 −1.13567 −0.567834 0.823143i \(-0.692219\pi\)
−0.567834 + 0.823143i \(0.692219\pi\)
\(224\) 0 0
\(225\) −1.17159 −0.0781061
\(226\) 7.97609 0.530562
\(227\) −18.8819 −1.25324 −0.626619 0.779325i \(-0.715562\pi\)
−0.626619 + 0.779325i \(0.715562\pi\)
\(228\) 3.01690 0.199799
\(229\) −4.67822 −0.309146 −0.154573 0.987981i \(-0.549400\pi\)
−0.154573 + 0.987981i \(0.549400\pi\)
\(230\) 8.69719 0.573476
\(231\) 0 0
\(232\) 2.53543 0.166459
\(233\) 17.8669 1.17050 0.585250 0.810853i \(-0.300996\pi\)
0.585250 + 0.810853i \(0.300996\pi\)
\(234\) 4.87561 0.318729
\(235\) 9.03880 0.589626
\(236\) 8.41721 0.547913
\(237\) −9.05592 −0.588245
\(238\) 0 0
\(239\) 0.864416 0.0559144 0.0279572 0.999609i \(-0.491100\pi\)
0.0279572 + 0.999609i \(0.491100\pi\)
\(240\) 1.35219 0.0872833
\(241\) 4.74645 0.305746 0.152873 0.988246i \(-0.451148\pi\)
0.152873 + 0.988246i \(0.451148\pi\)
\(242\) −2.35958 −0.151680
\(243\) 11.3613 0.728828
\(244\) −6.82353 −0.436832
\(245\) 0 0
\(246\) 6.74860 0.430275
\(247\) −9.28491 −0.590785
\(248\) 9.15704 0.581473
\(249\) 13.6030 0.862058
\(250\) 1.00000 0.0632456
\(251\) −3.45527 −0.218095 −0.109047 0.994037i \(-0.534780\pi\)
−0.109047 + 0.994037i \(0.534780\pi\)
\(252\) 0 0
\(253\) −25.5650 −1.60726
\(254\) 15.3160 0.961010
\(255\) 1.35219 0.0846772
\(256\) 1.00000 0.0625000
\(257\) −27.2139 −1.69756 −0.848779 0.528747i \(-0.822662\pi\)
−0.848779 + 0.528747i \(0.822662\pi\)
\(258\) 0.747663 0.0465475
\(259\) 0 0
\(260\) −4.16153 −0.258087
\(261\) −2.97049 −0.183869
\(262\) 4.22974 0.261314
\(263\) 13.1007 0.807827 0.403913 0.914797i \(-0.367650\pi\)
0.403913 + 0.914797i \(0.367650\pi\)
\(264\) −3.97470 −0.244626
\(265\) −0.109403 −0.00672058
\(266\) 0 0
\(267\) 2.42337 0.148308
\(268\) 3.16632 0.193414
\(269\) 10.7385 0.654740 0.327370 0.944896i \(-0.393838\pi\)
0.327370 + 0.944896i \(0.393838\pi\)
\(270\) −5.64077 −0.343286
\(271\) −7.72677 −0.469368 −0.234684 0.972072i \(-0.575406\pi\)
−0.234684 + 0.972072i \(0.575406\pi\)
\(272\) 1.00000 0.0606339
\(273\) 0 0
\(274\) −6.95264 −0.420024
\(275\) −2.93946 −0.177256
\(276\) 11.7602 0.707882
\(277\) −19.2239 −1.15505 −0.577525 0.816373i \(-0.695981\pi\)
−0.577525 + 0.816373i \(0.695981\pi\)
\(278\) −12.6339 −0.757728
\(279\) −10.7283 −0.642287
\(280\) 0 0
\(281\) −6.45650 −0.385162 −0.192581 0.981281i \(-0.561686\pi\)
−0.192581 + 0.981281i \(0.561686\pi\)
\(282\) 12.2221 0.727818
\(283\) 9.15294 0.544086 0.272043 0.962285i \(-0.412301\pi\)
0.272043 + 0.962285i \(0.412301\pi\)
\(284\) 1.49253 0.0885656
\(285\) 3.01690 0.178706
\(286\) 12.2327 0.723332
\(287\) 0 0
\(288\) −1.17159 −0.0690367
\(289\) 1.00000 0.0588235
\(290\) 2.53543 0.148886
\(291\) −0.965962 −0.0566257
\(292\) −6.19201 −0.362360
\(293\) 4.17718 0.244033 0.122017 0.992528i \(-0.461064\pi\)
0.122017 + 0.992528i \(0.461064\pi\)
\(294\) 0 0
\(295\) 8.41721 0.490069
\(296\) −0.103526 −0.00601730
\(297\) 16.5808 0.962116
\(298\) 4.41845 0.255954
\(299\) −36.1936 −2.09313
\(300\) 1.35219 0.0780685
\(301\) 0 0
\(302\) 6.56833 0.377965
\(303\) −4.54872 −0.261317
\(304\) 2.23113 0.127964
\(305\) −6.82353 −0.390714
\(306\) −1.17159 −0.0669754
\(307\) 31.3778 1.79082 0.895412 0.445239i \(-0.146881\pi\)
0.895412 + 0.445239i \(0.146881\pi\)
\(308\) 0 0
\(309\) −12.7201 −0.723619
\(310\) 9.15704 0.520085
\(311\) 0.559867 0.0317472 0.0158736 0.999874i \(-0.494947\pi\)
0.0158736 + 0.999874i \(0.494947\pi\)
\(312\) −5.62717 −0.318576
\(313\) 0.824866 0.0466242 0.0233121 0.999728i \(-0.492579\pi\)
0.0233121 + 0.999728i \(0.492579\pi\)
