Properties

Label 8330.2.a.cn.1.4
Level $8330$
Weight $2$
Character 8330.1
Self dual yes
Analytic conductor $66.515$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8330,2,Mod(1,8330)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8330, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8330.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 8330 = 2 \cdot 5 \cdot 7^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8330.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,-6,-2,6,6,2,0,-6,4,-6,-6,-2,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(66.5153848837\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.12694016.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 8x^{4} - 2x^{3} + 16x^{2} + 8x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(1.94606\) of defining polynomial
Character \(\chi\) \(=\) 8330.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +0.787153 q^{3} +1.00000 q^{4} +1.00000 q^{5} -0.787153 q^{6} -1.00000 q^{8} -2.38039 q^{9} -1.00000 q^{10} -2.94606 q^{11} +0.787153 q^{12} -1.11320 q^{13} +0.787153 q^{15} +1.00000 q^{16} +1.00000 q^{17} +2.38039 q^{18} +5.69821 q^{19} +1.00000 q^{20} +2.94606 q^{22} -3.99344 q^{23} -0.787153 q^{24} +1.00000 q^{25} +1.11320 q^{26} -4.23519 q^{27} +10.2331 q^{29} -0.787153 q^{30} -2.49192 q^{31} -1.00000 q^{32} -2.31900 q^{33} -1.00000 q^{34} -2.38039 q^{36} +7.19846 q^{37} -5.69821 q^{38} -0.876260 q^{39} -1.00000 q^{40} -8.70353 q^{41} -11.2218 q^{43} -2.94606 q^{44} -2.38039 q^{45} +3.99344 q^{46} -2.16665 q^{47} +0.787153 q^{48} -1.00000 q^{50} +0.787153 q^{51} -1.11320 q^{52} +6.83241 q^{53} +4.23519 q^{54} -2.94606 q^{55} +4.48536 q^{57} -10.2331 q^{58} +8.47762 q^{59} +0.787153 q^{60} -9.45164 q^{61} +2.49192 q^{62} +1.00000 q^{64} -1.11320 q^{65} +2.31900 q^{66} +6.12953 q^{67} +1.00000 q^{68} -3.14345 q^{69} +3.13998 q^{71} +2.38039 q^{72} -1.95049 q^{73} -7.19846 q^{74} +0.787153 q^{75} +5.69821 q^{76} +0.876260 q^{78} -1.03366 q^{79} +1.00000 q^{80} +3.80743 q^{81} +8.70353 q^{82} -10.8662 q^{83} +1.00000 q^{85} +11.2218 q^{86} +8.05499 q^{87} +2.94606 q^{88} -8.62613 q^{89} +2.38039 q^{90} -3.99344 q^{92} -1.96152 q^{93} +2.16665 q^{94} +5.69821 q^{95} -0.787153 q^{96} +3.16732 q^{97} +7.01278 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 6 q^{2} - 2 q^{3} + 6 q^{4} + 6 q^{5} + 2 q^{6} - 6 q^{8} + 4 q^{9} - 6 q^{10} - 6 q^{11} - 2 q^{12} - 2 q^{15} + 6 q^{16} + 6 q^{17} - 4 q^{18} + 6 q^{19} + 6 q^{20} + 6 q^{22} - 2 q^{23} + 2 q^{24}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 0.787153 0.454463 0.227231 0.973841i \(-0.427033\pi\)
0.227231 + 0.973841i \(0.427033\pi\)
\(4\) 1.00000 0.500000
\(5\) 1.00000 0.447214
\(6\) −0.787153 −0.321354
\(7\) 0 0
\(8\) −1.00000 −0.353553
\(9\) −2.38039 −0.793463
\(10\) −1.00000 −0.316228
\(11\) −2.94606 −0.888271 −0.444135 0.895960i \(-0.646489\pi\)
−0.444135 + 0.895960i \(0.646489\pi\)
\(12\) 0.787153 0.227231
\(13\) −1.11320 −0.308747 −0.154373 0.988013i \(-0.549336\pi\)
−0.154373 + 0.988013i \(0.549336\pi\)
\(14\) 0 0
\(15\) 0.787153 0.203242
\(16\) 1.00000 0.250000
\(17\) 1.00000 0.242536
\(18\) 2.38039 0.561063
\(19\) 5.69821 1.30726 0.653629 0.756815i \(-0.273246\pi\)
0.653629 + 0.756815i \(0.273246\pi\)
\(20\) 1.00000 0.223607
\(21\) 0 0
\(22\) 2.94606 0.628102
\(23\) −3.99344 −0.832690 −0.416345 0.909207i \(-0.636689\pi\)
−0.416345 + 0.909207i \(0.636689\pi\)
\(24\) −0.787153 −0.160677
\(25\) 1.00000 0.200000
\(26\) 1.11320 0.218317
\(27\) −4.23519 −0.815063
\(28\) 0 0
\(29\) 10.2331 1.90023 0.950117 0.311894i \(-0.100963\pi\)
0.950117 + 0.311894i \(0.100963\pi\)
\(30\) −0.787153 −0.143714
\(31\) −2.49192 −0.447562 −0.223781 0.974639i \(-0.571840\pi\)
−0.223781 + 0.974639i \(0.571840\pi\)
\(32\) −1.00000 −0.176777
\(33\) −2.31900 −0.403686
\(34\) −1.00000 −0.171499
\(35\) 0 0
\(36\) −2.38039 −0.396732
\(37\) 7.19846 1.18342 0.591710 0.806151i \(-0.298453\pi\)
0.591710 + 0.806151i \(0.298453\pi\)
\(38\) −5.69821 −0.924371
\(39\) −0.876260 −0.140314
\(40\) −1.00000 −0.158114
\(41\) −8.70353 −1.35926 −0.679632 0.733554i \(-0.737860\pi\)
−0.679632 + 0.733554i \(0.737860\pi\)
\(42\) 0 0
\(43\) −11.2218 −1.71131 −0.855656 0.517545i \(-0.826846\pi\)
−0.855656 + 0.517545i \(0.826846\pi\)
\(44\) −2.94606 −0.444135
\(45\) −2.38039 −0.354848
\(46\) 3.99344 0.588801
\(47\) −2.16665 −0.316039 −0.158019 0.987436i \(-0.550511\pi\)
−0.158019 + 0.987436i \(0.550511\pi\)
\(48\) 0.787153 0.113616
\(49\) 0 0
\(50\) −1.00000 −0.141421
\(51\) 0.787153 0.110223
\(52\) −1.11320 −0.154373
\(53\) 6.83241 0.938503 0.469252 0.883065i \(-0.344524\pi\)
0.469252 + 0.883065i \(0.344524\pi\)
\(54\) 4.23519 0.576336
\(55\) −2.94606 −0.397247
\(56\) 0 0
\(57\) 4.48536 0.594100
\(58\) −10.2331 −1.34367
\(59\) 8.47762 1.10369 0.551846 0.833946i \(-0.313924\pi\)
0.551846 + 0.833946i \(0.313924\pi\)
\(60\) 0.787153 0.101621
