Properties

Label 2-8330-1.1-c1-0-94
Degree $2$
Conductor $8330$
Sign $1$
Analytic cond. $66.5153$
Root an. cond. $8.15569$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 1.35·3-s + 4-s + 5-s + 1.35·6-s + 8-s − 1.17·9-s + 10-s − 2.93·11-s + 1.35·12-s − 4.16·13-s + 1.35·15-s + 16-s + 17-s − 1.17·18-s + 2.23·19-s + 20-s − 2.93·22-s + 8.69·23-s + 1.35·24-s + 25-s − 4.16·26-s − 5.64·27-s + 2.53·29-s + 1.35·30-s + 9.15·31-s + 32-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.780·3-s + 0.5·4-s + 0.447·5-s + 0.552·6-s + 0.353·8-s − 0.390·9-s + 0.316·10-s − 0.886·11-s + 0.390·12-s − 1.15·13-s + 0.349·15-s + 0.250·16-s + 0.242·17-s − 0.276·18-s + 0.511·19-s + 0.223·20-s − 0.626·22-s + 1.81·23-s + 0.276·24-s + 0.200·25-s − 0.816·26-s − 1.08·27-s + 0.470·29-s + 0.246·30-s + 1.64·31-s + 0.176·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8330 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8330 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8330\)    =    \(2 \cdot 5 \cdot 7^{2} \cdot 17\)
Sign: $1$
Analytic conductor: \(66.5153\)
Root analytic conductor: \(8.15569\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 8330,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.453448024\)
\(L(\frac12)\) \(\approx\) \(4.453448024\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
5 \( 1 - T \)
7 \( 1 \)
17 \( 1 - T \)
good3 \( 1 - 1.35T + 3T^{2} \)
11 \( 1 + 2.93T + 11T^{2} \)
13 \( 1 + 4.16T + 13T^{2} \)
19 \( 1 - 2.23T + 19T^{2} \)
23 \( 1 - 8.69T + 23T^{2} \)
29 \( 1 - 2.53T + 29T^{2} \)
31 \( 1 - 9.15T + 31T^{2} \)
37 \( 1 + 0.103T + 37T^{2} \)
41 \( 1 - 4.99T + 41T^{2} \)
43 \( 1 - 0.552T + 43T^{2} \)
47 \( 1 - 9.03T + 47T^{2} \)
53 \( 1 + 0.109T + 53T^{2} \)
59 \( 1 - 8.41T + 59T^{2} \)
61 \( 1 + 6.82T + 61T^{2} \)
67 \( 1 - 3.16T + 67T^{2} \)
71 \( 1 - 1.49T + 71T^{2} \)
73 \( 1 + 6.19T + 73T^{2} \)
79 \( 1 + 6.69T + 79T^{2} \)
83 \( 1 - 10.0T + 83T^{2} \)
89 \( 1 - 1.79T + 89T^{2} \)
97 \( 1 + 0.714T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.63515867701301342734785854440, −7.24700214395111408527254574140, −6.35830366611625457003330114184, −5.54194137100907075063701996971, −5.04445655490874860681958500940, −4.36143146822685503476457322233, −3.19454366943067524474965617407, −2.76757199596249954664173452587, −2.23749587277030794224057642173, −0.884248002326481459928752447922, 0.884248002326481459928752447922, 2.23749587277030794224057642173, 2.76757199596249954664173452587, 3.19454366943067524474965617407, 4.36143146822685503476457322233, 5.04445655490874860681958500940, 5.54194137100907075063701996971, 6.35830366611625457003330114184, 7.24700214395111408527254574140, 7.63515867701301342734785854440

Graph of the $Z$-function along the critical line