Properties

Label 8330.2.a.cv.1.6
Level $8330$
Weight $2$
Character 8330.1
Self dual yes
Analytic conductor $66.515$
Analytic rank $0$
Dimension $10$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8330,2,Mod(1,8330)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8330, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8330.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 8330 = 2 \cdot 5 \cdot 7^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8330.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [10,10,-2,10,-10,-2,0,10,12,-10,-2,-2,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(66.5153848837\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - 2x^{9} - 19x^{8} + 38x^{7} + 100x^{6} - 194x^{5} - 151x^{4} + 282x^{3} + 85x^{2} - 108x - 28 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(-0.255150\) of defining polynomial
Character \(\chi\) \(=\) 8330.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +0.255150 q^{3} +1.00000 q^{4} -1.00000 q^{5} +0.255150 q^{6} +1.00000 q^{8} -2.93490 q^{9} -1.00000 q^{10} +2.61100 q^{11} +0.255150 q^{12} -5.03829 q^{13} -0.255150 q^{15} +1.00000 q^{16} -1.00000 q^{17} -2.93490 q^{18} +2.49174 q^{19} -1.00000 q^{20} +2.61100 q^{22} -0.0298196 q^{23} +0.255150 q^{24} +1.00000 q^{25} -5.03829 q^{26} -1.51429 q^{27} +4.55631 q^{29} -0.255150 q^{30} -3.07081 q^{31} +1.00000 q^{32} +0.666196 q^{33} -1.00000 q^{34} -2.93490 q^{36} +4.53407 q^{37} +2.49174 q^{38} -1.28552 q^{39} -1.00000 q^{40} -4.29860 q^{41} -5.09136 q^{43} +2.61100 q^{44} +2.93490 q^{45} -0.0298196 q^{46} +6.22417 q^{47} +0.255150 q^{48} +1.00000 q^{50} -0.255150 q^{51} -5.03829 q^{52} -1.36002 q^{53} -1.51429 q^{54} -2.61100 q^{55} +0.635767 q^{57} +4.55631 q^{58} +14.0184 q^{59} -0.255150 q^{60} +4.98656 q^{61} -3.07081 q^{62} +1.00000 q^{64} +5.03829 q^{65} +0.666196 q^{66} +7.02027 q^{67} -1.00000 q^{68} -0.00760847 q^{69} +14.2603 q^{71} -2.93490 q^{72} -12.1613 q^{73} +4.53407 q^{74} +0.255150 q^{75} +2.49174 q^{76} -1.28552 q^{78} +8.95066 q^{79} -1.00000 q^{80} +8.41833 q^{81} -4.29860 q^{82} +10.4460 q^{83} +1.00000 q^{85} -5.09136 q^{86} +1.16254 q^{87} +2.61100 q^{88} +1.30852 q^{89} +2.93490 q^{90} -0.0298196 q^{92} -0.783517 q^{93} +6.22417 q^{94} -2.49174 q^{95} +0.255150 q^{96} -3.38746 q^{97} -7.66302 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q + 10 q^{2} - 2 q^{3} + 10 q^{4} - 10 q^{5} - 2 q^{6} + 10 q^{8} + 12 q^{9} - 10 q^{10} - 2 q^{11} - 2 q^{12} - 4 q^{13} + 2 q^{15} + 10 q^{16} - 10 q^{17} + 12 q^{18} - 14 q^{19} - 10 q^{20} - 2 q^{22}+ \cdots - 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 0.255150 0.147311 0.0736554 0.997284i \(-0.476534\pi\)
0.0736554 + 0.997284i \(0.476534\pi\)
\(4\) 1.00000 0.500000
\(5\) −1.00000 −0.447214
\(6\) 0.255150 0.104164
\(7\) 0 0
\(8\) 1.00000 0.353553
\(9\) −2.93490 −0.978300
\(10\) −1.00000 −0.316228
\(11\) 2.61100 0.787246 0.393623 0.919272i \(-0.371222\pi\)
0.393623 + 0.919272i \(0.371222\pi\)
\(12\) 0.255150 0.0736554
\(13\) −5.03829 −1.39737 −0.698685 0.715429i \(-0.746231\pi\)
−0.698685 + 0.715429i \(0.746231\pi\)
\(14\) 0 0
\(15\) −0.255150 −0.0658794
\(16\) 1.00000 0.250000
\(17\) −1.00000 −0.242536
\(18\) −2.93490 −0.691762
\(19\) 2.49174 0.571644 0.285822 0.958283i \(-0.407733\pi\)
0.285822 + 0.958283i \(0.407733\pi\)
\(20\) −1.00000 −0.223607
\(21\) 0 0
\(22\) 2.61100 0.556667
\(23\) −0.0298196 −0.00621782 −0.00310891 0.999995i \(-0.500990\pi\)
−0.00310891 + 0.999995i \(0.500990\pi\)
\(24\) 0.255150 0.0520822
\(25\) 1.00000 0.200000
\(26\) −5.03829 −0.988090
\(27\) −1.51429 −0.291425
\(28\) 0 0
\(29\) 4.55631 0.846086 0.423043 0.906110i \(-0.360962\pi\)
0.423043 + 0.906110i \(0.360962\pi\)
\(30\) −0.255150 −0.0465837
\(31\) −3.07081 −0.551535 −0.275767 0.961224i \(-0.588932\pi\)
−0.275767 + 0.961224i \(0.588932\pi\)
\(32\) 1.00000 0.176777
\(33\) 0.666196 0.115970
\(34\) −1.00000 −0.171499
\(35\) 0 0
\(36\) −2.93490 −0.489150
\(37\) 4.53407 0.745397 0.372699 0.927952i \(-0.378433\pi\)
0.372699 + 0.927952i \(0.378433\pi\)
\(38\) 2.49174 0.404214
\(39\) −1.28552 −0.205848
\(40\) −1.00000 −0.158114
\(41\) −4.29860 −0.671328 −0.335664 0.941982i \(-0.608961\pi\)
−0.335664 + 0.941982i \(0.608961\pi\)
\(42\) 0 0
\(43\) −5.09136 −0.776425 −0.388212 0.921570i \(-0.626907\pi\)
−0.388212 + 0.921570i \(0.626907\pi\)
\(44\) 2.61100 0.393623
\(45\) 2.93490 0.437509
\(46\) −0.0298196 −0.00439666
\(47\) 6.22417 0.907888 0.453944 0.891030i \(-0.350017\pi\)
0.453944 + 0.891030i \(0.350017\pi\)
\(48\) 0.255150 0.0368277
\(49\) 0 0
\(50\) 1.00000 0.141421
\(51\) −0.255150 −0.0357281
\(52\) −5.03829 −0.698685
\(53\) −1.36002 −0.186814 −0.0934069 0.995628i \(-0.529776\pi\)
−0.0934069 + 0.995628i \(0.529776\pi\)
\(54\) −1.51429 −0.206068
\(55\) −2.61100 −0.352067
\(56\) 0 0
\(57\) 0.635767 0.0842094
\(58\) 4.55631 0.598273
\(59\) 14.0184 1.82504 0.912519 0.409034i \(-0.134134\pi\)
0.912519 + 0.409034i \(0.134134\pi\)
