Properties

Label 8330.2.a.cd
Level $8330$
Weight $2$
Character orbit 8330.a
Self dual yes
Analytic conductor $66.515$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8330,2,Mod(1,8330)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8330, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8330.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 8330 = 2 \cdot 5 \cdot 7^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8330.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,4,-2,4,-4,-2,0,4,4,-4,2,-2,-14] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(66.5153848837\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.11344.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 4x^{2} + 4x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1190)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{2} + \beta_{2} q^{3} + q^{4} - q^{5} + \beta_{2} q^{6} + q^{8} + ( - \beta_{2} + \beta_1) q^{9} - q^{10} + (\beta_{2} - 2 \beta_1 + 2) q^{11} + \beta_{2} q^{12} + (\beta_{3} - 3) q^{13} - \beta_{2} q^{15}+ \cdots + (3 \beta_{3} + 2 \beta_1 - 6) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{2} - 2 q^{3} + 4 q^{4} - 4 q^{5} - 2 q^{6} + 4 q^{8} + 4 q^{9} - 4 q^{10} + 2 q^{11} - 2 q^{12} - 14 q^{13} + 2 q^{15} + 4 q^{16} + 4 q^{17} + 4 q^{18} - 4 q^{19} - 4 q^{20} + 2 q^{22} + 6 q^{23}+ \cdots - 26 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 2x^{3} - 4x^{2} + 4x + 3 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - \nu - 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} - 2\nu^{2} - 3\nu + 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + \beta _1 + 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + 2\beta_{2} + 5\beta _1 + 4 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
1.28734
−0.552409
−1.51658
2.78165
1.00000 −2.63010 1.00000 −1.00000 −2.63010 0 1.00000 3.91744 −1.00000
1.2 1.00000 −2.14243 1.00000 −1.00000 −2.14243 0 1.00000 1.59002 −1.00000
1.3 1.00000 0.816594 1.00000 −1.00000 0.816594 0 1.00000 −2.33317 −1.00000
1.4 1.00000 1.95594 1.00000 −1.00000 1.95594 0 1.00000 0.825711 −1.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(5\) \( +1 \)
\(7\) \( +1 \)
\(17\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 8330.2.a.cd 4
7.b odd 2 1 8330.2.a.cl 4
7.c even 3 2 1190.2.i.k 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1190.2.i.k 8 7.c even 3 2
8330.2.a.cd 4 1.a even 1 1 trivial
8330.2.a.cl 4 7.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(8330))\):

\( T_{3}^{4} + 2T_{3}^{3} - 6T_{3}^{2} - 8T_{3} + 9 \) Copy content Toggle raw display
\( T_{11}^{4} - 2T_{11}^{3} - 22T_{11}^{2} - 8T_{11} + 29 \) Copy content Toggle raw display
\( T_{13}^{4} + 14T_{13}^{3} + 64T_{13}^{2} + 98T_{13} + 11 \) Copy content Toggle raw display
\( T_{19}^{4} + 4T_{19}^{3} - 16T_{19}^{2} - 48T_{19} + 32 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 1)^{4} \) Copy content Toggle raw display
$3$ \( T^{4} + 2 T^{3} + \cdots + 9 \) Copy content Toggle raw display
$5$ \( (T + 1)^{4} \) Copy content Toggle raw display
$7$ \( T^{4} \) Copy content Toggle raw display
$11$ \( T^{4} - 2 T^{3} + \cdots + 29 \) Copy content Toggle raw display
$13$ \( T^{4} + 14 T^{3} + \cdots + 11 \) Copy content Toggle raw display
$17$ \( (T - 1)^{4} \) Copy content Toggle raw display
$19$ \( T^{4} + 4 T^{3} + \cdots + 32 \) Copy content Toggle raw display
$23$ \( T^{4} - 6 T^{3} + \cdots - 12 \) Copy content Toggle raw display
$29$ \( T^{4} - 64 T^{2} + \cdots + 844 \) Copy content Toggle raw display
$31$ \( T^{4} + 18 T^{3} + \cdots - 620 \) Copy content Toggle raw display
$37$ \( T^{4} + 8 T^{3} + \cdots - 412 \) Copy content Toggle raw display
$41$ \( T^{4} + 12 T^{3} + \cdots - 400 \) Copy content Toggle raw display
$43$ \( T^{4} - 14 T^{3} + \cdots - 772 \) Copy content Toggle raw display
$47$ \( T^{4} + 8 T^{3} + \cdots + 432 \) Copy content Toggle raw display
$53$ \( T^{4} + 22 T^{3} + \cdots + 163 \) Copy content Toggle raw display
$59$ \( T^{4} + 2 T^{3} + \cdots + 2796 \) Copy content Toggle raw display
$61$ \( T^{4} - 8 T^{3} + \cdots - 16 \) Copy content Toggle raw display
$67$ \( T^{4} - 8 T^{3} + \cdots + 15968 \) Copy content Toggle raw display
$71$ \( T^{4} + 8 T^{3} + \cdots + 1299 \) Copy content Toggle raw display
$73$ \( T^{4} - 12 T^{3} + \cdots - 1052 \) Copy content Toggle raw display
$79$ \( T^{4} + 6 T^{3} + \cdots + 1459 \) Copy content Toggle raw display
$83$ \( T^{4} + 6 T^{3} + \cdots - 1060 \) Copy content Toggle raw display
$89$ \( T^{4} + 12 T^{3} + \cdots + 2273 \) Copy content Toggle raw display
$97$ \( T^{4} + 16 T^{3} + \cdots + 464 \) Copy content Toggle raw display
show more
show less