Properties

Label 8325.2.a.cr.1.5
Level $8325$
Weight $2$
Character 8325.1
Self dual yes
Analytic conductor $66.475$
Analytic rank $0$
Dimension $9$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8325,2,Mod(1,8325)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8325.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8325, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 8325 = 3^{2} \cdot 5^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8325.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [9,5,0,11,0,0,-8,15,0,0,0,0,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(66.4754596827\)
Analytic rank: \(0\)
Dimension: \(9\)
Coefficient field: \(\mathbb{Q}[x]/(x^{9} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{9} - 4x^{8} - 6x^{7} + 30x^{6} + 15x^{5} - 70x^{4} - 22x^{3} + 44x^{2} + 4x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 185)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(0.296889\) of defining polynomial
Character \(\chi\) \(=\) 8325.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.703111 q^{2} -1.50564 q^{4} -0.501390 q^{7} -2.46485 q^{8} +1.80401 q^{11} -1.63218 q^{13} -0.352533 q^{14} +1.27821 q^{16} +1.92844 q^{17} -0.869173 q^{19} +1.26842 q^{22} +4.86522 q^{23} -1.14761 q^{26} +0.754910 q^{28} +3.15000 q^{29} +2.39134 q^{31} +5.82842 q^{32} +1.35591 q^{34} +1.00000 q^{37} -0.611125 q^{38} -8.24040 q^{41} -11.6931 q^{43} -2.71619 q^{44} +3.42079 q^{46} -1.43311 q^{47} -6.74861 q^{49} +2.45747 q^{52} +10.7692 q^{53} +1.23585 q^{56} +2.21480 q^{58} -8.71701 q^{59} -7.84555 q^{61} +1.68138 q^{62} +1.54161 q^{64} -11.8599 q^{67} -2.90353 q^{68} +6.06069 q^{71} +5.56086 q^{73} +0.703111 q^{74} +1.30866 q^{76} -0.904514 q^{77} +7.44924 q^{79} -5.79391 q^{82} -4.70795 q^{83} -8.22154 q^{86} -4.44662 q^{88} -5.16332 q^{89} +0.818361 q^{91} -7.32524 q^{92} -1.00764 q^{94} +6.48639 q^{97} -4.74502 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 9 q + 5 q^{2} + 11 q^{4} - 8 q^{7} + 15 q^{8} - 6 q^{13} + 4 q^{14} + 11 q^{16} + 18 q^{17} - 4 q^{19} - 6 q^{22} + 16 q^{23} + 6 q^{26} + 20 q^{28} + 2 q^{29} - 6 q^{31} + 35 q^{32} + 6 q^{34} + 9 q^{37}+ \cdots + 21 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.703111 0.497174 0.248587 0.968610i \(-0.420034\pi\)
0.248587 + 0.968610i \(0.420034\pi\)
\(3\) 0 0
\(4\) −1.50564 −0.752818
\(5\) 0 0
\(6\) 0 0
\(7\) −0.501390 −0.189508 −0.0947538 0.995501i \(-0.530206\pi\)
−0.0947538 + 0.995501i \(0.530206\pi\)
\(8\) −2.46485 −0.871456
\(9\) 0 0
\(10\) 0 0
\(11\) 1.80401 0.543931 0.271965 0.962307i \(-0.412326\pi\)
0.271965 + 0.962307i \(0.412326\pi\)
\(12\) 0 0
\(13\) −1.63218 −0.452686 −0.226343 0.974048i \(-0.572677\pi\)
−0.226343 + 0.974048i \(0.572677\pi\)
\(14\) −0.352533 −0.0942183
\(15\) 0 0
\(16\) 1.27821 0.319552
\(17\) 1.92844 0.467717 0.233858 0.972271i \(-0.424865\pi\)
0.233858 + 0.972271i \(0.424865\pi\)
\(18\) 0 0
\(19\) −0.869173 −0.199402 −0.0997010 0.995017i \(-0.531789\pi\)
−0.0997010 + 0.995017i \(0.531789\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 1.26842 0.270428
\(23\) 4.86522 1.01447 0.507234 0.861808i \(-0.330668\pi\)
0.507234 + 0.861808i \(0.330668\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) −1.14761 −0.225064
\(27\) 0 0
\(28\) 0.754910 0.142665
\(29\) 3.15000 0.584940 0.292470 0.956275i \(-0.405523\pi\)
0.292470 + 0.956275i \(0.405523\pi\)
\(30\) 0 0
\(31\) 2.39134 0.429498 0.214749 0.976669i \(-0.431107\pi\)
0.214749 + 0.976669i \(0.431107\pi\)
\(32\) 5.82842 1.03033
\(33\) 0 0
\(34\) 1.35591 0.232537
\(35\) 0 0
\(36\) 0 0
\(37\) 1.00000 0.164399
\(38\) −0.611125 −0.0991375
\(39\) 0 0
\(40\) 0 0
\(41\) −8.24040 −1.28693 −0.643467 0.765474i \(-0.722505\pi\)
−0.643467 + 0.765474i \(0.722505\pi\)
\(42\) 0 0
\(43\) −11.6931 −1.78318 −0.891590 0.452844i \(-0.850410\pi\)
−0.891590 + 0.452844i \(0.850410\pi\)
\(44\) −2.71619 −0.409481
\(45\) 0 0
\(46\) 3.42079 0.504368
\(47\) −1.43311 −0.209041 −0.104521 0.994523i \(-0.533331\pi\)
−0.104521 + 0.994523i \(0.533331\pi\)
\(48\) 0 0
\(49\) −6.74861 −0.964087
\(50\) 0 0
\(51\) 0 0
\(52\) 2.45747 0.340790
\(53\) 10.7692 1.47927 0.739633 0.673010i \(-0.234999\pi\)
0.739633 + 0.673010i \(0.234999\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 1.23585 0.165148
\(57\) 0 0
\(58\) 2.21480 0.290817
\(59\) −8.71701 −1.13486 −0.567429 0.823422i \(-0.692062\pi\)
−0.567429 + 0.823422i \(0.692062\pi\)
\(60\) 0 0
