Properties

Label 2-8330-1.1-c1-0-146
Degree $2$
Conductor $8330$
Sign $-1$
Analytic cond. $66.5153$
Root an. cond. $8.15569$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 0.538·3-s + 4-s + 5-s + 0.538·6-s − 8-s − 2.70·9-s − 10-s + 0.568·11-s − 0.538·12-s − 0.762·13-s − 0.538·15-s + 16-s + 17-s + 2.70·18-s + 1.64·19-s + 20-s − 0.568·22-s + 4.70·23-s + 0.538·24-s + 25-s + 0.762·26-s + 3.07·27-s + 1.83·29-s + 0.538·30-s − 5.81·31-s − 32-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.311·3-s + 0.5·4-s + 0.447·5-s + 0.220·6-s − 0.353·8-s − 0.903·9-s − 0.316·10-s + 0.171·11-s − 0.155·12-s − 0.211·13-s − 0.139·15-s + 0.250·16-s + 0.242·17-s + 0.638·18-s + 0.378·19-s + 0.223·20-s − 0.121·22-s + 0.981·23-s + 0.110·24-s + 0.200·25-s + 0.149·26-s + 0.592·27-s + 0.340·29-s + 0.0983·30-s − 1.04·31-s − 0.176·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8330 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8330 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8330\)    =    \(2 \cdot 5 \cdot 7^{2} \cdot 17\)
Sign: $-1$
Analytic conductor: \(66.5153\)
Root analytic conductor: \(8.15569\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 8330,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
5 \( 1 - T \)
7 \( 1 \)
17 \( 1 - T \)
good3 \( 1 + 0.538T + 3T^{2} \)
11 \( 1 - 0.568T + 11T^{2} \)
13 \( 1 + 0.762T + 13T^{2} \)
19 \( 1 - 1.64T + 19T^{2} \)
23 \( 1 - 4.70T + 23T^{2} \)
29 \( 1 - 1.83T + 29T^{2} \)
31 \( 1 + 5.81T + 31T^{2} \)
37 \( 1 + 9.68T + 37T^{2} \)
41 \( 1 - 2.72T + 41T^{2} \)
43 \( 1 + 1.13T + 43T^{2} \)
47 \( 1 + 11.0T + 47T^{2} \)
53 \( 1 + 5.88T + 53T^{2} \)
59 \( 1 + 7.96T + 59T^{2} \)
61 \( 1 - 14.2T + 61T^{2} \)
67 \( 1 - 14.7T + 67T^{2} \)
71 \( 1 + 3.35T + 71T^{2} \)
73 \( 1 + 0.928T + 73T^{2} \)
79 \( 1 + 0.559T + 79T^{2} \)
83 \( 1 - 16.6T + 83T^{2} \)
89 \( 1 + 8.39T + 89T^{2} \)
97 \( 1 + 3.59T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.46877807297855453684963160485, −6.75355084842579246189785458323, −6.23979897993626879043925714730, −5.30361567011987815980041956128, −5.04144320849584778516193228485, −3.64712185217725717214951572702, −2.98611573378902291408123564700, −2.08880567960249192541715959406, −1.14274936800527076918652435876, 0, 1.14274936800527076918652435876, 2.08880567960249192541715959406, 2.98611573378902291408123564700, 3.64712185217725717214951572702, 5.04144320849584778516193228485, 5.30361567011987815980041956128, 6.23979897993626879043925714730, 6.75355084842579246189785458323, 7.46877807297855453684963160485

Graph of the $Z$-function along the critical line