Properties

Label 8330.2.a.cd.1.3
Level $8330$
Weight $2$
Character 8330.1
Self dual yes
Analytic conductor $66.515$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8330,2,Mod(1,8330)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8330, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8330.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 8330 = 2 \cdot 5 \cdot 7^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8330.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,4,-2,4,-4,-2,0,4,4,-4,2,-2,-14] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(66.5153848837\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.11344.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 4x^{2} + 4x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1190)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-1.51658\) of defining polynomial
Character \(\chi\) \(=\) 8330.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +0.816594 q^{3} +1.00000 q^{4} -1.00000 q^{5} +0.816594 q^{6} +1.00000 q^{8} -2.33317 q^{9} -1.00000 q^{10} +5.84975 q^{11} +0.816594 q^{12} -4.53844 q^{13} -0.816594 q^{15} +1.00000 q^{16} +1.00000 q^{17} -2.33317 q^{18} -5.03316 q^{19} -1.00000 q^{20} +5.84975 q^{22} +6.57160 q^{23} +0.816594 q^{24} +1.00000 q^{25} -4.53844 q^{26} -4.35504 q^{27} -5.96636 q^{29} -0.816594 q^{30} -6.09474 q^{31} +1.00000 q^{32} +4.77687 q^{33} +1.00000 q^{34} -2.33317 q^{36} -3.25628 q^{37} -5.03316 q^{38} -3.70607 q^{39} -1.00000 q^{40} -5.07689 q^{41} -4.20479 q^{43} +5.84975 q^{44} +2.33317 q^{45} +6.57160 q^{46} -3.95627 q^{47} +0.816594 q^{48} +1.00000 q^{50} +0.816594 q^{51} -4.53844 q^{52} -13.9048 q^{53} -4.35504 q^{54} -5.84975 q^{55} -4.11005 q^{57} -5.96636 q^{58} +10.6817 q^{59} -0.816594 q^{60} +0.0437295 q^{61} -6.09474 q^{62} +1.00000 q^{64} +4.53844 q^{65} +4.77687 q^{66} +12.0226 q^{67} +1.00000 q^{68} +5.36633 q^{69} -4.49873 q^{71} -2.33317 q^{72} +7.73315 q^{73} -3.25628 q^{74} +0.816594 q^{75} -5.03316 q^{76} -3.70607 q^{78} -7.67036 q^{79} -1.00000 q^{80} +3.44322 q^{81} -5.07689 q^{82} -13.7943 q^{83} -1.00000 q^{85} -4.20479 q^{86} -4.87210 q^{87} +5.84975 q^{88} -7.85376 q^{89} +2.33317 q^{90} +6.57160 q^{92} -4.97693 q^{93} -3.95627 q^{94} +5.03316 q^{95} +0.816594 q^{96} +3.51002 q^{97} -13.6485 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{2} - 2 q^{3} + 4 q^{4} - 4 q^{5} - 2 q^{6} + 4 q^{8} + 4 q^{9} - 4 q^{10} + 2 q^{11} - 2 q^{12} - 14 q^{13} + 2 q^{15} + 4 q^{16} + 4 q^{17} + 4 q^{18} - 4 q^{19} - 4 q^{20} + 2 q^{22} + 6 q^{23}+ \cdots - 26 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 0.816594 0.471461 0.235730 0.971818i \(-0.424252\pi\)
0.235730 + 0.971818i \(0.424252\pi\)
\(4\) 1.00000 0.500000
\(5\) −1.00000 −0.447214
\(6\) 0.816594 0.333373
\(7\) 0 0
\(8\) 1.00000 0.353553
\(9\) −2.33317 −0.777725
\(10\) −1.00000 −0.316228
\(11\) 5.84975 1.76377 0.881884 0.471467i \(-0.156275\pi\)
0.881884 + 0.471467i \(0.156275\pi\)
\(12\) 0.816594 0.235730
\(13\) −4.53844 −1.25874 −0.629369 0.777107i \(-0.716687\pi\)
−0.629369 + 0.777107i \(0.716687\pi\)
\(14\) 0 0
\(15\) −0.816594 −0.210844
\(16\) 1.00000 0.250000
\(17\) 1.00000 0.242536
\(18\) −2.33317 −0.549934
\(19\) −5.03316 −1.15469 −0.577343 0.816502i \(-0.695910\pi\)
−0.577343 + 0.816502i \(0.695910\pi\)
\(20\) −1.00000 −0.223607
\(21\) 0 0
\(22\) 5.84975 1.24717
\(23\) 6.57160 1.37027 0.685137 0.728414i \(-0.259742\pi\)
0.685137 + 0.728414i \(0.259742\pi\)
\(24\) 0.816594 0.166687
\(25\) 1.00000 0.200000
\(26\) −4.53844 −0.890062
\(27\) −4.35504 −0.838128
\(28\) 0 0
\(29\) −5.96636 −1.10793 −0.553963 0.832541i \(-0.686885\pi\)
−0.553963 + 0.832541i \(0.686885\pi\)
\(30\) −0.816594 −0.149089
\(31\) −6.09474 −1.09465 −0.547324 0.836921i \(-0.684354\pi\)
−0.547324 + 0.836921i \(0.684354\pi\)
\(32\) 1.00000 0.176777
\(33\) 4.77687 0.831547
\(34\) 1.00000 0.171499
\(35\) 0 0
\(36\) −2.33317 −0.388862
\(37\) −3.25628 −0.535330 −0.267665 0.963512i \(-0.586252\pi\)
−0.267665 + 0.963512i \(0.586252\pi\)
\(38\) −5.03316 −0.816486
\(39\) −3.70607 −0.593446
\(40\) −1.00000 −0.158114
\(41\) −5.07689 −0.792877 −0.396438 0.918061i \(-0.629754\pi\)
−0.396438 + 0.918061i \(0.629754\pi\)
\(42\) 0 0
\(43\) −4.20479 −0.641225 −0.320612 0.947210i \(-0.603889\pi\)
−0.320612 + 0.947210i \(0.603889\pi\)
\(44\) 5.84975 0.881884
\(45\) 2.33317 0.347809
\(46\) 6.57160 0.968930
\(47\) −3.95627 −0.577081 −0.288541 0.957468i \(-0.593170\pi\)
−0.288541 + 0.957468i \(0.593170\pi\)
\(48\) 0.816594 0.117865
\(49\) 0 0
\(50\) 1.00000 0.141421
\(51\) 0.816594 0.114346
\(52\) −4.53844 −0.629369
\(53\) −13.9048 −1.90997 −0.954984 0.296657i \(-0.904128\pi\)
−0.954984 + 0.296657i \(0.904128\pi\)
\(54\) −4.35504 −0.592646
\(55\) −5.84975 −0.788781
\(56\) 0 0
\(57\) −4.11005 −0.544389
\(58\) −5.96636 −0.783422
\(59\) 10.6817 1.39063 0.695316 0.718704i \(-0.255264\pi\)
0.695316 + 0.718704i \(0.255264\pi\)