\(60\) −0.255150 −0.0329397
\(61\) 4.98656 0.638463 0.319232 0.947677i \(-0.396575\pi\)
0.319232 + 0.947677i \(0.396575\pi\)
\(62\) −3.07081 −0.389994
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 5.03829 0.624923
\(66\) 0.666196 0.0820030
\(67\) 7.02027 0.857662 0.428831 0.903385i \(-0.358925\pi\)
0.428831 + 0.903385i \(0.358925\pi\)
\(68\) −1.00000 −0.121268
\(69\) −0.00760847 −0.000915952 0
\(70\) 0 0
\(71\) 14.2603 1.69239 0.846193 0.532876i \(-0.178889\pi\)
0.846193 + 0.532876i \(0.178889\pi\)
\(72\) −2.93490 −0.345881
\(73\) −12.1613 −1.42337 −0.711685 0.702499i \(-0.752068\pi\)
−0.711685 + 0.702499i \(0.752068\pi\)
\(74\) 4.53407 0.527075
\(75\) 0.255150 0.0294621
\(76\) 2.49174 0.285822
\(77\) 0 0
\(78\) −1.28552 −0.145556
\(79\) 8.95066 1.00703 0.503514 0.863987i \(-0.332040\pi\)
0.503514 + 0.863987i \(0.332040\pi\)
\(80\) −1.00000 −0.111803
\(81\) 8.41833 0.935370
\(82\) −4.29860 −0.474701
\(83\) 10.4460 1.14660 0.573301 0.819345i \(-0.305663\pi\)
0.573301 + 0.819345i \(0.305663\pi\)
\(84\) 0 0
\(85\) 1.00000 0.108465
\(86\) −5.09136 −0.549015
\(87\) 1.16254 0.124638
\(88\) 2.61100 0.278333
\(89\) 1.30852 0.138703 0.0693516 0.997592i \(-0.477907\pi\)
0.0693516 + 0.997592i \(0.477907\pi\)
\(90\) 2.93490 0.309365
\(91\) 0 0
\(92\) −0.0298196 −0.00310891
\(93\) −0.783517 −0.0812470
\(94\) 6.22417 0.641974
\(95\) −2.49174 −0.255647
\(96\) 0.255150 0.0260411
\(97\) −3.38746 −0.343945 −0.171972 0.985102i \(-0.555014\pi\)
−0.171972 + 0.985102i \(0.555014\pi\)
\(98\) 0 0
\(99\) −7.66302 −0.770162
\(100\) 1.00000 0.100000
\(101\) −5.49366 −0.546640 −0.273320 0.961923i \(-0.588122\pi\)
−0.273320 + 0.961923i \(0.588122\pi\)
\(102\) −0.255150 −0.0252636
\(103\) 3.89469 0.383756 0.191878 0.981419i \(-0.438542\pi\)
0.191878 + 0.981419i \(0.438542\pi\)
\(104\) −5.03829 −0.494045
\(105\) 0 0
\(106\) −1.36002 −0.132097
\(107\) 0.837969 0.0810095 0.0405047 0.999179i \(-0.487103\pi\)
0.0405047 + 0.999179i \(0.487103\pi\)
\(108\) −1.51429 −0.145712
\(109\) −4.09311 −0.392049 −0.196024 0.980599i \(-0.562803\pi\)
−0.196024 + 0.980599i \(0.562803\pi\)
\(110\) −2.61100 −0.248949
\(111\) 1.15687 0.109805
\(112\) 0 0
\(113\) −6.45057 −0.606819 −0.303409 0.952860i \(-0.598125\pi\)
−0.303409 + 0.952860i \(0.598125\pi\)
\(114\) 0.635767 0.0595450
\(115\) 0.0298196 0.00278069
\(116\) 4.55631 0.423043
\(117\) 14.7869 1.36705
\(118\) 14.0184 1.29050
\(119\) 0 0
\(120\) −0.255150 −0.0232919
\(121\) −4.18268 −0.380244
\(122\) 4.98656 0.451462
\(123\) −1.09679 −0.0988938
\(124\) −3.07081 −0.275767
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) −2.90849 −0.258087 −0.129043 0.991639i \(-0.541191\pi\)
−0.129043 + 0.991639i \(0.541191\pi\)
\(128\) 1.00000 0.0883883
\(129\) −1.29906 −0.114376
\(130\) 5.03829 0.441887
\(131\) −3.25071 −0.284016 −0.142008 0.989866i \(-0.545356\pi\)
−0.142008 + 0.989866i \(0.545356\pi\)
\(132\) 0.666196 0.0579849
\(133\) 0 0
\(134\) 7.02027 0.606459
\(135\) 1.51429 0.130329
\(136\) −1.00000 −0.0857493
\(137\) 13.4621 1.15014 0.575071 0.818103i \(-0.304974\pi\)
0.575071 + 0.818103i \(0.304974\pi\)
\(138\) −0.00760847 −0.000647676 0
\(139\) 6.51919 0.552950 0.276475 0.961021i \(-0.410834\pi\)
0.276475 + 0.961021i \(0.410834\pi\)
\(140\) 0 0
\(141\) 1.58809 0.133742
\(142\) 14.2603 1.19670
\(143\) −13.1550 −1.10007
\(144\) −2.93490 −0.244575
\(145\) −4.55631 −0.378381
\(146\) −12.1613 −1.00647
\(147\) 0 0
\(148\) 4.53407 0.372699
\(149\) 15.3796 1.25995 0.629974 0.776617i \(-0.283066\pi\)
0.629974 + 0.776617i \(0.283066\pi\)
\(150\) 0.255150 0.0208329
\(151\) −4.35620 −0.354503 −0.177251 0.984166i \(-0.556721\pi\)
−0.177251 + 0.984166i \(0.556721\pi\)
\(152\) 2.49174 0.202107
\(153\) 2.93490 0.237272
\(154\) 0 0
\(155\) 3.07081 0.246654
\(156\) −1.28552 −0.102924
\(157\) −18.1056 −1.44499 −0.722493 0.691378i \(-0.757004\pi\)
−0.722493 + 0.691378i \(0.757004\pi\)
\(158\) 8.95066 0.712076
\(159\) −0.347010 −0.0275197
\(160\) −1.00000 −0.0790569
\(161\) 0 0
\(162\) 8.41833 0.661406
\(163\) 23.1691 1.81474 0.907371 0.420330i \(-0.138086\pi\)
0.907371 + 0.420330i \(0.138086\pi\)
\(164\) −4.29860 −0.335664
\(165\) −0.666196 −0.0518633
\(166\) 10.4460 0.810770
\(167\) 5.41532 0.419050 0.209525 0.977803i \(-0.432808\pi\)
0.209525 + 0.977803i \(0.432808\pi\)
\(168\) 0 0
\(169\) 12.3844 0.952645
\(170\) 1.00000 0.0766965
\(171\) −7.31300 −0.559239
\(172\) −5.09136 −0.388212
\(173\) 22.8281 1.73559 0.867796 0.496921i \(-0.165536\pi\)
0.867796 + 0.496921i \(0.165536\pi\)
\(174\) 1.16254 0.0881321
\(175\) 0 0
\(176\) 2.61100 0.196812
\(177\) 3.57679 0.268848
\(178\) 1.30852 0.0980779
\(179\) 12.6611 0.946335 0.473167 0.880973i \(-0.343111\pi\)
0.473167 + 0.880973i \(0.343111\pi\)
\(180\) 2.93490 0.218754
\(181\) −7.00446 −0.520637 −0.260319 0.965523i \(-0.583828\pi\)
−0.260319 + 0.965523i \(0.583828\pi\)
\(182\) 0 0
\(183\) 1.27232 0.0940525
\(184\) −0.0298196 −0.00219833
\(185\) −4.53407 −0.333352