\(61\) −9.45164 −1.21016 −0.605079 0.796165i \(-0.706858\pi\)
−0.605079 + 0.796165i \(0.706858\pi\)
\(62\) 2.49192 0.316474
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −1.11320 −0.138076
\(66\) 2.31900 0.285449
\(67\) 6.12953 0.748841 0.374420 0.927259i \(-0.377842\pi\)
0.374420 + 0.927259i \(0.377842\pi\)
\(68\) 1.00000 0.121268
\(69\) −3.14345 −0.378427
\(70\) 0 0
\(71\) 3.13998 0.372647 0.186323 0.982488i \(-0.440343\pi\)
0.186323 + 0.982488i \(0.440343\pi\)
\(72\) 2.38039 0.280532
\(73\) −1.95049 −0.228288 −0.114144 0.993464i \(-0.536413\pi\)
−0.114144 + 0.993464i \(0.536413\pi\)
\(74\) −7.19846 −0.836804
\(75\) 0.787153 0.0908926
\(76\) 5.69821 0.653629
\(77\) 0 0
\(78\) 0.876260 0.0992169
\(79\) −1.03366 −0.116296 −0.0581480 0.998308i \(-0.518520\pi\)
−0.0581480 + 0.998308i \(0.518520\pi\)
\(80\) 1.00000 0.111803
\(81\) 3.80743 0.423048
\(82\) 8.70353 0.961144
\(83\) −10.8662 −1.19272 −0.596358 0.802719i \(-0.703386\pi\)
−0.596358 + 0.802719i \(0.703386\pi\)
\(84\) 0 0
\(85\) 1.00000 0.108465
\(86\) 11.2218 1.21008
\(87\) 8.05499 0.863586
\(88\) 2.94606 0.314051
\(89\) −8.62613 −0.914368 −0.457184 0.889372i \(-0.651142\pi\)
−0.457184 + 0.889372i \(0.651142\pi\)
\(90\) 2.38039 0.250915
\(91\) 0 0
\(92\) −3.99344 −0.416345
\(93\) −1.96152 −0.203400
\(94\) 2.16665 0.223473
\(95\) 5.69821 0.584624
\(96\) −0.787153 −0.0803384
\(97\) 3.16732 0.321592 0.160796 0.986988i \(-0.448594\pi\)
0.160796 + 0.986988i \(0.448594\pi\)
\(98\) 0 0
\(99\) 7.01278 0.704810
\(100\) 1.00000 0.100000
\(101\) 10.3227 1.02714 0.513572 0.858047i \(-0.328322\pi\)
0.513572 + 0.858047i \(0.328322\pi\)
\(102\) −0.787153 −0.0779397
\(103\) 3.40765 0.335766 0.167883 0.985807i \(-0.446307\pi\)
0.167883 + 0.985807i \(0.446307\pi\)
\(104\) 1.11320 0.109158
\(105\) 0 0
\(106\) −6.83241 −0.663622
\(107\) −7.36100 −0.711615 −0.355808 0.934559i \(-0.615794\pi\)
−0.355808 + 0.934559i \(0.615794\pi\)
\(108\) −4.23519 −0.407531
\(109\) −12.4287 −1.19046 −0.595228 0.803557i \(-0.702938\pi\)
−0.595228 + 0.803557i \(0.702938\pi\)
\(110\) 2.94606 0.280896
\(111\) 5.66629 0.537820
\(112\) 0 0
\(113\) 7.82860 0.736453 0.368227 0.929736i \(-0.379965\pi\)
0.368227 + 0.929736i \(0.379965\pi\)
\(114\) −4.48536 −0.420092
\(115\) −3.99344 −0.372390
\(116\) 10.2331 0.950117
\(117\) 2.64986 0.244979
\(118\) −8.47762 −0.780428
\(119\) 0 0
\(120\) −0.787153 −0.0718569
\(121\) −2.32073 −0.210975
\(122\) 9.45164 0.855711
\(123\) −6.85101 −0.617735
\(124\) −2.49192 −0.223781
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) −20.5536 −1.82384 −0.911919 0.410371i \(-0.865399\pi\)
−0.911919 + 0.410371i \(0.865399\pi\)
\(128\) −1.00000 −0.0883883
\(129\) −8.83329 −0.777728
\(130\) 1.11320 0.0976343
\(131\) 6.63674 0.579855 0.289927 0.957049i \(-0.406369\pi\)
0.289927 + 0.957049i \(0.406369\pi\)
\(132\) −2.31900 −0.201843
\(133\) 0 0
\(134\) −6.12953 −0.529511
\(135\) −4.23519 −0.364507
\(136\) −1.00000 −0.0857493
\(137\) 12.9437 1.10585 0.552927 0.833230i \(-0.313511\pi\)
0.552927 + 0.833230i \(0.313511\pi\)
\(138\) 3.14345 0.267588
\(139\) 2.82900 0.239952 0.119976 0.992777i \(-0.461718\pi\)
0.119976 + 0.992777i \(0.461718\pi\)
\(140\) 0 0
\(141\) −1.70549 −0.143628
\(142\) −3.13998 −0.263501
\(143\) 3.27956 0.274251
\(144\) −2.38039 −0.198366
\(145\) 10.2331 0.849810
\(146\) 1.95049 0.161424
\(147\) 0 0
\(148\) 7.19846 0.591710
\(149\) −3.64947 −0.298976 −0.149488 0.988764i \(-0.547763\pi\)
−0.149488 + 0.988764i \(0.547763\pi\)
\(150\) −0.787153 −0.0642708
\(151\) −14.2916 −1.16304 −0.581518 0.813533i \(-0.697541\pi\)
−0.581518 + 0.813533i \(0.697541\pi\)
\(152\) −5.69821 −0.462186
\(153\) −2.38039 −0.192443
\(154\) 0 0
\(155\) −2.49192 −0.200156
\(156\) −0.876260 −0.0701570
\(157\) −11.1535 −0.890150 −0.445075 0.895493i \(-0.646823\pi\)
−0.445075 + 0.895493i \(0.646823\pi\)
\(158\) 1.03366 0.0822337
\(159\) 5.37815 0.426515
\(160\) −1.00000 −0.0790569
\(161\) 0 0
\(162\) −3.80743 −0.299140
\(163\) −17.4228 −1.36466 −0.682331 0.731043i \(-0.739034\pi\)
−0.682331 + 0.731043i \(0.739034\pi\)
\(164\) −8.70353 −0.679632
\(165\) −2.31900 −0.180534
\(166\) 10.8662 0.843377
\(167\) −24.2292 −1.87491 −0.937456 0.348104i \(-0.886826\pi\)
−0.937456 + 0.348104i \(0.886826\pi\)
\(168\) 0 0
\(169\) −11.7608 −0.904675
\(170\) −1.00000 −0.0766965
\(171\) −13.5640 −1.03726
\(172\) −11.2218 −0.855656
\(173\) 16.2943 1.23883 0.619417 0.785062i \(-0.287369\pi\)
0.619417 + 0.785062i \(0.287369\pi\)
\(174\) −8.05499 −0.610647
\(175\) 0 0
\(176\) −2.94606 −0.222068
\(177\) 6.67318 0.501587
\(178\) 8.62613 0.646556
\(179\) 12.3943 0.926397 0.463199 0.886255i \(-0.346702\pi\)
0.463199 + 0.886255i \(0.346702\pi\)
\(180\) −2.38039 −0.177424
\(181\) −15.9180 −1.18317 −0.591587 0.806241i \(-0.701498\pi\)
−0.591587 + 0.806241i \(0.701498\pi\)
\(182\) 0 0
\(183\) −7.43988 −0.549972
\(184\) 3.99344 0.294400
\(185\) 7.19846 0.529241
\(186\) 1.96152 0.143826
\(187\) −2.94606 −0.215437