\(61\) −7.84555 −1.00452 −0.502260 0.864717i \(-0.667498\pi\)
−0.502260 + 0.864717i \(0.667498\pi\)
\(62\) 1.68138 0.213535
\(63\) 0 0
\(64\) 1.54161 0.192701
\(65\) 0 0
\(66\) 0 0
\(67\) −11.8599 −1.44891 −0.724456 0.689321i \(-0.757909\pi\)
−0.724456 + 0.689321i \(0.757909\pi\)
\(68\) −2.90353 −0.352105
\(69\) 0 0
\(70\) 0 0
\(71\) 6.06069 0.719272 0.359636 0.933093i \(-0.382901\pi\)
0.359636 + 0.933093i \(0.382901\pi\)
\(72\) 0 0
\(73\) 5.56086 0.650849 0.325424 0.945568i \(-0.394493\pi\)
0.325424 + 0.945568i \(0.394493\pi\)
\(74\) 0.703111 0.0817350
\(75\) 0 0
\(76\) 1.30866 0.150113
\(77\) −0.904514 −0.103079
\(78\) 0 0
\(79\) 7.44924 0.838105 0.419052 0.907962i \(-0.362362\pi\)
0.419052 + 0.907962i \(0.362362\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) −5.79391 −0.639830
\(83\) −4.70795 −0.516765 −0.258382 0.966043i \(-0.583189\pi\)
−0.258382 + 0.966043i \(0.583189\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −8.22154 −0.886551
\(87\) 0 0
\(88\) −4.44662 −0.474012
\(89\) −5.16332 −0.547311 −0.273656 0.961828i \(-0.588233\pi\)
−0.273656 + 0.961828i \(0.588233\pi\)
\(90\) 0 0
\(91\) 0.818361 0.0857875
\(92\) −7.32524 −0.763709
\(93\) 0 0
\(94\) −1.00764 −0.103930
\(95\) 0 0
\(96\) 0 0
\(97\) 6.48639 0.658593 0.329297 0.944227i \(-0.393188\pi\)
0.329297 + 0.944227i \(0.393188\pi\)
\(98\) −4.74502 −0.479319
\(99\) 0 0
\(100\) 0 0
\(101\) −2.50611 −0.249367 −0.124684 0.992197i \(-0.539792\pi\)
−0.124684 + 0.992197i \(0.539792\pi\)
\(102\) 0 0
\(103\) 6.40079 0.630688 0.315344 0.948977i \(-0.397880\pi\)
0.315344 + 0.948977i \(0.397880\pi\)
\(104\) 4.02309 0.394496
\(105\) 0 0
\(106\) 7.57195 0.735453
\(107\) 11.6711 1.12829 0.564146 0.825675i \(-0.309206\pi\)
0.564146 + 0.825675i \(0.309206\pi\)
\(108\) 0 0
\(109\) 7.93573 0.760105 0.380053 0.924965i \(-0.375906\pi\)
0.380053 + 0.924965i \(0.375906\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −0.640881 −0.0605575
\(113\) 16.2261 1.52643 0.763213 0.646146i \(-0.223620\pi\)
0.763213 + 0.646146i \(0.223620\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −4.74275 −0.440353
\(117\) 0 0
\(118\) −6.12902 −0.564222
\(119\) −0.966903 −0.0886358
\(120\) 0 0
\(121\) −7.74553 −0.704139
\(122\) −5.51629 −0.499421
\(123\) 0 0
\(124\) −3.60049 −0.323333
\(125\) 0 0
\(126\) 0 0
\(127\) 9.56408 0.848675 0.424337 0.905504i \(-0.360507\pi\)
0.424337 + 0.905504i \(0.360507\pi\)
\(128\) −10.5729 −0.934523
\(129\) 0 0
\(130\) 0 0
\(131\) 20.2974 1.77340 0.886698 0.462350i \(-0.152994\pi\)
0.886698 + 0.462350i \(0.152994\pi\)
\(132\) 0 0
\(133\) 0.435795 0.0377882
\(134\) −8.33879 −0.720362
\(135\) 0 0
\(136\) −4.75333 −0.407594
\(137\) −11.0879 −0.947300 −0.473650 0.880713i \(-0.657064\pi\)
−0.473650 + 0.880713i \(0.657064\pi\)
\(138\) 0 0
\(139\) 14.1716 1.20202 0.601009 0.799242i \(-0.294765\pi\)
0.601009 + 0.799242i \(0.294765\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 4.26134 0.357603
\(143\) −2.94448 −0.246230
\(144\) 0 0
\(145\) 0 0
\(146\) 3.90990 0.323585
\(147\) 0 0
\(148\) −1.50564 −0.123762
\(149\) 17.5785 1.44008 0.720042 0.693930i \(-0.244122\pi\)
0.720042 + 0.693930i \(0.244122\pi\)
\(150\) 0 0
\(151\) 10.4870 0.853422 0.426711 0.904388i \(-0.359672\pi\)
0.426711 + 0.904388i \(0.359672\pi\)
\(152\) 2.14238 0.173770
\(153\) 0 0
\(154\) −0.635974 −0.0512482
\(155\) 0 0
\(156\) 0 0
\(157\) 14.1135 1.12638 0.563189 0.826328i \(-0.309574\pi\)
0.563189 + 0.826328i \(0.309574\pi\)
\(158\) 5.23764 0.416684
\(159\) 0 0
\(160\) 0 0
\(161\) −2.43937 −0.192249
\(162\) 0 0
\(163\) −0.261155 −0.0204553 −0.0102276 0.999948i \(-0.503256\pi\)
−0.0102276 + 0.999948i \(0.503256\pi\)
\(164\) 12.4070 0.968826
\(165\) 0 0
\(166\) −3.31021 −0.256922
\(167\) 11.7929 0.912560 0.456280 0.889836i \(-0.349182\pi\)
0.456280 + 0.889836i \(0.349182\pi\)
\(168\) 0 0
\(169\) −10.3360 −0.795075
\(170\) 0 0
\(171\) 0 0
\(172\) 17.6055 1.34241
\(173\) 13.5257 1.02834 0.514170 0.857688i \(-0.328100\pi\)
0.514170 + 0.857688i \(0.328100\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 2.30591 0.173814
\(177\) 0 0
\(178\) −3.63039 −0.272109
\(179\) −0.443280 −0.0331323 −0.0165661 0.999863i \(-0.505273\pi\)
−0.0165661 + 0.999863i \(0.505273\pi\)
\(180\) 0 0
\(181\) 11.4380 0.850182 0.425091 0.905151i \(-0.360242\pi\)
0.425091 + 0.905151i \(0.360242\pi\)
\(182\) 0.575398 0.0426513
\(183\) 0 0
\(184\) −11.9920 −0.884064
\(185\) 0 0
\(186\) 0 0