\(60\) −0.816594 −0.105422
\(61\) 0.0437295 0.00559899 0.00279949 0.999996i \(-0.499109\pi\)
0.00279949 + 0.999996i \(0.499109\pi\)
\(62\) −6.09474 −0.774033
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 4.53844 0.562925
\(66\) 4.77687 0.587993
\(67\) 12.0226 1.46879 0.734397 0.678721i \(-0.237465\pi\)
0.734397 + 0.678721i \(0.237465\pi\)
\(68\) 1.00000 0.121268
\(69\) 5.36633 0.646031
\(70\) 0 0
\(71\) −4.49873 −0.533900 −0.266950 0.963710i \(-0.586016\pi\)
−0.266950 + 0.963710i \(0.586016\pi\)
\(72\) −2.33317 −0.274967
\(73\) 7.73315 0.905096 0.452548 0.891740i \(-0.350515\pi\)
0.452548 + 0.891740i \(0.350515\pi\)
\(74\) −3.25628 −0.378535
\(75\) 0.816594 0.0942922
\(76\) −5.03316 −0.577343
\(77\) 0 0
\(78\) −3.70607 −0.419629
\(79\) −7.67036 −0.862983 −0.431491 0.902117i \(-0.642012\pi\)
−0.431491 + 0.902117i \(0.642012\pi\)
\(80\) −1.00000 −0.111803
\(81\) 3.44322 0.382580
\(82\) −5.07689 −0.560649
\(83\) −13.7943 −1.51412 −0.757058 0.653348i \(-0.773364\pi\)
−0.757058 + 0.653348i \(0.773364\pi\)
\(84\) 0 0
\(85\) −1.00000 −0.108465
\(86\) −4.20479 −0.453414
\(87\) −4.87210 −0.522344
\(88\) 5.84975 0.623586
\(89\) −7.85376 −0.832497 −0.416249 0.909251i \(-0.636655\pi\)
−0.416249 + 0.909251i \(0.636655\pi\)
\(90\) 2.33317 0.245938
\(91\) 0 0
\(92\) 6.57160 0.685137
\(93\) −4.97693 −0.516084
\(94\) −3.95627 −0.408058
\(95\) 5.03316 0.516391
\(96\) 0.816594 0.0833433
\(97\) 3.51002 0.356389 0.178194 0.983995i \(-0.442974\pi\)
0.178194 + 0.983995i \(0.442974\pi\)
\(98\) 0 0
\(99\) −13.6485 −1.37173
\(100\) 1.00000 0.100000
\(101\) 11.0995 1.10444 0.552220 0.833699i \(-0.313781\pi\)
0.552220 + 0.833699i \(0.313781\pi\)
\(102\) 0.816594 0.0808549
\(103\) 0.651043 0.0641492 0.0320746 0.999485i \(-0.489789\pi\)
0.0320746 + 0.999485i \(0.489789\pi\)
\(104\) −4.53844 −0.445031
\(105\) 0 0
\(106\) −13.9048 −1.35055
\(107\) −14.2593 −1.37850 −0.689251 0.724522i \(-0.742060\pi\)
−0.689251 + 0.724522i \(0.742060\pi\)
\(108\) −4.35504 −0.419064
\(109\) −4.39949 −0.421395 −0.210698 0.977551i \(-0.567574\pi\)
−0.210698 + 0.977551i \(0.567574\pi\)
\(110\) −5.84975 −0.557752
\(111\) −2.65906 −0.252387
\(112\) 0 0
\(113\) 7.45379 0.701194 0.350597 0.936526i \(-0.385979\pi\)
0.350597 + 0.936526i \(0.385979\pi\)
\(114\) −4.11005 −0.384941
\(115\) −6.57160 −0.612805
\(116\) −5.96636 −0.553963
\(117\) 10.5890 0.978952
\(118\) 10.6817 0.983326
\(119\) 0 0
\(120\) −0.816594 −0.0745445
\(121\) 23.2196 2.11087
\(122\) 0.0437295 0.00395908
\(123\) −4.14576 −0.373810
\(124\) −6.09474 −0.547324
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) 20.4249 1.81242 0.906208 0.422832i \(-0.138964\pi\)
0.906208 + 0.422832i \(0.138964\pi\)
\(128\) 1.00000 0.0883883
\(129\) −3.43361 −0.302312
\(130\) 4.53844 0.398048
\(131\) 5.72793 0.500452 0.250226 0.968187i \(-0.419495\pi\)
0.250226 + 0.968187i \(0.419495\pi\)
\(132\) 4.77687 0.415774
\(133\) 0 0
\(134\) 12.0226 1.03859
\(135\) 4.35504 0.374822
\(136\) 1.00000 0.0857493
\(137\) −7.11005 −0.607452 −0.303726 0.952759i \(-0.598231\pi\)
−0.303726 + 0.952759i \(0.598231\pi\)
\(138\) 5.36633 0.456813
\(139\) 3.89348 0.330241 0.165120 0.986273i \(-0.447199\pi\)
0.165120 + 0.986273i \(0.447199\pi\)
\(140\) 0 0
\(141\) −3.23067 −0.272071
\(142\) −4.49873 −0.377525
\(143\) −26.5488 −2.22012
\(144\) −2.33317 −0.194431
\(145\) 5.96636 0.495479
\(146\) 7.73315 0.640000
\(147\) 0 0
\(148\) −3.25628 −0.267665
\(149\) −6.86153 −0.562118 −0.281059 0.959690i \(-0.590686\pi\)
−0.281059 + 0.959690i \(0.590686\pi\)
\(150\) 0.816594 0.0666746
\(151\) 4.07120 0.331309 0.165655 0.986184i \(-0.447026\pi\)
0.165655 + 0.986184i \(0.447026\pi\)
\(152\) −5.03316 −0.408243
\(153\) −2.33317 −0.188626
\(154\) 0 0
\(155\) 6.09474 0.489542
\(156\) −3.70607 −0.296723
\(157\) −8.20527 −0.654852 −0.327426 0.944877i \(-0.606181\pi\)
−0.327426 + 0.944877i \(0.606181\pi\)
\(158\) −7.67036 −0.610221
\(159\) −11.3546 −0.900475
\(160\) −1.00000 −0.0790569
\(161\) 0 0
\(162\) 3.44322 0.270525
\(163\) −17.9480 −1.40580 −0.702899 0.711290i \(-0.748111\pi\)
−0.702899 + 0.711290i \(0.748111\pi\)
\(164\) −5.07689 −0.396438
\(165\) −4.77687 −0.371879
\(166\) −13.7943 −1.07064
\(167\) −22.4978 −1.74093 −0.870465 0.492231i \(-0.836182\pi\)
−0.870465 + 0.492231i \(0.836182\pi\)
\(168\) 0 0
\(169\) 7.59748 0.584421
\(170\) −1.00000 −0.0766965
\(171\) 11.7432 0.898028
\(172\) −4.20479 −0.320612
\(173\) −3.21256 −0.244246 −0.122123 0.992515i \(-0.538970\pi\)
−0.122123 + 0.992515i \(0.538970\pi\)
\(174\) −4.87210 −0.369353
\(175\) 0 0
\(176\) 5.84975 0.440942
\(177\) 8.72258 0.655629
\(178\) −7.85376 −0.588664
\(179\) 8.83543 0.660391 0.330196 0.943913i \(-0.392885\pi\)
0.330196 + 0.943913i \(0.392885\pi\)
\(180\) 2.33317 0.173905
\(181\) −8.18949 −0.608720 −0.304360 0.952557i \(-0.598443\pi\)
−0.304360 + 0.952557i \(0.598443\pi\)
\(182\) 0 0
\(183\) 0.0357093 0.00263970
\(184\) 6.57160 0.484465
\(185\) 3.25628 0.239407
