Properties

Label 8330.2.a.cn.1.5
Level $8330$
Weight $2$
Character 8330.1
Self dual yes
Analytic conductor $66.515$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8330,2,Mod(1,8330)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8330, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8330.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 8330 = 2 \cdot 5 \cdot 7^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8330.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,-6,-2,6,6,2,0,-6,4,-6,-6,-2,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(66.5153848837\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.12694016.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 8x^{4} - 2x^{3} + 16x^{2} + 8x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(-2.04989\) of defining polynomial
Character \(\chi\) \(=\) 8330.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +1.20207 q^{3} +1.00000 q^{4} +1.00000 q^{5} -1.20207 q^{6} -1.00000 q^{8} -1.55504 q^{9} -1.00000 q^{10} +1.04989 q^{11} +1.20207 q^{12} -1.69998 q^{13} +1.20207 q^{15} +1.00000 q^{16} +1.00000 q^{17} +1.55504 q^{18} -3.94888 q^{19} +1.00000 q^{20} -1.04989 q^{22} -2.41130 q^{23} -1.20207 q^{24} +1.00000 q^{25} +1.69998 q^{26} -5.47546 q^{27} -0.0675053 q^{29} -1.20207 q^{30} +5.15812 q^{31} -1.00000 q^{32} +1.26204 q^{33} -1.00000 q^{34} -1.55504 q^{36} -8.78536 q^{37} +3.94888 q^{38} -2.04349 q^{39} -1.00000 q^{40} +8.34869 q^{41} +11.4148 q^{43} +1.04989 q^{44} -1.55504 q^{45} +2.41130 q^{46} -4.57861 q^{47} +1.20207 q^{48} -1.00000 q^{50} +1.20207 q^{51} -1.69998 q^{52} +3.49627 q^{53} +5.47546 q^{54} +1.04989 q^{55} -4.74682 q^{57} +0.0675053 q^{58} -7.57739 q^{59} +1.20207 q^{60} +8.28619 q^{61} -5.15812 q^{62} +1.00000 q^{64} -1.69998 q^{65} -1.26204 q^{66} -9.06540 q^{67} +1.00000 q^{68} -2.89855 q^{69} +0.799200 q^{71} +1.55504 q^{72} +6.62819 q^{73} +8.78536 q^{74} +1.20207 q^{75} -3.94888 q^{76} +2.04349 q^{78} -11.1687 q^{79} +1.00000 q^{80} -1.91674 q^{81} -8.34869 q^{82} -17.5875 q^{83} +1.00000 q^{85} -11.4148 q^{86} -0.0811458 q^{87} -1.04989 q^{88} -1.91107 q^{89} +1.55504 q^{90} -2.41130 q^{92} +6.20040 q^{93} +4.57861 q^{94} -3.94888 q^{95} -1.20207 q^{96} -9.16242 q^{97} -1.63262 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 6 q^{2} - 2 q^{3} + 6 q^{4} + 6 q^{5} + 2 q^{6} - 6 q^{8} + 4 q^{9} - 6 q^{10} - 6 q^{11} - 2 q^{12} - 2 q^{15} + 6 q^{16} + 6 q^{17} - 4 q^{18} + 6 q^{19} + 6 q^{20} + 6 q^{22} - 2 q^{23} + 2 q^{24}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 1.20207 0.694013 0.347007 0.937863i \(-0.387198\pi\)
0.347007 + 0.937863i \(0.387198\pi\)
\(4\) 1.00000 0.500000
\(5\) 1.00000 0.447214
\(6\) −1.20207 −0.490741
\(7\) 0 0
\(8\) −1.00000 −0.353553
\(9\) −1.55504 −0.518346
\(10\) −1.00000 −0.316228
\(11\) 1.04989 0.316555 0.158277 0.987395i \(-0.449406\pi\)
0.158277 + 0.987395i \(0.449406\pi\)
\(12\) 1.20207 0.347007
\(13\) −1.69998 −0.471489 −0.235745 0.971815i \(-0.575753\pi\)
−0.235745 + 0.971815i \(0.575753\pi\)
\(14\) 0 0
\(15\) 1.20207 0.310372
\(16\) 1.00000 0.250000
\(17\) 1.00000 0.242536
\(18\) 1.55504 0.366526
\(19\) −3.94888 −0.905936 −0.452968 0.891527i \(-0.649635\pi\)
−0.452968 + 0.891527i \(0.649635\pi\)
\(20\) 1.00000 0.223607
\(21\) 0 0
\(22\) −1.04989 −0.223838
\(23\) −2.41130 −0.502791 −0.251396 0.967884i \(-0.580890\pi\)
−0.251396 + 0.967884i \(0.580890\pi\)
\(24\) −1.20207 −0.245371
\(25\) 1.00000 0.200000
\(26\) 1.69998 0.333393
\(27\) −5.47546 −1.05375
\(28\) 0 0
\(29\) −0.0675053 −0.0125354 −0.00626771 0.999980i \(-0.501995\pi\)
−0.00626771 + 0.999980i \(0.501995\pi\)
\(30\) −1.20207 −0.219466
\(31\) 5.15812 0.926426 0.463213 0.886247i \(-0.346697\pi\)
0.463213 + 0.886247i \(0.346697\pi\)
\(32\) −1.00000 −0.176777
\(33\) 1.26204 0.219693
\(34\) −1.00000 −0.171499
\(35\) 0 0
\(36\) −1.55504 −0.259173
\(37\) −8.78536 −1.44430 −0.722152 0.691734i \(-0.756847\pi\)
−0.722152 + 0.691734i \(0.756847\pi\)
\(38\) 3.94888 0.640593
\(39\) −2.04349 −0.327220
\(40\) −1.00000 −0.158114
\(41\) 8.34869 1.30385 0.651923 0.758285i \(-0.273962\pi\)
0.651923 + 0.758285i \(0.273962\pi\)
\(42\) 0 0
\(43\) 11.4148 1.74074 0.870372 0.492395i \(-0.163878\pi\)
0.870372 + 0.492395i \(0.163878\pi\)
\(44\) 1.04989 0.158277
\(45\) −1.55504 −0.231811
\(46\) 2.41130 0.355527
\(47\) −4.57861 −0.667860 −0.333930 0.942598i \(-0.608375\pi\)
−0.333930 + 0.942598i \(0.608375\pi\)
\(48\) 1.20207 0.173503
\(49\) 0 0
\(50\) −1.00000 −0.141421
\(51\) 1.20207 0.168323
\(52\) −1.69998 −0.235745
\(53\) 3.49627 0.480249 0.240125 0.970742i \(-0.422812\pi\)
0.240125 + 0.970742i \(0.422812\pi\)
\(54\) 5.47546 0.745115
\(55\) 1.04989 0.141568
\(56\) 0 0
\(57\) −4.74682 −0.628731
\(58\) 0.0675053 0.00886388
\(59\) −7.57739 −0.986492 −0.493246 0.869890i \(-0.664190\pi\)
−0.493246 + 0.869890i \(0.664190\pi\)
\(60\) 1.20207 0.155186
\(61\) 8.28619 1.06094 0.530469 0.847705i \(-0.322016\pi\)