\(188\) −2.16665 −0.158019
\(189\) 0 0
\(190\) −5.69821 −0.413391
\(191\) −21.3006 −1.54126 −0.770630 0.637283i \(-0.780058\pi\)
−0.770630 + 0.637283i \(0.780058\pi\)
\(192\) 0.787153 0.0568079
\(193\) 3.07394 0.221267 0.110634 0.993861i \(-0.464712\pi\)
0.110634 + 0.993861i \(0.464712\pi\)
\(194\) −3.16732 −0.227400
\(195\) −0.876260 −0.0627503
\(196\) 0 0
\(197\) −13.6321 −0.971250 −0.485625 0.874167i \(-0.661408\pi\)
−0.485625 + 0.874167i \(0.661408\pi\)
\(198\) −7.01278 −0.498376
\(199\) 0.747489 0.0529881 0.0264941 0.999649i \(-0.491566\pi\)
0.0264941 + 0.999649i \(0.491566\pi\)
\(200\) −1.00000 −0.0707107
\(201\) 4.82487 0.340320
\(202\) −10.3227 −0.726300
\(203\) 0 0
\(204\) 0.787153 0.0551117
\(205\) −8.70353 −0.607881
\(206\) −3.40765 −0.237423
\(207\) 9.50595 0.660709
\(208\) −1.11320 −0.0771867
\(209\) −16.7873 −1.16120
\(210\) 0 0
\(211\) −3.40524 −0.234426 −0.117213 0.993107i \(-0.537396\pi\)
−0.117213 + 0.993107i \(0.537396\pi\)
\(212\) 6.83241 0.469252
\(213\) 2.47164 0.169354
\(214\) 7.36100 0.503188
\(215\) −11.2218 −0.765322
\(216\) 4.23519 0.288168
\(217\) 0 0
\(218\) 12.4287 0.841779
\(219\) −1.53534 −0.103748
\(220\) −2.94606 −0.198623
\(221\) −1.11320 −0.0748821
\(222\) −5.66629 −0.380296
\(223\) −26.4484 −1.77112 −0.885559 0.464527i \(-0.846224\pi\)
−0.885559 + 0.464527i \(0.846224\pi\)
\(224\) 0 0
\(225\) −2.38039 −0.158693
\(226\) −7.82860 −0.520751
\(227\) −4.73814 −0.314481 −0.157241 0.987560i \(-0.550260\pi\)
−0.157241 + 0.987560i \(0.550260\pi\)
\(228\) 4.48536 0.297050
\(229\) 8.03937 0.531257 0.265628 0.964076i \(-0.414421\pi\)
0.265628 + 0.964076i \(0.414421\pi\)
\(230\) 3.99344 0.263320
\(231\) 0 0
\(232\) −10.2331 −0.671834
\(233\) 4.82207 0.315904 0.157952 0.987447i \(-0.449511\pi\)
0.157952 + 0.987447i \(0.449511\pi\)
\(234\) −2.64986 −0.173226
\(235\) −2.16665 −0.141337
\(236\) 8.47762 0.551846
\(237\) −0.813650 −0.0528522
\(238\) 0 0
\(239\) 1.02875 0.0665443 0.0332721 0.999446i \(-0.489407\pi\)
0.0332721 + 0.999446i \(0.489407\pi\)
\(240\) 0.787153 0.0508105
\(241\) 15.4314 0.994024 0.497012 0.867744i \(-0.334430\pi\)
0.497012 + 0.867744i \(0.334430\pi\)
\(242\) 2.32073 0.149182
\(243\) 15.7026 1.00732
\(244\) −9.45164 −0.605079
\(245\) 0 0
\(246\) 6.85101 0.436804
\(247\) −6.34326 −0.403612
\(248\) 2.49192 0.158237
\(249\) −8.55332 −0.542045
\(250\) −1.00000 −0.0632456
\(251\) −3.69171 −0.233019 −0.116509 0.993190i \(-0.537171\pi\)
−0.116509 + 0.993190i \(0.537171\pi\)
\(252\) 0 0
\(253\) 11.7649 0.739654
\(254\) 20.5536 1.28965
\(255\) 0.787153 0.0492934
\(256\) 1.00000 0.0625000
\(257\) −20.9450 −1.30652 −0.653258 0.757136i \(-0.726598\pi\)
−0.653258 + 0.757136i \(0.726598\pi\)
\(258\) 8.83329 0.549936
\(259\) 0 0
\(260\) −1.11320 −0.0690379
\(261\) −24.3587 −1.50777
\(262\) −6.63674 −0.410019
\(263\) −16.8515 −1.03911 −0.519554 0.854438i \(-0.673902\pi\)
−0.519554 + 0.854438i \(0.673902\pi\)
\(264\) 2.31900 0.142725
\(265\) 6.83241 0.419711
\(266\) 0 0
\(267\) −6.79008 −0.415546
\(268\) 6.12953 0.374420
\(269\) −30.1046 −1.83551 −0.917756 0.397144i \(-0.870001\pi\)
−0.917756 + 0.397144i \(0.870001\pi\)
\(270\) 4.23519 0.257745
\(271\) −2.74351 −0.166656 −0.0833282 0.996522i \(-0.526555\pi\)
−0.0833282 + 0.996522i \(0.526555\pi\)
\(272\) 1.00000 0.0606339
\(273\) 0 0
\(274\) −12.9437 −0.781957
\(275\) −2.94606 −0.177654
\(276\) −3.14345 −0.189213
\(277\) 1.84011 0.110561 0.0552807 0.998471i \(-0.482395\pi\)
0.0552807 + 0.998471i \(0.482395\pi\)
\(278\) −2.82900 −0.169672
\(279\) 5.93174 0.355124
\(280\) 0 0
\(281\) −19.5015 −1.16336 −0.581682 0.813416i \(-0.697605\pi\)
−0.581682 + 0.813416i \(0.697605\pi\)
\(282\) 1.70549 0.101560
\(283\) 7.49543 0.445557 0.222778 0.974869i \(-0.428487\pi\)
0.222778 + 0.974869i \(0.428487\pi\)
\(284\) 3.13998 0.186323
\(285\) 4.48536 0.265690
\(286\) −3.27956 −0.193925
\(287\) 0 0
\(288\) 2.38039 0.140266
\(289\) 1.00000 0.0588235
\(290\) −10.2331 −0.600907
\(291\) 2.49316 0.146152
\(292\) −1.95049 −0.114144
\(293\) 17.5823 1.02717 0.513584 0.858039i \(-0.328317\pi\)
0.513584 + 0.858039i \(0.328317\pi\)
\(294\) 0 0
\(295\) 8.47762 0.493586
\(296\) −7.19846 −0.418402
\(297\) 12.4771 0.723996
\(298\) 3.64947 0.211408
\(299\) 4.44551 0.257090
\(300\) 0.787153 0.0454463
\(301\) 0 0
\(302\) 14.2916 0.822391
\(303\) 8.12551 0.466798
\(304\) 5.69821 0.326815
\(305\) −9.45164 −0.541199
\(306\) 2.38039 0.136078
\(307\) 1.21966 0.0696095 0.0348047 0.999394i \(-0.488919\pi\)
0.0348047 + 0.999394i \(0.488919\pi\)
\(308\) 0 0
\(309\) 2.68235 0.152593
\(310\) 2.49192 0.141531
\(311\) 23.2968 1.32104 0.660519 0.750809i \(-0.270336\pi\)
0.660519 + 0.750809i \(0.270336\pi\)
\(312\) 0.876260 0.0496085
\(313\) −5.26705 −0.297711 −0.148856 0.988859i \(-0.547559\pi\)
−0.148856 + 0.988859i \(0.547559\pi\)
\(314\) 11.1535 0.629431
\(315\) 0 0
\(316\) −1.03366 −0.0581480
\(317\) 9.29454 0.522033 0.261017 0.965334i \(-0.415942\pi\)