\(186\) −0.783517 −0.0574503
\(187\) −2.61100 −0.190935
\(188\) 6.22417 0.453944
\(189\) 0 0
\(190\) −2.49174 −0.180770
\(191\) −1.13558 −0.0821673 −0.0410837 0.999156i \(-0.513081\pi\)
−0.0410837 + 0.999156i \(0.513081\pi\)
\(192\) 0.255150 0.0184138
\(193\) 14.0458 1.01104 0.505521 0.862815i \(-0.331300\pi\)
0.505521 + 0.862815i \(0.331300\pi\)
\(194\) −3.38746 −0.243206
\(195\) 1.28552 0.0920579
\(196\) 0 0
\(197\) 3.04235 0.216759 0.108379 0.994110i \(-0.465434\pi\)
0.108379 + 0.994110i \(0.465434\pi\)
\(198\) −7.66302 −0.544587
\(199\) 4.96862 0.352216 0.176108 0.984371i \(-0.443649\pi\)
0.176108 + 0.984371i \(0.443649\pi\)
\(200\) 1.00000 0.0707107
\(201\) 1.79122 0.126343
\(202\) −5.49366 −0.386533
\(203\) 0 0
\(204\) −0.255150 −0.0178641
\(205\) 4.29860 0.300227
\(206\) 3.89469 0.271356
\(207\) 0.0875176 0.00608289
\(208\) −5.03829 −0.349343
\(209\) 6.50593 0.450025
\(210\) 0 0
\(211\) 19.6536 1.35301 0.676503 0.736440i \(-0.263494\pi\)
0.676503 + 0.736440i \(0.263494\pi\)
\(212\) −1.36002 −0.0934069
\(213\) 3.63851 0.249307
\(214\) 0.837969 0.0572824
\(215\) 5.09136 0.347228
\(216\) −1.51429 −0.103034
\(217\) 0 0
\(218\) −4.09311 −0.277220
\(219\) −3.10295 −0.209678
\(220\) −2.61100 −0.176034
\(221\) 5.03829 0.338912
\(222\) 1.15687 0.0776439
\(223\) 6.06689 0.406269 0.203134 0.979151i \(-0.434887\pi\)
0.203134 + 0.979151i \(0.434887\pi\)
\(224\) 0 0
\(225\) −2.93490 −0.195660
\(226\) −6.45057 −0.429086
\(227\) −27.4406 −1.82130 −0.910648 0.413183i \(-0.864417\pi\)
−0.910648 + 0.413183i \(0.864417\pi\)
\(228\) 0.635767 0.0421047
\(229\) 15.8229 1.04560 0.522802 0.852454i \(-0.324887\pi\)
0.522802 + 0.852454i \(0.324887\pi\)
\(230\) 0.0298196 0.00196625
\(231\) 0 0
\(232\) 4.55631 0.299137
\(233\) −22.3421 −1.46368 −0.731840 0.681477i \(-0.761338\pi\)
−0.731840 + 0.681477i \(0.761338\pi\)
\(234\) 14.7869 0.966648
\(235\) −6.22417 −0.406020
\(236\) 14.0184 0.912519
\(237\) 2.28376 0.148346
\(238\) 0 0
\(239\) 17.6457 1.14141 0.570704 0.821156i \(-0.306670\pi\)
0.570704 + 0.821156i \(0.306670\pi\)
\(240\) −0.255150 −0.0164698
\(241\) −0.433723 −0.0279385 −0.0139693 0.999902i \(-0.504447\pi\)
−0.0139693 + 0.999902i \(0.504447\pi\)
\(242\) −4.18268 −0.268873
\(243\) 6.69080 0.429215
\(244\) 4.98656 0.319232
\(245\) 0 0
\(246\) −1.09679 −0.0699285
\(247\) −12.5541 −0.798799
\(248\) −3.07081 −0.194997
\(249\) 2.66530 0.168907
\(250\) −1.00000 −0.0632456
\(251\) 22.5819 1.42535 0.712677 0.701492i \(-0.247482\pi\)
0.712677 + 0.701492i \(0.247482\pi\)
\(252\) 0 0
\(253\) −0.0778590 −0.00489496
\(254\) −2.90849 −0.182495
\(255\) 0.255150 0.0159781
\(256\) 1.00000 0.0625000
\(257\) −22.2105 −1.38546 −0.692728 0.721199i \(-0.743591\pi\)
−0.692728 + 0.721199i \(0.743591\pi\)
\(258\) −1.29906 −0.0808759
\(259\) 0 0
\(260\) 5.03829 0.312462
\(261\) −13.3723 −0.827726
\(262\) −3.25071 −0.200829
\(263\) 3.22584 0.198914 0.0994568 0.995042i \(-0.468289\pi\)
0.0994568 + 0.995042i \(0.468289\pi\)
\(264\) 0.666196 0.0410015
\(265\) 1.36002 0.0835457
\(266\) 0 0
\(267\) 0.333869 0.0204325
\(268\) 7.02027 0.428831
\(269\) −12.1343 −0.739842 −0.369921 0.929063i \(-0.620615\pi\)
−0.369921 + 0.929063i \(0.620615\pi\)
\(270\) 1.51429 0.0921566
\(271\) −15.9209 −0.967123 −0.483562 0.875310i \(-0.660657\pi\)
−0.483562 + 0.875310i \(0.660657\pi\)
\(272\) −1.00000 −0.0606339
\(273\) 0 0
\(274\) 13.4621 0.813273
\(275\) 2.61100 0.157449
\(276\) −0.00760847 −0.000457976 0
\(277\) −23.1982 −1.39385 −0.696923 0.717146i \(-0.745448\pi\)
−0.696923 + 0.717146i \(0.745448\pi\)
\(278\) 6.51919 0.390995
\(279\) 9.01253 0.539566
\(280\) 0 0
\(281\) 26.0349 1.55311 0.776555 0.630049i \(-0.216965\pi\)
0.776555 + 0.630049i \(0.216965\pi\)
\(282\) 1.58809 0.0945696
\(283\) 15.9654 0.949044 0.474522 0.880244i \(-0.342621\pi\)
0.474522 + 0.880244i \(0.342621\pi\)
\(284\) 14.2603 0.846193
\(285\) −0.635767 −0.0376596
\(286\) −13.1550 −0.777870
\(287\) 0 0
\(288\) −2.93490 −0.172941
\(289\) 1.00000 0.0588235
\(290\) −4.55631 −0.267556
\(291\) −0.864310 −0.0506667
\(292\) −12.1613 −0.711685
\(293\) −11.6960 −0.683289 −0.341644 0.939829i \(-0.610984\pi\)
−0.341644 + 0.939829i \(0.610984\pi\)
\(294\) 0 0
\(295\) −14.0184 −0.816182
\(296\) 4.53407 0.263538
\(297\) −3.95380 −0.229423
\(298\) 15.3796 0.890917
\(299\) 0.150240 0.00868860
\(300\) 0.255150 0.0147311
\(301\) 0 0
\(302\) −4.35620 −0.250671
\(303\) −1.40171 −0.0805259
\(304\) 2.49174 0.142911
\(305\) −4.98656 −0.285529
\(306\) 2.93490 0.167777
\(307\) 21.1653 1.20797 0.603984 0.796997i \(-0.293579\pi\)
0.603984 + 0.796997i \(0.293579\pi\)
\(308\) 0 0
\(309\) 0.993730 0.0565313
\(310\) 3.07081 0.174411
\(311\) −13.8495 −0.785334 −0.392667 0.919681i \(-0.628448\pi\)
−0.392667 + 0.919681i \(0.628448\pi\)
\(312\) −1.28552 −0.0727782
\(313\) 17.7135 1.00123 0.500614 0.865671i \(-0.333108\pi\)
0.500614 + 0.865671i \(0.333108\pi\)
\(314\) −18.1056 −1.02176
\(315\) 0 0
\(316\) 8.95066 0.503514