\(187\) 3.47894 0.254405
\(188\) 2.15775 0.157370
\(189\) 0 0
\(190\) 0 0
\(191\) −10.1652 −0.735531 −0.367765 0.929919i \(-0.619877\pi\)
−0.367765 + 0.929919i \(0.619877\pi\)
\(192\) 0 0
\(193\) 8.94479 0.643860 0.321930 0.946763i \(-0.395668\pi\)
0.321930 + 0.946763i \(0.395668\pi\)
\(194\) 4.56065 0.327436
\(195\) 0 0
\(196\) 10.1609 0.725782
\(197\) −8.65157 −0.616399 −0.308199 0.951322i \(-0.599726\pi\)
−0.308199 + 0.951322i \(0.599726\pi\)
\(198\) 0 0
\(199\) 10.2145 0.724084 0.362042 0.932162i \(-0.382080\pi\)
0.362042 + 0.932162i \(0.382080\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) −1.76207 −0.123979
\(203\) −1.57938 −0.110851
\(204\) 0 0
\(205\) 0 0
\(206\) 4.50046 0.313562
\(207\) 0 0
\(208\) −2.08627 −0.144657
\(209\) −1.56800 −0.108461
\(210\) 0 0
\(211\) 13.6414 0.939113 0.469557 0.882902i \(-0.344414\pi\)
0.469557 + 0.882902i \(0.344414\pi\)
\(212\) −16.2145 −1.11362
\(213\) 0 0
\(214\) 8.20611 0.560958
\(215\) 0 0
\(216\) 0 0
\(217\) −1.19899 −0.0813930
\(218\) 5.57970 0.377905
\(219\) 0 0
\(220\) 0 0
\(221\) −3.14758 −0.211729
\(222\) 0 0
\(223\) 6.66288 0.446180 0.223090 0.974798i \(-0.428386\pi\)
0.223090 + 0.974798i \(0.428386\pi\)
\(224\) −2.92231 −0.195255
\(225\) 0 0
\(226\) 11.4088 0.758900
\(227\) 5.71859 0.379556 0.189778 0.981827i \(-0.439223\pi\)
0.189778 + 0.981827i \(0.439223\pi\)
\(228\) 0 0
\(229\) 29.9549 1.97948 0.989738 0.142895i \(-0.0456412\pi\)
0.989738 + 0.142895i \(0.0456412\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −7.76427 −0.509750
\(233\) −25.4277 −1.66583 −0.832913 0.553404i \(-0.813329\pi\)
−0.832913 + 0.553404i \(0.813329\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 13.1246 0.854341
\(237\) 0 0
\(238\) −0.679840 −0.0440675
\(239\) 10.9704 0.709615 0.354808 0.934939i \(-0.384546\pi\)
0.354808 + 0.934939i \(0.384546\pi\)
\(240\) 0 0
\(241\) 23.8516 1.53642 0.768208 0.640200i \(-0.221149\pi\)
0.768208 + 0.640200i \(0.221149\pi\)
\(242\) −5.44597 −0.350080
\(243\) 0 0
\(244\) 11.8125 0.756220
\(245\) 0 0
\(246\) 0 0
\(247\) 1.41865 0.0902666
\(248\) −5.89430 −0.374288
\(249\) 0 0
\(250\) 0 0
\(251\) −18.9886 −1.19855 −0.599275 0.800543i \(-0.704545\pi\)
−0.599275 + 0.800543i \(0.704545\pi\)
\(252\) 0 0
\(253\) 8.77692 0.551800
\(254\) 6.72461 0.421939
\(255\) 0 0
\(256\) −10.5172 −0.657322
\(257\) 5.12928 0.319956 0.159978 0.987121i \(-0.448858\pi\)
0.159978 + 0.987121i \(0.448858\pi\)
\(258\) 0 0
\(259\) −0.501390 −0.0311549
\(260\) 0 0
\(261\) 0 0
\(262\) 14.2713 0.881687
\(263\) 27.1591 1.67470 0.837351 0.546666i \(-0.184103\pi\)
0.837351 + 0.546666i \(0.184103\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0.306412 0.0187873
\(267\) 0 0
\(268\) 17.8566 1.09077
\(269\) −19.0743 −1.16298 −0.581492 0.813552i \(-0.697531\pi\)
−0.581492 + 0.813552i \(0.697531\pi\)
\(270\) 0 0
\(271\) −18.0630 −1.09725 −0.548626 0.836068i \(-0.684849\pi\)
−0.548626 + 0.836068i \(0.684849\pi\)
\(272\) 2.46495 0.149460
\(273\) 0 0
\(274\) −7.79600 −0.470973
\(275\) 0 0
\(276\) 0 0
\(277\) −22.9367 −1.37813 −0.689067 0.724698i \(-0.741979\pi\)
−0.689067 + 0.724698i \(0.741979\pi\)
\(278\) 9.96420 0.597613
\(279\) 0 0
\(280\) 0 0
\(281\) −14.1793 −0.845869 −0.422934 0.906160i \(-0.639000\pi\)
−0.422934 + 0.906160i \(0.639000\pi\)
\(282\) 0 0
\(283\) 8.55472 0.508525 0.254263 0.967135i \(-0.418167\pi\)
0.254263 + 0.967135i \(0.418167\pi\)
\(284\) −9.12519 −0.541480
\(285\) 0 0
\(286\) −2.07030 −0.122419
\(287\) 4.13165 0.243884
\(288\) 0 0
\(289\) −13.2811 −0.781241
\(290\) 0 0
\(291\) 0 0
\(292\) −8.37262 −0.489971
\(293\) 26.2220 1.53191 0.765953 0.642896i \(-0.222267\pi\)
0.765953 + 0.642896i \(0.222267\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −2.46485 −0.143266
\(297\) 0 0
\(298\) 12.3596 0.715973
\(299\) −7.94093 −0.459236
\(300\) 0 0
\(301\) 5.86280 0.337926
\(302\) 7.37354 0.424300
\(303\) 0 0
\(304\) −1.11098 −0.0637193
\(305\) 0 0
\(306\) 0 0
\(307\) −20.8170 −1.18809 −0.594046 0.804431i \(-0.702470\pi\)
−0.594046 + 0.804431i \(0.702470\pi\)
\(308\) 1.36187 0.0775997
\(309\) 0 0
\(310\) 0 0
\(311\) −15.9789 −0.906078 −0.453039 0.891491i \(-0.649660\pi\)
−0.453039 + 0.891491i \(0.649660\pi\)
\(312\) 0 0
\(313\) 4.27429 0.241597 0.120799 0.992677i \(-0.461454\pi\)
0.120799 + 0.992677i \(0.461454\pi\)
\(314\) 9.92333 0.560006
\(315\) 0 0
\(316\) −11.2158 −0.630940
\(317\) −6.19424 −0.347903 −0.173952 0.984754i \(-0.555654\pi\)