0.261017 + 0.965334i \(0.415942\pi\)
\(318\) −5.37815 −0.301592
\(319\) −30.1473 −1.68792
\(320\) 1.00000 0.0559017
\(321\) −5.79423 −0.323403
\(322\) 0 0
\(323\) 5.69821 0.317057
\(324\) 3.80743 0.211524
\(325\) −1.11320 −0.0617493
\(326\) 17.4228 0.964962
\(327\) −9.78331 −0.541018
\(328\) 8.70353 0.480572
\(329\) 0 0
\(330\) 2.31900 0.127657
\(331\) 23.2960 1.28047 0.640233 0.768181i \(-0.278838\pi\)
0.640233 + 0.768181i \(0.278838\pi\)
\(332\) −10.8662 −0.596358
\(333\) −17.1351 −0.939000
\(334\) 24.2292 1.32576
\(335\) 6.12953 0.334892
\(336\) 0 0
\(337\) −27.4705 −1.49641 −0.748207 0.663466i \(-0.769085\pi\)
−0.748207 + 0.663466i \(0.769085\pi\)
\(338\) 11.7608 0.639702
\(339\) 6.16231 0.334691
\(340\) 1.00000 0.0542326
\(341\) 7.34134 0.397556
\(342\) 13.5640 0.733455
\(343\) 0 0
\(344\) 11.2218 0.605040
\(345\) −3.14345 −0.169238
\(346\) −16.2943 −0.875988
\(347\) 29.1651 1.56566 0.782832 0.622233i \(-0.213774\pi\)
0.782832 + 0.622233i \(0.213774\pi\)
\(348\) 8.05499 0.431793
\(349\) 22.0357 1.17954 0.589771 0.807571i \(-0.299218\pi\)
0.589771 + 0.807571i \(0.299218\pi\)
\(350\) 0 0
\(351\) 4.71462 0.251648
\(352\) 2.94606 0.157026
\(353\) −20.8632 −1.11044 −0.555218 0.831705i \(-0.687365\pi\)
−0.555218 + 0.831705i \(0.687365\pi\)
\(354\) −6.67318 −0.354675
\(355\) 3.13998 0.166653
\(356\) −8.62613 −0.457184
\(357\) 0 0
\(358\) −12.3943 −0.655062
\(359\) −23.1275 −1.22062 −0.610312 0.792161i \(-0.708956\pi\)
−0.610312 + 0.792161i \(0.708956\pi\)
\(360\) 2.38039 0.125458
\(361\) 13.4696 0.708924
\(362\) 15.9180 0.836630
\(363\) −1.82677 −0.0958803
\(364\) 0 0
\(365\) −1.95049 −0.102093
\(366\) 7.43988 0.388889
\(367\) −13.9632 −0.728871 −0.364435 0.931229i \(-0.618738\pi\)
−0.364435 + 0.931229i \(0.618738\pi\)
\(368\) −3.99344 −0.208173
\(369\) 20.7178 1.07853
\(370\) −7.19846 −0.374230
\(371\) 0 0
\(372\) −1.96152 −0.101700
\(373\) −17.3986 −0.900867 −0.450433 0.892810i \(-0.648731\pi\)
−0.450433 + 0.892810i \(0.648731\pi\)
\(374\) 2.94606 0.152337
\(375\) 0.787153 0.0406484
\(376\) 2.16665 0.111736
\(377\) −11.3915 −0.586691
\(378\) 0 0
\(379\) −22.1472 −1.13763 −0.568813 0.822467i \(-0.692597\pi\)
−0.568813 + 0.822467i \(0.692597\pi\)
\(380\) 5.69821 0.292312
\(381\) −16.1788 −0.828867
\(382\) 21.3006 1.08984
\(383\) 32.2236 1.64655 0.823275 0.567643i \(-0.192145\pi\)
0.823275 + 0.567643i \(0.192145\pi\)
\(384\) −0.787153 −0.0401692
\(385\) 0 0
\(386\) −3.07394 −0.156459
\(387\) 26.7123 1.35786
\(388\) 3.16732 0.160796
\(389\) −21.2771 −1.07879 −0.539395 0.842053i \(-0.681347\pi\)
−0.539395 + 0.842053i \(0.681347\pi\)
\(390\) 0.876260 0.0443712
\(391\) −3.99344 −0.201957
\(392\) 0 0
\(393\) 5.22413 0.263522
\(394\) 13.6321 0.686778
\(395\) −1.03366 −0.0520092
\(396\) 7.01278 0.352405
\(397\) 19.9983 1.00368 0.501842 0.864959i \(-0.332656\pi\)
0.501842 + 0.864959i \(0.332656\pi\)
\(398\) −0.747489 −0.0374682
\(399\) 0 0
\(400\) 1.00000 0.0500000
\(401\) 3.05235 0.152427 0.0762136 0.997092i \(-0.475717\pi\)
0.0762136 + 0.997092i \(0.475717\pi\)
\(402\) −4.82487 −0.240643
\(403\) 2.77401 0.138183
\(404\) 10.3227 0.513572
\(405\) 3.80743 0.189193
\(406\) 0 0
\(407\) −21.2071 −1.05120
\(408\) −0.787153 −0.0389699
\(409\) 23.1383 1.14412 0.572058 0.820213i \(-0.306145\pi\)
0.572058 + 0.820213i \(0.306145\pi\)
\(410\) 8.70353 0.429837
\(411\) 10.1887 0.502570
\(412\) 3.40765 0.167883
\(413\) 0 0
\(414\) −9.50595 −0.467192
\(415\) −10.8662 −0.533398
\(416\) 1.11320 0.0545792
\(417\) 2.22685 0.109049
\(418\) 16.7873 0.821092
\(419\) −37.3839 −1.82632 −0.913161 0.407599i \(-0.866366\pi\)
−0.913161 + 0.407599i \(0.866366\pi\)
\(420\) 0 0
\(421\) −23.7075 −1.15543 −0.577717 0.816237i \(-0.696056\pi\)
−0.577717 + 0.816237i \(0.696056\pi\)
\(422\) 3.40524 0.165765
\(423\) 5.15748 0.250765
\(424\) −6.83241 −0.331811
\(425\) 1.00000 0.0485071
\(426\) −2.47164 −0.119751
\(427\) 0 0
\(428\) −7.36100 −0.355808
\(429\) 2.58152 0.124637
\(430\) 11.2218 0.541164
\(431\) 30.4551 1.46697 0.733485 0.679706i \(-0.237893\pi\)
0.733485 + 0.679706i \(0.237893\pi\)
\(432\) −4.23519 −0.203766
\(433\) −33.9326 −1.63070 −0.815348 0.578972i \(-0.803454\pi\)
−0.815348 + 0.578972i \(0.803454\pi\)
\(434\) 0 0
\(435\) 8.05499 0.386207
\(436\) −12.4287 −0.595228
\(437\) −22.7555 −1.08854
\(438\) 1.53534 0.0733612
\(439\) −14.2887 −0.681962 −0.340981 0.940070i \(-0.610759\pi\)
−0.340981 + 0.940070i \(0.610759\pi\)
\(440\) 2.94606 0.140448
\(441\) 0 0
\(442\) 1.11320 0.0529496
\(443\) 23.8510 1.13319 0.566597 0.823995i \(-0.308260\pi\)
0.566597 + 0.823995i \(0.308260\pi\)
\(444\) 5.66629 0.268910
\(445\) −8.62613 −0.408918
\(446\) 26.4484 1.25237
\(447\) −2.87269 −0.135873
\(448\) 0 0
\(449\) −24.6972 −1.16553 −0.582766 0.812640i \(-0.698029\pi\)
−0.582766 + 0.812640i \(0.698029\pi\)
\(450\) 2.38039 0.112213
\(451\) 25.6411 1.20739
\(452\) 7.82860 0.368227
\(453\) −11.2497 −0.528557