\(186\) −4.97693 −0.364926
\(187\) 5.84975 0.427776
\(188\) −3.95627 −0.288541
\(189\) 0 0
\(190\) 5.03316 0.365144
\(191\) −23.9990 −1.73651 −0.868255 0.496118i \(-0.834758\pi\)
−0.868255 + 0.496118i \(0.834758\pi\)
\(192\) 0.816594 0.0589326
\(193\) −15.3969 −1.10830 −0.554148 0.832418i \(-0.686956\pi\)
−0.554148 + 0.832418i \(0.686956\pi\)
\(194\) 3.51002 0.252005
\(195\) 3.70607 0.265397
\(196\) 0 0
\(197\) 24.6654 1.75734 0.878668 0.477433i \(-0.158433\pi\)
0.878668 + 0.477433i \(0.158433\pi\)
\(198\) −13.6485 −0.969956
\(199\) −24.8930 −1.76462 −0.882309 0.470670i \(-0.844012\pi\)
−0.882309 + 0.470670i \(0.844012\pi\)
\(200\) 1.00000 0.0707107
\(201\) 9.81758 0.692478
\(202\) 11.0995 0.780957
\(203\) 0 0
\(204\) 0.816594 0.0571730
\(205\) 5.07689 0.354585
\(206\) 0.651043 0.0453603
\(207\) −15.3327 −1.06570
\(208\) −4.53844 −0.314685
\(209\) −29.4427 −2.03660
\(210\) 0 0
\(211\) 22.8711 1.57451 0.787257 0.616625i \(-0.211500\pi\)
0.787257 + 0.616625i \(0.211500\pi\)
\(212\) −13.9048 −0.954984
\(213\) −3.67363 −0.251713
\(214\) −14.2593 −0.974748
\(215\) 4.20479 0.286764
\(216\) −4.35504 −0.296323
\(217\) 0 0
\(218\) −4.39949 −0.297971
\(219\) 6.31484 0.426717
\(220\) −5.84975 −0.394390
\(221\) −4.53844 −0.305289
\(222\) −2.65906 −0.178465
\(223\) −26.0275 −1.74293 −0.871464 0.490459i \(-0.836829\pi\)
−0.871464 + 0.490459i \(0.836829\pi\)
\(224\) 0 0
\(225\) −2.33317 −0.155545
\(226\) 7.45379 0.495819
\(227\) −3.11125 −0.206501 −0.103251 0.994655i \(-0.532924\pi\)
−0.103251 + 0.994655i \(0.532924\pi\)
\(228\) −4.11005 −0.272195
\(229\) 6.62262 0.437635 0.218817 0.975766i \(-0.429780\pi\)
0.218817 + 0.975766i \(0.429780\pi\)
\(230\) −6.57160 −0.433319
\(231\) 0 0
\(232\) −5.96636 −0.391711
\(233\) −27.6885 −1.81393 −0.906966 0.421205i \(-0.861607\pi\)
−0.906966 + 0.421205i \(0.861607\pi\)
\(234\) 10.5890 0.692223
\(235\) 3.95627 0.258079
\(236\) 10.6817 0.695316
\(237\) −6.26357 −0.406863
\(238\) 0 0
\(239\) −13.7717 −0.890815 −0.445407 0.895328i \(-0.646941\pi\)
−0.445407 + 0.895328i \(0.646941\pi\)
\(240\) −0.816594 −0.0527109
\(241\) 4.36888 0.281425 0.140712 0.990051i \(-0.455061\pi\)
0.140712 + 0.990051i \(0.455061\pi\)
\(242\) 23.2196 1.49261
\(243\) 15.8768 1.01850
\(244\) 0.0437295 0.00279949
\(245\) 0 0
\(246\) −4.14576 −0.264324
\(247\) 22.8427 1.45345
\(248\) −6.09474 −0.387017
\(249\) −11.2643 −0.713846
\(250\) −1.00000 −0.0632456
\(251\) −28.5196 −1.80014 −0.900072 0.435742i \(-0.856486\pi\)
−0.900072 + 0.435742i \(0.856486\pi\)
\(252\) 0 0
\(253\) 38.4423 2.41684
\(254\) 20.4249 1.28157
\(255\) −0.816594 −0.0511371
\(256\) 1.00000 0.0625000
\(257\) 0.743237 0.0463619 0.0231809 0.999731i \(-0.492621\pi\)
0.0231809 + 0.999731i \(0.492621\pi\)
\(258\) −3.43361 −0.213767
\(259\) 0 0
\(260\) 4.53844 0.281462
\(261\) 13.9206 0.861661
\(262\) 5.72793 0.353873
\(263\) 4.36586 0.269210 0.134605 0.990899i \(-0.457023\pi\)
0.134605 + 0.990899i \(0.457023\pi\)
\(264\) 4.77687 0.293996
\(265\) 13.9048 0.854164
\(266\) 0 0
\(267\) −6.41334 −0.392490
\(268\) 12.0226 0.734397
\(269\) −15.1432 −0.923298 −0.461649 0.887063i \(-0.652742\pi\)
−0.461649 + 0.887063i \(0.652742\pi\)
\(270\) 4.35504 0.265039
\(271\) −2.60003 −0.157940 −0.0789702 0.996877i \(-0.525163\pi\)
−0.0789702 + 0.996877i \(0.525163\pi\)
\(272\) 1.00000 0.0606339
\(273\) 0 0
\(274\) −7.11005 −0.429534
\(275\) 5.84975 0.352753
\(276\) 5.36633 0.323015
\(277\) −15.8789 −0.954071 −0.477035 0.878884i \(-0.658289\pi\)
−0.477035 + 0.878884i \(0.658289\pi\)
\(278\) 3.89348 0.233516
\(279\) 14.2201 0.851335
\(280\) 0 0
\(281\) 16.2226 0.967762 0.483881 0.875134i \(-0.339227\pi\)
0.483881 + 0.875134i \(0.339227\pi\)
\(282\) −3.23067 −0.192383
\(283\) −2.17043 −0.129019 −0.0645093 0.997917i \(-0.520548\pi\)
−0.0645093 + 0.997917i \(0.520548\pi\)
\(284\) −4.49873 −0.266950
\(285\) 4.11005 0.243458
\(286\) −26.5488 −1.56986
\(287\) 0 0
\(288\) −2.33317 −0.137484
\(289\) 1.00000 0.0588235
\(290\) 5.96636 0.350357
\(291\) 2.86626 0.168023
\(292\) 7.73315 0.452548
\(293\) 15.0043 0.876558 0.438279 0.898839i \(-0.355588\pi\)
0.438279 + 0.898839i \(0.355588\pi\)
\(294\) 0 0
\(295\) −10.6817 −0.621910
\(296\) −3.25628 −0.189268
\(297\) −25.4759 −1.47826
\(298\) −6.86153 −0.397478
\(299\) −29.8249 −1.72482
\(300\) 0.816594 0.0471461
\(301\) 0 0
\(302\) 4.07120 0.234271
\(303\) 9.06377 0.520700
\(304\) −5.03316 −0.288672
\(305\) −0.0437295 −0.00250394
\(306\) −2.33317 −0.133379
\(307\) 27.9407 1.59466 0.797331 0.603542i \(-0.206244\pi\)
0.797331 + 0.603542i \(0.206244\pi\)
\(308\) 0 0
\(309\) 0.531638 0.0302438
\(310\) 6.09474 0.346158
\(311\) 22.3520 1.26747 0.633733 0.773552i \(-0.281522\pi\)
0.633733 + 0.773552i \(0.281522\pi\)
\(312\) −3.70607 −0.209815
\(313\) −12.9513 −0.732052 −0.366026 0.930605i \(-0.619282\pi\)
−0.366026 + 0.930605i \(0.619282\pi\)
\(314\) −8.20527 −0.463050
\(315\) 0 0
\(316\) −7.67036 −0.431491