\(314\) −5.99757 −0.338462
\(315\) 0 0
\(316\) −6.69724 −0.376749
\(317\) −9.13508 −0.513077 −0.256539 0.966534i \(-0.582582\pi\)
−0.256539 + 0.966534i \(0.582582\pi\)
\(318\) −0.147933 −0.00829569
\(319\) −7.45280 −0.417277
\(320\) 1.00000 0.0559017
\(321\) 24.0925 1.34471
\(322\) 0 0
\(323\) 2.23113 0.124143
\(324\) −4.11260 −0.228478
\(325\) −4.16153 −0.230840
\(326\) −0.0850324 −0.00470951
\(327\) 9.41275 0.520526
\(328\) 4.99088 0.275575
\(329\) 0 0
\(330\) −3.97470 −0.218800
\(331\) −9.48144 −0.521147 −0.260573 0.965454i \(-0.583912\pi\)
−0.260573 + 0.965454i \(0.583912\pi\)
\(332\) 10.0600 0.552116
\(333\) 0.121290 0.00664663
\(334\) −3.86319 −0.211384
\(335\) 3.16632 0.172995
\(336\) 0 0
\(337\) −14.7377 −0.802811 −0.401405 0.915900i \(-0.631478\pi\)
−0.401405 + 0.915900i \(0.631478\pi\)
\(338\) 4.31834 0.234887
\(339\) 10.7852 0.585770
\(340\) 1.00000 0.0542326
\(341\) −26.9167 −1.45762
\(342\) −2.61397 −0.141347
\(343\) 0 0
\(344\) 0.552929 0.0298119
\(345\) 11.7602 0.633149
\(346\) −16.8732 −0.907111
\(347\) −19.7544 −1.06047 −0.530236 0.847850i \(-0.677897\pi\)
−0.530236 + 0.847850i \(0.677897\pi\)
\(348\) 3.42838 0.183780
\(349\) −25.3828 −1.35871 −0.679356 0.733808i \(-0.737741\pi\)
−0.679356 + 0.733808i \(0.737741\pi\)
\(350\) 0 0
\(351\) 23.4742 1.25296
\(352\) −2.93946 −0.156674
\(353\) −10.1367 −0.539522 −0.269761 0.962927i \(-0.586945\pi\)
−0.269761 + 0.962927i \(0.586945\pi\)
\(354\) 11.3816 0.604927
\(355\) 1.49253 0.0792155
\(356\) 1.79218 0.0949856
\(357\) 0 0
\(358\) −1.41488 −0.0747789
\(359\) −13.8984 −0.733527 −0.366763 0.930314i \(-0.619534\pi\)
−0.366763 + 0.930314i \(0.619534\pi\)
\(360\) −1.17159 −0.0617483
\(361\) −14.0221 −0.738003
\(362\) 1.68884 0.0887633
\(363\) −3.19059 −0.167463
\(364\) 0 0
\(365\) −6.19201 −0.324104
\(366\) −9.22669 −0.482287
\(367\) −9.00621 −0.470121 −0.235060 0.971981i \(-0.575529\pi\)
−0.235060 + 0.971981i \(0.575529\pi\)
\(368\) 8.69719 0.453373
\(369\) −5.84727 −0.304397
\(370\) −0.103526 −0.00538204
\(371\) 0 0
\(372\) 12.3820 0.641978
\(373\) −30.5019 −1.57933 −0.789665 0.613539i \(-0.789745\pi\)
−0.789665 + 0.613539i \(0.789745\pi\)
\(374\) −2.93946 −0.151996
\(375\) 1.35219 0.0698266
\(376\) 9.03880 0.466141
\(377\) −10.5513 −0.543419
\(378\) 0 0
\(379\) 29.4384 1.51215 0.756074 0.654487i \(-0.227115\pi\)
0.756074 + 0.654487i \(0.227115\pi\)
\(380\) 2.23113 0.114454
\(381\) 20.7101 1.06101
\(382\) −0.907269 −0.0464199
\(383\) −19.6495 −1.00404 −0.502022 0.864855i \(-0.667410\pi\)
−0.502022 + 0.864855i \(0.667410\pi\)
\(384\) 1.35219 0.0690035
\(385\) 0 0
\(386\) 21.3866 1.08855
\(387\) −0.647807 −0.0329299
\(388\) −0.714370 −0.0362667
\(389\) −6.69989 −0.339698 −0.169849 0.985470i \(-0.554328\pi\)
−0.169849 + 0.985470i \(0.554328\pi\)
\(390\) −5.62717 −0.284943
\(391\) 8.69719 0.439836
\(392\) 0 0
\(393\) 5.71940 0.288506
\(394\) 21.0895 1.06247
\(395\) −6.69724 −0.336975
\(396\) 3.44385 0.173060
\(397\) −35.0846 −1.76085 −0.880423 0.474189i \(-0.842741\pi\)
−0.880423 + 0.474189i \(0.842741\pi\)
\(398\) 14.1982 0.711691
\(399\) 0 0
\(400\) 1.00000 0.0500000
\(401\) 24.5806 1.22750 0.613749 0.789501i \(-0.289661\pi\)
0.613749 + 0.789501i \(0.289661\pi\)
\(402\) 4.28146 0.213540
\(403\) −38.1073 −1.89826
\(404\) −3.36397 −0.167364
\(405\) −4.11260 −0.204357
\(406\) 0 0
\(407\) 0.304309 0.0150840
\(408\) 1.35219 0.0669432
\(409\) 5.85978 0.289748 0.144874 0.989450i \(-0.453722\pi\)
0.144874 + 0.989450i \(0.453722\pi\)
\(410\) 4.99088 0.246482
