Properties

Label 8330.2.a.cn
Level $8330$
Weight $2$
Character orbit 8330.a
Self dual yes
Analytic conductor $66.515$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8330,2,Mod(1,8330)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8330, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8330.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 8330 = 2 \cdot 5 \cdot 7^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8330.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,-6,-2,6,6,2,0,-6,4,-6,-6,-2,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(66.5153848837\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.12694016.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 8x^{4} - 2x^{3} + 16x^{2} + 8x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{2} + \beta_{2} q^{3} + q^{4} + q^{5} - \beta_{2} q^{6} - q^{8} + (\beta_{4} - \beta_{2} + \beta_1) q^{9} - q^{10} + ( - \beta_1 - 1) q^{11} + \beta_{2} q^{12} + (\beta_{5} + \beta_{4} + \beta_1) q^{13}+ \cdots + ( - \beta_{5} - 2 \beta_{4} - \beta_{3} - 1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 6 q^{2} - 2 q^{3} + 6 q^{4} + 6 q^{5} + 2 q^{6} - 6 q^{8} + 4 q^{9} - 6 q^{10} - 6 q^{11} - 2 q^{12} - 2 q^{15} + 6 q^{16} + 6 q^{17} - 4 q^{18} + 6 q^{19} + 6 q^{20} + 6 q^{22} - 2 q^{23} + 2 q^{24}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - 8x^{4} - 2x^{3} + 16x^{2} + 8x - 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} - 4\nu - 1 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( \nu^{4} - 5\nu^{2} - \nu + 3 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( \nu^{5} - \nu^{4} - 7\nu^{3} + 4\nu^{2} + 12\nu \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + 4\beta _1 + 1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{4} + 5\beta_{2} + \beta _1 + 12 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( \beta_{5} + \beta_{4} + 7\beta_{3} + \beta_{2} + 17\beta _1 + 7 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0.103833
−0.683318
−1.56879
1.94606
−2.04989
2.25211
−1.00000 −2.98922 1.00000 1.00000 2.98922 0 −1.00000 5.93543 −1.00000
1.2 −1.00000 −2.53308 1.00000 1.00000 2.53308 0 −1.00000 3.41648 −1.00000
1.3 −1.00000 −0.538903 1.00000 1.00000 0.538903 0 −1.00000 −2.70958 −1.00000
1.4 −1.00000 0.787153 1.00000 1.00000 −0.787153 0 −1.00000 −2.38039 −1.00000
1.5 −1.00000 1.20207 1.00000 1.00000 −1.20207 0 −1.00000 −1.55504 −1.00000
1.6 −1.00000 2.07198 1.00000 1.00000 −2.07198 0 −1.00000 1.29310 −1.00000
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(5\) \( -1 \)
\(7\) \( +1 \)
\(17\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 8330.2.a.cn 6
7.b odd 2 1 8330.2.a.cq yes 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
8330.2.a.cn 6 1.a even 1 1 trivial
8330.2.a.cq yes 6 7.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(8330))\):

\( T_{3}^{6} + 2T_{3}^{5} - 9T_{3}^{4} - 10T_{3}^{3} + 25T_{3}^{2} - 8 \) Copy content Toggle raw display
\( T_{11}^{6} + 6T_{11}^{5} + 7T_{11}^{4} - 10T_{11}^{3} - 11T_{11}^{2} + 4T_{11} + 2 \) Copy content Toggle raw display
\( T_{13}^{6} - 22T_{13}^{4} - 16T_{13}^{3} + 100T_{13}^{2} + 160T_{13} + 64 \) Copy content Toggle raw display
\( T_{19}^{6} - 6T_{19}^{5} - 9T_{19}^{4} + 82T_{19}^{3} - 131T_{19}^{2} + 68T_{19} - 4 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 1)^{6} \) Copy content Toggle raw display
$3$ \( T^{6} + 2 T^{5} + \cdots - 8 \) Copy content Toggle raw display
$5$ \( (T - 1)^{6} \) Copy content Toggle raw display
$7$ \( T^{6} \) Copy content Toggle raw display
$11$ \( T^{6} + 6 T^{5} + \cdots + 2 \) Copy content Toggle raw display
$13$ \( T^{6} - 22 T^{4} + \cdots + 64 \) Copy content Toggle raw display
$17$ \( (T - 1)^{6} \) Copy content Toggle raw display
$19$ \( T^{6} - 6 T^{5} + \cdots - 4 \) Copy content Toggle raw display
$23$ \( T^{6} + 2 T^{5} + \cdots - 1784 \) Copy content Toggle raw display
$29$ \( T^{6} + 2 T^{5} + \cdots - 8 \) Copy content Toggle raw display
$31$ \( T^{6} + 2 T^{5} + \cdots + 4604 \) Copy content Toggle raw display
$37$ \( T^{6} + 12 T^{5} + \cdots + 3592 \) Copy content Toggle raw display
$41$ \( T^{6} - 6 T^{5} + \cdots + 508 \) Copy content Toggle raw display
$43$ \( T^{6} + 26 T^{5} + \cdots - 47332 \) Copy content Toggle raw display
$47$ \( T^{6} + 30 T^{5} + \cdots - 13550 \) Copy content Toggle raw display
$53$ \( T^{6} - 14 T^{5} + \cdots + 73636 \) Copy content Toggle raw display
$59$ \( T^{6} + 6 T^{5} + \cdots - 51100 \) Copy content Toggle raw display
$61$ \( T^{6} - 12 T^{5} + \cdots + 246032 \) Copy content Toggle raw display
$67$ \( T^{6} + 14 T^{5} + \cdots + 438848 \) Copy content Toggle raw display
$71$ \( T^{6} - 12 T^{5} + \cdots + 56 \) Copy content Toggle raw display
$73$ \( T^{6} + 12 T^{5} + \cdots + 64 \) Copy content Toggle raw display
$79$ \( T^{6} + 36 T^{5} + \cdots - 7112 \) Copy content Toggle raw display
$83$ \( T^{6} + 32 T^{5} + \cdots + 425336 \) Copy content Toggle raw display
$89$ \( T^{6} - 8 T^{5} + \cdots - 43904 \) Copy content Toggle raw display
$97$ \( T^{6} - 16 T^{5} + \cdots - 146944 \) Copy content Toggle raw display
show more
show less