−0.173952 + 0.984754i \(0.555654\pi\)
\(318\) 0 0
\(319\) 5.68264 0.318167
\(320\) 0 0
\(321\) 0 0
\(322\) −1.71515 −0.0955815
\(323\) −1.67615 −0.0932636
\(324\) 0 0
\(325\) 0 0
\(326\) −0.183621 −0.0101698
\(327\) 0 0
\(328\) 20.3113 1.12151
\(329\) 0.718549 0.0396149
\(330\) 0 0
\(331\) −32.0400 −1.76108 −0.880540 0.473972i \(-0.842820\pi\)
−0.880540 + 0.473972i \(0.842820\pi\)
\(332\) 7.08846 0.389030
\(333\) 0 0
\(334\) 8.29169 0.453701
\(335\) 0 0
\(336\) 0 0
\(337\) −12.5183 −0.681917 −0.340959 0.940078i \(-0.610752\pi\)
−0.340959 + 0.940078i \(0.610752\pi\)
\(338\) −7.26733 −0.395291
\(339\) 0 0
\(340\) 0 0
\(341\) 4.31401 0.233617
\(342\) 0 0
\(343\) 6.89341 0.372209
\(344\) 28.8217 1.55396
\(345\) 0 0
\(346\) 9.51007 0.511264
\(347\) 3.30472 0.177407 0.0887033 0.996058i \(-0.471728\pi\)
0.0887033 + 0.996058i \(0.471728\pi\)
\(348\) 0 0
\(349\) −4.45130 −0.238273 −0.119136 0.992878i \(-0.538013\pi\)
−0.119136 + 0.992878i \(0.538013\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 10.5146 0.560428
\(353\) 31.9145 1.69864 0.849319 0.527879i \(-0.177013\pi\)
0.849319 + 0.527879i \(0.177013\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 7.77408 0.412026
\(357\) 0 0
\(358\) −0.311675 −0.0164725
\(359\) −31.8986 −1.68354 −0.841771 0.539835i \(-0.818487\pi\)
−0.841771 + 0.539835i \(0.818487\pi\)
\(360\) 0 0
\(361\) −18.2445 −0.960239
\(362\) 8.04220 0.422689
\(363\) 0 0
\(364\) −1.23215 −0.0645823
\(365\) 0 0
\(366\) 0 0
\(367\) 22.7089 1.18540 0.592698 0.805425i \(-0.298063\pi\)
0.592698 + 0.805425i \(0.298063\pi\)
\(368\) 6.21876 0.324175
\(369\) 0 0
\(370\) 0 0
\(371\) −5.39958 −0.280332
\(372\) 0 0
\(373\) 28.7105 1.48657 0.743287 0.668973i \(-0.233266\pi\)
0.743287 + 0.668973i \(0.233266\pi\)
\(374\) 2.44608 0.126484
\(375\) 0 0
\(376\) 3.53241 0.182170
\(377\) −5.14138 −0.264794
\(378\) 0 0
\(379\) 30.3515 1.55905 0.779526 0.626370i \(-0.215460\pi\)
0.779526 + 0.626370i \(0.215460\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −7.14729 −0.365687
\(383\) 35.4366 1.81073 0.905363 0.424639i \(-0.139599\pi\)
0.905363 + 0.424639i \(0.139599\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 6.28918 0.320111
\(387\) 0 0
\(388\) −9.76614 −0.495801
\(389\) 17.2794 0.876102 0.438051 0.898950i \(-0.355669\pi\)
0.438051 + 0.898950i \(0.355669\pi\)
\(390\) 0 0
\(391\) 9.38230 0.474483
\(392\) 16.6343 0.840159
\(393\) 0 0
\(394\) −6.08301 −0.306458
\(395\) 0 0
\(396\) 0 0
\(397\) 4.68683 0.235225 0.117613 0.993060i \(-0.462476\pi\)
0.117613 + 0.993060i \(0.462476\pi\)
\(398\) 7.18190 0.359996
\(399\) 0 0
\(400\) 0 0
\(401\) 22.3427 1.11574 0.557871 0.829928i \(-0.311618\pi\)
0.557871 + 0.829928i \(0.311618\pi\)
\(402\) 0 0
\(403\) −3.90311 −0.194428
\(404\) 3.77329 0.187728
\(405\) 0 0
\(406\) −1.11048 −0.0551121
\(407\) 1.80401 0.0894216
\(408\) 0 0
\(409\) −5.17691 −0.255982 −0.127991 0.991775i \(-0.540853\pi\)
−0.127991 + 0.991775i \(0.540853\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −9.63725 −0.474793
\(413\) 4.37062 0.215064
\(414\) 0 0
\(415\) 0 0
\(416\) −9.51306 −0.466416
\(417\) 0 0
\(418\) −1.10248 −0.0539239
\(419\) 15.8651 0.775063 0.387531 0.921857i \(-0.373328\pi\)
0.387531 + 0.921857i \(0.373328\pi\)
\(420\) 0 0
\(421\) 6.46992 0.315325 0.157662 0.987493i \(-0.449604\pi\)
0.157662 + 0.987493i \(0.449604\pi\)
\(422\) 9.59142 0.466903
\(423\) 0 0
\(424\) −26.5445 −1.28912
\(425\) 0 0
\(426\) 0 0
\(427\) 3.93368 0.190364
\(428\) −17.5725 −0.849398
\(429\) 0 0
\(430\) 0 0
\(431\) 24.9727 1.20289 0.601445 0.798914i \(-0.294592\pi\)
0.601445 + 0.798914i \(0.294592\pi\)
\(432\) 0 0
\(433\) 38.7308 1.86128 0.930641 0.365934i \(-0.119250\pi\)
0.930641 + 0.365934i \(0.119250\pi\)
\(434\) −0.843026 −0.0404665
\(435\) 0 0
\(436\) −11.9483 −0.572220
\(437\) −4.22872 −0.202287
\(438\) 0 0
\(439\) −32.8425 −1.56749 −0.783743 0.621085i \(-0.786692\pi\)
−0.783743 + 0.621085i \(0.786692\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −2.21310 −0.105266
\(443\) 24.4262 1.16052 0.580262 0.814430i \(-0.302950\pi\)
0.580262 + 0.814430i \(0.302950\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 4.68475 0.221829
\(447\) 0 0
\(448\) −0.772947 −0.0365183
\(449\) 23.8188 1.12408 0.562040 0.827110i \(-0.310017\pi\)
0.562040 + 0.827110i \(0.310017\pi\)
\(450\) 0 0
\(451\) −14.8658 −0.700003
\(452\) −24.4307 −1.14912
\(453\) 0 0
\(454\) 4.02080 0.188706
\(455\) 0 0