\(411\) −9.40127 −0.463730
\(412\) −9.40703 −0.463451
\(413\) 0 0
\(414\) −10.1896 −0.500789
\(415\) 10.0600 0.493827
\(416\) −4.16153 −0.204036
\(417\) −17.0833 −0.836574
\(418\) −6.55831 −0.320778
\(419\) −37.4041 −1.82731 −0.913656 0.406488i \(-0.866753\pi\)
−0.913656 + 0.406488i \(0.866753\pi\)
\(420\) 0 0
\(421\) 17.3809 0.847092 0.423546 0.905875i \(-0.360785\pi\)
0.423546 + 0.905875i \(0.360785\pi\)
\(422\) 26.1407 1.27251
\(423\) −10.5898 −0.514893
\(424\) −0.109403 −0.00531308
\(425\) 1.00000 0.0485071
\(426\) 2.01818 0.0977813
\(427\) 0 0
\(428\) 17.8174 0.861238
\(429\) 16.5408 0.798599
\(430\) 0.552929 0.0266646
\(431\) −16.4023 −0.790070 −0.395035 0.918666i \(-0.629268\pi\)
−0.395035 + 0.918666i \(0.629268\pi\)
\(432\) −5.64077 −0.271392
\(433\) −22.7926 −1.09534 −0.547672 0.836693i \(-0.684486\pi\)
−0.547672 + 0.836693i \(0.684486\pi\)
\(434\) 0 0
\(435\) 3.42838 0.164378
\(436\) 6.96113 0.333378
\(437\) 19.4046 0.928246
\(438\) −8.37275 −0.400065
\(439\) −21.0246 −1.00345 −0.501724 0.865027i \(-0.667301\pi\)
−0.501724 + 0.865027i \(0.667301\pi\)
\(440\) −2.93946 −0.140133
\(441\) 0 0
\(442\) −4.16153 −0.197944
\(443\) −36.5497 −1.73653 −0.868264 0.496102i \(-0.834764\pi\)
−0.868264 + 0.496102i \(0.834764\pi\)
\(444\) −0.139986 −0.00664344
\(445\) 1.79218 0.0849577
\(446\) −16.9592 −0.803039
\(447\) 5.97457 0.282588
\(448\) 0 0
\(449\) 33.2693 1.57008 0.785038 0.619448i \(-0.212643\pi\)
0.785038 + 0.619448i \(0.212643\pi\)
\(450\) −1.17159 −0.0552294
\(451\) −14.6705 −0.690806
\(452\) 7.97609 0.375164
\(453\) 8.88160 0.417294
\(454\) −18.8819 −0.886174
\(455\) 0 0
\(456\) 3.01690 0.141279
\(457\) 27.2381 1.27415 0.637073 0.770804i \(-0.280145\pi\)
0.637073 + 0.770804i \(0.280145\pi\)
\(458\) −4.67822 −0.218599
\(459\) −5.64077 −0.263289
\(460\) 8.69719 0.405509
\(461\) 21.6542 1.00853 0.504267 0.863548i \(-0.331763\pi\)
0.504267 + 0.863548i \(0.331763\pi\)
\(462\) 0 0
\(463\) −32.2708 −1.49975 −0.749876 0.661579i \(-0.769887\pi\)
−0.749876 + 0.661579i \(0.769887\pi\)
\(464\) 2.53543 0.117705
\(465\) 12.3820 0.574203
\(466\) 17.8669 0.827669
\(467\) 26.4552 1.22420 0.612101 0.790780i \(-0.290325\pi\)
0.612101 + 0.790780i \(0.290325\pi\)
\(468\) 4.87561 0.225375
\(469\) 0 0
\(470\) 9.03880 0.416929
\(471\) −8.10983 −0.373681
\(472\) 8.41721 0.387433
\(473\) −1.62531 −0.0747319
\(474\) −9.05592 −0.415952
\(475\) 2.23113 0.102371
\(476\) 0 0
\(477\) 0.128176 0.00586876
\(478\) 0.864416 0.0395375
\(479\) 4.15252 0.189733 0.0948667 0.995490i \(-0.469758\pi\)
0.0948667 + 0.995490i \(0.469758\pi\)
\(480\) 1.35219 0.0617186
\(481\) 0.430825 0.0196439
\(482\) 4.74645 0.216195
\(483\) 0 0
\(484\) −2.35958 −0.107254
\(485\) −0.714370 −0.0324379
\(486\) 11.3613 0.515359
\(487\) 30.4531 1.37996 0.689980 0.723828i \(-0.257619\pi\)
0.689980 + 0.723828i \(0.257619\pi\)
\(488\) −6.82353 −0.308887
\(489\) −0.114980 −0.00519956
\(490\) 0 0
\(491\) −22.0284 −0.994128 −0.497064 0.867714i \(-0.665589\pi\)
−0.497064 + 0.867714i \(0.665589\pi\)
\(492\) 6.74860 0.304250
\(493\) 2.53543 0.114190
\(494\) −9.28491 −0.417748
\(495\) 3.44385 0.154789
\(496\) 9.15704 0.411163
\(497\) 0 0
\(498\) 13.6030 0.609567
\(499\) 2.45247 0.109788 0.0548939 0.998492i \(-0.482518\pi\)
0.0548939 + 0.998492i \(0.482518\pi\)
\(500\) 1.00000 0.0447214
\(501\) −5.22375 −0.233380
\(502\) −3.45527 −0.154216
\(503\) 38.2500 1.70548 0.852742 0.522332i \(-0.174938\pi\)
0.852742 + 0.522332i \(0.174938\pi\)
\(504\) 0 0
\(505\) −3.36397 −0.149695
\(506\) −25.5650 −1.13650