\(454\) 4.73814 0.222372
\(455\) 0 0
\(456\) −4.48536 −0.210046
\(457\) −32.7562 −1.53227 −0.766135 0.642680i \(-0.777823\pi\)
−0.766135 + 0.642680i \(0.777823\pi\)
\(458\) −8.03937 −0.375655
\(459\) −4.23519 −0.197682
\(460\) −3.99344 −0.186195
\(461\) 25.0719 1.16771 0.583857 0.811856i \(-0.301543\pi\)
0.583857 + 0.811856i \(0.301543\pi\)
\(462\) 0 0
\(463\) 15.6048 0.725216 0.362608 0.931942i \(-0.381886\pi\)
0.362608 + 0.931942i \(0.381886\pi\)
\(464\) 10.2331 0.475059
\(465\) −1.96152 −0.0909633
\(466\) −4.82207 −0.223378
\(467\) 9.63558 0.445882 0.222941 0.974832i \(-0.428434\pi\)
0.222941 + 0.974832i \(0.428434\pi\)
\(468\) 2.64986 0.122490
\(469\) 0 0
\(470\) 2.16665 0.0999402
\(471\) −8.77954 −0.404540
\(472\) −8.47762 −0.390214
\(473\) 33.0602 1.52011
\(474\) 0.813650 0.0373722
\(475\) 5.69821 0.261452
\(476\) 0 0
\(477\) −16.2638 −0.744668
\(478\) −1.02875 −0.0470539
\(479\) −17.7902 −0.812853 −0.406426 0.913683i \(-0.633225\pi\)
−0.406426 + 0.913683i \(0.633225\pi\)
\(480\) −0.787153 −0.0359284
\(481\) −8.01334 −0.365377
\(482\) −15.4314 −0.702881
\(483\) 0 0
\(484\) −2.32073 −0.105488
\(485\) 3.16732 0.143821
\(486\) −15.7026 −0.712284
\(487\) −20.7253 −0.939152 −0.469576 0.882892i \(-0.655593\pi\)
−0.469576 + 0.882892i \(0.655593\pi\)
\(488\) 9.45164 0.427855
\(489\) −13.7144 −0.620189
\(490\) 0 0
\(491\) 26.2703 1.18556 0.592782 0.805363i \(-0.298030\pi\)
0.592782 + 0.805363i \(0.298030\pi\)
\(492\) −6.85101 −0.308867
\(493\) 10.2331 0.460874
\(494\) 6.34326 0.285397
\(495\) 7.01278 0.315201
\(496\) −2.49192 −0.111890
\(497\) 0 0
\(498\) 8.55332 0.383283
\(499\) 3.31684 0.148482 0.0742411 0.997240i \(-0.476347\pi\)
0.0742411 + 0.997240i \(0.476347\pi\)
\(500\) 1.00000 0.0447214
\(501\) −19.0721 −0.852078
\(502\) 3.69171 0.164769
\(503\) −1.87937 −0.0837972 −0.0418986 0.999122i \(-0.513341\pi\)
−0.0418986 + 0.999122i \(0.513341\pi\)
\(504\) 0 0
\(505\) 10.3227 0.459352
\(506\) −11.7649 −0.523015
\(507\) −9.25753 −0.411141
\(508\) −20.5536 −0.911919
\(509\) 22.5275 0.998514 0.499257 0.866454i \(-0.333606\pi\)
0.499257 + 0.866454i \(0.333606\pi\)
\(510\) −0.787153 −0.0348557
\(511\) 0 0
\(512\) −1.00000 −0.0441942
\(513\) −24.1330 −1.06550
\(514\) 20.9450 0.923846
\(515\) 3.40765 0.150159
\(516\) −8.83329 −0.388864
\(517\) 6.38309 0.280728
\(518\) 0 0
\(519\) 12.8261 0.563004
\(520\) 1.11320 0.0488171
\(521\) 20.8370 0.912886 0.456443 0.889753i \(-0.349123\pi\)
0.456443 + 0.889753i \(0.349123\pi\)
\(522\) 24.3587 1.06615
\(523\) −2.71013 −0.118506 −0.0592528 0.998243i \(-0.518872\pi\)
−0.0592528 + 0.998243i \(0.518872\pi\)
\(524\) 6.63674 0.289927
\(525\) 0 0
\(526\) 16.8515 0.734760
\(527\) −2.49192 −0.108550
\(528\) −2.31900 −0.100922
\(529\) −7.05243 −0.306627
\(530\) −6.83241 −0.296781
\(531\) −20.1800 −0.875739
\(532\) 0 0
\(533\) 9.68879 0.419668
\(534\) 6.79008 0.293836
\(535\) −7.36100 −0.318244
\(536\) −6.12953 −0.264755
\(537\) 9.75625 0.421013
\(538\) 30.1046 1.29790
\(539\) 0 0
\(540\) −4.23519 −0.182254
\(541\) 21.8197 0.938103 0.469052 0.883171i \(-0.344596\pi\)
0.469052 + 0.883171i \(0.344596\pi\)
\(542\) 2.74351 0.117844
\(543\) −12.5299 −0.537709
\(544\) −1.00000 −0.0428746
\(545\) −12.4287 −0.532388
\(546\) 0 0
\(547\) 31.8855 1.36333 0.681664 0.731666i \(-0.261257\pi\)
0.681664 + 0.731666i \(0.261257\pi\)
\(548\) 12.9437 0.552927
\(549\) 22.4986 0.960216
\(550\) 2.94606 0.125620
\(551\) 58.3102 2.48410
\(552\) 3.14345 0.133794
\(553\) 0 0
\(554\) −1.84011 −0.0781787
\(555\) 5.66629 0.240520
\(556\) 2.82900 0.119976
\(557\) −3.41154 −0.144551 −0.0722757 0.997385i \(-0.523026\pi\)
−0.0722757 + 0.997385i \(0.523026\pi\)
\(558\) −5.93174 −0.251110
\(559\) 12.4922 0.528362
\(560\) 0 0
\(561\) −2.31900 −0.0979083
\(562\) 19.5015 0.822622
\(563\) −1.81260 −0.0763921 −0.0381961 0.999270i \(-0.512161\pi\)
−0.0381961 + 0.999270i \(0.512161\pi\)
\(564\) −1.70549 −0.0718139
\(565\) 7.82860 0.329352
\(566\) −7.49543 −0.315056
\(567\) 0 0
\(568\) −3.13998 −0.131750
\(569\) 38.3499 1.60771 0.803855 0.594825i \(-0.202779\pi\)
0.803855 + 0.594825i \(0.202779\pi\)
\(570\) −4.48536 −0.187871
\(571\) −25.3419 −1.06052 −0.530262 0.847834i \(-0.677906\pi\)
−0.530262 + 0.847834i \(0.677906\pi\)
\(572\) 3.27956 0.137125
\(573\) −16.7669 −0.700446
\(574\) 0 0
\(575\) −3.99344 −0.166538
\(576\) −2.38039 −0.0991829
\(577\) −43.6081 −1.81543 −0.907714 0.419590i \(-0.862174\pi\)
−0.907714 + 0.419590i \(0.862174\pi\)
\(578\) −1.00000 −0.0415945
\(579\) 2.41966 0.100558
\(580\) 10.2331 0.424905
\(581\) 0 0
\(582\) −2.49316 −0.103345
\(583\) −20.1287 −0.833645
\(584\) 1.95049 0.0807119
\(585\) 2.64986 0.109558
\(586\) −17.5823 −0.726317
\(587\) −17.1863 −0.709354 −0.354677 0.934989i \(-0.615409\pi\)
−0.354677 + 0.934989i \(0.615409\pi\)
\(588\) 0 0
\(589\) −14.1995 −0.585079
\(590\) −8.47762 −0.349018
\(591\) −10.7306 −0.441397
\(592\) 7.19846 0.295855