0.530469 + 0.847705i \(0.322016\pi\)
\(62\) −5.15812 −0.655082
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −1.69998 −0.210856
\(66\) −1.26204 −0.155347
\(67\) −9.06540 −1.10751 −0.553757 0.832678i \(-0.686807\pi\)
−0.553757 + 0.832678i \(0.686807\pi\)
\(68\) 1.00000 0.121268
\(69\) −2.89855 −0.348944
\(70\) 0 0
\(71\) 0.799200 0.0948476 0.0474238 0.998875i \(-0.484899\pi\)
0.0474238 + 0.998875i \(0.484899\pi\)
\(72\) 1.55504 0.183263
\(73\) 6.62819 0.775771 0.387886 0.921707i \(-0.373206\pi\)
0.387886 + 0.921707i \(0.373206\pi\)
\(74\) 8.78536 1.02128
\(75\) 1.20207 0.138803
\(76\) −3.94888 −0.452968
\(77\) 0 0
\(78\) 2.04349 0.231379
\(79\) −11.1687 −1.25658 −0.628289 0.777980i \(-0.716244\pi\)
−0.628289 + 0.777980i \(0.716244\pi\)
\(80\) 1.00000 0.111803
\(81\) −1.91674 −0.212972
\(82\) −8.34869 −0.921959
\(83\) −17.5875 −1.93048 −0.965242 0.261359i \(-0.915829\pi\)
−0.965242 + 0.261359i \(0.915829\pi\)
\(84\) 0 0
\(85\) 1.00000 0.108465
\(86\) −11.4148 −1.23089
\(87\) −0.0811458 −0.00869975
\(88\) −1.04989 −0.111919
\(89\) −1.91107 −0.202573 −0.101286 0.994857i \(-0.532296\pi\)
−0.101286 + 0.994857i \(0.532296\pi\)
\(90\) 1.55504 0.163915
\(91\) 0 0
\(92\) −2.41130 −0.251396
\(93\) 6.20040 0.642951
\(94\) 4.57861 0.472248
\(95\) −3.94888 −0.405147
\(96\) −1.20207 −0.122685
\(97\) −9.16242 −0.930303 −0.465151 0.885231i \(-0.654000\pi\)
−0.465151 + 0.885231i \(0.654000\pi\)
\(98\) 0 0
\(99\) −1.63262 −0.164085
\(100\) 1.00000 0.100000
\(101\) −13.4510 −1.33842 −0.669210 0.743073i \(-0.733367\pi\)
−0.669210 + 0.743073i \(0.733367\pi\)
\(102\) −1.20207 −0.119022
\(103\) 1.82552 0.179874 0.0899368 0.995947i \(-0.471334\pi\)
0.0899368 + 0.995947i \(0.471334\pi\)
\(104\) 1.69998 0.166697
\(105\) 0 0
\(106\) −3.49627 −0.339587
\(107\) 13.0060 1.25734 0.628671 0.777671i \(-0.283599\pi\)
0.628671 + 0.777671i \(0.283599\pi\)
\(108\) −5.47546 −0.526876
\(109\) −0.0971344 −0.00930379 −0.00465190 0.999989i \(-0.501481\pi\)
−0.00465190 + 0.999989i \(0.501481\pi\)
\(110\) −1.04989 −0.100103
\(111\) −10.5606 −1.00237
\(112\) 0 0
\(113\) −9.08386 −0.854538 −0.427269 0.904125i \(-0.640524\pi\)
−0.427269 + 0.904125i \(0.640524\pi\)
\(114\) 4.74682 0.444580
\(115\) −2.41130 −0.224855
\(116\) −0.0675053 −0.00626771
\(117\) 2.64353 0.244394
\(118\) 7.57739 0.697555
\(119\) 0 0
\(120\) −1.20207 −0.109733
\(121\) −9.89772 −0.899793
\(122\) −8.28619 −0.750196
\(123\) 10.0357 0.904887
\(124\) 5.15812 0.463213
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) −2.08663 −0.185159 −0.0925794 0.995705i \(-0.529511\pi\)
−0.0925794 + 0.995705i \(0.529511\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 13.7214 1.20810
\(130\) 1.69998 0.149098
\(131\) 3.46614 0.302838 0.151419 0.988470i \(-0.451616\pi\)
0.151419 + 0.988470i \(0.451616\pi\)
\(132\) 1.26204 0.109847
\(133\) 0 0
\(134\) 9.06540 0.783131
\(135\) −5.47546 −0.471252
\(136\) −1.00000 −0.0857493
\(137\) 21.3247 1.82190 0.910948 0.412522i \(-0.135352\pi\)
0.910948 + 0.412522i \(0.135352\pi\)
\(138\) 2.89855 0.246741
\(139\) −4.23241 −0.358989 −0.179494 0.983759i \(-0.557446\pi\)
−0.179494 + 0.983759i \(0.557446\pi\)
\(140\) 0 0
\(141\) −5.50380 −0.463503
\(142\) −0.799200 −0.0670674
\(143\) −1.78480 −0.149252
\(144\) −1.55504 −0.129586
\(145\) −0.0675053 −0.00560601
\(146\) −6.62819 −0.548553
\(147\) 0 0
\(148\) −8.78536 −0.722152
\(149\) −3.26033 −0.267097 −0.133548 0.991042i \(-0.542637\pi\)
−0.133548 + 0.991042i \(0.542637\pi\)
\(150\) −1.20207 −0.0981483
\(151\) 18.8842 1.53677 0.768386 0.639987i \(-0.221060\pi\)
0.768386 + 0.639987i \(0.221060\pi\)
\(152\) 3.94888 0.320297
\(153\) −1.55504 −0.125717
\(154\) 0 0
\(155\) 5.15812 0.414310
\(156\) −2.04349 −0.163610
\(157\) −5.02526 −0.401059 −0.200530 0.979688i \(-0.564266\pi\)
−0.200530 + 0.979688i \(0.564266\pi\)
\(158\) 11.1687 0.888534
\(159\) 4.20274 0.333299
\(160\) −1.00000 −0.0790569
\(161\) 0 0
\(162\) 1.91674 0.150594
\(163\) −21.4233 −1.67800 −0.839000 0.544131i \(-0.816859\pi\)
−0.839000 + 0.544131i \(0.816859\pi\)
\(164\) 8.34869 0.651923
\(165\) 1.26204 0.0982498
\(166\) 17.5875 1.36506
\(167\) −4.20850 −0.325663 −0.162832 0.986654i \(-0.552063\pi\)
−0.162832 + 0.986654i \(0.552063\pi\)
\(168\) 0 0
\(169\) −10.1101 −0.777698
\(170\) −1.00000 −0.0766965
\(171\) 6.14066 0.469588
\(172\) 11.4148 0.870372
\(173\) −25.0195 −1.90219 −0.951097 0.308891i \(-0.900042\pi\)
−0.951097 + 0.308891i \(0.900042\pi\)
\(174\) 0.0811458 0.00615165
\(175\) 0 0
\(176\) 1.04989 0.0791387
\(177\) −9.10852 −0.684639
\(178\) 1.91107 0.143240
\(179\) −14.6941 −1.09829 −0.549144 0.835728i \(-0.685046\pi\)
−0.549144 + 0.835728i \(0.685046\pi\)
\(180\) −1.55504 −0.115906
\(181\) −15.0945 −1.12196 −0.560982 0.827828i \(-0.689576\pi\)
−0.560982 + 0.827828i \(0.689576\pi\)
\(182\) 0 0
\(183\) 9.96054 0.736304
\(184\) 2.41130 0.177764
\(185\) −8.78536 −0.645913
\(186\) −6.20040 −0.454635
\(187\) 1.04989 0.0767759
