Properties

Label 2-8330-1.1-c1-0-52
Degree $2$
Conductor $8330$
Sign $1$
Analytic cond. $66.5153$
Root an. cond. $8.15569$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 0.255·3-s + 4-s − 5-s + 0.255·6-s + 8-s − 2.93·9-s − 10-s + 2.61·11-s + 0.255·12-s − 5.03·13-s − 0.255·15-s + 16-s − 17-s − 2.93·18-s + 2.49·19-s − 20-s + 2.61·22-s − 0.0298·23-s + 0.255·24-s + 25-s − 5.03·26-s − 1.51·27-s + 4.55·29-s − 0.255·30-s − 3.07·31-s + 32-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.147·3-s + 0.5·4-s − 0.447·5-s + 0.104·6-s + 0.353·8-s − 0.978·9-s − 0.316·10-s + 0.787·11-s + 0.0736·12-s − 1.39·13-s − 0.0658·15-s + 0.250·16-s − 0.242·17-s − 0.691·18-s + 0.571·19-s − 0.223·20-s + 0.556·22-s − 0.00621·23-s + 0.0520·24-s + 0.200·25-s − 0.988·26-s − 0.291·27-s + 0.846·29-s − 0.0465·30-s − 0.551·31-s + 0.176·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8330 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8330 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8330\)    =    \(2 \cdot 5 \cdot 7^{2} \cdot 17\)
Sign: $1$
Analytic conductor: \(66.5153\)
Root analytic conductor: \(8.15569\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 8330,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.616517602\)
\(L(\frac12)\) \(\approx\) \(2.616517602\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
5 \( 1 + T \)
7 \( 1 \)
17 \( 1 + T \)
good3 \( 1 - 0.255T + 3T^{2} \)
11 \( 1 - 2.61T + 11T^{2} \)
13 \( 1 + 5.03T + 13T^{2} \)
19 \( 1 - 2.49T + 19T^{2} \)
23 \( 1 + 0.0298T + 23T^{2} \)
29 \( 1 - 4.55T + 29T^{2} \)
31 \( 1 + 3.07T + 31T^{2} \)
37 \( 1 - 4.53T + 37T^{2} \)
41 \( 1 + 4.29T + 41T^{2} \)
43 \( 1 + 5.09T + 43T^{2} \)
47 \( 1 - 6.22T + 47T^{2} \)
53 \( 1 + 1.36T + 53T^{2} \)
59 \( 1 - 14.0T + 59T^{2} \)
61 \( 1 - 4.98T + 61T^{2} \)
67 \( 1 - 7.02T + 67T^{2} \)
71 \( 1 - 14.2T + 71T^{2} \)
73 \( 1 + 12.1T + 73T^{2} \)
79 \( 1 - 8.95T + 79T^{2} \)
83 \( 1 - 10.4T + 83T^{2} \)
89 \( 1 - 1.30T + 89T^{2} \)
97 \( 1 + 3.38T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.76826354225569279818754878505, −6.94362171141601234631089248783, −6.53374778167778761775878382571, −5.51225802340929789577480545901, −5.07488400369971938930458106160, −4.23391516316231390112468514919, −3.52780451623094584633496533181, −2.77107102612845320320847040185, −2.06432271582936837753096502327, −0.68439813757926907152184894986, 0.68439813757926907152184894986, 2.06432271582936837753096502327, 2.77107102612845320320847040185, 3.52780451623094584633496533181, 4.23391516316231390112468514919, 5.07488400369971938930458106160, 5.51225802340929789577480545901, 6.53374778167778761775878382571, 6.94362171141601234631089248783, 7.76826354225569279818754878505

Graph of the $Z$-function along the critical line