\(593\) −33.4269 −1.37268 −0.686340 0.727281i \(-0.740784\pi\)
−0.686340 + 0.727281i \(0.740784\pi\)
\(594\) −12.4771 −0.511943
\(595\) 0 0
\(596\) −3.64947 −0.149488
\(597\) 0.588388 0.0240811
\(598\) −4.44551 −0.181790
\(599\) −11.9139 −0.486789 −0.243395 0.969927i \(-0.578261\pi\)
−0.243395 + 0.969927i \(0.578261\pi\)
\(600\) −0.787153 −0.0321354
\(601\) 32.7848 1.33732 0.668660 0.743568i \(-0.266868\pi\)
0.668660 + 0.743568i \(0.266868\pi\)
\(602\) 0 0
\(603\) −14.5907 −0.594178
\(604\) −14.2916 −0.581518
\(605\) −2.32073 −0.0943509
\(606\) −8.12551 −0.330076
\(607\) −20.5013 −0.832123 −0.416061 0.909336i \(-0.636590\pi\)
−0.416061 + 0.909336i \(0.636590\pi\)
\(608\) −5.69821 −0.231093
\(609\) 0 0
\(610\) 9.45164 0.382686
\(611\) 2.41192 0.0975759
\(612\) −2.38039 −0.0962216
\(613\) 42.6746 1.72361 0.861805 0.507239i \(-0.169334\pi\)
0.861805 + 0.507239i \(0.169334\pi\)
\(614\) −1.21966 −0.0492213
\(615\) −6.85101 −0.276259
\(616\) 0 0
\(617\) 7.68208 0.309269 0.154635 0.987972i \(-0.450580\pi\)
0.154635 + 0.987972i \(0.450580\pi\)
\(618\) −2.68235 −0.107900
\(619\) 27.3067 1.09755 0.548774 0.835970i \(-0.315095\pi\)
0.548774 + 0.835970i \(0.315095\pi\)
\(620\) −2.49192 −0.100078
\(621\) 16.9130 0.678695
\(622\) −23.2968 −0.934115
\(623\) 0 0
\(624\) −0.876260 −0.0350785
\(625\) 1.00000 0.0400000
\(626\) 5.26705 0.210514
\(627\) −13.2141 −0.527722
\(628\) −11.1535 −0.445075
\(629\) 7.19846 0.287021
\(630\) 0 0
\(631\) −23.9125 −0.951942 −0.475971 0.879461i \(-0.657903\pi\)
−0.475971 + 0.879461i \(0.657903\pi\)
\(632\) 1.03366 0.0411169
\(633\) −2.68044 −0.106538
\(634\) −9.29454 −0.369133
\(635\) −20.5536 −0.815645
\(636\) 5.37815 0.213257
\(637\) 0 0
\(638\) 30.1473 1.19354
\(639\) −7.47437 −0.295681
\(640\) −1.00000 −0.0395285
\(641\) 7.09763 0.280340 0.140170 0.990127i \(-0.455235\pi\)
0.140170 + 0.990127i \(0.455235\pi\)
\(642\) 5.79423 0.228680
\(643\) 8.85889 0.349360 0.174680 0.984625i \(-0.444111\pi\)
0.174680 + 0.984625i \(0.444111\pi\)
\(644\) 0 0
\(645\) −8.83329 −0.347810
\(646\) −5.69821 −0.224193
\(647\) 8.62968 0.339268 0.169634 0.985507i \(-0.445742\pi\)
0.169634 + 0.985507i \(0.445742\pi\)
\(648\) −3.80743 −0.149570
\(649\) −24.9756 −0.980377
\(650\) 1.11320 0.0436634
\(651\) 0 0
\(652\) −17.4228 −0.682331
\(653\) 2.10941 0.0825476 0.0412738 0.999148i \(-0.486858\pi\)
0.0412738 + 0.999148i \(0.486858\pi\)
\(654\) 9.78331 0.382558
\(655\) 6.63674 0.259319
\(656\) −8.70353 −0.339816
\(657\) 4.64293 0.181138
\(658\) 0 0
\(659\) 34.3393 1.33767 0.668834 0.743412i \(-0.266794\pi\)
0.668834 + 0.743412i \(0.266794\pi\)
\(660\) −2.31900 −0.0902670
\(661\) 27.1956 1.05779 0.528894 0.848688i \(-0.322607\pi\)
0.528894 + 0.848688i \(0.322607\pi\)
\(662\) −23.2960 −0.905426
\(663\) −0.876260 −0.0340311
\(664\) 10.8662 0.421688
\(665\) 0 0
\(666\) 17.1351 0.663973
\(667\) −40.8652 −1.58231
\(668\) −24.2292 −0.937456
\(669\) −20.8190 −0.804907
\(670\) −6.12953 −0.236804
\(671\) 27.8451 1.07495
\(672\) 0 0
\(673\) −10.1538 −0.391402 −0.195701 0.980664i \(-0.562698\pi\)
−0.195701 + 0.980664i \(0.562698\pi\)
\(674\) 27.4705 1.05812
\(675\) −4.23519 −0.163013
\(676\) −11.7608 −0.452338
\(677\) −29.4897 −1.13338 −0.566690 0.823931i \(-0.691776\pi\)
−0.566690 + 0.823931i \(0.691776\pi\)
\(678\) −6.16231 −0.236662
\(679\) 0 0
\(680\) −1.00000 −0.0383482
\(681\) −3.72964 −0.142920
\(682\) −7.34134 −0.281115
\(683\) −41.5991 −1.59175 −0.795874 0.605463i \(-0.792988\pi\)
−0.795874 + 0.605463i \(0.792988\pi\)
\(684\) −13.5640 −0.518631
\(685\) 12.9437 0.494553
\(686\) 0 0
\(687\) 6.32821 0.241436
\(688\) −11.2218 −0.427828
\(689\) −7.60585 −0.289760
\(690\) 3.14345 0.119669
\(691\) 41.0681 1.56230 0.781152 0.624341i \(-0.214632\pi\)
0.781152 + 0.624341i \(0.214632\pi\)
\(692\) 16.2943 0.619417
\(693\) 0 0
\(694\) −29.1651 −1.10709
\(695\) 2.82900 0.107310
\(696\) −8.05499 −0.305324
\(697\) −8.70353 −0.329670
\(698\) −22.0357 −0.834062
\(699\) 3.79571 0.143567
\(700\) 0 0
\(701\) −36.9938 −1.39724 −0.698618 0.715495i \(-0.746201\pi\)
−0.698618 + 0.715495i \(0.746201\pi\)
\(702\) −4.71462 −0.177942
\(703\) 41.0183 1.54703
\(704\) −2.94606 −0.111034
\(705\) −1.70549 −0.0642323
\(706\) 20.8632 0.785197
\(707\) 0 0
\(708\) 6.67318 0.250793
\(709\) −24.7679 −0.930179 −0.465090 0.885264i \(-0.653978\pi\)
−0.465090 + 0.885264i \(0.653978\pi\)
\(710\) −3.13998 −0.117841
\(711\) 2.46052 0.0922767
\(712\) 8.62613 0.323278
\(713\) 9.95133 0.372680
\(714\) 0 0
\(715\) 3.27956 0.122649
\(716\) 12.3943 0.463199
\(717\) 0.809783 0.0302419
\(718\) 23.1275 0.863112
\(719\) 10.5252 0.392524 0.196262 0.980551i \(-0.437120\pi\)
0.196262 + 0.980551i \(0.437120\pi\)
\(720\) −2.38039 −0.0887119
\(721\) 0 0
\(722\) −13.4696 −0.501285
\(723\) 12.1469 0.451747
\(724\) −15.9180 −0.591587
\(725\) 10.2331 0.380047
\(726\) 1.82677 0.0677976
\(727\) −43.5027 −1.61343 −0.806714 0.590943i \(-0.798756\pi\)
−0.806714 + 0.590943i \(0.798756\pi\)
