Properties

Label 8325.2.a.cq.1.7
Level $8325$
Weight $2$
Character 8325.1
Self dual yes
Analytic conductor $66.475$
Analytic rank $1$
Dimension $9$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8325,2,Mod(1,8325)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8325.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8325, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 8325 = 3^{2} \cdot 5^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8325.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [9,-5,0,11,0,0,8,-15,0,0,0,0,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(66.4754596827\)
Analytic rank: \(1\)
Dimension: \(9\)
Coefficient field: \(\mathbb{Q}[x]/(x^{9} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{9} - 4x^{8} - 6x^{7} + 30x^{6} + 15x^{5} - 70x^{4} - 22x^{3} + 44x^{2} + 4x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 185)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.7
Root \(1.97415\) of defining polynomial
Character \(\chi\) \(=\) 8325.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.974151 q^{2} -1.05103 q^{4} +4.15169 q^{7} -2.97216 q^{8} +1.12356 q^{11} +0.328108 q^{13} +4.04438 q^{14} -0.793280 q^{16} +1.55144 q^{17} -4.32598 q^{19} +1.09452 q^{22} -1.73985 q^{23} +0.319627 q^{26} -4.36355 q^{28} -8.20254 q^{29} -10.1080 q^{31} +5.17155 q^{32} +1.51134 q^{34} -1.00000 q^{37} -4.21416 q^{38} +1.91727 q^{41} +4.22272 q^{43} -1.18089 q^{44} -1.69488 q^{46} -10.7452 q^{47} +10.2365 q^{49} -0.344851 q^{52} +2.11437 q^{53} -12.3395 q^{56} -7.99051 q^{58} -11.5917 q^{59} +9.72982 q^{61} -9.84669 q^{62} +6.62444 q^{64} -5.29915 q^{67} -1.63061 q^{68} -9.90260 q^{71} +8.12992 q^{73} -0.974151 q^{74} +4.54673 q^{76} +4.66467 q^{77} -0.0298662 q^{79} +1.86771 q^{82} -13.8190 q^{83} +4.11357 q^{86} -3.33940 q^{88} +9.37865 q^{89} +1.36220 q^{91} +1.82864 q^{92} -10.4674 q^{94} +10.3113 q^{97} +9.97194 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 9 q - 5 q^{2} + 11 q^{4} + 8 q^{7} - 15 q^{8} + 6 q^{13} + 4 q^{14} + 11 q^{16} - 18 q^{17} - 4 q^{19} + 6 q^{22} - 16 q^{23} + 6 q^{26} - 20 q^{28} + 2 q^{29} - 6 q^{31} - 35 q^{32} + 6 q^{34} - 9 q^{37}+ \cdots - 21 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.974151 0.688829 0.344415 0.938818i \(-0.388077\pi\)
0.344415 + 0.938818i \(0.388077\pi\)
\(3\) 0 0
\(4\) −1.05103 −0.525515
\(5\) 0 0
\(6\) 0 0
\(7\) 4.15169 1.56919 0.784596 0.620007i \(-0.212870\pi\)
0.784596 + 0.620007i \(0.212870\pi\)
\(8\) −2.97216 −1.05082
\(9\) 0 0
\(10\) 0 0
\(11\) 1.12356 0.338766 0.169383 0.985550i \(-0.445823\pi\)
0.169383 + 0.985550i \(0.445823\pi\)
\(12\) 0 0
\(13\) 0.328108 0.0910008 0.0455004 0.998964i \(-0.485512\pi\)
0.0455004 + 0.998964i \(0.485512\pi\)
\(14\) 4.04438 1.08091
\(15\) 0 0
\(16\) −0.793280 −0.198320
\(17\) 1.55144 0.376280 0.188140 0.982142i \(-0.439754\pi\)
0.188140 + 0.982142i \(0.439754\pi\)
\(18\) 0 0
\(19\) −4.32598 −0.992449 −0.496224 0.868194i \(-0.665281\pi\)
−0.496224 + 0.868194i \(0.665281\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 1.09452 0.233352