\(317\) −2.41294 −0.135524 −0.0677620 0.997702i \(-0.521586\pi\)
−0.0677620 + 0.997702i \(0.521586\pi\)
\(318\) −0.347010 −0.0194594
\(319\) 11.8965 0.666078
\(320\) −1.00000 −0.0559017
\(321\) 0.213807 0.0119336
\(322\) 0 0
\(323\) −2.49174 −0.138644
\(324\) 8.41833 0.467685
\(325\) −5.03829 −0.279474
\(326\) 23.1691 1.28322
\(327\) −1.04436 −0.0577530
\(328\) −4.29860 −0.237350
\(329\) 0 0
\(330\) −0.666196 −0.0366729
\(331\) 3.55244 0.195260 0.0976298 0.995223i \(-0.468874\pi\)
0.0976298 + 0.995223i \(0.468874\pi\)
\(332\) 10.4460 0.573301
\(333\) −13.3070 −0.729222
\(334\) 5.41532 0.296313
\(335\) −7.02027 −0.383558
\(336\) 0 0
\(337\) 13.7356 0.748226 0.374113 0.927383i \(-0.377947\pi\)
0.374113 + 0.927383i \(0.377947\pi\)
\(338\) 12.3844 0.673622
\(339\) −1.64586 −0.0893909
\(340\) 1.00000 0.0542326
\(341\) −8.01790 −0.434193
\(342\) −7.31300 −0.395442
\(343\) 0 0
\(344\) −5.09136 −0.274508
\(345\) 0.00760847 0.000409626 0
\(346\) 22.8281 1.22725
\(347\) −22.2294 −1.19334 −0.596668 0.802489i \(-0.703509\pi\)
−0.596668 + 0.802489i \(0.703509\pi\)
\(348\) 1.16254 0.0623188
\(349\) 7.02066 0.375807 0.187904 0.982187i \(-0.439831\pi\)
0.187904 + 0.982187i \(0.439831\pi\)
\(350\) 0 0
\(351\) 7.62942 0.407228
\(352\) 2.61100 0.139167
\(353\) −11.3428 −0.603717 −0.301858 0.953353i \(-0.597607\pi\)
−0.301858 + 0.953353i \(0.597607\pi\)
\(354\) 3.57679 0.190104
\(355\) −14.2603 −0.756858
\(356\) 1.30852 0.0693516
\(357\) 0 0
\(358\) 12.6611 0.669160
\(359\) −11.9550 −0.630961 −0.315481 0.948932i \(-0.602166\pi\)
−0.315481 + 0.948932i \(0.602166\pi\)
\(360\) 2.93490 0.154683
\(361\) −12.7912 −0.673223
\(362\) −7.00446 −0.368146
\(363\) −1.06721 −0.0560140
\(364\) 0 0
\(365\) 12.1613 0.636551
\(366\) 1.27232 0.0665052
\(367\) 9.67804 0.505189 0.252595 0.967572i \(-0.418716\pi\)
0.252595 + 0.967572i \(0.418716\pi\)
\(368\) −0.0298196 −0.00155446
\(369\) 12.6159 0.656760
\(370\) −4.53407 −0.235715
\(371\) 0 0
\(372\) −0.783517 −0.0406235
\(373\) −0.0526126 −0.00272418 −0.00136209 0.999999i \(-0.500434\pi\)
−0.00136209 + 0.999999i \(0.500434\pi\)
\(374\) −2.61100 −0.135012
\(375\) −0.255150 −0.0131759
\(376\) 6.22417 0.320987
\(377\) −22.9560 −1.18230
\(378\) 0 0
\(379\) 23.1498 1.18912 0.594562 0.804050i \(-0.297325\pi\)
0.594562 + 0.804050i \(0.297325\pi\)
\(380\) −2.49174 −0.127824
\(381\) −0.742100 −0.0380190
\(382\) −1.13558 −0.0581011
\(383\) 26.3286 1.34533 0.672664 0.739948i \(-0.265150\pi\)
0.672664 + 0.739948i \(0.265150\pi\)
\(384\) 0.255150 0.0130206
\(385\) 0 0
\(386\) 14.0458 0.714914
\(387\) 14.9426 0.759576
\(388\) −3.38746 −0.171972
\(389\) 1.92283 0.0974913 0.0487456 0.998811i \(-0.484478\pi\)
0.0487456 + 0.998811i \(0.484478\pi\)
\(390\) 1.28552 0.0650948
\(391\) 0.0298196 0.00150804
\(392\) 0 0
\(393\) −0.829417 −0.0418386
\(394\) 3.04235 0.153271
\(395\) −8.95066 −0.450357
\(396\) −7.66302 −0.385081
\(397\) −12.2412 −0.614368 −0.307184 0.951650i \(-0.599387\pi\)
−0.307184 + 0.951650i \(0.599387\pi\)
\(398\) 4.96862 0.249055
\(399\) 0 0
\(400\) 1.00000 0.0500000
\(401\) −27.1504 −1.35583 −0.677913 0.735142i \(-0.737115\pi\)
−0.677913 + 0.735142i \(0.737115\pi\)
\(402\) 1.79122 0.0893379
\(403\) 15.4717 0.770698
\(404\) −5.49366 −0.273320
\(405\) −8.41833 −0.418310
\(406\) 0 0
\(407\) 11.8385 0.586811
\(408\) −0.255150 −0.0126318
\(409\) −18.5833 −0.918883 −0.459442 0.888208i \(-0.651950\pi\)
−0.459442 + 0.888208i \(0.651950\pi\)
\(410\) 4.29860 0.212293
\(411\) 3.43484 0.169428
\(412\) 3.89469 0.191878
\(413\) 0 0
\(414\) 0.0875176 0.00430125
\(415\) −10.4460 −0.512776
\(416\) −5.03829 −0.247023
\(417\) 1.66337 0.0814555
\(418\) 6.50593 0.318216
\(419\) −23.4607 −1.14613 −0.573064 0.819510i \(-0.694245\pi\)
−0.573064 + 0.819510i \(0.694245\pi\)
\(420\) 0 0
\(421\) −23.0393 −1.12287 −0.561434 0.827522i \(-0.689750\pi\)
−0.561434 + 0.827522i \(0.689750\pi\)
\(422\) 19.6536 0.956720
\(423\) −18.2673 −0.888186
\(424\) −1.36002 −0.0660486
\(425\) −1.00000 −0.0485071
\(426\) 3.63851 0.176286
\(427\) 0 0
\(428\) 0.837969 0.0405047
\(429\) −3.35649 −0.162053
\(430\) 5.09136 0.245527
\(431\) 35.1237 1.69185 0.845923 0.533305i \(-0.179050\pi\)
0.845923 + 0.533305i \(0.179050\pi\)
\(432\) −1.51429 −0.0728562
\(433\) −34.4070 −1.65349 −0.826747 0.562573i \(-0.809811\pi\)
−0.826747 + 0.562573i \(0.809811\pi\)
\(434\) 0 0
\(435\) −1.16254 −0.0557396
\(436\) −4.09311 −0.196024
\(437\) −0.0743028 −0.00355438
\(438\) −3.10295 −0.148265
\(439\) 23.4899 1.12111 0.560555 0.828117i \(-0.310588\pi\)
0.560555 + 0.828117i \(0.310588\pi\)
\(440\) −2.61100 −0.124475
\(441\) 0 0
\(442\) 5.03829 0.239647
\(443\) 19.3910 0.921296 0.460648 0.887583i \(-0.347617\pi\)
0.460648 + 0.887583i \(0.347617\pi\)
\(444\) 1.15687 0.0549025
\(445\) −1.30852 −0.0620299
\(446\) 6.06689 0.287275
\(447\) 3.92410 0.185604
\(448\) 0 0
\(449\) −27.8525 −1.31444 −0.657220 0.753699i \(-0.728268\pi\)
−0.657220 + 0.753699i \(0.728268\pi\)
\(450\) −2.93490 −0.138352