\(317\) 18.2222 1.02346 0.511729 0.859147i \(-0.329005\pi\)
0.511729 + 0.859147i \(0.329005\pi\)
\(318\) −11.3546 −0.636732
\(319\) −34.9018 −1.95412
\(320\) −1.00000 −0.0559017
\(321\) −11.6441 −0.649910
\(322\) 0 0
\(323\) −5.03316 −0.280052
\(324\) 3.44322 0.191290
\(325\) −4.53844 −0.251748
\(326\) −17.9480 −0.994049
\(327\) −3.59260 −0.198671
\(328\) −5.07689 −0.280324
\(329\) 0 0
\(330\) −4.77687 −0.262958
\(331\) −11.8307 −0.650274 −0.325137 0.945667i \(-0.605410\pi\)
−0.325137 + 0.945667i \(0.605410\pi\)
\(332\) −13.7943 −0.757058
\(333\) 7.59748 0.416339
\(334\) −22.4978 −1.23102
\(335\) −12.0226 −0.656864
\(336\) 0 0
\(337\) −1.49993 −0.0817063 −0.0408532 0.999165i \(-0.513008\pi\)
−0.0408532 + 0.999165i \(0.513008\pi\)
\(338\) 7.59748 0.413248
\(339\) 6.08672 0.330585
\(340\) −1.00000 −0.0542326
\(341\) −35.6528 −1.93070
\(342\) 11.7432 0.635002
\(343\) 0 0
\(344\) −4.20479 −0.226707
\(345\) −5.36633 −0.288914
\(346\) −3.21256 −0.172708
\(347\) 7.98374 0.428590 0.214295 0.976769i \(-0.431255\pi\)
0.214295 + 0.976769i \(0.431255\pi\)
\(348\) −4.87210 −0.261172
\(349\) −0.190444 −0.0101942 −0.00509711 0.999987i \(-0.501622\pi\)
−0.00509711 + 0.999987i \(0.501622\pi\)
\(350\) 0 0
\(351\) 19.7651 1.05498
\(352\) 5.84975 0.311793
\(353\) 8.13312 0.432882 0.216441 0.976296i \(-0.430555\pi\)
0.216441 + 0.976296i \(0.430555\pi\)
\(354\) 8.72258 0.463600
\(355\) 4.49873 0.238768
\(356\) −7.85376 −0.416249
\(357\) 0 0
\(358\) 8.83543 0.466967
\(359\) −32.6758 −1.72456 −0.862282 0.506429i \(-0.830965\pi\)
−0.862282 + 0.506429i \(0.830965\pi\)
\(360\) 2.33317 0.122969
\(361\) 6.33270 0.333300
\(362\) −8.18949 −0.430430
\(363\) 18.9610 0.995195
\(364\) 0 0
\(365\) −7.73315 −0.404771
\(366\) 0.0357093 0.00186655
\(367\) 3.88827 0.202966 0.101483 0.994837i \(-0.467641\pi\)
0.101483 + 0.994837i \(0.467641\pi\)
\(368\) 6.57160 0.342569
\(369\) 11.8453 0.616640
\(370\) 3.25628 0.169286
\(371\) 0 0
\(372\) −4.97693 −0.258042
\(373\) 25.9270 1.34245 0.671225 0.741253i \(-0.265768\pi\)
0.671225 + 0.741253i \(0.265768\pi\)
\(374\) 5.84975 0.302484
\(375\) −0.816594 −0.0421687
\(376\) −3.95627 −0.204029
\(377\) 27.0780 1.39459
\(378\) 0 0
\(379\) −28.1128 −1.44406 −0.722030 0.691862i \(-0.756791\pi\)
−0.722030 + 0.691862i \(0.756791\pi\)
\(380\) 5.03316 0.258196
\(381\) 16.6788 0.854483
\(382\) −23.9990 −1.22790
\(383\) 10.5359 0.538359 0.269180 0.963090i \(-0.413247\pi\)
0.269180 + 0.963090i \(0.413247\pi\)
\(384\) 0.816594 0.0416716
\(385\) 0 0
\(386\) −15.3969 −0.783684
\(387\) 9.81051 0.498696
\(388\) 3.51002 0.178194
\(389\) −21.0052 −1.06501 −0.532503 0.846428i \(-0.678749\pi\)
−0.532503 + 0.846428i \(0.678749\pi\)
\(390\) 3.70607 0.187664
\(391\) 6.57160 0.332340
\(392\) 0 0
\(393\) 4.67740 0.235943
\(394\) 24.6654 1.24262
\(395\) 7.67036 0.385938
\(396\) −13.6485 −0.685863
\(397\) 11.0638 0.555275 0.277637 0.960686i \(-0.410449\pi\)
0.277637 + 0.960686i \(0.410449\pi\)
\(398\) −24.8930 −1.24777
\(399\) 0 0
\(400\) 1.00000 0.0500000
\(401\) 3.09914 0.154764 0.0773819 0.997002i \(-0.475344\pi\)
0.0773819 + 0.997002i \(0.475344\pi\)
\(402\) 9.81758 0.489656
\(403\) 27.6607 1.37788
\(404\) 11.0995 0.552220
\(405\) −3.44322 −0.171095
\(406\) 0 0
\(407\) −19.0485 −0.944197
\(408\) 0.816594 0.0404274
\(409\) 17.5765 0.869101 0.434551 0.900647i \(-0.356907\pi\)
0.434551 + 0.900647i \(0.356907\pi\)
\(410\) 5.07689 0.250730
\(411\) −5.80602 −0.286390
\(412\) 0.651043 0.0320746
\(413\) 0 0
\(414\) −15.3327 −0.753561
\(415\) 13.7943 0.677133
\(416\) −4.53844 −0.222516
\(417\) 3.17940 0.155696
\(418\) −29.4427 −1.44009
\(419\) 26.3257 1.28609 0.643046 0.765827i \(-0.277670\pi\)
0.643046 + 0.765827i \(0.277670\pi\)
\(420\) 0 0
\(421\) 14.5206 0.707690 0.353845 0.935304i \(-0.384874\pi\)
0.353845 + 0.935304i \(0.384874\pi\)
\(422\) 22.8711 1.11335
\(423\) 9.23067 0.448810
\(424\) −13.9048 −0.675276
\(425\) 1.00000 0.0485071
\(426\) −3.67363 −0.177988
\(427\) 0 0
\(428\) −14.2593 −0.689251
\(429\) −21.6796 −1.04670
\(430\) 4.20479 0.202773
\(431\) 4.51891 0.217668 0.108834 0.994060i \(-0.465288\pi\)
0.108834 + 0.994060i \(0.465288\pi\)
\(432\) −4.35504 −0.209532
\(433\) 21.5608 1.03615 0.518073 0.855336i \(-0.326649\pi\)
0.518073 + 0.855336i \(0.326649\pi\)
\(434\) 0 0
\(435\) 4.87210 0.233599
\(436\) −4.39949 −0.210698
\(437\) −33.0759 −1.58224
\(438\) 6.31484 0.301735
\(439\) −16.7239 −0.798189 −0.399095 0.916910i \(-0.630676\pi\)
−0.399095 + 0.916910i \(0.630676\pi\)
\(440\) −5.84975 −0.278876
\(441\) 0 0
\(442\) −4.53844 −0.215872
\(443\) 24.9741 1.18656 0.593278 0.804997i \(-0.297833\pi\)
0.593278 + 0.804997i \(0.297833\pi\)
\(444\) −2.65906 −0.126194
\(445\) 7.85376 0.372304
\(446\) −26.0275 −1.23244
\(447\) −5.60308 −0.265017
\(448\) 0 0
\(449\) 30.0889 1.41998 0.709992 0.704210i \(-0.248699\pi\)
0.709992 + 0.704210i \(0.248699\pi\)
\(450\) −2.33317 −0.109987
\(451\) −29.6986 −1.39845
\(452\) 7.45379 0.350597