\(507\) 5.83921 0.259328
\(508\) 15.3160 0.679536
\(509\) −22.4482 −0.995001 −0.497500 0.867464i \(-0.665749\pi\)
−0.497500 + 0.867464i \(0.665749\pi\)
\(510\) 1.35219 0.0598758
\(511\) 0 0
\(512\) 1.00000 0.0441942
\(513\) −12.5853 −0.555654
\(514\) −27.2139 −1.20036
\(515\) −9.40703 −0.414523
\(516\) 0.747663 0.0329140
\(517\) −26.5692 −1.16851
\(518\) 0 0
\(519\) −22.8158 −1.00150
\(520\) −4.16153 −0.182495
\(521\) −25.3855 −1.11216 −0.556079 0.831130i \(-0.687695\pi\)
−0.556079 + 0.831130i \(0.687695\pi\)
\(522\) −2.97049 −0.130015
\(523\) −43.9818 −1.92319 −0.961594 0.274474i \(-0.911496\pi\)
−0.961594 + 0.274474i \(0.911496\pi\)
\(524\) 4.22974 0.184777
\(525\) 0 0
\(526\) 13.1007 0.571220
\(527\) 9.15704 0.398887
\(528\) −3.97470 −0.172976
\(529\) 52.6412 2.28875
\(530\) −0.109403 −0.00475217
\(531\) −9.86153 −0.427954
\(532\) 0 0
\(533\) −20.7697 −0.899636
\(534\) 2.42337 0.104869
\(535\) 17.8174 0.770315
\(536\) 3.16632 0.136764
\(537\) −1.91319 −0.0825601
\(538\) 10.7385 0.462971
\(539\) 0 0
\(540\) −5.64077 −0.242740
\(541\) −25.7282 −1.10614 −0.553070 0.833135i \(-0.686544\pi\)
−0.553070 + 0.833135i \(0.686544\pi\)
\(542\) −7.72677 −0.331893
\(543\) 2.28362 0.0979997
\(544\) 1.00000 0.0428746
\(545\) 6.96113 0.298182
\(546\) 0 0
\(547\) 11.1565 0.477019 0.238509 0.971140i \(-0.423341\pi\)
0.238509 + 0.971140i \(0.423341\pi\)
\(548\) −6.95264 −0.297002
\(549\) 7.99439 0.341192
\(550\) −2.93946 −0.125339
\(551\) 5.65688 0.240991
\(552\) 11.7602 0.500549
\(553\) 0 0
\(554\) −19.2239 −0.816744
\(555\) −0.139986 −0.00594207
\(556\) −12.6339 −0.535795
\(557\) 27.5906 1.16905 0.584525 0.811375i \(-0.301281\pi\)
0.584525 + 0.811375i \(0.301281\pi\)
\(558\) −10.7283 −0.454166
\(559\) −2.30103 −0.0973233
\(560\) 0 0
\(561\) −3.97470 −0.167812
\(562\) −6.45650 −0.272351
\(563\) 24.1375 1.01728 0.508638 0.860981i \(-0.330149\pi\)
0.508638 + 0.860981i \(0.330149\pi\)
\(564\) 12.2221 0.514645
\(565\) 7.97609 0.335557
\(566\) 9.15294 0.384727
\(567\) 0 0
\(568\) 1.49253 0.0626253
\(569\) −33.1126 −1.38815 −0.694076 0.719902i \(-0.744187\pi\)
−0.694076 + 0.719902i \(0.744187\pi\)
\(570\) 3.01690 0.126364
\(571\) −8.53502 −0.357179 −0.178590 0.983924i \(-0.557153\pi\)
−0.178590 + 0.983924i \(0.557153\pi\)
\(572\) 12.2327 0.511473
\(573\) −1.22680 −0.0512502
\(574\) 0 0
\(575\) 8.69719 0.362698
\(576\) −1.17159 −0.0488163
\(577\) −14.8054 −0.616355 −0.308178 0.951329i \(-0.599719\pi\)
−0.308178 + 0.951329i \(0.599719\pi\)
\(578\) 1.00000 0.0415945
\(579\) 28.9187 1.20182
\(580\) 2.53543 0.105278
\(581\) 0 0
\(582\) −0.965962 −0.0400404
\(583\) 0.321586 0.0133187
\(584\) −6.19201 −0.256227
\(585\) 4.87561 0.201582
\(586\) 4.17718 0.172558
\(587\) 16.0268 0.661495 0.330747 0.943719i \(-0.392699\pi\)
0.330747 + 0.943719i \(0.392699\pi\)
\(588\) 0 0
\(589\) 20.4305 0.841826
\(590\) 8.41721 0.346531
\(591\) 28.5169 1.17303
\(592\) −0.103526 −0.00425488
\(593\) −8.81573 −0.362019 −0.181009 0.983481i \(-0.557936\pi\)
−0.181009 + 0.983481i \(0.557936\pi\)
\(594\) 16.5808 0.680319
\(595\) 0 0
\(596\) 4.41845 0.180987
\(597\) 19.1986 0.785747
\(598\) −36.1936 −1.48007
\(599\) 28.9323 1.18214 0.591070 0.806620i \(-0.298706\pi\)
0.591070 + 0.806620i \(0.298706\pi\)
\(600\) 1.35219 0.0552028
\(601\) 33.6810 1.37388 0.686939 0.726715i \(-0.258954\pi\)
0.686939 + 0.726715i \(0.258954\pi\)
\(602\) 0 0
\(603\) −3.70963 −0.151068
\(604\) 6.56833 0.267261
\(605\) −2.35958 −0.0959306
\(606\) −4.54872 −0.184779
\(607\) −18.5475 −0.752821 −0.376411 0.926453i \(-0.622842\pi\)