\(451\) −11.2236 −0.528500
\(452\) −6.45057 −0.303409
\(453\) −1.11148 −0.0522221
\(454\) −27.4406 −1.28785
\(455\) 0 0
\(456\) 0.635767 0.0297725
\(457\) 23.0108 1.07640 0.538201 0.842817i \(-0.319104\pi\)
0.538201 + 0.842817i \(0.319104\pi\)
\(458\) 15.8229 0.739354
\(459\) 1.51429 0.0706809
\(460\) 0.0298196 0.00139035
\(461\) −17.3140 −0.806392 −0.403196 0.915114i \(-0.632101\pi\)
−0.403196 + 0.915114i \(0.632101\pi\)
\(462\) 0 0
\(463\) 4.45573 0.207075 0.103538 0.994626i \(-0.466984\pi\)
0.103538 + 0.994626i \(0.466984\pi\)
\(464\) 4.55631 0.211522
\(465\) 0.783517 0.0363347
\(466\) −22.3421 −1.03498
\(467\) 36.6836 1.69752 0.848758 0.528781i \(-0.177351\pi\)
0.848758 + 0.528781i \(0.177351\pi\)
\(468\) 14.7869 0.683524
\(469\) 0 0
\(470\) −6.22417 −0.287099
\(471\) −4.61965 −0.212862
\(472\) 14.0184 0.645248
\(473\) −13.2935 −0.611237
\(474\) 2.28376 0.104896
\(475\) 2.49174 0.114329
\(476\) 0 0
\(477\) 3.99154 0.182760
\(478\) 17.6457 0.807098
\(479\) 23.0934 1.05517 0.527583 0.849503i \(-0.323098\pi\)
0.527583 + 0.849503i \(0.323098\pi\)
\(480\) −0.255150 −0.0116459
\(481\) −22.8440 −1.04160
\(482\) −0.433723 −0.0197555
\(483\) 0 0
\(484\) −4.18268 −0.190122
\(485\) 3.38746 0.153817
\(486\) 6.69080 0.303501
\(487\) −13.5720 −0.615008 −0.307504 0.951547i \(-0.599494\pi\)
−0.307504 + 0.951547i \(0.599494\pi\)
\(488\) 4.98656 0.225731
\(489\) 5.91159 0.267331
\(490\) 0 0
\(491\) 3.49095 0.157544 0.0787722 0.996893i \(-0.474900\pi\)
0.0787722 + 0.996893i \(0.474900\pi\)
\(492\) −1.09679 −0.0494469
\(493\) −4.55631 −0.205206
\(494\) −12.5541 −0.564836
\(495\) 7.66302 0.344427
\(496\) −3.07081 −0.137884
\(497\) 0 0
\(498\) 2.66530 0.119435
\(499\) 15.3178 0.685720 0.342860 0.939387i \(-0.388604\pi\)
0.342860 + 0.939387i \(0.388604\pi\)
\(500\) −1.00000 −0.0447214
\(501\) 1.38172 0.0617306
\(502\) 22.5819 1.00788
\(503\) −0.341558 −0.0152293 −0.00761466 0.999971i \(-0.502424\pi\)
−0.00761466 + 0.999971i \(0.502424\pi\)
\(504\) 0 0
\(505\) 5.49366 0.244465
\(506\) −0.0778590 −0.00346126
\(507\) 3.15987 0.140335
\(508\) −2.90849 −0.129043
\(509\) 44.6417 1.97871 0.989355 0.145523i \(-0.0464865\pi\)
0.989355 + 0.145523i \(0.0464865\pi\)
\(510\) 0.255150 0.0112982
\(511\) 0 0
\(512\) 1.00000 0.0441942
\(513\) −3.77321 −0.166591
\(514\) −22.2105 −0.979665
\(515\) −3.89469 −0.171621
\(516\) −1.29906 −0.0571879
\(517\) 16.2513 0.714731
\(518\) 0 0
\(519\) 5.82459 0.255671
\(520\) 5.03829 0.220944
\(521\) 8.97648 0.393267 0.196633 0.980477i \(-0.436999\pi\)
0.196633 + 0.980477i \(0.436999\pi\)
\(522\) −13.3723 −0.585291
\(523\) −22.6832 −0.991867 −0.495933 0.868361i \(-0.665174\pi\)
−0.495933 + 0.868361i \(0.665174\pi\)
\(524\) −3.25071 −0.142008
\(525\) 0 0
\(526\) 3.22584 0.140653
\(527\) 3.07081 0.133767
\(528\) 0.666196 0.0289924
\(529\) −22.9991 −0.999961
\(530\) 1.36002 0.0590757
\(531\) −41.1425 −1.78543
\(532\) 0 0
\(533\) 21.6576 0.938094
\(534\) 0.333869 0.0144479
\(535\) −0.837969 −0.0362285
\(536\) 7.02027 0.303229
\(537\) 3.23048 0.139405
\(538\) −12.1343 −0.523147
\(539\) 0 0
\(540\) 1.51429 0.0651646
\(541\) 8.33431 0.358320 0.179160 0.983820i \(-0.442662\pi\)
0.179160 + 0.983820i \(0.442662\pi\)
\(542\) −15.9209 −0.683859
\(543\) −1.78719 −0.0766955
\(544\) −1.00000 −0.0428746
\(545\) 4.09311 0.175330
\(546\) 0 0
\(547\) −9.74685 −0.416745 −0.208373 0.978050i \(-0.566817\pi\)
−0.208373 + 0.978050i \(0.566817\pi\)
\(548\) 13.4621 0.575071
\(549\) −14.6350 −0.624608
\(550\) 2.61100 0.111333
\(551\) 11.3532 0.483661
\(552\) −0.00760847 −0.000323838 0
\(553\) 0 0
\(554\) −23.1982 −0.985599
\(555\) −1.15687 −0.0491063
\(556\) 6.51919 0.276475
\(557\) −17.4083 −0.737613 −0.368806 0.929506i \(-0.620233\pi\)
−0.368806 + 0.929506i \(0.620233\pi\)
\(558\) 9.01253 0.381531
\(559\) 25.6518 1.08495
\(560\) 0 0
\(561\) −0.666196 −0.0281268
\(562\) 26.0349 1.09822
\(563\) −2.27680 −0.0959558 −0.0479779 0.998848i \(-0.515278\pi\)
−0.0479779 + 0.998848i \(0.515278\pi\)
\(564\) 1.58809 0.0668708
\(565\) 6.45057 0.271378
\(566\) 15.9654 0.671075
\(567\) 0 0
\(568\) 14.2603 0.598349
\(569\) 4.36046 0.182800 0.0914000 0.995814i \(-0.470866\pi\)
0.0914000 + 0.995814i \(0.470866\pi\)
\(570\) −0.635767 −0.0266293
\(571\) 9.59804 0.401665 0.200833 0.979626i \(-0.435635\pi\)
0.200833 + 0.979626i \(0.435635\pi\)
\(572\) −13.1550 −0.550037
\(573\) −0.289742 −0.0121041
\(574\) 0 0
\(575\) −0.0298196 −0.00124356
\(576\) −2.93490 −0.122287
\(577\) −21.0165 −0.874928 −0.437464 0.899236i \(-0.644123\pi\)
−0.437464 + 0.899236i \(0.644123\pi\)
\(578\) 1.00000 0.0415945
\(579\) 3.58379 0.148937
\(580\) −4.55631 −0.189191
\(581\) 0 0
\(582\) −0.864310 −0.0358268
\(583\) −3.55102 −0.147068
\(584\) −12.1613 −0.503237
\(585\) −14.7869 −0.611362
\(586\) −11.6960 −0.483158
\(587\) −5.60652 −0.231406 −0.115703 0.993284i \(-0.536912\pi\)
−0.115703 + 0.993284i \(0.536912\pi\)
\(588\) 0 0
\(589\) −7.65167 −0.315282
\(590\) −14.0184 −0.577128
\(591\) 0.776255 0.0319309