\(188\) −4.57861 −0.333930
\(189\) 0 0
\(190\) 3.94888 0.286482
\(191\) −0.110856 −0.00802128 −0.00401064 0.999992i \(-0.501277\pi\)
−0.00401064 + 0.999992i \(0.501277\pi\)
\(192\) 1.20207 0.0867516
\(193\) −14.7351 −1.06065 −0.530327 0.847793i \(-0.677931\pi\)
−0.530327 + 0.847793i \(0.677931\pi\)
\(194\) 9.16242 0.657823
\(195\) −2.04349 −0.146337
\(196\) 0 0
\(197\) −2.58188 −0.183951 −0.0919755 0.995761i \(-0.529318\pi\)
−0.0919755 + 0.995761i \(0.529318\pi\)
\(198\) 1.63262 0.116026
\(199\) −12.2402 −0.867686 −0.433843 0.900989i \(-0.642843\pi\)
−0.433843 + 0.900989i \(0.642843\pi\)
\(200\) −1.00000 −0.0707107
\(201\) −10.8972 −0.768630
\(202\) 13.4510 0.946406
\(203\) 0 0
\(204\) 1.20207 0.0841614
\(205\) 8.34869 0.583098
\(206\) −1.82552 −0.127190
\(207\) 3.74967 0.260620
\(208\) −1.69998 −0.117872
\(209\) −4.14591 −0.286778
\(210\) 0 0
\(211\) −25.6270 −1.76423 −0.882117 0.471031i \(-0.843882\pi\)
−0.882117 + 0.471031i \(0.843882\pi\)
\(212\) 3.49627 0.240125
\(213\) 0.960691 0.0658255
\(214\) −13.0060 −0.889075
\(215\) 11.4148 0.778484
\(216\) 5.47546 0.372558
\(217\) 0 0
\(218\) 0.0971344 0.00657877
\(219\) 7.96752 0.538395
\(220\) 1.04989 0.0707838
\(221\) −1.69998 −0.114353
\(222\) 10.5606 0.708780
\(223\) 15.7512 1.05478 0.527390 0.849623i \(-0.323171\pi\)
0.527390 + 0.849623i \(0.323171\pi\)
\(224\) 0 0
\(225\) −1.55504 −0.103669
\(226\) 9.08386 0.604250
\(227\) 1.25487 0.0832887 0.0416443 0.999132i \(-0.486740\pi\)
0.0416443 + 0.999132i \(0.486740\pi\)
\(228\) −4.74682 −0.314366
\(229\) 13.3789 0.884102 0.442051 0.896990i \(-0.354251\pi\)
0.442051 + 0.896990i \(0.354251\pi\)
\(230\) 2.41130 0.158997
\(231\) 0 0
\(232\) 0.0675053 0.00443194
\(233\) −18.7193 −1.22634 −0.613171 0.789950i \(-0.710106\pi\)
−0.613171 + 0.789950i \(0.710106\pi\)
\(234\) −2.64353 −0.172813
\(235\) −4.57861 −0.298676
\(236\) −7.57739 −0.493246
\(237\) −13.4255 −0.872081
\(238\) 0 0
\(239\) −14.6586 −0.948186 −0.474093 0.880475i \(-0.657224\pi\)
−0.474093 + 0.880475i \(0.657224\pi\)
\(240\) 1.20207 0.0775930
\(241\) 9.80605 0.631663 0.315832 0.948815i \(-0.397717\pi\)
0.315832 + 0.948815i \(0.397717\pi\)
\(242\) 9.89772 0.636250
\(243\) 14.1223 0.905947
\(244\) 8.28619 0.530469
\(245\) 0 0
\(246\) −10.0357 −0.639851
\(247\) 6.71301 0.427139
\(248\) −5.15812 −0.327541
\(249\) −21.1414 −1.33978
\(250\) −1.00000 −0.0632456
\(251\) −13.6915 −0.864198 −0.432099 0.901826i \(-0.642227\pi\)
−0.432099 + 0.901826i \(0.642227\pi\)
\(252\) 0 0
\(253\) −2.53161 −0.159161
\(254\) 2.08663 0.130927
\(255\) 1.20207 0.0752763
\(256\) 1.00000 0.0625000
\(257\) −3.48500 −0.217388 −0.108694 0.994075i \(-0.534667\pi\)
−0.108694 + 0.994075i \(0.534667\pi\)
\(258\) −13.7214 −0.854255
\(259\) 0 0
\(260\) −1.69998 −0.105428
\(261\) 0.104973 0.00649769
\(262\) −3.46614 −0.214139
\(263\) −2.13558 −0.131685 −0.0658427 0.997830i \(-0.520974\pi\)
−0.0658427 + 0.997830i \(0.520974\pi\)
\(264\) −1.26204 −0.0776733
\(265\) 3.49627 0.214774
\(266\) 0 0
\(267\) −2.29723 −0.140588
\(268\) −9.06540 −0.553757
\(269\) 10.3321 0.629957 0.314978 0.949099i \(-0.398003\pi\)
0.314978 + 0.949099i \(0.398003\pi\)
\(270\) 5.47546 0.333226
\(271\) 6.90805 0.419634 0.209817 0.977741i \(-0.432713\pi\)
0.209817 + 0.977741i \(0.432713\pi\)
\(272\) 1.00000 0.0606339
\(273\) 0 0
\(274\) −21.3247 −1.28827
\(275\) 1.04989 0.0633110
\(276\) −2.89855 −0.174472
\(277\) 17.9763 1.08009 0.540047 0.841635i \(-0.318407\pi\)
0.540047 + 0.841635i \(0.318407\pi\)
\(278\) 4.23241 0.253843
\(279\) −8.02107 −0.480209
\(280\) 0 0
\(281\) −12.9520 −0.772652 −0.386326 0.922362i \(-0.626256\pi\)
−0.386326 + 0.922362i \(0.626256\pi\)
\(282\) 5.50380 0.327746
\(283\) 5.35862 0.318537 0.159269 0.987235i \(-0.449086\pi\)
0.159269 + 0.987235i \(0.449086\pi\)
\(284\) 0.799200 0.0474238
\(285\) −4.74682 −0.281177
\(286\) 1.78480 0.105537
\(287\) 0 0
\(288\) 1.55504 0.0916315
\(289\) 1.00000 0.0588235
\(290\) 0.0675053 0.00396405
\(291\) −11.0138 −0.645642
\(292\) 6.62819 0.387886
\(293\) −31.3388 −1.83083 −0.915415 0.402512i \(-0.868137\pi\)
−0.915415 + 0.402512i \(0.868137\pi\)
\(294\) 0 0
\(295\) −7.57739 −0.441173
\(296\) 8.78536 0.510639
\(297\) −5.74865 −0.333570
\(298\) 3.26033 0.188866
\(299\) 4.09916 0.237061
\(300\) 1.20207 0.0694013
\(301\) 0 0
\(302\) −18.8842 −1.08666
\(303\) −16.1689 −0.928881
\(304\) −3.94888 −0.226484
\(305\) 8.28619 0.474466
\(306\) 1.55504 0.0888956
\(307\) −21.5310 −1.22884 −0.614418 0.788980i \(-0.710609\pi\)
−0.614418 + 0.788980i \(0.710609\pi\)
\(308\) 0 0
\(309\) 2.19439 0.124835
\(310\) −5.15812 −0.292962
\(311\) 5.00428 0.283767 0.141883 0.989883i \(-0.454684\pi\)
0.141883 + 0.989883i \(0.454684\pi\)
\(312\) 2.04349 0.115690
\(313\) 29.9140 1.69084 0.845419 0.534104i \(-0.179351\pi\)
0.845419 + 0.534104i \(0.179351\pi\)
\(314\) 5.02526 0.283592
\(315\) 0 0
\(316\) −11.1687 −0.628289
\(317\) 7.04811 0.395861 0.197931 0.980216i \(-0.436578\pi\)