\(453\) 3.32452 0.156199
\(454\) −3.11125 −0.146018
\(455\) 0 0
\(456\) −4.11005 −0.192471
\(457\) 6.14576 0.287486 0.143743 0.989615i \(-0.454086\pi\)
0.143743 + 0.989615i \(0.454086\pi\)
\(458\) 6.62262 0.309455
\(459\) −4.35504 −0.203276
\(460\) −6.57160 −0.306403
\(461\) −23.4047 −1.09007 −0.545033 0.838415i \(-0.683483\pi\)
−0.545033 + 0.838415i \(0.683483\pi\)
\(462\) 0 0
\(463\) 3.32782 0.154657 0.0773284 0.997006i \(-0.475361\pi\)
0.0773284 + 0.997006i \(0.475361\pi\)
\(464\) −5.96636 −0.276981
\(465\) 4.97693 0.230800
\(466\) −27.6885 −1.28264
\(467\) −20.2070 −0.935067 −0.467534 0.883975i \(-0.654857\pi\)
−0.467534 + 0.883975i \(0.654857\pi\)
\(468\) 10.5890 0.489476
\(469\) 0 0
\(470\) 3.95627 0.182489
\(471\) −6.70038 −0.308737
\(472\) 10.6817 0.491663
\(473\) −24.5970 −1.13097
\(474\) −6.26357 −0.287695
\(475\) −5.03316 −0.230937
\(476\) 0 0
\(477\) 32.4423 1.48543
\(478\) −13.7717 −0.629901
\(479\) −6.87355 −0.314060 −0.157030 0.987594i \(-0.550192\pi\)
−0.157030 + 0.987594i \(0.550192\pi\)
\(480\) −0.816594 −0.0372723
\(481\) 14.7785 0.673840
\(482\) 4.36888 0.198997
\(483\) 0 0
\(484\) 23.2196 1.05544
\(485\) −3.51002 −0.159382
\(486\) 15.8768 0.720188
\(487\) 11.3757 0.515482 0.257741 0.966214i \(-0.417022\pi\)
0.257741 + 0.966214i \(0.417022\pi\)
\(488\) 0.0437295 0.00197954
\(489\) −14.6563 −0.662779
\(490\) 0 0
\(491\) −13.2890 −0.599723 −0.299861 0.953983i \(-0.596940\pi\)
−0.299861 + 0.953983i \(0.596940\pi\)
\(492\) −4.14576 −0.186905
\(493\) −5.96636 −0.268711
\(494\) 22.8427 1.02774
\(495\) 13.6485 0.613454
\(496\) −6.09474 −0.273662
\(497\) 0 0
\(498\) −11.2643 −0.504766
\(499\) −20.5112 −0.918208 −0.459104 0.888382i \(-0.651830\pi\)
−0.459104 + 0.888382i \(0.651830\pi\)
\(500\) −1.00000 −0.0447214
\(501\) −18.3715 −0.820780
\(502\) −28.5196 −1.27289
\(503\) −30.2906 −1.35059 −0.675295 0.737548i \(-0.735984\pi\)
−0.675295 + 0.737548i \(0.735984\pi\)
\(504\) 0 0
\(505\) −11.0995 −0.493920
\(506\) 38.4423 1.70897
\(507\) 6.20406 0.275532
\(508\) 20.4249 0.906208
\(509\) 19.1432 0.848508 0.424254 0.905543i \(-0.360536\pi\)
0.424254 + 0.905543i \(0.360536\pi\)
\(510\) −0.816594 −0.0361594
\(511\) 0 0
\(512\) 1.00000 0.0441942
\(513\) 21.9196 0.967774
\(514\) 0.743237 0.0327828
\(515\) −0.651043 −0.0286884
\(516\) −3.43361 −0.151156
\(517\) −23.1432 −1.01784
\(518\) 0 0
\(519\) −2.62335 −0.115152
\(520\) 4.53844 0.199024
\(521\) −25.5629 −1.11993 −0.559965 0.828516i \(-0.689185\pi\)
−0.559965 + 0.828516i \(0.689185\pi\)
\(522\) 13.9206 0.609286
\(523\) −33.0344 −1.44449 −0.722246 0.691636i \(-0.756890\pi\)
−0.722246 + 0.691636i \(0.756890\pi\)
\(524\) 5.72793 0.250226
\(525\) 0 0
\(526\) 4.36586 0.190360
\(527\) −6.09474 −0.265491
\(528\) 4.77687 0.207887
\(529\) 20.1860 0.877651
\(530\) 13.9048 0.603985
\(531\) −24.9222 −1.08153
\(532\) 0 0
\(533\) 23.0412 0.998024
\(534\) −6.41334 −0.277532
\(535\) 14.2593 0.616485
\(536\) 12.0226 0.519297
\(537\) 7.21496 0.311349
\(538\) −15.1432 −0.652870
\(539\) 0 0
\(540\) 4.35504 0.187411
\(541\) 11.6412 0.500495 0.250247 0.968182i \(-0.419488\pi\)
0.250247 + 0.968182i \(0.419488\pi\)
\(542\) −2.60003 −0.111681
\(543\) −6.68749 −0.286988
\(544\) 1.00000 0.0428746
\(545\) 4.39949 0.188454
\(546\) 0 0
\(547\) 7.14696 0.305582 0.152791 0.988259i \(-0.451174\pi\)
0.152791 + 0.988259i \(0.451174\pi\)
\(548\) −7.11005 −0.303726
\(549\) −0.102029 −0.00435447
\(550\) 5.84975 0.249434
\(551\) 30.0297 1.27931
\(552\) 5.36633 0.228406
\(553\) 0 0
\(554\) −15.8789 −0.674630
\(555\) 2.65906 0.112871
\(556\) 3.89348 0.165120
\(557\) −1.48510 −0.0629258 −0.0314629 0.999505i \(-0.510017\pi\)
−0.0314629 + 0.999505i \(0.510017\pi\)
\(558\) 14.2201 0.601985
\(559\) 19.0832 0.807134
\(560\) 0 0
\(561\) 4.77687 0.201680
\(562\) 16.2226 0.684311
\(563\) 40.3479 1.70046 0.850230 0.526412i \(-0.176463\pi\)
0.850230 + 0.526412i \(0.176463\pi\)
\(564\) −3.23067 −0.136036
\(565\) −7.45379 −0.313583
\(566\) −2.17043 −0.0912300
\(567\) 0 0
\(568\) −4.49873 −0.188762
\(569\) −4.45413 −0.186727 −0.0933634 0.995632i \(-0.529762\pi\)
−0.0933634 + 0.995632i \(0.529762\pi\)
\(570\) 4.11005 0.172151
\(571\) −18.2048 −0.761847 −0.380923 0.924607i \(-0.624394\pi\)
−0.380923 + 0.924607i \(0.624394\pi\)
\(572\) −26.5488 −1.11006
\(573\) −19.5975 −0.818696
\(574\) 0 0
\(575\) 6.57160 0.274055
\(576\) −2.33317 −0.0972156
\(577\) −26.4000 −1.09905 −0.549523 0.835479i \(-0.685190\pi\)
−0.549523 + 0.835479i \(0.685190\pi\)
\(578\) 1.00000 0.0415945
\(579\) −12.5731 −0.522518
\(580\) 5.96636 0.247740
\(581\) 0 0
\(582\) 2.86626 0.118810
\(583\) −81.3395 −3.36874
\(584\) 7.73315 0.320000
\(585\) −10.5890 −0.437800
\(586\) 15.0043 0.619820
\(587\) 20.2638 0.836378 0.418189 0.908360i \(-0.362665\pi\)
0.418189 + 0.908360i \(0.362665\pi\)
\(588\) 0 0
\(589\) 30.6758 1.26398
\(590\) −10.6817 −0.439757
\(591\) 20.1416 0.828515
\(592\) −3.25628 −0.133832