\(592\) 4.53407 0.186349
\(593\) 6.93820 0.284918 0.142459 0.989801i \(-0.454499\pi\)
0.142459 + 0.989801i \(0.454499\pi\)
\(594\) −3.95380 −0.162227
\(595\) 0 0
\(596\) 15.3796 0.629974
\(597\) 1.26774 0.0518853
\(598\) 0.150240 0.00614377
\(599\) −14.3357 −0.585741 −0.292870 0.956152i \(-0.594610\pi\)
−0.292870 + 0.956152i \(0.594610\pi\)
\(600\) 0.255150 0.0104164
\(601\) −8.43423 −0.344039 −0.172020 0.985094i \(-0.555029\pi\)
−0.172020 + 0.985094i \(0.555029\pi\)
\(602\) 0 0
\(603\) −20.6038 −0.839051
\(604\) −4.35620 −0.177251
\(605\) 4.18268 0.170050
\(606\) −1.40171 −0.0569404
\(607\) 4.02725 0.163461 0.0817305 0.996654i \(-0.473955\pi\)
0.0817305 + 0.996654i \(0.473955\pi\)
\(608\) 2.49174 0.101053
\(609\) 0 0
\(610\) −4.98656 −0.201900
\(611\) −31.3592 −1.26866
\(612\) 2.93490 0.118636
\(613\) 31.3785 1.26737 0.633683 0.773593i \(-0.281542\pi\)
0.633683 + 0.773593i \(0.281542\pi\)
\(614\) 21.1653 0.854162
\(615\) 1.09679 0.0442267
\(616\) 0 0
\(617\) 22.6139 0.910400 0.455200 0.890389i \(-0.349568\pi\)
0.455200 + 0.890389i \(0.349568\pi\)
\(618\) 0.993730 0.0399737
\(619\) 6.75938 0.271683 0.135841 0.990731i \(-0.456626\pi\)
0.135841 + 0.990731i \(0.456626\pi\)
\(620\) 3.07081 0.123327
\(621\) 0.0451555 0.00181203
\(622\) −13.8495 −0.555315
\(623\) 0 0
\(624\) −1.28552 −0.0514619
\(625\) 1.00000 0.0400000
\(626\) 17.7135 0.707975
\(627\) 1.65999 0.0662935
\(628\) −18.1056 −0.722493
\(629\) −4.53407 −0.180785
\(630\) 0 0
\(631\) −3.71386 −0.147846 −0.0739232 0.997264i \(-0.523552\pi\)
−0.0739232 + 0.997264i \(0.523552\pi\)
\(632\) 8.95066 0.356038
\(633\) 5.01460 0.199312
\(634\) −2.41294 −0.0958299
\(635\) 2.90849 0.115420
\(636\) −0.347010 −0.0137598
\(637\) 0 0
\(638\) 11.8965 0.470988
\(639\) −41.8525 −1.65566
\(640\) −1.00000 −0.0395285
\(641\) −47.7676 −1.88671 −0.943354 0.331788i \(-0.892348\pi\)
−0.943354 + 0.331788i \(0.892348\pi\)
\(642\) 0.213807 0.00843831
\(643\) 6.41576 0.253013 0.126506 0.991966i \(-0.459624\pi\)
0.126506 + 0.991966i \(0.459624\pi\)
\(644\) 0 0
\(645\) 1.29906 0.0511504
\(646\) −2.49174 −0.0980362
\(647\) 0.775811 0.0305003 0.0152501 0.999884i \(-0.495146\pi\)
0.0152501 + 0.999884i \(0.495146\pi\)
\(648\) 8.41833 0.330703
\(649\) 36.6020 1.43675
\(650\) −5.03829 −0.197618
\(651\) 0 0
\(652\) 23.1691 0.907371
\(653\) 1.32965 0.0520333 0.0260167 0.999662i \(-0.491718\pi\)
0.0260167 + 0.999662i \(0.491718\pi\)
\(654\) −1.04436 −0.0408375
\(655\) 3.25071 0.127016
\(656\) −4.29860 −0.167832
\(657\) 35.6921 1.39248
\(658\) 0 0
\(659\) −42.4940 −1.65533 −0.827665 0.561223i \(-0.810331\pi\)
−0.827665 + 0.561223i \(0.810331\pi\)
\(660\) −0.666196 −0.0259316
\(661\) −18.1985 −0.707841 −0.353921 0.935275i \(-0.615152\pi\)
−0.353921 + 0.935275i \(0.615152\pi\)
\(662\) 3.55244 0.138069
\(663\) 1.28552 0.0499254
\(664\) 10.4460 0.405385
\(665\) 0 0
\(666\) −13.3070 −0.515638
\(667\) −0.135868 −0.00526081
\(668\) 5.41532 0.209525
\(669\) 1.54796 0.0598478
\(670\) −7.02027 −0.271217
\(671\) 13.0199 0.502628
\(672\) 0 0
\(673\) −9.60707 −0.370326 −0.185163 0.982708i \(-0.559281\pi\)
−0.185163 + 0.982708i \(0.559281\pi\)
\(674\) 13.7356 0.529075
\(675\) −1.51429 −0.0582850
\(676\) 12.3844 0.476323
\(677\) 29.8431 1.14696 0.573482 0.819218i \(-0.305592\pi\)
0.573482 + 0.819218i \(0.305592\pi\)
\(678\) −1.64586 −0.0632089
\(679\) 0 0
\(680\) 1.00000 0.0383482
\(681\) −7.00146 −0.268296
\(682\) −8.01790 −0.307021
\(683\) 19.5821 0.749287 0.374643 0.927169i \(-0.377765\pi\)
0.374643 + 0.927169i \(0.377765\pi\)
\(684\) −7.31300 −0.279620
\(685\) −13.4621 −0.514359
\(686\) 0 0
\(687\) 4.03720 0.154029
\(688\) −5.09136 −0.194106
\(689\) 6.85220 0.261048
\(690\) 0.00760847 0.000289649 0
\(691\) 40.8367 1.55350 0.776751 0.629808i \(-0.216867\pi\)
0.776751 + 0.629808i \(0.216867\pi\)
\(692\) 22.8281 0.867796
\(693\) 0 0
\(694\) −22.2294 −0.843815
\(695\) −6.51919 −0.247287
\(696\) 1.16254 0.0440660
\(697\) 4.29860 0.162821
\(698\) 7.02066 0.265736
\(699\) −5.70058 −0.215616
\(700\) 0 0
\(701\) 40.8861 1.54425 0.772123 0.635474i \(-0.219195\pi\)
0.772123 + 0.635474i \(0.219195\pi\)
\(702\) 7.62942 0.287954
\(703\) 11.2977 0.426102
\(704\) 2.61100 0.0984058
\(705\) −1.58809 −0.0598111
\(706\) −11.3428 −0.426892
\(707\) 0 0
\(708\) 3.57679 0.134424
\(709\) −36.9535 −1.38782 −0.693909 0.720062i \(-0.744113\pi\)
−0.693909 + 0.720062i \(0.744113\pi\)
\(710\) −14.2603 −0.535180
\(711\) −26.2693 −0.985175
\(712\) 1.30852 0.0490390
\(713\) 0.0915706 0.00342934
\(714\) 0 0
\(715\) 13.1550 0.491968
\(716\) 12.6611 0.473167
\(717\) 4.50231 0.168142
\(718\) −11.9550 −0.446157
\(719\) −3.05855 −0.114065 −0.0570323 0.998372i \(-0.518164\pi\)
−0.0570323 + 0.998372i \(0.518164\pi\)
\(720\) 2.93490 0.109377
\(721\) 0 0
\(722\) −12.7912 −0.476040
\(723\) −0.110664 −0.00411565
\(724\) −7.00446 −0.260319
\(725\) 4.55631 0.169217
\(726\) −1.06721 −0.0396079
\(727\) 26.7938 0.993726 0.496863 0.867829i \(-0.334485\pi\)