\(456\) 0 0
\(457\) −35.0439 −1.63928 −0.819642 0.572876i \(-0.805828\pi\)
−0.819642 + 0.572876i \(0.805828\pi\)
\(458\) 21.0616 0.984145
\(459\) 0 0
\(460\) 0 0
\(461\) −7.94572 −0.370069 −0.185035 0.982732i \(-0.559240\pi\)
−0.185035 + 0.982732i \(0.559240\pi\)
\(462\) 0 0
\(463\) −23.9463 −1.11288 −0.556440 0.830888i \(-0.687833\pi\)
−0.556440 + 0.830888i \(0.687833\pi\)
\(464\) 4.02635 0.186919
\(465\) 0 0
\(466\) −17.8785 −0.828206
\(467\) 42.2147 1.95346 0.976732 0.214464i \(-0.0688005\pi\)
0.976732 + 0.214464i \(0.0688005\pi\)
\(468\) 0 0
\(469\) 5.94641 0.274580
\(470\) 0 0
\(471\) 0 0
\(472\) 21.4861 0.988979
\(473\) −21.0945 −0.969926
\(474\) 0 0
\(475\) 0 0
\(476\) 1.45580 0.0667266
\(477\) 0 0
\(478\) 7.71340 0.352803
\(479\) −34.3187 −1.56806 −0.784031 0.620721i \(-0.786840\pi\)
−0.784031 + 0.620721i \(0.786840\pi\)
\(480\) 0 0
\(481\) −1.63218 −0.0744212
\(482\) 16.7703 0.763867
\(483\) 0 0
\(484\) 11.6619 0.530089
\(485\) 0 0
\(486\) 0 0
\(487\) 3.03995 0.137753 0.0688766 0.997625i \(-0.478059\pi\)
0.0688766 + 0.997625i \(0.478059\pi\)
\(488\) 19.3381 0.875394
\(489\) 0 0
\(490\) 0 0
\(491\) 11.4565 0.517023 0.258511 0.966008i \(-0.416768\pi\)
0.258511 + 0.966008i \(0.416768\pi\)
\(492\) 0 0
\(493\) 6.07460 0.273586
\(494\) 0.997468 0.0448782
\(495\) 0 0
\(496\) 3.05663 0.137247
\(497\) −3.03877 −0.136307
\(498\) 0 0
\(499\) −39.9114 −1.78668 −0.893340 0.449381i \(-0.851645\pi\)
−0.893340 + 0.449381i \(0.851645\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −13.3511 −0.595889
\(503\) −14.8201 −0.660794 −0.330397 0.943842i \(-0.607183\pi\)
−0.330397 + 0.943842i \(0.607183\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 6.17115 0.274341
\(507\) 0 0
\(508\) −14.4000 −0.638897
\(509\) 22.3612 0.991145 0.495572 0.868567i \(-0.334958\pi\)
0.495572 + 0.868567i \(0.334958\pi\)
\(510\) 0 0
\(511\) −2.78816 −0.123341
\(512\) 13.7511 0.607719
\(513\) 0 0
\(514\) 3.60645 0.159074
\(515\) 0 0
\(516\) 0 0
\(517\) −2.58536 −0.113704
\(518\) −0.352533 −0.0154894
\(519\) 0 0
\(520\) 0 0
\(521\) 2.48042 0.108669 0.0543346 0.998523i \(-0.482696\pi\)
0.0543346 + 0.998523i \(0.482696\pi\)
\(522\) 0 0
\(523\) 0.452507 0.0197867 0.00989336 0.999951i \(-0.496851\pi\)
0.00989336 + 0.999951i \(0.496851\pi\)
\(524\) −30.5605 −1.33504
\(525\) 0 0
\(526\) 19.0958 0.832618
\(527\) 4.61157 0.200883
\(528\) 0 0
\(529\) 0.670348 0.0291455
\(530\) 0 0
\(531\) 0 0
\(532\) −0.656148 −0.0284476
\(533\) 13.4498 0.582577
\(534\) 0 0
\(535\) 0 0
\(536\) 29.2328 1.26266
\(537\) 0 0
\(538\) −13.4114 −0.578205
\(539\) −12.1746 −0.524396
\(540\) 0 0
\(541\) −16.4102 −0.705531 −0.352765 0.935712i \(-0.614759\pi\)
−0.352765 + 0.935712i \(0.614759\pi\)
\(542\) −12.7003 −0.545525
\(543\) 0 0
\(544\) 11.2398 0.481902
\(545\) 0 0
\(546\) 0 0
\(547\) −8.18537 −0.349981 −0.174991 0.984570i \(-0.555990\pi\)
−0.174991 + 0.984570i \(0.555990\pi\)
\(548\) 16.6943 0.713144
\(549\) 0 0
\(550\) 0 0
\(551\) −2.73789 −0.116638
\(552\) 0 0
\(553\) −3.73497 −0.158827
\(554\) −16.1271 −0.685173
\(555\) 0 0
\(556\) −21.3372 −0.904901
\(557\) 25.8788 1.09652 0.548259 0.836309i \(-0.315291\pi\)
0.548259 + 0.836309i \(0.315291\pi\)
\(558\) 0 0
\(559\) 19.0853 0.807221
\(560\) 0 0
\(561\) 0 0
\(562\) −9.96965 −0.420544
\(563\) 24.4404 1.03004 0.515021 0.857178i \(-0.327784\pi\)
0.515021 + 0.857178i \(0.327784\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 6.01491 0.252826
\(567\) 0 0
\(568\) −14.9387 −0.626814
\(569\) −5.31751 −0.222922 −0.111461 0.993769i \(-0.535553\pi\)
−0.111461 + 0.993769i \(0.535553\pi\)
\(570\) 0 0
\(571\) −13.2022 −0.552496 −0.276248 0.961086i \(-0.589091\pi\)
−0.276248 + 0.961086i \(0.589091\pi\)
\(572\) 4.43332 0.185366
\(573\) 0 0
\(574\) 2.90501 0.121253
\(575\) 0 0
\(576\) 0 0
\(577\) 41.4001 1.72351 0.861755 0.507325i \(-0.169365\pi\)
0.861755 + 0.507325i \(0.169365\pi\)
\(578\) −9.33808 −0.388413
\(579\) 0 0
\(580\) 0 0
\(581\) 2.36052 0.0979308
\(582\) 0 0
\(583\) 19.4278 0.804618
\(584\) −13.7067 −0.567186
\(585\) 0 0
\(586\) 18.4370 0.761625
\(587\) 11.4771 0.473712 0.236856 0.971545i \(-0.423883\pi\)
0.236856 + 0.971545i \(0.423883\pi\)
\(588\) 0 0
\(589\) −2.07849 −0.0856426
\(590\) 0 0
\(591\) 0 0
\(592\) 1.27821 0.0525340
\(593\) −11.1191 −0.456608 −0.228304 0.973590i \(-0.573318\pi\)
−0.228304 + 0.973590i \(0.573318\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −26.4668 −1.08412
\(597\) 0 0