−0.376411 + 0.926453i \(0.622842\pi\)
\(608\) 2.23113 0.0904842
\(609\) 0 0
\(610\) −6.82353 −0.276277
\(611\) −37.6153 −1.52175
\(612\) −1.17159 −0.0473588
\(613\) 7.12473 0.287765 0.143883 0.989595i \(-0.454041\pi\)
0.143883 + 0.989595i \(0.454041\pi\)
\(614\) 31.3778 1.26630
\(615\) 6.74860 0.272130
\(616\) 0 0
\(617\) −8.50005 −0.342199 −0.171100 0.985254i \(-0.554732\pi\)
−0.171100 + 0.985254i \(0.554732\pi\)
\(618\) −12.7201 −0.511676
\(619\) −48.5640 −1.95195 −0.975977 0.217875i \(-0.930088\pi\)
−0.975977 + 0.217875i \(0.930088\pi\)
\(620\) 9.15704 0.367756
\(621\) −49.0589 −1.96866
\(622\) 0.559867 0.0224486
\(623\) 0 0
\(624\) −5.62717 −0.225267
\(625\) 1.00000 0.0400000
\(626\) 0.824866 0.0329683
\(627\) −8.86806 −0.354156
\(628\) −5.99757 −0.239329
\(629\) −0.103526 −0.00412784
\(630\) 0 0
\(631\) 29.5171 1.17506 0.587529 0.809203i \(-0.300101\pi\)
0.587529 + 0.809203i \(0.300101\pi\)
\(632\) −6.69724 −0.266402
\(633\) 35.3472 1.40492
\(634\) −9.13508 −0.362800
\(635\) 15.3160 0.607796
\(636\) −0.147933 −0.00586594
\(637\) 0 0
\(638\) −7.45280 −0.295059
\(639\) −1.74864 −0.0691751
\(640\) 1.00000 0.0395285
\(641\) 35.8060 1.41425 0.707126 0.707088i \(-0.249992\pi\)
0.707126 + 0.707088i \(0.249992\pi\)
\(642\) 24.0925 0.950855
\(643\) −27.2628 −1.07514 −0.537570 0.843219i \(-0.680658\pi\)
−0.537570 + 0.843219i \(0.680658\pi\)
\(644\) 0 0
\(645\) 0.747663 0.0294392
\(646\) 2.23113 0.0877826
\(647\) 28.3402 1.11417 0.557084 0.830456i \(-0.311920\pi\)
0.557084 + 0.830456i \(0.311920\pi\)
\(648\) −4.11260 −0.161558
\(649\) −24.7420 −0.971210
\(650\) −4.16153 −0.163229
\(651\) 0 0
\(652\) −0.0850324 −0.00333013
\(653\) −24.3044 −0.951103 −0.475551 0.879688i \(-0.657751\pi\)
−0.475551 + 0.879688i \(0.657751\pi\)
\(654\) 9.41275 0.368068
\(655\) 4.22974 0.165270
\(656\) 4.99088 0.194861
\(657\) 7.25450 0.283025
\(658\) 0 0
\(659\) 1.03631 0.0403691 0.0201845 0.999796i \(-0.493575\pi\)
0.0201845 + 0.999796i \(0.493575\pi\)
\(660\) −3.97470 −0.154715
\(661\) 34.7225 1.35055 0.675274 0.737567i \(-0.264025\pi\)
0.675274 + 0.737567i \(0.264025\pi\)
\(662\) −9.48144 −0.368506
\(663\) −5.62717 −0.218541
\(664\) 10.0600 0.390405
\(665\) 0 0
\(666\) 0.121290 0.00469988
\(667\) 22.0511 0.853824
\(668\) −3.86319 −0.149471
\(669\) −22.9319 −0.886600
\(670\) 3.16632 0.122326
\(671\) 20.0575 0.774311
\(672\) 0 0
\(673\) 41.7943 1.61105 0.805526 0.592560i \(-0.201883\pi\)
0.805526 + 0.592560i \(0.201883\pi\)
\(674\) −14.7377 −0.567673
\(675\) −5.64077 −0.217113
\(676\) 4.31834 0.166090
\(677\) −10.9366 −0.420329 −0.210165 0.977666i \(-0.567400\pi\)
−0.210165 + 0.977666i \(0.567400\pi\)
\(678\) 10.7852 0.414202
\(679\) 0 0
\(680\) 1.00000 0.0383482
\(681\) −25.5319 −0.978385
\(682\) −26.9167 −1.03070
\(683\) −38.1855 −1.46113 −0.730564 0.682844i \(-0.760743\pi\)
−0.730564 + 0.682844i \(0.760743\pi\)
\(684\) −2.61397 −0.0999477
\(685\) −6.95264 −0.265647
\(686\) 0 0
\(687\) −6.32583 −0.241345
\(688\) 0.552929 0.0210802
\(689\) 0.455284 0.0173450
\(690\) 11.7602 0.447704
\(691\) 31.0174 1.17996 0.589979 0.807419i \(-0.299136\pi\)
0.589979 + 0.807419i \(0.299136\pi\)
\(692\) −16.8732 −0.641424
\(693\) 0 0
\(694\) −19.7544 −0.749867
\(695\) −12.6339 −0.479229
\(696\) 3.42838 0.129952
\(697\) 4.99088 0.189043
\(698\) −25.3828 −0.960755
\(699\) 24.1594 0.913793
\(700\) 0 0
\(701\) −9.46262 −0.357398 −0.178699 0.983904i \(-0.557189\pi\)
−0.178699 + 0.983904i \(0.557189\pi\)
\(702\) 23.4742 0.885978
\(703\) −0.230979 −0.00871153