0.496863 + 0.867829i \(0.334485\pi\)
\(728\) 0 0
\(729\) −23.5478 −0.872142
\(730\) 12.1613 0.450109
\(731\) 5.09136 0.188311
\(732\) 1.27232 0.0470263
\(733\) 3.22977 0.119294 0.0596472 0.998220i \(-0.481002\pi\)
0.0596472 + 0.998220i \(0.481002\pi\)
\(734\) 9.67804 0.357223
\(735\) 0 0
\(736\) −0.0298196 −0.00109917
\(737\) 18.3299 0.675191
\(738\) 12.6159 0.464399
\(739\) 1.80826 0.0665179 0.0332589 0.999447i \(-0.489411\pi\)
0.0332589 + 0.999447i \(0.489411\pi\)
\(740\) −4.53407 −0.166676
\(741\) −3.20318 −0.117672
\(742\) 0 0
\(743\) 6.11728 0.224421 0.112211 0.993684i \(-0.464207\pi\)
0.112211 + 0.993684i \(0.464207\pi\)
\(744\) −0.783517 −0.0287251
\(745\) −15.3796 −0.563465
\(746\) −0.0526126 −0.00192628
\(747\) −30.6581 −1.12172
\(748\) −2.61100 −0.0954676
\(749\) 0 0
\(750\) −0.255150 −0.00931675
\(751\) −4.82306 −0.175996 −0.0879980 0.996121i \(-0.528047\pi\)
−0.0879980 + 0.996121i \(0.528047\pi\)
\(752\) 6.22417 0.226972
\(753\) 5.76175 0.209970
\(754\) −22.9560 −0.836010
\(755\) 4.35620 0.158538
\(756\) 0 0
\(757\) −46.9328 −1.70580 −0.852901 0.522073i \(-0.825159\pi\)
−0.852901 + 0.522073i \(0.825159\pi\)
\(758\) 23.1498 0.840838
\(759\) −0.0198657 −0.000721080 0
\(760\) −2.49174 −0.0903849
\(761\) 42.4852 1.54009 0.770044 0.637991i \(-0.220234\pi\)
0.770044 + 0.637991i \(0.220234\pi\)
\(762\) −0.742100 −0.0268835
\(763\) 0 0
\(764\) −1.13558 −0.0410837
\(765\) −2.93490 −0.106111
\(766\) 26.3286 0.951291
\(767\) −70.6287 −2.55025
\(768\) 0.255150 0.00920692
\(769\) 9.86913 0.355890 0.177945 0.984040i \(-0.443055\pi\)
0.177945 + 0.984040i \(0.443055\pi\)
\(770\) 0 0
\(771\) −5.66701 −0.204093
\(772\) 14.0458 0.505521
\(773\) −49.7517 −1.78944 −0.894722 0.446623i \(-0.852627\pi\)
−0.894722 + 0.446623i \(0.852627\pi\)
\(774\) 14.9426 0.537101
\(775\) −3.07081 −0.110307
\(776\) −3.38746 −0.121603
\(777\) 0 0
\(778\) 1.92283 0.0689367
\(779\) −10.7110 −0.383761
\(780\) 1.28552 0.0460290
\(781\) 37.2336 1.33232
\(782\) 0.0298196 0.00106635
\(783\) −6.89957 −0.246571
\(784\) 0 0
\(785\) 18.1056 0.646218
\(786\) −0.829417 −0.0295843
\(787\) −5.73451 −0.204413 −0.102207 0.994763i \(-0.532590\pi\)
−0.102207 + 0.994763i \(0.532590\pi\)
\(788\) 3.04235 0.108379
\(789\) 0.823071 0.0293021
\(790\) −8.95066 −0.318450
\(791\) 0 0
\(792\) −7.66302 −0.272294
\(793\) −25.1237 −0.892170
\(794\) −12.2412 −0.434424
\(795\) 0.347010 0.0123072
\(796\) 4.96862 0.176108
\(797\) −5.07569 −0.179790 −0.0898951 0.995951i \(-0.528653\pi\)
−0.0898951 + 0.995951i \(0.528653\pi\)
\(798\) 0 0
\(799\) −6.22417 −0.220195
\(800\) 1.00000 0.0353553
\(801\) −3.84038 −0.135693
\(802\) −27.1504 −0.958714
\(803\) −31.7531 −1.12054
\(804\) 1.79122 0.0631714
\(805\) 0 0
\(806\) 15.4717 0.544966
\(807\) −3.09607 −0.108987
\(808\) −5.49366 −0.193266
\(809\) −3.44999 −0.121295 −0.0606476 0.998159i \(-0.519317\pi\)
−0.0606476 + 0.998159i \(0.519317\pi\)
\(810\) −8.41833 −0.295790
\(811\) −20.4316 −0.717451 −0.358725 0.933443i \(-0.616789\pi\)
−0.358725 + 0.933443i \(0.616789\pi\)
\(812\) 0 0
\(813\) −4.06220 −0.142468
\(814\) 11.8385 0.414938
\(815\) −23.1691 −0.811578
\(816\) −0.255150 −0.00893203
\(817\) −12.6863 −0.443839
\(818\) −18.5833 −0.649749
\(819\) 0 0
\(820\) 4.29860 0.150114
\(821\) 41.3056 1.44157 0.720787 0.693157i \(-0.243781\pi\)
0.720787 + 0.693157i \(0.243781\pi\)
\(822\) 3.43484 0.119804
\(823\) −10.2842 −0.358483 −0.179242 0.983805i \(-0.557364\pi\)
−0.179242 + 0.983805i \(0.557364\pi\)
\(824\) 3.89469 0.135678
\(825\) 0.666196 0.0231940
\(826\) 0 0
\(827\) 48.0561 1.67108 0.835538 0.549433i \(-0.185156\pi\)
0.835538 + 0.549433i \(0.185156\pi\)
\(828\) 0.0875176 0.00304145
\(829\) 3.47412 0.120661 0.0603306 0.998178i \(-0.480785\pi\)
0.0603306 + 0.998178i \(0.480785\pi\)
\(830\) −10.4460 −0.362587
\(831\) −5.91902 −0.205329
\(832\) −5.03829 −0.174671
\(833\) 0 0
\(834\) 1.66337 0.0575978
\(835\) −5.41532 −0.187405
\(836\) 6.50593 0.225012
\(837\) 4.65010 0.160731
\(838\) −23.4607 −0.810435
\(839\) 4.17740 0.144220 0.0721099 0.997397i \(-0.477027\pi\)
0.0721099 + 0.997397i \(0.477027\pi\)
\(840\) 0 0
\(841\) −8.24000 −0.284138
\(842\) −23.0393 −0.793987
\(843\) 6.64279 0.228790
\(844\) 19.6536 0.676503
\(845\) −12.3844 −0.426036
\(846\) −18.2673 −0.628043
\(847\) 0 0
\(848\) −1.36002 −0.0467034
\(849\) 4.07356 0.139804
\(850\) −1.00000 −0.0342997
\(851\) −0.135204 −0.00463475
\(852\) 3.63851 0.124653
\(853\) −19.4777 −0.666904 −0.333452 0.942767i \(-0.608214\pi\)
−0.333452 + 0.942767i \(0.608214\pi\)
\(854\) 0 0
\(855\) 7.31300 0.250099
\(856\) 0.837969 0.0286412
\(857\) 6.17064 0.210785 0.105393 0.994431i \(-0.466390\pi\)
0.105393 + 0.994431i \(0.466390\pi\)
\(858\) −3.35649 −0.114589
\(859\) 6.51129 0.222162 0.111081 0.993811i \(-0.464569\pi\)
0.111081 + 0.993811i \(0.464569\pi\)
\(860\) 5.09136 0.173614
\(861\) 0 0
\(862\) 35.1237 1.19632
\(863\) −3.42564 −0.116610 −0.0583051 0.998299i \(-0.518570\pi\)