\(598\) −5.58335 −0.228320
\(599\) −7.25813 −0.296559 −0.148280 0.988945i \(-0.547374\pi\)
−0.148280 + 0.988945i \(0.547374\pi\)
\(600\) 0 0
\(601\) −14.6121 −0.596040 −0.298020 0.954560i \(-0.596326\pi\)
−0.298020 + 0.954560i \(0.596326\pi\)
\(602\) 4.12220 0.168008
\(603\) 0 0
\(604\) −15.7896 −0.642471
\(605\) 0 0
\(606\) 0 0
\(607\) −26.3898 −1.07113 −0.535564 0.844495i \(-0.679901\pi\)
−0.535564 + 0.844495i \(0.679901\pi\)
\(608\) −5.06591 −0.205450
\(609\) 0 0
\(610\) 0 0
\(611\) 2.33911 0.0946301
\(612\) 0 0
\(613\) 40.8554 1.65013 0.825067 0.565035i \(-0.191137\pi\)
0.825067 + 0.565035i \(0.191137\pi\)
\(614\) −14.6367 −0.590689
\(615\) 0 0
\(616\) 2.22949 0.0898288
\(617\) 28.2802 1.13852 0.569260 0.822158i \(-0.307230\pi\)
0.569260 + 0.822158i \(0.307230\pi\)
\(618\) 0 0
\(619\) −7.17028 −0.288198 −0.144099 0.989563i \(-0.546028\pi\)
−0.144099 + 0.989563i \(0.546028\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −11.2349 −0.450479
\(623\) 2.58884 0.103720
\(624\) 0 0
\(625\) 0 0
\(626\) 3.00530 0.120116
\(627\) 0 0
\(628\) −21.2497 −0.847957
\(629\) 1.92844 0.0768921
\(630\) 0 0
\(631\) −7.70444 −0.306709 −0.153354 0.988171i \(-0.549008\pi\)
−0.153354 + 0.988171i \(0.549008\pi\)
\(632\) −18.3613 −0.730372
\(633\) 0 0
\(634\) −4.35524 −0.172969
\(635\) 0 0
\(636\) 0 0
\(637\) 11.0150 0.436429
\(638\) 3.99553 0.158184
\(639\) 0 0
\(640\) 0 0
\(641\) −24.3375 −0.961274 −0.480637 0.876920i \(-0.659595\pi\)
−0.480637 + 0.876920i \(0.659595\pi\)
\(642\) 0 0
\(643\) −27.8512 −1.09834 −0.549171 0.835710i \(-0.685057\pi\)
−0.549171 + 0.835710i \(0.685057\pi\)
\(644\) 3.67280 0.144729
\(645\) 0 0
\(646\) −1.17852 −0.0463683
\(647\) 24.6280 0.968228 0.484114 0.875005i \(-0.339142\pi\)
0.484114 + 0.875005i \(0.339142\pi\)
\(648\) 0 0
\(649\) −15.7256 −0.617284
\(650\) 0 0
\(651\) 0 0
\(652\) 0.393205 0.0153991
\(653\) −27.8960 −1.09165 −0.545827 0.837898i \(-0.683784\pi\)
−0.545827 + 0.837898i \(0.683784\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −10.5329 −0.411242
\(657\) 0 0
\(658\) 0.505219 0.0196955
\(659\) 18.3903 0.716384 0.358192 0.933648i \(-0.383393\pi\)
0.358192 + 0.933648i \(0.383393\pi\)
\(660\) 0 0
\(661\) 2.05323 0.0798614 0.0399307 0.999202i \(-0.487286\pi\)
0.0399307 + 0.999202i \(0.487286\pi\)
\(662\) −22.5277 −0.875564
\(663\) 0 0
\(664\) 11.6044 0.450338
\(665\) 0 0
\(666\) 0 0
\(667\) 15.3254 0.593403
\(668\) −17.7558 −0.686991
\(669\) 0 0
\(670\) 0 0
\(671\) −14.1535 −0.546389
\(672\) 0 0
\(673\) −16.8287 −0.648698 −0.324349 0.945938i \(-0.605145\pi\)
−0.324349 + 0.945938i \(0.605145\pi\)
\(674\) −8.80178 −0.339032
\(675\) 0 0
\(676\) 15.5622 0.598546
\(677\) −20.8182 −0.800108 −0.400054 0.916491i \(-0.631009\pi\)
−0.400054 + 0.916491i \(0.631009\pi\)
\(678\) 0 0
\(679\) −3.25221 −0.124808
\(680\) 0 0
\(681\) 0 0
\(682\) 3.03323 0.116148
\(683\) 6.40527 0.245091 0.122545 0.992463i \(-0.460894\pi\)
0.122545 + 0.992463i \(0.460894\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 4.84683 0.185053
\(687\) 0 0
\(688\) −14.9462 −0.569819
\(689\) −17.5774 −0.669644
\(690\) 0 0
\(691\) −0.406659 −0.0154700 −0.00773502 0.999970i \(-0.502462\pi\)
−0.00773502 + 0.999970i \(0.502462\pi\)
\(692\) −20.3648 −0.774153
\(693\) 0 0
\(694\) 2.32358 0.0882020
\(695\) 0 0
\(696\) 0 0
\(697\) −15.8911 −0.601920
\(698\) −3.12976 −0.118463
\(699\) 0 0
\(700\) 0 0
\(701\) −2.39744 −0.0905501 −0.0452750 0.998975i \(-0.514416\pi\)
−0.0452750 + 0.998975i \(0.514416\pi\)
\(702\) 0 0
\(703\) −0.869173 −0.0327815
\(704\) 2.78108 0.104816
\(705\) 0 0
\(706\) 22.4394 0.844520
\(707\) 1.25654 0.0472570
\(708\) 0 0
\(709\) 22.0154 0.826804 0.413402 0.910549i \(-0.364340\pi\)
0.413402 + 0.910549i \(0.364340\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 12.7268 0.476958
\(713\) 11.6344 0.435712
\(714\) 0 0
\(715\) 0 0
\(716\) 0.667418 0.0249426
\(717\) 0 0
\(718\) −22.4282 −0.837014
\(719\) 9.29180 0.346526 0.173263 0.984876i \(-0.444569\pi\)
0.173263 + 0.984876i \(0.444569\pi\)
\(720\) 0 0
\(721\) −3.20929 −0.119520
\(722\) −12.8279 −0.477406
\(723\) 0 0
\(724\) −17.2215 −0.640032
\(725\) 0 0
\(726\) 0 0
\(727\) 29.4352 1.09169 0.545846 0.837886i \(-0.316208\pi\)
0.545846 + 0.837886i \(0.316208\pi\)
\(728\) −2.01714 −0.0747600
\(729\) 0 0
\(730\) 0 0
\(731\) −22.5495 −0.834023
\(732\) 0 0
\(733\) 3.71935 0.137377 0.0686887 0.997638i \(-0.478118\pi\)
0.0686887 + 0.997638i \(0.478118\pi\)