\(728\) 0 0
\(729\) 0.938054 0.0347428
\(730\) 1.95049 0.0721910
\(731\) −11.2218 −0.415054
\(732\) −7.43988 −0.274986
\(733\) −0.717491 −0.0265011 −0.0132506 0.999912i \(-0.504218\pi\)
−0.0132506 + 0.999912i \(0.504218\pi\)
\(734\) 13.9632 0.515389
\(735\) 0 0
\(736\) 3.99344 0.147200
\(737\) −18.0580 −0.665174
\(738\) −20.7178 −0.762633
\(739\) −12.2008 −0.448814 −0.224407 0.974496i \(-0.572045\pi\)
−0.224407 + 0.974496i \(0.572045\pi\)
\(740\) 7.19846 0.264621
\(741\) −4.99311 −0.183427
\(742\) 0 0
\(743\) −24.1016 −0.884203 −0.442102 0.896965i \(-0.645767\pi\)
−0.442102 + 0.896965i \(0.645767\pi\)
\(744\) 1.96152 0.0719128
\(745\) −3.64947 −0.133706
\(746\) 17.3986 0.637009
\(747\) 25.8657 0.946376
\(748\) −2.94606 −0.107719
\(749\) 0 0
\(750\) −0.787153 −0.0287428
\(751\) −52.1531 −1.90310 −0.951548 0.307501i \(-0.900507\pi\)
−0.951548 + 0.307501i \(0.900507\pi\)
\(752\) −2.16665 −0.0790096
\(753\) −2.90594 −0.105898
\(754\) 11.3915 0.414853
\(755\) −14.2916 −0.520126
\(756\) 0 0
\(757\) 17.7395 0.644751 0.322376 0.946612i \(-0.395519\pi\)
0.322376 + 0.946612i \(0.395519\pi\)
\(758\) 22.1472 0.804423
\(759\) 9.26079 0.336145
\(760\) −5.69821 −0.206696
\(761\) −11.3751 −0.412346 −0.206173 0.978516i \(-0.566101\pi\)
−0.206173 + 0.978516i \(0.566101\pi\)
\(762\) 16.1788 0.586097
\(763\) 0 0
\(764\) −21.3006 −0.770630
\(765\) −2.38039 −0.0860632
\(766\) −32.2236 −1.16429
\(767\) −9.43730 −0.340761
\(768\) 0.787153 0.0284039
\(769\) 7.67486 0.276762 0.138381 0.990379i \(-0.455810\pi\)
0.138381 + 0.990379i \(0.455810\pi\)
\(770\) 0 0
\(771\) −16.4869 −0.593763
\(772\) 3.07394 0.110634
\(773\) −11.9392 −0.429425 −0.214712 0.976677i \(-0.568881\pi\)
−0.214712 + 0.976677i \(0.568881\pi\)
\(774\) −26.7123 −0.960154
\(775\) −2.49192 −0.0895123
\(776\) −3.16732 −0.113700
\(777\) 0 0
\(778\) 21.2771 0.762820
\(779\) −49.5945 −1.77691
\(780\) −0.876260 −0.0313751
\(781\) −9.25056 −0.331011
\(782\) 3.99344 0.142805
\(783\) −43.3390 −1.54881
\(784\) 0 0
\(785\) −11.1535 −0.398087
\(786\) −5.22413 −0.186338
\(787\) −3.51065 −0.125141 −0.0625705 0.998041i \(-0.519930\pi\)
−0.0625705 + 0.998041i \(0.519930\pi\)
\(788\) −13.6321 −0.485625
\(789\) −13.2647 −0.472236
\(790\) 1.03366 0.0367760
\(791\) 0 0
\(792\) −7.01278 −0.249188
\(793\) 10.5216 0.373632
\(794\) −19.9983 −0.709712
\(795\) 5.37815 0.190743
\(796\) 0.747489 0.0264941
\(797\) 1.17713 0.0416962 0.0208481 0.999783i \(-0.493363\pi\)
0.0208481 + 0.999783i \(0.493363\pi\)
\(798\) 0 0
\(799\) −2.16665 −0.0766506
\(800\) −1.00000 −0.0353553
\(801\) 20.5336 0.725517
\(802\) −3.05235 −0.107782
\(803\) 5.74627 0.202781
\(804\) 4.82487 0.170160
\(805\) 0 0
\(806\) −2.77401 −0.0977103
\(807\) −23.6970 −0.834172
\(808\) −10.3227 −0.363150
\(809\) −33.7525 −1.18667 −0.593337 0.804954i \(-0.702190\pi\)
−0.593337 + 0.804954i \(0.702190\pi\)
\(810\) −3.80743 −0.133779
\(811\) 8.13532 0.285670 0.142835 0.989747i \(-0.454378\pi\)
0.142835 + 0.989747i \(0.454378\pi\)
\(812\) 0 0
\(813\) −2.15956 −0.0757391
\(814\) 21.2071 0.743308
\(815\) −17.4228 −0.610296
\(816\) 0.787153 0.0275559
\(817\) −63.9443 −2.23713
\(818\) −23.1383 −0.809013
\(819\) 0 0
\(820\) −8.70353 −0.303940
\(821\) 14.2609 0.497710 0.248855 0.968541i \(-0.419946\pi\)
0.248855 + 0.968541i \(0.419946\pi\)
\(822\) −10.1887 −0.355371
\(823\) −47.8267 −1.66713 −0.833567 0.552418i \(-0.813705\pi\)
−0.833567 + 0.552418i \(0.813705\pi\)
\(824\) −3.40765 −0.118711
\(825\) −2.31900 −0.0807372
\(826\) 0 0
\(827\) −45.0419 −1.56626 −0.783130 0.621858i \(-0.786378\pi\)
−0.783130 + 0.621858i \(0.786378\pi\)
\(828\) 9.50595 0.330355
\(829\) 8.95431 0.310996 0.155498 0.987836i \(-0.450302\pi\)
0.155498 + 0.987836i \(0.450302\pi\)
\(830\) 10.8662 0.377170
\(831\) 1.44845 0.0502461
\(832\) −1.11320 −0.0385933
\(833\) 0 0
\(834\) −2.22685 −0.0771096
\(835\) −24.2292 −0.838486
\(836\) −16.7873 −0.580600
\(837\) 10.5537 0.364791
\(838\) 37.3839 1.29140
\(839\) 46.0842 1.59100 0.795502 0.605951i \(-0.207207\pi\)
0.795502 + 0.605951i \(0.207207\pi\)
\(840\) 0 0
\(841\) 75.7158 2.61089
\(842\) 23.7075 0.817015
\(843\) −15.3507 −0.528706
\(844\) −3.40524 −0.117213
\(845\) −11.7608 −0.404583
\(846\) −5.15748 −0.177318
\(847\) 0 0
\(848\) 6.83241 0.234626
\(849\) 5.90005 0.202489
\(850\) −1.00000 −0.0342997
\(851\) −28.7466 −0.985421
\(852\) 2.47164 0.0846770
\(853\) 22.7434 0.778719 0.389360 0.921086i \(-0.372696\pi\)
0.389360 + 0.921086i \(0.372696\pi\)
\(854\) 0 0
\(855\) −13.5640 −0.463878
\(856\) 7.36100 0.251594
\(857\) 53.3998 1.82410 0.912051 0.410076i \(-0.134498\pi\)
0.912051 + 0.410076i \(0.134498\pi\)
\(858\) −2.58152 −0.0881315
\(859\) 44.6070 1.52197 0.760986 0.648769i \(-0.224716\pi\)
0.760986 + 0.648769i \(0.224716\pi\)
\(860\) −11.2218 −0.382661
\(861\) 0 0
\(862\) −30.4551 −1.03730
\(863\) −30.9061 −1.05206 −0.526028 0.850467i \(-0.676319\pi\)
−0.526028 + 0.850467i \(0.676319\pi\)