\(704\) −2.93946 −0.110785
\(705\) 12.2221 0.460313
\(706\) −10.1367 −0.381500
\(707\) 0 0
\(708\) 11.3816 0.427748
\(709\) −19.7351 −0.741168 −0.370584 0.928799i \(-0.620842\pi\)
−0.370584 + 0.928799i \(0.620842\pi\)
\(710\) 1.49253 0.0560138
\(711\) 7.84643 0.294264
\(712\) 1.79218 0.0671649
\(713\) 79.6406 2.98256
\(714\) 0 0
\(715\) 12.2327 0.457475
\(716\) −1.41488 −0.0528767
\(717\) 1.16885 0.0436516
\(718\) −13.8984 −0.518682
\(719\) −15.4983 −0.577987 −0.288994 0.957331i \(-0.593321\pi\)
−0.288994 + 0.957331i \(0.593321\pi\)
\(720\) −1.17159 −0.0436626
\(721\) 0 0
\(722\) −14.0221 −0.521847
\(723\) 6.41809 0.238691
\(724\) 1.68884 0.0627652
\(725\) 2.53543 0.0941636
\(726\) −3.19059 −0.118414
\(727\) 20.3247 0.753801 0.376900 0.926254i \(-0.376990\pi\)
0.376900 + 0.926254i \(0.376990\pi\)
\(728\) 0 0
\(729\) 27.7004 1.02594
\(730\) −6.19201 −0.229176
\(731\) 0.552929 0.0204508
\(732\) −9.22669 −0.341028
\(733\) 3.61452 0.133505 0.0667527 0.997770i \(-0.478736\pi\)
0.0667527 + 0.997770i \(0.478736\pi\)
\(734\) −9.00621 −0.332425
\(735\) 0 0
\(736\) 8.69719 0.320583
\(737\) −9.30727 −0.342838
\(738\) −5.84727 −0.215241
\(739\) 30.2144 1.11145 0.555727 0.831365i \(-0.312440\pi\)
0.555727 + 0.831365i \(0.312440\pi\)
\(740\) −0.103526 −0.00380568
\(741\) −12.5549 −0.461217
\(742\) 0 0
\(743\) −31.4838 −1.15503 −0.577515 0.816380i \(-0.695978\pi\)
−0.577515 + 0.816380i \(0.695978\pi\)
\(744\) 12.3820 0.453947
\(745\) 4.41845 0.161880
\(746\) −30.5019 −1.11675
\(747\) −11.7862 −0.431236
\(748\) −2.93946 −0.107477
\(749\) 0 0
\(750\) 1.35219 0.0493749
\(751\) −6.25998 −0.228430 −0.114215 0.993456i \(-0.536435\pi\)
−0.114215 + 0.993456i \(0.536435\pi\)
\(752\) 9.03880 0.329611
\(753\) −4.67218 −0.170264
\(754\) −10.5513 −0.384255
\(755\) 6.56833 0.239046
\(756\) 0 0
\(757\) 37.4269 1.36030 0.680151 0.733072i \(-0.261914\pi\)
0.680151 + 0.733072i \(0.261914\pi\)
\(758\) 29.4384 1.06925
\(759\) −34.5687 −1.25476
\(760\) 2.23113 0.0809315
\(761\) −13.9313 −0.505009 −0.252505 0.967596i \(-0.581254\pi\)
−0.252505 + 0.967596i \(0.581254\pi\)
\(762\) 20.7101 0.750246
\(763\) 0 0
\(764\) −0.907269 −0.0328239
\(765\) −1.17159 −0.0423590
\(766\) −19.6495 −0.709966
\(767\) −35.0285 −1.26480
\(768\) 1.35219 0.0487928
\(769\) 14.8786 0.536535 0.268267 0.963344i \(-0.413549\pi\)
0.268267 + 0.963344i \(0.413549\pi\)
\(770\) 0 0
\(771\) −36.7983 −1.32526
\(772\) 21.3866 0.769722
\(773\) 16.1961 0.582532 0.291266 0.956642i \(-0.405924\pi\)
0.291266 + 0.956642i \(0.405924\pi\)
\(774\) −0.647807 −0.0232849
\(775\) 9.15704 0.328931
\(776\) −0.714370 −0.0256444
\(777\) 0 0
\(778\) −6.69989 −0.240203
\(779\) 11.1353 0.398963
\(780\) −5.62717 −0.201485
\(781\) −4.38724 −0.156988
\(782\) 8.69719 0.311011
\(783\) −14.3018 −0.511104
\(784\) 0 0
\(785\) −5.99757 −0.214062
\(786\) 5.71940 0.204004
\(787\) 29.6891 1.05830 0.529151 0.848528i \(-0.322510\pi\)
0.529151 + 0.848528i \(0.322510\pi\)
\(788\) 21.0895 0.751281
\(789\) 17.7147 0.630658
\(790\) −6.69724 −0.238277
\(791\) 0 0
\(792\) 3.44385 0.122372
\(793\) 28.3963 1.00838
\(794\) −35.0846 −1.24511
\(795\) −0.147933 −0.00524666
\(796\) 14.1982 0.503242
\(797\) −28.7915 −1.01985 −0.509924 0.860219i \(-0.670327\pi\)
−0.509924 + 0.860219i \(0.670327\pi\)
\(798\) 0 0
\(799\) 9.03880 0.319770
\(800\) 1.00000 0.0353553
\(801\) −2.09971 −0.0741895
\(802\) 24.5806 0.867972
\(803\) 18.2012 0.642305
\(804\) 4.28146 0.150995
\(805\) 0 0
\(806\) −38.1073 −1.34227
\(807\) 14.5205 0.511146
\(808\) −3.36397 −0.118344