0.197931 + 0.980216i \(0.436578\pi\)
\(318\) −4.20274 −0.235678
\(319\) −0.0708734 −0.00396815
\(320\) 1.00000 0.0559017
\(321\) 15.6341 0.872612
\(322\) 0 0
\(323\) −3.94888 −0.219722
\(324\) −1.91674 −0.106486
\(325\) −1.69998 −0.0942978
\(326\) 21.4233 1.18653
\(327\) −0.116762 −0.00645695
\(328\) −8.34869 −0.460979
\(329\) 0 0
\(330\) −1.26204 −0.0694731
\(331\) −16.6572 −0.915562 −0.457781 0.889065i \(-0.651356\pi\)
−0.457781 + 0.889065i \(0.651356\pi\)
\(332\) −17.5875 −0.965242
\(333\) 13.6616 0.748649
\(334\) 4.20850 0.230279
\(335\) −9.06540 −0.495296
\(336\) 0 0
\(337\) −11.5188 −0.627468 −0.313734 0.949511i \(-0.601580\pi\)
−0.313734 + 0.949511i \(0.601580\pi\)
\(338\) 10.1101 0.549916
\(339\) −10.9194 −0.593061
\(340\) 1.00000 0.0542326
\(341\) 5.41548 0.293265
\(342\) −6.14066 −0.332049
\(343\) 0 0
\(344\) −11.4148 −0.615446
\(345\) −2.89855 −0.156052
\(346\) 25.0195 1.34505
\(347\) −4.06413 −0.218174 −0.109087 0.994032i \(-0.534793\pi\)
−0.109087 + 0.994032i \(0.534793\pi\)
\(348\) −0.0811458 −0.00434987
\(349\) −0.809305 −0.0433211 −0.0216606 0.999765i \(-0.506895\pi\)
−0.0216606 + 0.999765i \(0.506895\pi\)
\(350\) 0 0
\(351\) 9.30815 0.496832
\(352\) −1.04989 −0.0559595
\(353\) −0.840633 −0.0447424 −0.0223712 0.999750i \(-0.507122\pi\)
−0.0223712 + 0.999750i \(0.507122\pi\)
\(354\) 9.10852 0.484113
\(355\) 0.799200 0.0424171
\(356\) −1.91107 −0.101286
\(357\) 0 0
\(358\) 14.6941 0.776607
\(359\) 18.8913 0.997045 0.498523 0.866877i \(-0.333876\pi\)
0.498523 + 0.866877i \(0.333876\pi\)
\(360\) 1.55504 0.0819577
\(361\) −3.40633 −0.179281
\(362\) 15.0945 0.793348
\(363\) −11.8977 −0.624468
\(364\) 0 0
\(365\) 6.62819 0.346935
\(366\) −9.96054 −0.520646
\(367\) −34.8805 −1.82075 −0.910374 0.413786i \(-0.864206\pi\)
−0.910374 + 0.413786i \(0.864206\pi\)
\(368\) −2.41130 −0.125698
\(369\) −12.9825 −0.675844
\(370\) 8.78536 0.456729
\(371\) 0 0
\(372\) 6.20040 0.321476
\(373\) 10.3388 0.535324 0.267662 0.963513i \(-0.413749\pi\)
0.267662 + 0.963513i \(0.413749\pi\)
\(374\) −1.04989 −0.0542887
\(375\) 1.20207 0.0620744
\(376\) 4.57861 0.236124
\(377\) 0.114758 0.00591031
\(378\) 0 0
\(379\) 20.5012 1.05308 0.526538 0.850152i \(-0.323490\pi\)
0.526538 + 0.850152i \(0.323490\pi\)
\(380\) −3.94888 −0.202573
\(381\) −2.50827 −0.128503
\(382\) 0.110856 0.00567190
\(383\) 29.0273 1.48323 0.741614 0.670827i \(-0.234061\pi\)
0.741614 + 0.670827i \(0.234061\pi\)
\(384\) −1.20207 −0.0613427
\(385\) 0 0
\(386\) 14.7351 0.749995
\(387\) −17.7505 −0.902308
\(388\) −9.16242 −0.465151
\(389\) −26.8338 −1.36053 −0.680265 0.732966i \(-0.738135\pi\)
−0.680265 + 0.732966i \(0.738135\pi\)
\(390\) 2.04349 0.103476
\(391\) −2.41130 −0.121945
\(392\) 0 0
\(393\) 4.16652 0.210173
\(394\) 2.58188 0.130073
\(395\) −11.1687 −0.561959
\(396\) −1.63262 −0.0820425
\(397\) −29.1916 −1.46508 −0.732542 0.680722i \(-0.761666\pi\)
−0.732542 + 0.680722i \(0.761666\pi\)
\(398\) 12.2402 0.613546
\(399\) 0 0
\(400\) 1.00000 0.0500000
\(401\) 6.80078 0.339615 0.169807 0.985477i \(-0.445685\pi\)
0.169807 + 0.985477i \(0.445685\pi\)
\(402\) 10.8972 0.543503
\(403\) −8.76869 −0.436799
\(404\) −13.4510 −0.669210
\(405\) −1.91674 −0.0952438
\(406\) 0 0
\(407\) −9.22370 −0.457202
\(408\) −1.20207 −0.0595111
\(409\) 2.63414 0.130250 0.0651248 0.997877i \(-0.479255\pi\)
0.0651248 + 0.997877i \(0.479255\pi\)
\(410\) −8.34869 −0.412313
\(411\) 25.6337 1.26442
\(412\) 1.82552 0.0899368
\(413\) 0 0
\(414\) −3.74967 −0.184286
\(415\) −17.5875 −0.863338
\(416\) 1.69998 0.0833483
\(417\) −5.08764 −0.249143
\(418\) 4.14591 0.202783
\(419\) 35.2146 1.72034 0.860172 0.510004i \(-0.170356\pi\)
0.860172 + 0.510004i \(0.170356\pi\)
\(420\) 0 0
\(421\) 24.9152 1.21429 0.607146 0.794590i \(-0.292314\pi\)
0.607146 + 0.794590i \(0.292314\pi\)
\(422\) 25.6270 1.24750
\(423\) 7.11992 0.346182
\(424\) −3.49627 −0.169794
\(425\) 1.00000 0.0485071
\(426\) −0.960691 −0.0465456
\(427\) 0 0
\(428\) 13.0060 0.628671
\(429\) −2.14544 −0.103583
\(430\) −11.4148 −0.550472
\(431\) 0.314602 0.0151538 0.00757691 0.999971i \(-0.497588\pi\)
0.00757691 + 0.999971i \(0.497588\pi\)
\(432\) −5.47546 −0.263438
\(433\) −6.16933 −0.296479 −0.148240 0.988951i \(-0.547361\pi\)
−0.148240 + 0.988951i \(0.547361\pi\)
\(434\) 0 0
\(435\) −0.0811458 −0.00389065
\(436\) −0.0971344 −0.00465190
\(437\) 9.52195 0.455497
\(438\) −7.96752 −0.380703
\(439\) 29.2350 1.39531 0.697654 0.716435i \(-0.254227\pi\)
0.697654 + 0.716435i \(0.254227\pi\)
\(440\) −1.04989 −0.0500517
\(441\) 0 0
\(442\) 1.69998 0.0808597
\(443\) −7.53424 −0.357962 −0.178981 0.983852i \(-0.557280\pi\)
−0.178981 + 0.983852i \(0.557280\pi\)
\(444\) −10.5606 −0.501183
\(445\) −1.91107 −0.0905932
\(446\) −15.7512 −0.745842
\(447\) −3.91914 −0.185369
\(448\) 0 0
\(449\) 16.2256 0.765736 0.382868 0.923803i \(-0.374936\pi\)
0.382868 + 0.923803i \(0.374936\pi\)
\(450\) 1.55504 0.0733052
\(451\) 8.76524 0.412739