\(593\) −14.6659 −0.602255 −0.301128 0.953584i \(-0.597363\pi\)
−0.301128 + 0.953584i \(0.597363\pi\)
\(594\) −25.4759 −1.04529
\(595\) 0 0
\(596\) −6.86153 −0.281059
\(597\) −20.3275 −0.831948
\(598\) −29.8249 −1.21963
\(599\) −36.0073 −1.47122 −0.735609 0.677407i \(-0.763104\pi\)
−0.735609 + 0.677407i \(0.763104\pi\)
\(600\) 0.816594 0.0333373
\(601\) 37.4519 1.52769 0.763847 0.645397i \(-0.223308\pi\)
0.763847 + 0.645397i \(0.223308\pi\)
\(602\) 0 0
\(603\) −28.0508 −1.14232
\(604\) 4.07120 0.165655
\(605\) −23.2196 −0.944012
\(606\) 9.06377 0.368190
\(607\) −2.63742 −0.107050 −0.0535248 0.998567i \(-0.517046\pi\)
−0.0535248 + 0.998567i \(0.517046\pi\)
\(608\) −5.03316 −0.204122
\(609\) 0 0
\(610\) −0.0437295 −0.00177056
\(611\) 17.9553 0.726394
\(612\) −2.33317 −0.0943130
\(613\) 40.9887 1.65552 0.827760 0.561083i \(-0.189615\pi\)
0.827760 + 0.561083i \(0.189615\pi\)
\(614\) 27.9407 1.12760
\(615\) 4.14576 0.167173
\(616\) 0 0
\(617\) −30.6838 −1.23528 −0.617642 0.786459i \(-0.711912\pi\)
−0.617642 + 0.786459i \(0.711912\pi\)
\(618\) 0.531638 0.0213856
\(619\) −6.78817 −0.272840 −0.136420 0.990651i \(-0.543560\pi\)
−0.136420 + 0.990651i \(0.543560\pi\)
\(620\) 6.09474 0.244771
\(621\) −28.6196 −1.14846
\(622\) 22.3520 0.896234
\(623\) 0 0
\(624\) −3.70607 −0.148361
\(625\) 1.00000 0.0400000
\(626\) −12.9513 −0.517639
\(627\) −24.0428 −0.960176
\(628\) −8.20527 −0.327426
\(629\) −3.25628 −0.129837
\(630\) 0 0
\(631\) −13.4306 −0.534663 −0.267332 0.963605i \(-0.586142\pi\)
−0.267332 + 0.963605i \(0.586142\pi\)
\(632\) −7.67036 −0.305110
\(633\) 18.6764 0.742322
\(634\) 18.2222 0.723695
\(635\) −20.4249 −0.810537
\(636\) −11.3546 −0.450238
\(637\) 0 0
\(638\) −34.9018 −1.38177
\(639\) 10.4963 0.415228
\(640\) −1.00000 −0.0395285
\(641\) −15.5305 −0.613419 −0.306710 0.951803i \(-0.599228\pi\)
−0.306710 + 0.951803i \(0.599228\pi\)
\(642\) −11.6441 −0.459556
\(643\) −11.8772 −0.468392 −0.234196 0.972189i \(-0.575246\pi\)
−0.234196 + 0.972189i \(0.575246\pi\)
\(644\) 0 0
\(645\) 3.43361 0.135198
\(646\) −5.03316 −0.198027
\(647\) 42.1244 1.65608 0.828040 0.560668i \(-0.189456\pi\)
0.828040 + 0.560668i \(0.189456\pi\)
\(648\) 3.44322 0.135263
\(649\) 62.4850 2.45275
\(650\) −4.53844 −0.178012
\(651\) 0 0
\(652\) −17.9480 −0.702899
\(653\) 21.2015 0.829679 0.414840 0.909895i \(-0.363838\pi\)
0.414840 + 0.909895i \(0.363838\pi\)
\(654\) −3.59260 −0.140482
\(655\) −5.72793 −0.223809
\(656\) −5.07689 −0.198219
\(657\) −18.0428 −0.703916
\(658\) 0 0
\(659\) 41.7673 1.62702 0.813511 0.581549i \(-0.197553\pi\)
0.813511 + 0.581549i \(0.197553\pi\)
\(660\) −4.77687 −0.185940
\(661\) 37.2533 1.44898 0.724492 0.689283i \(-0.242074\pi\)
0.724492 + 0.689283i \(0.242074\pi\)
\(662\) −11.8307 −0.459813
\(663\) −3.70607 −0.143932
\(664\) −13.7943 −0.535321
\(665\) 0 0
\(666\) 7.59748 0.294396
\(667\) −39.2086 −1.51816
\(668\) −22.4978 −0.870465
\(669\) −21.2539 −0.821722
\(670\) −12.0226 −0.464473
\(671\) 0.255807 0.00987531
\(672\) 0 0
\(673\) 37.5956 1.44920 0.724601 0.689168i \(-0.242024\pi\)
0.724601 + 0.689168i \(0.242024\pi\)
\(674\) −1.49993 −0.0577751
\(675\) −4.35504 −0.167626
\(676\) 7.59748 0.292211
\(677\) 10.1091 0.388524 0.194262 0.980950i \(-0.437769\pi\)
0.194262 + 0.980950i \(0.437769\pi\)
\(678\) 6.08672 0.233759
\(679\) 0 0
\(680\) −1.00000 −0.0383482
\(681\) −2.54063 −0.0973572
\(682\) −35.6528 −1.36521
\(683\) 18.9419 0.724793 0.362397 0.932024i \(-0.381959\pi\)
0.362397 + 0.932024i \(0.381959\pi\)
\(684\) 11.7432 0.449014
\(685\) 7.11005 0.271661
\(686\) 0 0
\(687\) 5.40799 0.206328
\(688\) −4.20479 −0.160306
\(689\) 63.1061 2.40415
\(690\) −5.36633 −0.204293
\(691\) −7.05648 −0.268441 −0.134221 0.990951i \(-0.542853\pi\)
−0.134221 + 0.990951i \(0.542853\pi\)
\(692\) −3.21256 −0.122123
\(693\) 0 0
\(694\) 7.98374 0.303059
\(695\) −3.89348 −0.147688
\(696\) −4.87210 −0.184676
\(697\) −5.07689 −0.192301
\(698\) −0.190444 −0.00720840
\(699\) −22.6102 −0.855198
\(700\) 0 0
\(701\) −1.81491 −0.0685483 −0.0342742 0.999412i \(-0.510912\pi\)
−0.0342742 + 0.999412i \(0.510912\pi\)
\(702\) 19.7651 0.745986
\(703\) 16.3894 0.618138
\(704\) 5.84975 0.220471
\(705\) 3.23067 0.121674
\(706\) 8.13312 0.306094
\(707\) 0 0
\(708\) 8.72258 0.327814
\(709\) 10.4477 0.392372 0.196186 0.980567i \(-0.437144\pi\)
0.196186 + 0.980567i \(0.437144\pi\)
\(710\) 4.49873 0.168834
\(711\) 17.8963 0.671163
\(712\) −7.85376 −0.294332
\(713\) −40.0522 −1.49997
\(714\) 0 0
\(715\) 26.5488 0.992868
\(716\) 8.83543 0.330196
\(717\) −11.2459 −0.419984
\(718\) −32.6758 −1.21945
\(719\) 27.7418 1.03459 0.517297 0.855806i \(-0.326938\pi\)
0.517297 + 0.855806i \(0.326938\pi\)
\(720\) 2.33317 0.0869523
\(721\) 0 0
\(722\) 6.33270 0.235679
\(723\) 3.56760 0.132681
\(724\) −8.18949 −0.304360
\(725\) −5.96636 −0.221585
\(726\) 18.9610 0.703709
\(727\) 41.2137 1.52853 0.764265 0.644902i \(-0.223102\pi\)
0.764265 + 0.644902i \(0.223102\pi\)