\(809\) 44.9627 1.58080 0.790402 0.612589i \(-0.209872\pi\)
0.790402 + 0.612589i \(0.209872\pi\)
\(810\) −4.11260 −0.144502
\(811\) −25.5372 −0.896733 −0.448367 0.893850i \(-0.647994\pi\)
−0.448367 + 0.893850i \(0.647994\pi\)
\(812\) 0 0
\(813\) −10.4480 −0.366429
\(814\) 0.304309 0.0106660
\(815\) −0.0850324 −0.00297855
\(816\) 1.35219 0.0473360
\(817\) 1.23366 0.0431601
\(818\) 5.85978 0.204882
\(819\) 0 0
\(820\) 4.99088 0.174289
\(821\) −39.4365 −1.37634 −0.688172 0.725548i \(-0.741586\pi\)
−0.688172 + 0.725548i \(0.741586\pi\)
\(822\) −9.40127 −0.327907
\(823\) −29.9492 −1.04396 −0.521981 0.852957i \(-0.674807\pi\)
−0.521981 + 0.852957i \(0.674807\pi\)
\(824\) −9.40703 −0.327710
\(825\) −3.97470 −0.138381
\(826\) 0 0
\(827\) 41.9013 1.45705 0.728525 0.685019i \(-0.240206\pi\)
0.728525 + 0.685019i \(0.240206\pi\)
\(828\) −10.1896 −0.354112
\(829\) −33.4094 −1.16036 −0.580178 0.814490i \(-0.697017\pi\)
−0.580178 + 0.814490i \(0.697017\pi\)
\(830\) 10.0600 0.349189
\(831\) −25.9942 −0.901730
\(832\) −4.16153 −0.144275
\(833\) 0 0
\(834\) −17.0833 −0.591547
\(835\) −3.86319 −0.133691
\(836\) −6.55831 −0.226824
\(837\) −51.6528 −1.78538
\(838\) −37.4041 −1.29210
\(839\) 13.4764 0.465255 0.232628 0.972566i \(-0.425268\pi\)
0.232628 + 0.972566i \(0.425268\pi\)
\(840\) 0 0
\(841\) −22.5716 −0.778330
\(842\) 17.3809 0.598984
\(843\) −8.73039 −0.300690
\(844\) 26.1407 0.899802
\(845\) 4.31834 0.148556
\(846\) −10.5898 −0.364084
\(847\) 0 0
\(848\) −0.109403 −0.00375692
\(849\) 12.3765 0.424760
\(850\) 1.00000 0.0342997
\(851\) −0.900382 −0.0308647
\(852\) 2.01818 0.0691418
\(853\) 20.4939 0.701698 0.350849 0.936432i \(-0.385893\pi\)
0.350849 + 0.936432i \(0.385893\pi\)
\(854\) 0 0
\(855\) −2.61397 −0.0893959
\(856\) 17.8174 0.608987
\(857\) 11.4675 0.391722 0.195861 0.980632i \(-0.437250\pi\)
0.195861 + 0.980632i \(0.437250\pi\)
\(858\) 16.5408 0.564695
\(859\) −39.9145 −1.36187 −0.680933 0.732346i \(-0.738426\pi\)
−0.680933 + 0.732346i \(0.738426\pi\)
\(860\) 0.552929 0.0188547
\(861\) 0 0
\(862\) −16.4023 −0.558664
\(863\) 9.03946 0.307707 0.153853 0.988094i \(-0.450832\pi\)
0.153853 + 0.988094i \(0.450832\pi\)
\(864\) −5.64077 −0.191903
\(865\) −16.8732 −0.573707
\(866\) −22.7926 −0.774525
\(867\) 1.35219 0.0459227
\(868\) 0 0
\(869\) 19.6863 0.667811
\(870\) 3.42838 0.116233
\(871\) −13.1767 −0.446477
\(872\) 6.96113 0.235734
\(873\) 0.836950 0.0283265
\(874\) 19.4046 0.656369
\(875\) 0 0
\(876\) −8.37275 −0.282889
\(877\) 16.5623 0.559269 0.279634 0.960107i \(-0.409787\pi\)
0.279634 + 0.960107i \(0.409787\pi\)
\(878\) −21.0246 −0.709546
\(879\) 5.64833 0.190513
\(880\) −2.93946 −0.0990891
\(881\) 23.7542 0.800298 0.400149 0.916450i \(-0.368958\pi\)
0.400149 + 0.916450i \(0.368958\pi\)
\(882\) 0 0
\(883\) −35.2191 −1.18522 −0.592609 0.805490i \(-0.701902\pi\)
−0.592609 + 0.805490i \(0.701902\pi\)
\(884\) −4.16153 −0.139967
\(885\) 11.3816 0.382589
\(886\) −36.5497 −1.22791
\(887\) 38.4622 1.29143 0.645717 0.763576i \(-0.276558\pi\)
0.645717 + 0.763576i \(0.276558\pi\)
\(888\) −0.139986 −0.00469762
\(889\) 0 0
\(890\) 1.79218 0.0600741
\(891\) 12.0888 0.404991
\(892\) −16.9592 −0.567834
\(893\) 20.1667 0.674854
\(894\) 5.97457 0.199820
\(895\) −1.41488 −0.0472944
\(896\) 0 0
\(897\) −48.9406 −1.63408
\(898\) 33.2693 1.11021
\(899\) 23.2171 0.774332
\(900\) −1.17159 −0.0390530
\(901\) −0.109403 −0.00364474
\(902\) −14.6705 −0.488474
\(903\) 0 0
\(904\) 7.97609 0.265281
\(905\) 1.68884 0.0561389
\(906\) 8.88160 0.295072