\(452\) −9.08386 −0.427269
\(453\) 22.7000 1.06654
\(454\) −1.25487 −0.0588940
\(455\) 0 0
\(456\) 4.74682 0.222290
\(457\) −9.52210 −0.445425 −0.222712 0.974884i \(-0.571491\pi\)
−0.222712 + 0.974884i \(0.571491\pi\)
\(458\) −13.3789 −0.625154
\(459\) −5.47546 −0.255572
\(460\) −2.41130 −0.112428
\(461\) 16.9510 0.789488 0.394744 0.918791i \(-0.370833\pi\)
0.394744 + 0.918791i \(0.370833\pi\)
\(462\) 0 0
\(463\) −40.9708 −1.90407 −0.952036 0.305985i \(-0.901014\pi\)
−0.952036 + 0.305985i \(0.901014\pi\)
\(464\) −0.0675053 −0.00313386
\(465\) 6.20040 0.287537
\(466\) 18.7193 0.867154
\(467\) 11.1039 0.513828 0.256914 0.966434i \(-0.417294\pi\)
0.256914 + 0.966434i \(0.417294\pi\)
\(468\) 2.64353 0.122197
\(469\) 0 0
\(470\) 4.57861 0.211196
\(471\) −6.04069 −0.278340
\(472\) 7.57739 0.348778
\(473\) 11.9844 0.551041
\(474\) 13.4255 0.616654
\(475\) −3.94888 −0.181187
\(476\) 0 0
\(477\) −5.43683 −0.248935
\(478\) 14.6586 0.670469
\(479\) 33.9667 1.55198 0.775989 0.630746i \(-0.217251\pi\)
0.775989 + 0.630746i \(0.217251\pi\)
\(480\) −1.20207 −0.0548665
\(481\) 14.9349 0.680974
\(482\) −9.80605 −0.446653
\(483\) 0 0
\(484\) −9.89772 −0.449896
\(485\) −9.16242 −0.416044
\(486\) −14.1223 −0.640601
\(487\) 19.9526 0.904139 0.452070 0.891983i \(-0.350686\pi\)
0.452070 + 0.891983i \(0.350686\pi\)
\(488\) −8.28619 −0.375098
\(489\) −25.7522 −1.16455
\(490\) 0 0
\(491\) 32.6268 1.47243 0.736214 0.676749i \(-0.236612\pi\)
0.736214 + 0.676749i \(0.236612\pi\)
\(492\) 10.0357 0.452443
\(493\) −0.0675053 −0.00304029
\(494\) −6.71301 −0.302033
\(495\) −1.63262 −0.0733810
\(496\) 5.15812 0.231606
\(497\) 0 0
\(498\) 21.1414 0.947368
\(499\) −31.4821 −1.40933 −0.704667 0.709538i \(-0.748904\pi\)
−0.704667 + 0.709538i \(0.748904\pi\)
\(500\) 1.00000 0.0447214
\(501\) −5.05889 −0.226015
\(502\) 13.6915 0.611080
\(503\) 0.977636 0.0435907 0.0217953 0.999762i \(-0.493062\pi\)
0.0217953 + 0.999762i \(0.493062\pi\)
\(504\) 0 0
\(505\) −13.4510 −0.598560
\(506\) 2.53161 0.112544
\(507\) −12.1530 −0.539733
\(508\) −2.08663 −0.0925794
\(509\) 1.26467 0.0560556 0.0280278 0.999607i \(-0.491077\pi\)
0.0280278 + 0.999607i \(0.491077\pi\)
\(510\) −1.20207 −0.0532284
\(511\) 0 0
\(512\) −1.00000 −0.0441942
\(513\) 21.6219 0.954631
\(514\) 3.48500 0.153717
\(515\) 1.82552 0.0804419
\(516\) 13.7214 0.604050
\(517\) −4.80706 −0.211414
\(518\) 0 0
\(519\) −30.0750 −1.32015
\(520\) 1.69998 0.0745490
\(521\) 28.3323 1.24126 0.620631 0.784103i \(-0.286877\pi\)
0.620631 + 0.784103i \(0.286877\pi\)
\(522\) −0.104973 −0.00459456
\(523\) 3.63740 0.159052 0.0795262 0.996833i \(-0.474659\pi\)
0.0795262 + 0.996833i \(0.474659\pi\)
\(524\) 3.46614 0.151419
\(525\) 0 0
\(526\) 2.13558 0.0931157
\(527\) 5.15812 0.224691
\(528\) 1.26204 0.0549233
\(529\) −17.1856 −0.747201
\(530\) −3.49627 −0.151868
\(531\) 11.7831 0.511344
\(532\) 0 0
\(533\) −14.1926 −0.614749
\(534\) 2.29723 0.0994107
\(535\) 13.0060 0.562301
\(536\) 9.06540 0.391566
\(537\) −17.6633 −0.762226
\(538\) −10.3321 −0.445447
\(539\) 0 0
\(540\) −5.47546 −0.235626
\(541\) −21.8687 −0.940208 −0.470104 0.882611i \(-0.655784\pi\)
−0.470104 + 0.882611i \(0.655784\pi\)
\(542\) −6.90805 −0.296726
\(543\) −18.1446 −0.778657
\(544\) −1.00000 −0.0428746
\(545\) −0.0971344 −0.00416078
\(546\) 0 0
\(547\) −7.03126 −0.300635 −0.150318 0.988638i \(-0.548030\pi\)
−0.150318 + 0.988638i \(0.548030\pi\)
\(548\) 21.3247 0.910948
\(549\) −12.8853 −0.549933
\(550\) −1.04989 −0.0447676
\(551\) 0.266571 0.0113563
\(552\) 2.89855 0.123370
\(553\) 0 0
\(554\) −17.9763 −0.763741
\(555\) −10.5606 −0.448272
\(556\) −4.23241 −0.179494
\(557\) −11.8787 −0.503319 −0.251659 0.967816i \(-0.580976\pi\)
−0.251659 + 0.967816i \(0.580976\pi\)
\(558\) 8.02107 0.339559
\(559\) −19.4049 −0.820742
\(560\) 0 0
\(561\) 1.26204 0.0532834
\(562\) 12.9520 0.546347
\(563\) 7.38299 0.311156 0.155578 0.987824i \(-0.450276\pi\)
0.155578 + 0.987824i \(0.450276\pi\)
\(564\) −5.50380 −0.231752
\(565\) −9.08386 −0.382161
\(566\) −5.35862 −0.225240
\(567\) 0 0
\(568\) −0.799200 −0.0335337
\(569\) 25.6898 1.07697 0.538487 0.842634i \(-0.318996\pi\)
0.538487 + 0.842634i \(0.318996\pi\)
\(570\) 4.74682 0.198822
\(571\) −7.23204 −0.302652 −0.151326 0.988484i \(-0.548354\pi\)
−0.151326 + 0.988484i \(0.548354\pi\)
\(572\) −1.78480 −0.0746261
\(573\) −0.133257 −0.00556687
\(574\) 0 0
\(575\) −2.41130 −0.100558
\(576\) −1.55504 −0.0647932
\(577\) 26.3014 1.09494 0.547471 0.836825i \(-0.315591\pi\)
0.547471 + 0.836825i \(0.315591\pi\)
\(578\) −1.00000 −0.0415945
\(579\) −17.7125 −0.736107
\(580\) −0.0675053 −0.00280301
\(581\) 0 0
\(582\) 11.0138 0.456538
\(583\) 3.67071 0.152025
\(584\) −6.62819 −0.274277
\(585\) 2.64353 0.109296
\(586\) 31.3388 1.29459
\(587\) 33.0507 1.36415 0.682074 0.731283i \(-0.261078\pi\)
0.682074 + 0.731283i \(0.261078\pi\)
\(588\) 0 0
\(589\) −20.3688 −0.839282
\(590\) 7.57739 0.311956
\(591\) −3.10358 −0.127664