\(728\) 0 0
\(729\) 2.63526 0.0976022
\(730\) −7.73315 −0.286217
\(731\) −4.20479 −0.155520
\(732\) 0.0357093 0.00131985
\(733\) 32.2400 1.19081 0.595406 0.803425i \(-0.296991\pi\)
0.595406 + 0.803425i \(0.296991\pi\)
\(734\) 3.88827 0.143519
\(735\) 0 0
\(736\) 6.57160 0.242233
\(737\) 70.3292 2.59061
\(738\) 11.8453 0.436030
\(739\) 33.5067 1.23256 0.616281 0.787526i \(-0.288638\pi\)
0.616281 + 0.787526i \(0.288638\pi\)
\(740\) 3.25628 0.119703
\(741\) 18.6532 0.685243
\(742\) 0 0
\(743\) 10.8697 0.398770 0.199385 0.979921i \(-0.436106\pi\)
0.199385 + 0.979921i \(0.436106\pi\)
\(744\) −4.97693 −0.182463
\(745\) 6.86153 0.251387
\(746\) 25.9270 0.949256
\(747\) 32.1844 1.17757
\(748\) 5.84975 0.213888
\(749\) 0 0
\(750\) −0.816594 −0.0298178
\(751\) 18.1771 0.663292 0.331646 0.943404i \(-0.392396\pi\)
0.331646 + 0.943404i \(0.392396\pi\)
\(752\) −3.95627 −0.144270
\(753\) −23.2890 −0.848697
\(754\) 27.0780 0.986123
\(755\) −4.07120 −0.148166
\(756\) 0 0
\(757\) −37.9958 −1.38098 −0.690490 0.723342i \(-0.742605\pi\)
−0.690490 + 0.723342i \(0.742605\pi\)
\(758\) −28.1128 −1.02110
\(759\) 31.3917 1.13945
\(760\) 5.03316 0.182572
\(761\) −45.7314 −1.65776 −0.828881 0.559426i \(-0.811022\pi\)
−0.828881 + 0.559426i \(0.811022\pi\)
\(762\) 16.6788 0.604211
\(763\) 0 0
\(764\) −23.9990 −0.868255
\(765\) 2.33317 0.0843561
\(766\) 10.5359 0.380677
\(767\) −48.4781 −1.75044
\(768\) 0.816594 0.0294663
\(769\) 37.2625 1.34372 0.671861 0.740678i \(-0.265495\pi\)
0.671861 + 0.740678i \(0.265495\pi\)
\(770\) 0 0
\(771\) 0.606923 0.0218578
\(772\) −15.3969 −0.554148
\(773\) 27.8021 0.999973 0.499987 0.866033i \(-0.333338\pi\)
0.499987 + 0.866033i \(0.333338\pi\)
\(774\) 9.81051 0.352632
\(775\) −6.09474 −0.218930
\(776\) 3.51002 0.126002
\(777\) 0 0
\(778\) −21.0052 −0.753073
\(779\) 25.5528 0.915524
\(780\) 3.70607 0.132698
\(781\) −26.3164 −0.941676
\(782\) 6.57160 0.235000
\(783\) 25.9837 0.928583
\(784\) 0 0
\(785\) 8.20527 0.292859
\(786\) 4.67740 0.166837
\(787\) −14.1271 −0.503576 −0.251788 0.967782i \(-0.581019\pi\)
−0.251788 + 0.967782i \(0.581019\pi\)
\(788\) 24.6654 0.878668
\(789\) 3.56513 0.126922
\(790\) 7.67036 0.272899
\(791\) 0 0
\(792\) −13.6485 −0.484978
\(793\) −0.198464 −0.00704766
\(794\) 11.0638 0.392638
\(795\) 11.3546 0.402705
\(796\) −24.8930 −0.882309
\(797\) 22.6562 0.802523 0.401262 0.915964i \(-0.368572\pi\)
0.401262 + 0.915964i \(0.368572\pi\)
\(798\) 0 0
\(799\) −3.95627 −0.139963
\(800\) 1.00000 0.0353553
\(801\) 18.3242 0.647454
\(802\) 3.09914 0.109435
\(803\) 45.2370 1.59638
\(804\) 9.81758 0.346239
\(805\) 0 0
\(806\) 27.6607 0.974305
\(807\) −12.3659 −0.435299
\(808\) 11.0995 0.390478
\(809\) 22.8477 0.803283 0.401641 0.915797i \(-0.368440\pi\)
0.401641 + 0.915797i \(0.368440\pi\)
\(810\) −3.44322 −0.120983
\(811\) 30.9767 1.08774 0.543870 0.839170i \(-0.316959\pi\)
0.543870 + 0.839170i \(0.316959\pi\)
\(812\) 0 0
\(813\) −2.12317 −0.0744628
\(814\) −19.0485 −0.667648
\(815\) 17.9480 0.628692
\(816\) 0.816594 0.0285865
\(817\) 21.1634 0.740413
\(818\) 17.5765 0.614547
\(819\) 0 0
\(820\) 5.07689 0.177293
\(821\) 3.83406 0.133810 0.0669048 0.997759i \(-0.478688\pi\)
0.0669048 + 0.997759i \(0.478688\pi\)
\(822\) −5.80602 −0.202508
\(823\) −5.57247 −0.194244 −0.0971221 0.995272i \(-0.530964\pi\)
−0.0971221 + 0.995272i \(0.530964\pi\)
\(824\) 0.651043 0.0226802
\(825\) 4.77687 0.166309
\(826\) 0 0
\(827\) 2.74540 0.0954668 0.0477334 0.998860i \(-0.484800\pi\)
0.0477334 + 0.998860i \(0.484800\pi\)
\(828\) −15.3327 −0.532848
\(829\) 12.2389 0.425075 0.212537 0.977153i \(-0.431827\pi\)
0.212537 + 0.977153i \(0.431827\pi\)
\(830\) 13.7943 0.478805
\(831\) −12.9666 −0.449807
\(832\) −4.53844 −0.157342
\(833\) 0 0
\(834\) 3.17940 0.110093
\(835\) 22.4978 0.778567
\(836\) −29.4427 −1.01830
\(837\) 26.5428 0.917455
\(838\) 26.3257 0.909405
\(839\) −10.1766 −0.351335 −0.175667 0.984450i \(-0.556208\pi\)
−0.175667 + 0.984450i \(0.556208\pi\)
\(840\) 0 0
\(841\) 6.59748 0.227499
\(842\) 14.5206 0.500413
\(843\) 13.2473 0.456262
\(844\) 22.8711 0.787257
\(845\) −7.59748 −0.261361
\(846\) 9.23067 0.317357
\(847\) 0 0
\(848\) −13.9048 −0.477492
\(849\) −1.77236 −0.0608272
\(850\) 1.00000 0.0342997
\(851\) −21.3990 −0.733549
\(852\) −3.67363 −0.125857
\(853\) −27.3969 −0.938053 −0.469027 0.883184i \(-0.655395\pi\)
−0.469027 + 0.883184i \(0.655395\pi\)
\(854\) 0 0
\(855\) −11.7432 −0.401610
\(856\) −14.2593 −0.487374
\(857\) 18.0461 0.616444 0.308222 0.951314i \(-0.400266\pi\)
0.308222 + 0.951314i \(0.400266\pi\)
\(858\) −21.6796 −0.740129
\(859\) 16.2225 0.553505 0.276752 0.960941i \(-0.410742\pi\)
0.276752 + 0.960941i \(0.410742\pi\)
\(860\) 4.20479 0.143382
\(861\) 0 0
\(862\) 4.51891 0.153915
\(863\) −16.5634 −0.563823 −0.281912 0.959440i \(-0.590969\pi\)
−0.281912 + 0.959440i \(0.590969\pi\)
\(864\) −4.35504 −0.148161
\(865\) 3.21256 0.109230
\(866\) 21.5608 0.732666