\(907\) −28.3655 −0.941861 −0.470930 0.882170i \(-0.656082\pi\)
−0.470930 + 0.882170i \(0.656082\pi\)
\(908\) −18.8819 −0.626619
\(909\) 3.94120 0.130721
\(910\) 0 0
\(911\) 12.4552 0.412659 0.206329 0.978483i \(-0.433848\pi\)
0.206329 + 0.978483i \(0.433848\pi\)
\(912\) 3.01690 0.0998996
\(913\) −29.5710 −0.978659
\(914\) 27.2381 0.900957
\(915\) −9.22669 −0.305025
\(916\) −4.67822 −0.154573
\(917\) 0 0
\(918\) −5.64077 −0.186173
\(919\) 3.91129 0.129022 0.0645108 0.997917i \(-0.479451\pi\)
0.0645108 + 0.997917i \(0.479451\pi\)
\(920\) 8.69719 0.286738
\(921\) 42.4286 1.39807
\(922\) 21.6542 0.713142
\(923\) −6.21122 −0.204445
\(924\) 0 0
\(925\) −0.103526 −0.00340390
\(926\) −32.2708 −1.06048
\(927\) 11.0212 0.361984
\(928\) 2.53543 0.0832297
\(929\) −55.0856 −1.80730 −0.903650 0.428272i \(-0.859123\pi\)
−0.903650 + 0.428272i \(0.859123\pi\)
\(930\) 12.3820 0.406023
\(931\) 0 0
\(932\) 17.8669 0.585250
\(933\) 0.757045 0.0247845
\(934\) 26.4552 0.865642
\(935\) −2.93946 −0.0961306
\(936\) 4.87561 0.159364
\(937\) 7.00856 0.228960 0.114480 0.993426i \(-0.463480\pi\)
0.114480 + 0.993426i \(0.463480\pi\)
\(938\) 0 0
\(939\) 1.11537 0.0363988
\(940\) 9.03880 0.294813
\(941\) −37.4110 −1.21957 −0.609783 0.792569i \(-0.708743\pi\)
−0.609783 + 0.792569i \(0.708743\pi\)
\(942\) −8.10983 −0.264233
\(943\) 43.4067 1.41352
\(944\) 8.41721 0.273957
\(945\) 0 0
\(946\) −1.62531 −0.0528435
\(947\) −7.49182 −0.243452 −0.121726 0.992564i \(-0.538843\pi\)
−0.121726 + 0.992564i \(0.538843\pi\)
\(948\) −9.05592 −0.294122
\(949\) 25.7682 0.836472
\(950\) 2.23113 0.0723874
\(951\) −12.3523 −0.400552
\(952\) 0 0
\(953\) 4.19859 0.136006 0.0680028 0.997685i \(-0.478337\pi\)
0.0680028 + 0.997685i \(0.478337\pi\)
\(954\) 0.128176 0.00414984
\(955\) −0.907269 −0.0293585
\(956\) 0.864416 0.0279572
\(957\) −10.0776 −0.325762
\(958\) 4.15252 0.134162
\(959\) 0 0
\(960\) 1.35219 0.0436416
\(961\) 52.8514 1.70488
\(962\) 0.430825 0.0138904
\(963\) −20.8747 −0.672679
\(964\) 4.74645 0.152873
\(965\) 21.3866 0.688460
\(966\) 0 0
\(967\) −28.3977 −0.913208 −0.456604 0.889670i \(-0.650934\pi\)
−0.456604 + 0.889670i \(0.650934\pi\)
\(968\) −2.35958 −0.0758398
\(969\) 3.01690 0.0969169
\(970\) −0.714370 −0.0229370
\(971\) 25.1233 0.806245 0.403123 0.915146i \(-0.367925\pi\)
0.403123 + 0.915146i \(0.367925\pi\)
\(972\) 11.3613 0.364414
\(973\) 0 0
\(974\) 30.4531 0.975779
\(975\) −5.62717 −0.180214
\(976\) −6.82353 −0.218416
\(977\) −28.8029 −0.921485 −0.460743 0.887534i \(-0.652417\pi\)
−0.460743 + 0.887534i \(0.652417\pi\)
\(978\) −0.114980 −0.00367664
\(979\) −5.26805 −0.168368
\(980\) 0 0
\(981\) −8.15560 −0.260388
\(982\) −22.0284 −0.702955
\(983\) 47.1719 1.50455 0.752275 0.658850i \(-0.228957\pi\)
0.752275 + 0.658850i \(0.228957\pi\)
\(984\) 6.74860 0.215138
\(985\) 21.0895 0.671967
\(986\) 2.53543 0.0807446
\(987\) 0 0
\(988\) −9.28491 −0.295392
\(989\) 4.80893 0.152915
\(990\) 3.44385 0.109453
\(991\) 8.38756 0.266440 0.133220 0.991087i \(-0.457468\pi\)
0.133220 + 0.991087i \(0.457468\pi\)
\(992\) 9.15704 0.290736
\(993\) −12.8207 −0.406852
\(994\) 0 0
\(995\) 14.1982 0.450113
\(996\) 13.6030 0.431029
\(997\) 20.6155 0.652901 0.326450 0.945214i \(-0.394147\pi\)
0.326450 + 0.945214i \(0.394147\pi\)
\(998\) 2.45247 0.0776317
\(999\) 0.583964 0.0184758
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8330.2.a.cw.1.7 yes 10
7.6 odd 2 8330.2.a.cv.1.4 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
8330.2.a.cv.1.4 10 7.6 odd 2
8330.2.a.cw.1.7 yes 10 1.1 even 1 trivial