\(592\) −8.78536 −0.361076
\(593\) 45.2312 1.85742 0.928712 0.370802i \(-0.120917\pi\)
0.928712 + 0.370802i \(0.120917\pi\)
\(594\) 5.74865 0.235870
\(595\) 0 0
\(596\) −3.26033 −0.133548
\(597\) −14.7135 −0.602185
\(598\) −4.09916 −0.167627
\(599\) −30.1210 −1.23071 −0.615355 0.788250i \(-0.710987\pi\)
−0.615355 + 0.788250i \(0.710987\pi\)
\(600\) −1.20207 −0.0490741
\(601\) 18.4286 0.751720 0.375860 0.926676i \(-0.377347\pi\)
0.375860 + 0.926676i \(0.377347\pi\)
\(602\) 0 0
\(603\) 14.0970 0.574076
\(604\) 18.8842 0.768386
\(605\) −9.89772 −0.402400
\(606\) 16.1689 0.656818
\(607\) −3.89797 −0.158214 −0.0791069 0.996866i \(-0.525207\pi\)
−0.0791069 + 0.996866i \(0.525207\pi\)
\(608\) 3.94888 0.160148
\(609\) 0 0
\(610\) −8.28619 −0.335498
\(611\) 7.78354 0.314888
\(612\) −1.55504 −0.0628587
\(613\) −8.37322 −0.338191 −0.169096 0.985600i \(-0.554085\pi\)
−0.169096 + 0.985600i \(0.554085\pi\)
\(614\) 21.5310 0.868919
\(615\) 10.0357 0.404678
\(616\) 0 0
\(617\) −29.9146 −1.20432 −0.602159 0.798377i \(-0.705692\pi\)
−0.602159 + 0.798377i \(0.705692\pi\)
\(618\) −2.19439 −0.0882714
\(619\) −4.26919 −0.171593 −0.0857966 0.996313i \(-0.527344\pi\)
−0.0857966 + 0.996313i \(0.527344\pi\)
\(620\) 5.15812 0.207155
\(621\) 13.2030 0.529817
\(622\) −5.00428 −0.200653
\(623\) 0 0
\(624\) −2.04349 −0.0818049
\(625\) 1.00000 0.0400000
\(626\) −29.9140 −1.19560
\(627\) −4.98365 −0.199028
\(628\) −5.02526 −0.200530
\(629\) −8.78536 −0.350295
\(630\) 0 0
\(631\) 3.27476 0.130366 0.0651830 0.997873i \(-0.479237\pi\)
0.0651830 + 0.997873i \(0.479237\pi\)
\(632\) 11.1687 0.444267
\(633\) −30.8053 −1.22440
\(634\) −7.04811 −0.279916
\(635\) −2.08663 −0.0828056
\(636\) 4.20274 0.166650
\(637\) 0 0
\(638\) 0.0708734 0.00280591
\(639\) −1.24279 −0.0491639
\(640\) −1.00000 −0.0395285
\(641\) 9.73319 0.384438 0.192219 0.981352i \(-0.438432\pi\)
0.192219 + 0.981352i \(0.438432\pi\)
\(642\) −15.6341 −0.617030
\(643\) −37.7945 −1.49047 −0.745236 0.666801i \(-0.767663\pi\)
−0.745236 + 0.666801i \(0.767663\pi\)
\(644\) 0 0
\(645\) 13.7214 0.540278
\(646\) 3.94888 0.155367
\(647\) 1.37695 0.0541335 0.0270667 0.999634i \(-0.491383\pi\)
0.0270667 + 0.999634i \(0.491383\pi\)
\(648\) 1.91674 0.0752968
\(649\) −7.95546 −0.312279
\(650\) 1.69998 0.0666786
\(651\) 0 0
\(652\) −21.4233 −0.839000
\(653\) −17.3424 −0.678661 −0.339331 0.940667i \(-0.610201\pi\)
−0.339331 + 0.940667i \(0.610201\pi\)
\(654\) 0.116762 0.00456575
\(655\) 3.46614 0.135433
\(656\) 8.34869 0.325962
\(657\) −10.3071 −0.402118
\(658\) 0 0
\(659\) −4.25802 −0.165869 −0.0829345 0.996555i \(-0.526429\pi\)
−0.0829345 + 0.996555i \(0.526429\pi\)
\(660\) 1.26204 0.0491249
\(661\) 28.9277 1.12516 0.562578 0.826744i \(-0.309809\pi\)
0.562578 + 0.826744i \(0.309809\pi\)
\(662\) 16.6572 0.647400
\(663\) −2.04349 −0.0793624
\(664\) 17.5875 0.682529
\(665\) 0 0
\(666\) −13.6616 −0.529375
\(667\) 0.162776 0.00630270
\(668\) −4.20850 −0.162832
\(669\) 18.9340 0.732031
\(670\) 9.06540 0.350227
\(671\) 8.69962 0.335845
\(672\) 0 0
\(673\) 2.75557 0.106220 0.0531098 0.998589i \(-0.483087\pi\)
0.0531098 + 0.998589i \(0.483087\pi\)
\(674\) 11.5188 0.443687
\(675\) −5.47546 −0.210750
\(676\) −10.1101 −0.388849
\(677\) −26.5363 −1.01987 −0.509937 0.860212i \(-0.670331\pi\)
−0.509937 + 0.860212i \(0.670331\pi\)
\(678\) 10.9194 0.419357
\(679\) 0 0
\(680\) −1.00000 −0.0383482
\(681\) 1.50844 0.0578034
\(682\) −5.41548 −0.207369
\(683\) −12.2708 −0.469528 −0.234764 0.972052i \(-0.575432\pi\)
−0.234764 + 0.972052i \(0.575432\pi\)
\(684\) 6.14066 0.234794
\(685\) 21.3247 0.814776
\(686\) 0 0
\(687\) 16.0823 0.613578
\(688\) 11.4148 0.435186
\(689\) −5.94358 −0.226432
\(690\) 2.89855 0.110346
\(691\) −31.2784 −1.18989 −0.594943 0.803768i \(-0.702825\pi\)
−0.594943 + 0.803768i \(0.702825\pi\)
\(692\) −25.0195 −0.951097
\(693\) 0 0
\(694\) 4.06413 0.154272
\(695\) −4.23241 −0.160545
\(696\) 0.0811458 0.00307583
\(697\) 8.34869 0.316229
\(698\) 0.809305 0.0306327
\(699\) −22.5018 −0.851097
\(700\) 0 0
\(701\) 19.3741 0.731750 0.365875 0.930664i \(-0.380770\pi\)
0.365875 + 0.930664i \(0.380770\pi\)
\(702\) −9.30815 −0.351314
\(703\) 34.6924 1.30845
\(704\) 1.04989 0.0395694
\(705\) −5.50380 −0.207285
\(706\) 0.840633 0.0316376
\(707\) 0 0
\(708\) −9.10852 −0.342319
\(709\) 25.4406 0.955443 0.477722 0.878511i \(-0.341463\pi\)
0.477722 + 0.878511i \(0.341463\pi\)
\(710\) −0.799200 −0.0299934
\(711\) 17.3678 0.651342
\(712\) 1.91107 0.0716202
\(713\) −12.4378 −0.465799
\(714\) 0 0
\(715\) −1.78480 −0.0667476
\(716\) −14.6941 −0.549144
\(717\) −17.6206 −0.658054
\(718\) −18.8913 −0.705018
\(719\) 5.02463 0.187387 0.0936935 0.995601i \(-0.470133\pi\)
0.0936935 + 0.995601i \(0.470133\pi\)
\(720\) −1.55504 −0.0579528
\(721\) 0 0
\(722\) 3.40633 0.126770
\(723\) 11.7875 0.438383
\(724\) −15.0945 −0.560982
\(725\) −0.0675053 −0.00250708
\(726\) 11.8977 0.441566
\(727\) −28.1289 −1.04324 −0.521621 0.853177i \(-0.674672\pi\)