\(864\) 4.23519 0.144084
\(865\) 16.2943 0.554024
\(866\) 33.9326 1.15308
\(867\) 0.787153 0.0267331
\(868\) 0 0
\(869\) 3.04523 0.103302
\(870\) −8.05499 −0.273090
\(871\) −6.82340 −0.231202
\(872\) 12.4287 0.420890
\(873\) −7.53945 −0.255172
\(874\) 22.7555 0.769715
\(875\) 0 0
\(876\) −1.53534 −0.0518742
\(877\) −33.8726 −1.14380 −0.571898 0.820325i \(-0.693793\pi\)
−0.571898 + 0.820325i \(0.693793\pi\)
\(878\) 14.2887 0.482220
\(879\) 13.8399 0.466810
\(880\) −2.94606 −0.0993117
\(881\) 55.1938 1.85953 0.929763 0.368158i \(-0.120011\pi\)
0.929763 + 0.368158i \(0.120011\pi\)
\(882\) 0 0
\(883\) −22.9974 −0.773923 −0.386961 0.922096i \(-0.626475\pi\)
−0.386961 + 0.922096i \(0.626475\pi\)
\(884\) −1.11320 −0.0374410
\(885\) 6.67318 0.224316
\(886\) −23.8510 −0.801289
\(887\) −36.7976 −1.23554 −0.617771 0.786358i \(-0.711964\pi\)
−0.617771 + 0.786358i \(0.711964\pi\)
\(888\) −5.66629 −0.190148
\(889\) 0 0
\(890\) 8.62613 0.289148
\(891\) −11.2169 −0.375781
\(892\) −26.4484 −0.885559
\(893\) −12.3460 −0.413144
\(894\) 2.87269 0.0960770
\(895\) 12.3943 0.414297
\(896\) 0 0
\(897\) 3.49929 0.116838
\(898\) 24.6972 0.824155
\(899\) −25.5000 −0.850472
\(900\) −2.38039 −0.0793463
\(901\) 6.83241 0.227620
\(902\) −25.6411 −0.853756
\(903\) 0 0
\(904\) −7.82860 −0.260375
\(905\) −15.9180 −0.529131
\(906\) 11.2497 0.373746
\(907\) 5.93095 0.196934 0.0984670 0.995140i \(-0.468606\pi\)
0.0984670 + 0.995140i \(0.468606\pi\)
\(908\) −4.73814 −0.157241
\(909\) −24.5720 −0.815001
\(910\) 0 0
\(911\) 45.8793 1.52005 0.760024 0.649895i \(-0.225187\pi\)
0.760024 + 0.649895i \(0.225187\pi\)
\(912\) 4.48536 0.148525
\(913\) 32.0123 1.05945
\(914\) 32.7562 1.08348
\(915\) −7.43988 −0.245955
\(916\) 8.03937 0.265628
\(917\) 0 0
\(918\) 4.23519 0.139782
\(919\) −0.0236088 −0.000778784 0 −0.000389392 1.00000i \(-0.500124\pi\)
−0.000389392 1.00000i \(0.500124\pi\)
\(920\) 3.99344 0.131660
\(921\) 0.960056 0.0316349
\(922\) −25.0719 −0.825699
\(923\) −3.49543 −0.115053
\(924\) 0 0
\(925\) 7.19846 0.236684
\(926\) −15.6048 −0.512805
\(927\) −8.11155 −0.266418
\(928\) −10.2331 −0.335917
\(929\) −14.9056 −0.489036 −0.244518 0.969645i \(-0.578630\pi\)
−0.244518 + 0.969645i \(0.578630\pi\)
\(930\) 1.96152 0.0643208
\(931\) 0 0
\(932\) 4.82207 0.157952
\(933\) 18.3381 0.600363
\(934\) −9.63558 −0.315286
\(935\) −2.94606 −0.0963465
\(936\) −2.64986 −0.0866132
\(937\) −7.62327 −0.249041 −0.124521 0.992217i \(-0.539739\pi\)
−0.124521 + 0.992217i \(0.539739\pi\)
\(938\) 0 0
\(939\) −4.14597 −0.135299
\(940\) −2.16665 −0.0706684
\(941\) 54.6942 1.78298 0.891491 0.453039i \(-0.149660\pi\)
0.891491 + 0.453039i \(0.149660\pi\)
\(942\) 8.77954 0.286053
\(943\) 34.7570 1.13184
\(944\) 8.47762 0.275923
\(945\) 0 0
\(946\) −33.0602 −1.07488
\(947\) 17.4023 0.565499 0.282750 0.959194i \(-0.408753\pi\)
0.282750 + 0.959194i \(0.408753\pi\)
\(948\) −0.813650 −0.0264261
\(949\) 2.17129 0.0704831
\(950\) −5.69821 −0.184874
\(951\) 7.31622 0.237245
\(952\) 0 0
\(953\) −58.1506 −1.88368 −0.941841 0.336059i \(-0.890906\pi\)
−0.941841 + 0.336059i \(0.890906\pi\)
\(954\) 16.2638 0.526560
\(955\) −21.3006 −0.689273
\(956\) 1.02875 0.0332721
\(957\) −23.7305 −0.767098
\(958\) 17.7902 0.574774
\(959\) 0 0
\(960\) 0.787153 0.0254052
\(961\) −24.7903 −0.799689
\(962\) 8.01334 0.258360
\(963\) 17.5221 0.564641
\(964\) 15.4314 0.497012
\(965\) 3.07394 0.0989536
\(966\) 0 0
\(967\) −1.56273 −0.0502540 −0.0251270 0.999684i \(-0.507999\pi\)
−0.0251270 + 0.999684i \(0.507999\pi\)
\(968\) 2.32073 0.0745909
\(969\) 4.48536 0.144091
\(970\) −3.16732 −0.101696
\(971\) −21.8647 −0.701670 −0.350835 0.936437i \(-0.614102\pi\)
−0.350835 + 0.936437i \(0.614102\pi\)
\(972\) 15.7026 0.503661
\(973\) 0 0
\(974\) 20.7253 0.664081
\(975\) −0.876260 −0.0280628
\(976\) −9.45164 −0.302539
\(977\) −24.5694 −0.786046 −0.393023 0.919529i \(-0.628571\pi\)
−0.393023 + 0.919529i \(0.628571\pi\)
\(978\) 13.7144 0.438540
\(979\) 25.4131 0.812206
\(980\) 0 0
\(981\) 29.5852 0.944583
\(982\) −26.2703 −0.838320
\(983\) 13.0013 0.414676 0.207338 0.978269i \(-0.433520\pi\)
0.207338 + 0.978269i \(0.433520\pi\)
\(984\) 6.85101 0.218402
\(985\) −13.6321 −0.434356
\(986\) −10.2331 −0.325887
\(987\) 0 0
\(988\) −6.34326 −0.201806
\(989\) 44.8137 1.42499
\(990\) −7.01278 −0.222881
\(991\) 44.3146 1.40770 0.703850 0.710349i \(-0.251463\pi\)
0.703850 + 0.710349i \(0.251463\pi\)
\(992\) 2.49192 0.0791185
\(993\) 18.3375 0.581924
\(994\) 0 0
\(995\) 0.747489 0.0236970
\(996\) −8.55332 −0.271022
\(997\) 27.8035 0.880545 0.440272 0.897864i \(-0.354882\pi\)
0.440272 + 0.897864i \(0.354882\pi\)
\(998\) −3.31684 −0.104993
\(999\) −30.4868 −0.964561
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8330.2.a.cn.1.4 6
7.6 odd 2 8330.2.a.cq.1.3 yes 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
8330.2.a.cn.1.4 6 1.1 even 1 trivial
8330.2.a.cq.1.3 yes 6 7.6 odd 2