\(867\) 0.816594 0.0277330
\(868\) 0 0
\(869\) −44.8697 −1.52210
\(870\) 4.87210 0.165180
\(871\) −54.5639 −1.84883
\(872\) −4.39949 −0.148986
\(873\) −8.18949 −0.277172
\(874\) −33.0759 −1.11881
\(875\) 0 0
\(876\) 6.31484 0.213359
\(877\) −23.5091 −0.793845 −0.396922 0.917852i \(-0.629922\pi\)
−0.396922 + 0.917852i \(0.629922\pi\)
\(878\) −16.7239 −0.564405
\(879\) 12.2524 0.413263
\(880\) −5.84975 −0.197195
\(881\) −39.7518 −1.33927 −0.669635 0.742690i \(-0.733550\pi\)
−0.669635 + 0.742690i \(0.733550\pi\)
\(882\) 0 0
\(883\) −12.6768 −0.426607 −0.213304 0.976986i \(-0.568422\pi\)
−0.213304 + 0.976986i \(0.568422\pi\)
\(884\) −4.53844 −0.152644
\(885\) −8.72258 −0.293206
\(886\) 24.9741 0.839022
\(887\) −4.03229 −0.135391 −0.0676955 0.997706i \(-0.521565\pi\)
−0.0676955 + 0.997706i \(0.521565\pi\)
\(888\) −2.65906 −0.0892323
\(889\) 0 0
\(890\) 7.85376 0.263259
\(891\) 20.1420 0.674783
\(892\) −26.0275 −0.871464
\(893\) 19.9125 0.666348
\(894\) −5.60308 −0.187395
\(895\) −8.83543 −0.295336
\(896\) 0 0
\(897\) −24.3548 −0.813183
\(898\) 30.0889 1.00408
\(899\) 36.3634 1.21279
\(900\) −2.33317 −0.0777725
\(901\) −13.9048 −0.463235
\(902\) −29.6986 −0.988854
\(903\) 0 0
\(904\) 7.45379 0.247909
\(905\) 8.18949 0.272228
\(906\) 3.32452 0.110450
\(907\) −47.3978 −1.57382 −0.786910 0.617068i \(-0.788320\pi\)
−0.786910 + 0.617068i \(0.788320\pi\)
\(908\) −3.11125 −0.103251
\(909\) −25.8970 −0.858950
\(910\) 0 0
\(911\) 27.8023 0.921130 0.460565 0.887626i \(-0.347647\pi\)
0.460565 + 0.887626i \(0.347647\pi\)
\(912\) −4.11005 −0.136097
\(913\) −80.6930 −2.67055
\(914\) 6.14576 0.203284
\(915\) −0.0357093 −0.00118051
\(916\) 6.62262 0.218817
\(917\) 0 0
\(918\) −4.35504 −0.143738
\(919\) −35.9165 −1.18477 −0.592387 0.805653i \(-0.701814\pi\)
−0.592387 + 0.805653i \(0.701814\pi\)
\(920\) −6.57160 −0.216659
\(921\) 22.8162 0.751821
\(922\) −23.4047 −0.770793
\(923\) 20.4172 0.672041
\(924\) 0 0
\(925\) −3.25628 −0.107066
\(926\) 3.32782 0.109359
\(927\) −1.51900 −0.0498904
\(928\) −5.96636 −0.195855
\(929\) 19.5763 0.642279 0.321139 0.947032i \(-0.395934\pi\)
0.321139 + 0.947032i \(0.395934\pi\)
\(930\) 4.97693 0.163200
\(931\) 0 0
\(932\) −27.6885 −0.906966
\(933\) 18.2525 0.597561
\(934\) −20.2070 −0.661193
\(935\) −5.84975 −0.191307
\(936\) 10.5890 0.346112
\(937\) −50.2723 −1.64233 −0.821163 0.570694i \(-0.806674\pi\)
−0.821163 + 0.570694i \(0.806674\pi\)
\(938\) 0 0
\(939\) −10.5760 −0.345134
\(940\) 3.95627 0.129039
\(941\) −18.8397 −0.614156 −0.307078 0.951684i \(-0.599351\pi\)
−0.307078 + 0.951684i \(0.599351\pi\)
\(942\) −6.70038 −0.218310
\(943\) −33.3633 −1.08646
\(944\) 10.6817 0.347658
\(945\) 0 0
\(946\) −24.5970 −0.799717
\(947\) 54.5904 1.77395 0.886975 0.461816i \(-0.152802\pi\)
0.886975 + 0.461816i \(0.152802\pi\)
\(948\) −6.26357 −0.203431
\(949\) −35.0965 −1.13928
\(950\) −5.03316 −0.163297
\(951\) 14.8801 0.482521
\(952\) 0 0
\(953\) 13.0559 0.422922 0.211461 0.977386i \(-0.432178\pi\)
0.211461 + 0.977386i \(0.432178\pi\)
\(954\) 32.4423 1.05036
\(955\) 23.9990 0.776591
\(956\) −13.7717 −0.445407
\(957\) −28.5006 −0.921292
\(958\) −6.87355 −0.222074
\(959\) 0 0
\(960\) −0.816594 −0.0263555
\(961\) 6.14590 0.198255
\(962\) 14.7785 0.476477
\(963\) 33.2695 1.07210
\(964\) 4.36888 0.140712
\(965\) 15.3969 0.495645
\(966\) 0 0
\(967\) −23.6607 −0.760875 −0.380438 0.924807i \(-0.624227\pi\)
−0.380438 + 0.924807i \(0.624227\pi\)
\(968\) 23.2196 0.746307
\(969\) −4.11005 −0.132034
\(970\) −3.51002 −0.112700
\(971\) 44.9081 1.44117 0.720584 0.693367i \(-0.243874\pi\)
0.720584 + 0.693367i \(0.243874\pi\)
\(972\) 15.8768 0.509250
\(973\) 0 0
\(974\) 11.3757 0.364501
\(975\) −3.70607 −0.118689
\(976\) 0.0437295 0.00139975
\(977\) 48.5719 1.55395 0.776976 0.629530i \(-0.216753\pi\)
0.776976 + 0.629530i \(0.216753\pi\)
\(978\) −14.6563 −0.468655
\(979\) −45.9426 −1.46833
\(980\) 0 0
\(981\) 10.2648 0.327729
\(982\) −13.2890 −0.424068
\(983\) −35.9187 −1.14563 −0.572814 0.819686i \(-0.694148\pi\)
−0.572814 + 0.819686i \(0.694148\pi\)
\(984\) −4.14576 −0.132162
\(985\) −24.6654 −0.785905
\(986\) −5.96636 −0.190008
\(987\) 0 0
\(988\) 22.8427 0.726724
\(989\) −27.6322 −0.878654
\(990\) 13.6485 0.433778
\(991\) 29.2039 0.927693 0.463847 0.885916i \(-0.346469\pi\)
0.463847 + 0.885916i \(0.346469\pi\)
\(992\) −6.09474 −0.193508
\(993\) −9.66088 −0.306579
\(994\) 0 0
\(995\) 24.8930 0.789161
\(996\) −11.2643 −0.356923
\(997\) 17.2940 0.547705 0.273853 0.961772i \(-0.411702\pi\)
0.273853 + 0.961772i \(0.411702\pi\)
\(998\) −20.5112 −0.649271
\(999\) 14.1812 0.448675
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8330.2.a.cd.1.3 4
7.2 even 3 1190.2.i.k.851.2 yes 8
7.4 even 3 1190.2.i.k.681.2 8
7.6 odd 2 8330.2.a.cl.1.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1190.2.i.k.681.2 8 7.4 even 3
1190.2.i.k.851.2 yes 8 7.2 even 3
8330.2.a.cd.1.3 4 1.1 even 1 trivial
8330.2.a.cl.1.2 4 7.6 odd 2