−0.521621 + 0.853177i \(0.674672\pi\)
\(728\) 0 0
\(729\) 22.7262 0.841710
\(730\) −6.62819 −0.245320
\(731\) 11.4148 0.422192
\(732\) 9.96054 0.368152
\(733\) −24.8910 −0.919371 −0.459686 0.888082i \(-0.652038\pi\)
−0.459686 + 0.888082i \(0.652038\pi\)
\(734\) 34.8805 1.28746
\(735\) 0 0
\(736\) 2.41130 0.0888818
\(737\) −9.51771 −0.350589
\(738\) 12.9825 0.477894
\(739\) −36.0732 −1.32698 −0.663488 0.748187i \(-0.730925\pi\)
−0.663488 + 0.748187i \(0.730925\pi\)
\(740\) −8.78536 −0.322956
\(741\) 8.06948 0.296440
\(742\) 0 0
\(743\) 35.2945 1.29483 0.647414 0.762138i \(-0.275850\pi\)
0.647414 + 0.762138i \(0.275850\pi\)
\(744\) −6.20040 −0.227318
\(745\) −3.26033 −0.119449
\(746\) −10.3388 −0.378531
\(747\) 27.3493 1.00066
\(748\) 1.04989 0.0383879
\(749\) 0 0
\(750\) −1.20207 −0.0438932
\(751\) −0.368766 −0.0134565 −0.00672823 0.999977i \(-0.502142\pi\)
−0.00672823 + 0.999977i \(0.502142\pi\)
\(752\) −4.57861 −0.166965
\(753\) −16.4581 −0.599765
\(754\) −0.114758 −0.00417922
\(755\) 18.8842 0.687265
\(756\) 0 0
\(757\) −54.7646 −1.99046 −0.995228 0.0975816i \(-0.968889\pi\)
−0.995228 + 0.0975816i \(0.968889\pi\)
\(758\) −20.5012 −0.744637
\(759\) −3.04317 −0.110460
\(760\) 3.94888 0.143241
\(761\) 3.68087 0.133431 0.0667157 0.997772i \(-0.478748\pi\)
0.0667157 + 0.997772i \(0.478748\pi\)
\(762\) 2.50827 0.0908651
\(763\) 0 0
\(764\) −0.110856 −0.00401064
\(765\) −1.55504 −0.0562225
\(766\) −29.0273 −1.04880
\(767\) 12.8814 0.465120
\(768\) 1.20207 0.0433758
\(769\) 43.9351 1.58434 0.792170 0.610301i \(-0.208951\pi\)
0.792170 + 0.610301i \(0.208951\pi\)
\(770\) 0 0
\(771\) −4.18920 −0.150870
\(772\) −14.7351 −0.530327
\(773\) 7.75284 0.278850 0.139425 0.990233i \(-0.455475\pi\)
0.139425 + 0.990233i \(0.455475\pi\)
\(774\) 17.7505 0.638028
\(775\) 5.15812 0.185285
\(776\) 9.16242 0.328912
\(777\) 0 0
\(778\) 26.8338 0.962040
\(779\) −32.9680 −1.18120
\(780\) −2.04349 −0.0731685
\(781\) 0.839075 0.0300245
\(782\) 2.41130 0.0862280
\(783\) 0.369622 0.0132092
\(784\) 0 0
\(785\) −5.02526 −0.179359
\(786\) −4.16652 −0.148615
\(787\) 7.10864 0.253396 0.126698 0.991941i \(-0.459562\pi\)
0.126698 + 0.991941i \(0.459562\pi\)
\(788\) −2.58188 −0.0919755
\(789\) −2.56711 −0.0913914
\(790\) 11.1687 0.397365
\(791\) 0 0
\(792\) 1.63262 0.0580128
\(793\) −14.0863 −0.500220
\(794\) 29.1916 1.03597
\(795\) 4.20274 0.149056
\(796\) −12.2402 −0.433843
\(797\) 44.9458 1.59206 0.796031 0.605256i \(-0.206929\pi\)
0.796031 + 0.605256i \(0.206929\pi\)
\(798\) 0 0
\(799\) −4.57861 −0.161980
\(800\) −1.00000 −0.0353553
\(801\) 2.97178 0.105003
\(802\) −6.80078 −0.240144
\(803\) 6.95890 0.245574
\(804\) −10.8972 −0.384315
\(805\) 0 0
\(806\) 8.76869 0.308864
\(807\) 12.4198 0.437198
\(808\) 13.4510 0.473203
\(809\) −41.0294 −1.44252 −0.721258 0.692666i \(-0.756436\pi\)
−0.721258 + 0.692666i \(0.756436\pi\)
\(810\) 1.91674 0.0673475
\(811\) 14.0749 0.494237 0.247118 0.968985i \(-0.420516\pi\)
0.247118 + 0.968985i \(0.420516\pi\)
\(812\) 0 0
\(813\) 8.30393 0.291232
\(814\) 9.22370 0.323291
\(815\) −21.4233 −0.750425
\(816\) 1.20207 0.0420807
\(817\) −45.0758 −1.57700
\(818\) −2.63414 −0.0921004
\(819\) 0 0
\(820\) 8.34869 0.291549
\(821\) −33.2171 −1.15928 −0.579642 0.814871i \(-0.696808\pi\)
−0.579642 + 0.814871i \(0.696808\pi\)
\(822\) −25.6337 −0.894079
\(823\) −2.72911 −0.0951309 −0.0475655 0.998868i \(-0.515146\pi\)
−0.0475655 + 0.998868i \(0.515146\pi\)
\(824\) −1.82552 −0.0635949
\(825\) 1.26204 0.0439387
\(826\) 0 0
\(827\) −45.5343 −1.58338 −0.791692 0.610921i \(-0.790799\pi\)
−0.791692 + 0.610921i \(0.790799\pi\)
\(828\) 3.74967 0.130310
\(829\) 8.26239 0.286965 0.143482 0.989653i \(-0.454170\pi\)
0.143482 + 0.989653i \(0.454170\pi\)
\(830\) 17.5875 0.610472
\(831\) 21.6087 0.749599
\(832\) −1.69998 −0.0589361
\(833\) 0 0
\(834\) 5.08764 0.176171
\(835\) −4.20850 −0.145641
\(836\) −4.14591 −0.143389
\(837\) −28.2431 −0.976223
\(838\) −35.2146 −1.21647
\(839\) −5.27258 −0.182030 −0.0910148 0.995850i \(-0.529011\pi\)
−0.0910148 + 0.995850i \(0.529011\pi\)
\(840\) 0 0
\(841\) −28.9954 −0.999843
\(842\) −24.9152 −0.858635
\(843\) −15.5692 −0.536230
\(844\) −25.6270 −0.882117
\(845\) −10.1101 −0.347797
\(846\) −7.11992 −0.244788
\(847\) 0 0
\(848\) 3.49627 0.120062
\(849\) 6.44142 0.221069
\(850\) −1.00000 −0.0342997
\(851\) 21.1842 0.726184
\(852\) 0.960691 0.0329127
\(853\) 19.9929 0.684546 0.342273 0.939601i \(-0.388803\pi\)
0.342273 + 0.939601i \(0.388803\pi\)
\(854\) 0 0
\(855\) 6.14066 0.210006
\(856\) −13.0060 −0.444538
\(857\) −37.2286 −1.27171 −0.635853 0.771810i \(-0.719352\pi\)
−0.635853 + 0.771810i \(0.719352\pi\)
\(858\) 2.14544 0.0732442
\(859\) 27.5317 0.939371 0.469685 0.882834i \(-0.344367\pi\)
0.469685 + 0.882834i \(0.344367\pi\)
\(860\) 11.4148 0.389242
\(861\) 0 0
\(862\) −0.314602 −0.0107154
\(863\) 15.9663 0.543501 0.271750 0.962368i \(-0.412398\pi\)