−0.0583051 + 0.998299i \(0.518570\pi\)
\(864\) −1.51429 −0.0515171
\(865\) −22.8281 −0.776180
\(866\) −34.4070 −1.16920
\(867\) 0.255150 0.00866534
\(868\) 0 0
\(869\) 23.3702 0.792779
\(870\) −1.16254 −0.0394139
\(871\) −35.3702 −1.19847
\(872\) −4.09311 −0.138610
\(873\) 9.94185 0.336481
\(874\) −0.0743028 −0.00251333
\(875\) 0 0
\(876\) −3.10295 −0.104839
\(877\) 43.6711 1.47467 0.737333 0.675529i \(-0.236085\pi\)
0.737333 + 0.675529i \(0.236085\pi\)
\(878\) 23.4899 0.792744
\(879\) −2.98424 −0.100656
\(880\) −2.61100 −0.0880168
\(881\) −19.3300 −0.651243 −0.325622 0.945500i \(-0.605574\pi\)
−0.325622 + 0.945500i \(0.605574\pi\)
\(882\) 0 0
\(883\) −52.9606 −1.78226 −0.891132 0.453743i \(-0.850088\pi\)
−0.891132 + 0.453743i \(0.850088\pi\)
\(884\) 5.03829 0.169456
\(885\) −3.57679 −0.120232
\(886\) 19.3910 0.651455
\(887\) 11.7651 0.395032 0.197516 0.980300i \(-0.436713\pi\)
0.197516 + 0.980300i \(0.436713\pi\)
\(888\) 1.15687 0.0388219
\(889\) 0 0
\(890\) −1.30852 −0.0438618
\(891\) 21.9802 0.736366
\(892\) 6.06689 0.203134
\(893\) 15.5090 0.518989
\(894\) 3.92410 0.131242
\(895\) −12.6611 −0.423214
\(896\) 0 0
\(897\) 0.0383337 0.00127992
\(898\) −27.8525 −0.929450
\(899\) −13.9916 −0.466646
\(900\) −2.93490 −0.0978300
\(901\) 1.36002 0.0453090
\(902\) −11.2236 −0.373706
\(903\) 0 0
\(904\) −6.45057 −0.214543
\(905\) 7.00446 0.232836
\(906\) −1.11148 −0.0369266
\(907\) −10.6873 −0.354866 −0.177433 0.984133i \(-0.556779\pi\)
−0.177433 + 0.984133i \(0.556779\pi\)
\(908\) −27.4406 −0.910648
\(909\) 16.1233 0.534777
\(910\) 0 0
\(911\) −30.1948 −1.00040 −0.500199 0.865911i \(-0.666740\pi\)
−0.500199 + 0.865911i \(0.666740\pi\)
\(912\) 0.635767 0.0210523
\(913\) 27.2746 0.902658
\(914\) 23.0108 0.761131
\(915\) −1.27232 −0.0420616
\(916\) 15.8229 0.522802
\(917\) 0 0
\(918\) 1.51429 0.0499789
\(919\) −33.2984 −1.09841 −0.549206 0.835687i \(-0.685070\pi\)
−0.549206 + 0.835687i \(0.685070\pi\)
\(920\) 0.0298196 0.000983124 0
\(921\) 5.40032 0.177947
\(922\) −17.3140 −0.570205
\(923\) −71.8476 −2.36489
\(924\) 0 0
\(925\) 4.53407 0.149079
\(926\) 4.45573 0.146424
\(927\) −11.4305 −0.375428
\(928\) 4.55631 0.149568
\(929\) 46.8081 1.53572 0.767862 0.640615i \(-0.221320\pi\)
0.767862 + 0.640615i \(0.221320\pi\)
\(930\) 0.783517 0.0256925
\(931\) 0 0
\(932\) −22.3421 −0.731840
\(933\) −3.53370 −0.115688
\(934\) 36.6836 1.20033
\(935\) 2.61100 0.0853888
\(936\) 14.7869 0.483324
\(937\) −18.7599 −0.612860 −0.306430 0.951893i \(-0.599134\pi\)
−0.306430 + 0.951893i \(0.599134\pi\)
\(938\) 0 0
\(939\) 4.51960 0.147492
\(940\) −6.22417 −0.203010
\(941\) 27.9353 0.910663 0.455332 0.890322i \(-0.349521\pi\)
0.455332 + 0.890322i \(0.349521\pi\)
\(942\) −4.61965 −0.150516
\(943\) 0.128183 0.00417420
\(944\) 14.0184 0.456259
\(945\) 0 0
\(946\) −13.2935 −0.432210
\(947\) −15.5058 −0.503871 −0.251936 0.967744i \(-0.581067\pi\)
−0.251936 + 0.967744i \(0.581067\pi\)
\(948\) 2.28376 0.0741730
\(949\) 61.2721 1.98898
\(950\) 2.49174 0.0808427
\(951\) −0.615660 −0.0199641
\(952\) 0 0
\(953\) −27.0793 −0.877185 −0.438592 0.898686i \(-0.644523\pi\)
−0.438592 + 0.898686i \(0.644523\pi\)
\(954\) 3.99154 0.129231
\(955\) 1.13558 0.0367464
\(956\) 17.6457 0.570704
\(957\) 3.03540 0.0981205
\(958\) 23.0934 0.746115
\(959\) 0 0
\(960\) −0.255150 −0.00823492
\(961\) −21.5701 −0.695810
\(962\) −22.8440 −0.736520
\(963\) −2.45935 −0.0792515
\(964\) −0.433723 −0.0139693
\(965\) −14.0458 −0.452151
\(966\) 0 0
\(967\) 14.2320 0.457669 0.228835 0.973465i \(-0.426508\pi\)
0.228835 + 0.973465i \(0.426508\pi\)
\(968\) −4.18268 −0.134436
\(969\) −0.635767 −0.0204238
\(970\) 3.38746 0.108765
\(971\) −49.0281 −1.57339 −0.786693 0.617344i \(-0.788208\pi\)
−0.786693 + 0.617344i \(0.788208\pi\)
\(972\) 6.69080 0.214607
\(973\) 0 0
\(974\) −13.5720 −0.434876
\(975\) −1.28552 −0.0411695
\(976\) 4.98656 0.159616
\(977\) −24.5909 −0.786733 −0.393366 0.919382i \(-0.628690\pi\)
−0.393366 + 0.919382i \(0.628690\pi\)
\(978\) 5.91159 0.189032
\(979\) 3.41655 0.109194
\(980\) 0 0
\(981\) 12.0129 0.383541
\(982\) 3.49095 0.111401
\(983\) −3.31969 −0.105882 −0.0529409 0.998598i \(-0.516859\pi\)
−0.0529409 + 0.998598i \(0.516859\pi\)
\(984\) −1.09679 −0.0349643
\(985\) −3.04235 −0.0969374
\(986\) −4.55631 −0.145103
\(987\) 0 0
\(988\) −12.5541 −0.399400
\(989\) 0.151822 0.00482767
\(990\) 7.66302 0.243547
\(991\) 26.5670 0.843927 0.421964 0.906613i \(-0.361341\pi\)
0.421964 + 0.906613i \(0.361341\pi\)
\(992\) −3.07081 −0.0974985
\(993\) 0.906403 0.0287638
\(994\) 0 0
\(995\) −4.96862 −0.157516
\(996\) 2.66530 0.0844534
\(997\) 19.9788 0.632734 0.316367 0.948637i \(-0.397537\pi\)
0.316367 + 0.948637i \(0.397537\pi\)
\(998\) 15.3178 0.484877
\(999\) −6.86589 −0.217227
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8330.2.a.cv.1.6 10
7.6 odd 2 8330.2.a.cw.1.5 yes 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
8330.2.a.cv.1.6 10 1.1 even 1 trivial
8330.2.a.cw.1.5 yes 10 7.6 odd 2