\(734\) 15.9669 0.589349
\(735\) 0 0
\(736\) 28.3565 1.04524
\(737\) −21.3953 −0.788107
\(738\) 0 0
\(739\) 20.2734 0.745768 0.372884 0.927878i \(-0.378369\pi\)
0.372884 + 0.927878i \(0.378369\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −3.79650 −0.139374
\(743\) 1.11337 0.0408457 0.0204229 0.999791i \(-0.493499\pi\)
0.0204229 + 0.999791i \(0.493499\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 20.1867 0.739086
\(747\) 0 0
\(748\) −5.23802 −0.191521
\(749\) −5.85179 −0.213820
\(750\) 0 0
\(751\) −37.9213 −1.38377 −0.691885 0.722008i \(-0.743219\pi\)
−0.691885 + 0.722008i \(0.743219\pi\)
\(752\) −1.83182 −0.0667995
\(753\) 0 0
\(754\) −3.61496 −0.131649
\(755\) 0 0
\(756\) 0 0
\(757\) 41.8794 1.52213 0.761066 0.648674i \(-0.224676\pi\)
0.761066 + 0.648674i \(0.224676\pi\)
\(758\) 21.3405 0.775121
\(759\) 0 0
\(760\) 0 0
\(761\) 12.6827 0.459749 0.229875 0.973220i \(-0.426168\pi\)
0.229875 + 0.973220i \(0.426168\pi\)
\(762\) 0 0
\(763\) −3.97889 −0.144046
\(764\) 15.3051 0.553721
\(765\) 0 0
\(766\) 24.9159 0.900247
\(767\) 14.2278 0.513735
\(768\) 0 0
\(769\) 34.0483 1.22781 0.613907 0.789378i \(-0.289597\pi\)
0.613907 + 0.789378i \(0.289597\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −13.4676 −0.484709
\(773\) −20.6092 −0.741261 −0.370630 0.928780i \(-0.620858\pi\)
−0.370630 + 0.928780i \(0.620858\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −15.9880 −0.573935
\(777\) 0 0
\(778\) 12.1494 0.435576
\(779\) 7.16233 0.256617
\(780\) 0 0
\(781\) 10.9336 0.391234
\(782\) 6.59680 0.235901
\(783\) 0 0
\(784\) −8.62613 −0.308076
\(785\) 0 0
\(786\) 0 0
\(787\) 49.1315 1.75135 0.875674 0.482903i \(-0.160417\pi\)
0.875674 + 0.482903i \(0.160417\pi\)
\(788\) 13.0261 0.464036
\(789\) 0 0
\(790\) 0 0
\(791\) −8.13562 −0.289269
\(792\) 0 0
\(793\) 12.8054 0.454732
\(794\) 3.29536 0.116948
\(795\) 0 0
\(796\) −15.3793 −0.545103
\(797\) 1.87847 0.0665389 0.0332694 0.999446i \(-0.489408\pi\)
0.0332694 + 0.999446i \(0.489408\pi\)
\(798\) 0 0
\(799\) −2.76368 −0.0977720
\(800\) 0 0
\(801\) 0 0
\(802\) 15.7094 0.554718
\(803\) 10.0319 0.354017
\(804\) 0 0
\(805\) 0 0
\(806\) −2.74432 −0.0966645
\(807\) 0 0
\(808\) 6.17719 0.217313
\(809\) 15.4989 0.544912 0.272456 0.962168i \(-0.412164\pi\)
0.272456 + 0.962168i \(0.412164\pi\)
\(810\) 0 0
\(811\) 6.06459 0.212956 0.106478 0.994315i \(-0.466043\pi\)
0.106478 + 0.994315i \(0.466043\pi\)
\(812\) 2.37797 0.0834503
\(813\) 0 0
\(814\) 1.26842 0.0444582
\(815\) 0 0
\(816\) 0 0
\(817\) 10.1633 0.355570
\(818\) −3.63994 −0.127267
\(819\) 0 0
\(820\) 0 0
\(821\) 3.79024 0.132280 0.0661402 0.997810i \(-0.478932\pi\)
0.0661402 + 0.997810i \(0.478932\pi\)
\(822\) 0 0
\(823\) −2.64216 −0.0920999 −0.0460499 0.998939i \(-0.514663\pi\)
−0.0460499 + 0.998939i \(0.514663\pi\)
\(824\) −15.7770 −0.549617
\(825\) 0 0
\(826\) 3.07303 0.106924
\(827\) 21.8953 0.761376 0.380688 0.924704i \(-0.375687\pi\)
0.380688 + 0.924704i \(0.375687\pi\)
\(828\) 0 0
\(829\) 7.03307 0.244269 0.122134 0.992514i \(-0.461026\pi\)
0.122134 + 0.992514i \(0.461026\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −2.51619 −0.0872332
\(833\) −13.0143 −0.450919
\(834\) 0 0
\(835\) 0 0
\(836\) 2.36084 0.0816512
\(837\) 0 0
\(838\) 11.1549 0.385341
\(839\) 49.4466 1.70709 0.853544 0.521021i \(-0.174449\pi\)
0.853544 + 0.521021i \(0.174449\pi\)
\(840\) 0 0
\(841\) −19.0775 −0.657845
\(842\) 4.54907 0.156771
\(843\) 0 0
\(844\) −20.5390 −0.706981
\(845\) 0 0
\(846\) 0 0
\(847\) 3.88353 0.133440
\(848\) 13.7653 0.472703
\(849\) 0 0
\(850\) 0 0
\(851\) 4.86522 0.166778
\(852\) 0 0
\(853\) −2.94665 −0.100891 −0.0504457 0.998727i \(-0.516064\pi\)
−0.0504457 + 0.998727i \(0.516064\pi\)
\(854\) 2.76581 0.0946441
\(855\) 0 0
\(856\) −28.7676 −0.983257
\(857\) −27.7795 −0.948929 −0.474465 0.880275i \(-0.657358\pi\)
−0.474465 + 0.880275i \(0.657358\pi\)
\(858\) 0 0
\(859\) −50.2134 −1.71326 −0.856629 0.515933i \(-0.827445\pi\)
−0.856629 + 0.515933i \(0.827445\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 17.5585 0.598046
\(863\) −1.11827 −0.0380663 −0.0190331 0.999819i \(-0.506059\pi\)
−0.0190331 + 0.999819i \(0.506059\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 27.2320 0.925382
\(867\) 0 0
\(868\) 1.80525 0.0612741
\(869\) 13.4385 0.455871
\(870\) 0 0
\(871\) 19.3575 0.655903
\(872\) −19.5604 −0.662398
\(873\) 0 0
\(874\) −2.97326 −0.100572
\(875\) 0 0
\(876\) 0 0