0.271750 + 0.962368i \(0.412398\pi\)
\(864\) 5.47546 0.186279
\(865\) −25.0195 −0.850687
\(866\) 6.16933 0.209642
\(867\) 1.20207 0.0408243
\(868\) 0 0
\(869\) −11.7260 −0.397776
\(870\) 0.0811458 0.00275110
\(871\) 15.4110 0.522181
\(872\) 0.0971344 0.00328939
\(873\) 14.2479 0.482219
\(874\) −9.52195 −0.322085
\(875\) 0 0
\(876\) 7.96752 0.269198
\(877\) −50.2999 −1.69851 −0.849254 0.527985i \(-0.822948\pi\)
−0.849254 + 0.527985i \(0.822948\pi\)
\(878\) −29.2350 −0.986632
\(879\) −37.6712 −1.27062
\(880\) 1.04989 0.0353919
\(881\) 6.63857 0.223659 0.111830 0.993727i \(-0.464329\pi\)
0.111830 + 0.993727i \(0.464329\pi\)
\(882\) 0 0
\(883\) −44.7937 −1.50743 −0.753713 0.657203i \(-0.771739\pi\)
−0.753713 + 0.657203i \(0.771739\pi\)
\(884\) −1.69998 −0.0571764
\(885\) −9.10852 −0.306180
\(886\) 7.53424 0.253118
\(887\) −19.6376 −0.659366 −0.329683 0.944092i \(-0.606942\pi\)
−0.329683 + 0.944092i \(0.606942\pi\)
\(888\) 10.5606 0.354390
\(889\) 0 0
\(890\) 1.91107 0.0640591
\(891\) −2.01238 −0.0674172
\(892\) 15.7512 0.527390
\(893\) 18.0804 0.605038
\(894\) 3.91914 0.131075
\(895\) −14.6941 −0.491169
\(896\) 0 0
\(897\) 4.92746 0.164523
\(898\) −16.2256 −0.541457
\(899\) −0.348201 −0.0116131
\(900\) −1.55504 −0.0518346
\(901\) 3.49627 0.116478
\(902\) −8.76524 −0.291851
\(903\) 0 0
\(904\) 9.08386 0.302125
\(905\) −15.0945 −0.501757
\(906\) −22.7000 −0.754157
\(907\) −11.6571 −0.387067 −0.193534 0.981094i \(-0.561995\pi\)
−0.193534 + 0.981094i \(0.561995\pi\)
\(908\) 1.25487 0.0416443
\(909\) 20.9167 0.693764
\(910\) 0 0
\(911\) −9.27858 −0.307413 −0.153707 0.988117i \(-0.549121\pi\)
−0.153707 + 0.988117i \(0.549121\pi\)
\(912\) −4.74682 −0.157183
\(913\) −18.4651 −0.611104
\(914\) 9.52210 0.314963
\(915\) 9.96054 0.329285
\(916\) 13.3789 0.442051
\(917\) 0 0
\(918\) 5.47546 0.180717
\(919\) −35.7191 −1.17827 −0.589133 0.808036i \(-0.700531\pi\)
−0.589133 + 0.808036i \(0.700531\pi\)
\(920\) 2.41130 0.0794983
\(921\) −25.8816 −0.852829
\(922\) −16.9510 −0.558252
\(923\) −1.35862 −0.0447196
\(924\) 0 0
\(925\) −8.78536 −0.288861
\(926\) 40.9708 1.34638
\(927\) −2.83875 −0.0932367
\(928\) 0.0675053 0.00221597
\(929\) −15.8688 −0.520640 −0.260320 0.965522i \(-0.583828\pi\)
−0.260320 + 0.965522i \(0.583828\pi\)
\(930\) −6.20040 −0.203319
\(931\) 0 0
\(932\) −18.7193 −0.613171
\(933\) 6.01547 0.196938
\(934\) −11.1039 −0.363331
\(935\) 1.04989 0.0343352
\(936\) −2.64353 −0.0864065
\(937\) 10.6576 0.348170 0.174085 0.984731i \(-0.444303\pi\)
0.174085 + 0.984731i \(0.444303\pi\)
\(938\) 0 0
\(939\) 35.9586 1.17346
\(940\) −4.57861 −0.149338
\(941\) 12.9896 0.423450 0.211725 0.977329i \(-0.432092\pi\)
0.211725 + 0.977329i \(0.432092\pi\)
\(942\) 6.04069 0.196816
\(943\) −20.1312 −0.655563
\(944\) −7.57739 −0.246623
\(945\) 0 0
\(946\) −11.9844 −0.389645
\(947\) 46.4450 1.50926 0.754630 0.656150i \(-0.227816\pi\)
0.754630 + 0.656150i \(0.227816\pi\)
\(948\) −13.4255 −0.436041
\(949\) −11.2678 −0.365768
\(950\) 3.94888 0.128119
\(951\) 8.47229 0.274733
\(952\) 0 0
\(953\) 29.3425 0.950496 0.475248 0.879852i \(-0.342358\pi\)
0.475248 + 0.879852i \(0.342358\pi\)
\(954\) 5.43683 0.176024
\(955\) −0.110856 −0.00358723
\(956\) −14.6586 −0.474093
\(957\) −0.0851945 −0.00275395
\(958\) −33.9667 −1.09741
\(959\) 0 0
\(960\) 1.20207 0.0387965
\(961\) −4.39380 −0.141736
\(962\) −14.9349 −0.481521
\(963\) −20.2249 −0.651738
\(964\) 9.80605 0.315832
\(965\) −14.7351 −0.474339
\(966\) 0 0
\(967\) 26.4863 0.851744 0.425872 0.904784i \(-0.359967\pi\)
0.425872 + 0.904784i \(0.359967\pi\)
\(968\) 9.89772 0.318125
\(969\) −4.74682 −0.152490
\(970\) 9.16242 0.294188
\(971\) 29.6774 0.952394 0.476197 0.879339i \(-0.342015\pi\)
0.476197 + 0.879339i \(0.342015\pi\)
\(972\) 14.1223 0.452973
\(973\) 0 0
\(974\) −19.9526 −0.639323
\(975\) −2.04349 −0.0654439
\(976\) 8.28619 0.265234
\(977\) 37.2644 1.19219 0.596097 0.802912i \(-0.296717\pi\)
0.596097 + 0.802912i \(0.296717\pi\)
\(978\) 25.7522 0.823464
\(979\) −2.00642 −0.0641253
\(980\) 0 0
\(981\) 0.151048 0.00482258
\(982\) −32.6268 −1.04116
\(983\) 10.2325 0.326365 0.163182 0.986596i \(-0.447824\pi\)
0.163182 + 0.986596i \(0.447824\pi\)
\(984\) −10.0357 −0.319926
\(985\) −2.58188 −0.0822654
\(986\) 0.0675053 0.00214981
\(987\) 0 0
\(988\) 6.71301 0.213569
\(989\) −27.5246 −0.875231
\(990\) 1.63262 0.0518882
\(991\) −43.7261 −1.38901 −0.694503 0.719489i \(-0.744376\pi\)
−0.694503 + 0.719489i \(0.744376\pi\)
\(992\) −5.15812 −0.163770
\(993\) −20.0230 −0.635412
\(994\) 0 0
\(995\) −12.2402 −0.388041
\(996\) −21.1414 −0.669890
\(997\) 14.0207 0.444039 0.222019 0.975042i \(-0.428735\pi\)
0.222019 + 0.975042i \(0.428735\pi\)
\(998\) 31.4821 0.996550
\(999\) 48.1039 1.52194
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8330.2.a.cn.1.5 6
7.6 odd 2 8330.2.a.cq.1.2 yes 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
8330.2.a.cn.1.5 6 1.1 even 1 trivial
8330.2.a.cq.1.2 yes 6 7.6 odd 2