\(877\) −23.0843 −0.779502 −0.389751 0.920920i \(-0.627439\pi\)
−0.389751 + 0.920920i \(0.627439\pi\)
\(878\) −23.0919 −0.779314
\(879\) 0 0
\(880\) 0 0
\(881\) 10.1304 0.341301 0.170650 0.985332i \(-0.445413\pi\)
0.170650 + 0.985332i \(0.445413\pi\)
\(882\) 0 0
\(883\) −0.620421 −0.0208788 −0.0104394 0.999946i \(-0.503323\pi\)
−0.0104394 + 0.999946i \(0.503323\pi\)
\(884\) 4.73910 0.159393
\(885\) 0 0
\(886\) 17.1743 0.576983
\(887\) 0.762728 0.0256099 0.0128049 0.999918i \(-0.495924\pi\)
0.0128049 + 0.999918i \(0.495924\pi\)
\(888\) 0 0
\(889\) −4.79533 −0.160830
\(890\) 0 0
\(891\) 0 0
\(892\) −10.0319 −0.335892
\(893\) 1.24562 0.0416832
\(894\) 0 0
\(895\) 0 0
\(896\) 5.30116 0.177099
\(897\) 0 0
\(898\) 16.7473 0.558864
\(899\) 7.53272 0.251230
\(900\) 0 0
\(901\) 20.7678 0.691877
\(902\) −10.4523 −0.348023
\(903\) 0 0
\(904\) −39.9950 −1.33021
\(905\) 0 0
\(906\) 0 0
\(907\) −44.6062 −1.48112 −0.740562 0.671988i \(-0.765441\pi\)
−0.740562 + 0.671988i \(0.765441\pi\)
\(908\) −8.61011 −0.285737
\(909\) 0 0
\(910\) 0 0
\(911\) −21.5382 −0.713591 −0.356796 0.934182i \(-0.616131\pi\)
−0.356796 + 0.934182i \(0.616131\pi\)
\(912\) 0 0
\(913\) −8.49321 −0.281084
\(914\) −24.6397 −0.815010
\(915\) 0 0
\(916\) −45.1012 −1.49018
\(917\) −10.1769 −0.336072
\(918\) 0 0
\(919\) −32.1570 −1.06076 −0.530380 0.847760i \(-0.677951\pi\)
−0.530380 + 0.847760i \(0.677951\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −5.58672 −0.183989
\(923\) −9.89217 −0.325605
\(924\) 0 0
\(925\) 0 0
\(926\) −16.8369 −0.553295
\(927\) 0 0
\(928\) 18.3595 0.602681
\(929\) −53.7540 −1.76361 −0.881805 0.471614i \(-0.843672\pi\)
−0.881805 + 0.471614i \(0.843672\pi\)
\(930\) 0 0
\(931\) 5.86571 0.192241
\(932\) 38.2849 1.25406
\(933\) 0 0
\(934\) 29.6816 0.971212
\(935\) 0 0
\(936\) 0 0
\(937\) 32.7426 1.06965 0.534827 0.844961i \(-0.320377\pi\)
0.534827 + 0.844961i \(0.320377\pi\)
\(938\) 4.18098 0.136514
\(939\) 0 0
\(940\) 0 0
\(941\) 7.12766 0.232355 0.116178 0.993228i \(-0.462936\pi\)
0.116178 + 0.993228i \(0.462936\pi\)
\(942\) 0 0
\(943\) −40.0913 −1.30555
\(944\) −11.1422 −0.362646
\(945\) 0 0
\(946\) −14.8318 −0.482222
\(947\) −14.6389 −0.475702 −0.237851 0.971302i \(-0.576443\pi\)
−0.237851 + 0.971302i \(0.576443\pi\)
\(948\) 0 0
\(949\) −9.07634 −0.294630
\(950\) 0 0
\(951\) 0 0
\(952\) 2.38327 0.0772422
\(953\) −51.2467 −1.66004 −0.830021 0.557731i \(-0.811672\pi\)
−0.830021 + 0.557731i \(0.811672\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −16.5174 −0.534211
\(957\) 0 0
\(958\) −24.1299 −0.779601
\(959\) 5.55934 0.179521
\(960\) 0 0
\(961\) −25.2815 −0.815532
\(962\) −1.14761 −0.0370003
\(963\) 0 0
\(964\) −35.9118 −1.15664
\(965\) 0 0
\(966\) 0 0
\(967\) 12.5599 0.403899 0.201949 0.979396i \(-0.435272\pi\)
0.201949 + 0.979396i \(0.435272\pi\)
\(968\) 19.0916 0.613627
\(969\) 0 0
\(970\) 0 0
\(971\) 5.56513 0.178594 0.0892968 0.996005i \(-0.471538\pi\)
0.0892968 + 0.996005i \(0.471538\pi\)
\(972\) 0 0
\(973\) −7.10549 −0.227792
\(974\) 2.13742 0.0684874
\(975\) 0 0
\(976\) −10.0282 −0.320996
\(977\) −25.6883 −0.821843 −0.410922 0.911671i \(-0.634793\pi\)
−0.410922 + 0.911671i \(0.634793\pi\)
\(978\) 0 0
\(979\) −9.31471 −0.297699
\(980\) 0 0
\(981\) 0 0
\(982\) 8.05516 0.257050
\(983\) −21.5725 −0.688057 −0.344028 0.938959i \(-0.611792\pi\)
−0.344028 + 0.938959i \(0.611792\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 4.27112 0.136020
\(987\) 0 0
\(988\) −2.13597 −0.0679543
\(989\) −56.8894 −1.80898
\(990\) 0 0
\(991\) 9.15527 0.290827 0.145413 0.989371i \(-0.453549\pi\)
0.145413 + 0.989371i \(0.453549\pi\)
\(992\) 13.9377 0.442524
\(993\) 0 0
\(994\) −2.13659 −0.0677686
\(995\) 0 0
\(996\) 0 0
\(997\) −21.1522 −0.669896 −0.334948 0.942237i \(-0.608719\pi\)
−0.334948 + 0.942237i \(0.608719\pi\)
\(998\) −28.0621 −0.888292
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8325.2.a.cr.1.5 9
3.2 odd 2 925.2.a.l.1.5 9
5.2 odd 4 1665.2.c.e.334.11 18
5.3 odd 4 1665.2.c.e.334.8 18
5.4 even 2 8325.2.a.cq.1.5 9
15.2 even 4 185.2.b.a.149.8 18
15.8 even 4 185.2.b.a.149.11 yes 18
15.14 odd 2 925.2.a.m.1.5 9
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
185.2.b.a.149.8 18 15.2 even 4
185.2.b.a.149.11 yes 18 15.8 even 4
925.2.a.l.1.5 9 3.2 odd 2
925.2.a.m.1.5 9 15.14 odd 2
1665.2.c.e.334.8 18 5.3 odd 4
1665.2.c.e.334.11 18 5.2 odd 4
8325.2.a.cq.1.5 9 5.4 even 2
8325.2.a.cr.1.5 9 1.1 even 1 trivial