\(23\) −1.73985 −0.362785 −0.181392 0.983411i \(-0.558060\pi\)
−0.181392 + 0.983411i \(0.558060\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0.319627 0.0626840
\(27\) 0 0
\(28\) −4.36355 −0.824633
\(29\) −8.20254 −1.52317 −0.761587 0.648063i \(-0.775579\pi\)
−0.761587 + 0.648063i \(0.775579\pi\)
\(30\) 0 0
\(31\) −10.1080 −1.81545 −0.907723 0.419571i \(-0.862181\pi\)
−0.907723 + 0.419571i \(0.862181\pi\)
\(32\) 5.17155 0.914210
\(33\) 0 0
\(34\) 1.51134 0.259193
\(35\) 0 0
\(36\) 0 0
\(37\) −1.00000 −0.164399
\(38\) −4.21416 −0.683627
\(39\) 0 0
\(40\) 0 0
\(41\) 1.91727 0.299428 0.149714 0.988729i \(-0.452165\pi\)
0.149714 + 0.988729i \(0.452165\pi\)
\(42\) 0 0
\(43\) 4.22272 0.643959 0.321979 0.946747i \(-0.395652\pi\)
0.321979 + 0.946747i \(0.395652\pi\)
\(44\) −1.18089 −0.178026
\(45\) 0 0
\(46\) −1.69488 −0.249897
\(47\) −10.7452 −1.56735 −0.783673 0.621174i \(-0.786656\pi\)
−0.783673 + 0.621174i \(0.786656\pi\)
\(48\) 0 0
\(49\) 10.2365 1.46236
\(50\) 0 0
\(51\) 0 0
\(52\) −0.344851 −0.0478222
\(53\) 2.11437 0.290431 0.145215 0.989400i \(-0.453612\pi\)
0.145215 + 0.989400i \(0.453612\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −12.3395 −1.64894
\(57\) 0 0
\(58\) −7.99051 −1.04921
\(59\) −11.5917 −1.50911 −0.754557 0.656234i \(-0.772148\pi\)
−0.754557 + 0.656234i \(0.772148\pi\)
\(60\) 0 0
\(61\) 9.72982 1.24578 0.622888 0.782311i \(-0.285959\pi\)
0.622888 + 0.782311i \(0.285959\pi\)
\(62\) −9.84669 −1.25053
\(63\) 0 0
\(64\) 6.62444 0.828054
\(65\) 0 0
\(66\) 0 0
\(67\) −5.29915 −0.647395 −0.323697 0.946161i \(-0.604926\pi\)
−0.323697 + 0.946161i \(0.604926\pi\)
\(68\) −1.63061 −0.197741
\(69\) 0 0
\(70\) 0 0
\(71\) −9.90260 −1.17522 −0.587611 0.809144i \(-0.699931\pi\)
−0.587611 + 0.809144i \(0.699931\pi\)
\(72\) 0 0
\(73\) 8.12992 0.951535 0.475767 0.879571i \(-0.342170\pi\)
0.475767 + 0.879571i \(0.342170\pi\)
\(74\) −0.974151 −0.113243
\(75\) 0 0
\(76\) 4.54673 0.521546
\(77\) 4.66467 0.531588
\(78\) 0 0
\(79\) −0.0298662 −0.00336021 −0.00168011 0.999999i \(-0.500535\pi\)
−0.00168011 + 0.999999i \(0.500535\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 1.86771 0.206255
\(83\) −13.8190 −1.51683 −0.758416 0.651770i \(-0.774027\pi\)
−0.758416 + 0.651770i \(0.774027\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 4.11357 0.443577
\(87\) 0 0
\(88\) −3.33940 −0.355981
\(89\) 9.37865 0.994135 0.497067 0.867712i \(-0.334410\pi\)
0.497067 + 0.867712i \(0.334410\pi\)
\(90\) 0 0
\(91\) 1.36220 0.142798
\(92\) 1.82864 0.190649
\(93\) 0 0
\(94\) −10.4674 −1.07963
\(95\) 0 0
\(96\) 0 0
\(97\) 10.3113 1.04695 0.523475 0.852041i \(-0.324635\pi\)
0.523475 + 0.852041i \(0.324635\pi\)
\(98\) 9.97194 1.00732
\(99\) 0 0
\(100\) 0 0
\(101\) −15.0371 −1.49625 −0.748124 0.663559i \(-0.769045\pi\)
−0.748124 + 0.663559i \(0.769045\pi\)
\(102\) 0 0
\(103\) −5.60494 −0.552271 −0.276135 0.961119i \(-0.589054\pi\)
−0.276135 + 0.961119i \(0.589054\pi\)
\(104\) −0.975190 −0.0956253
\(105\) 0 0
\(106\) 2.05971 0.200057
\(107\) −4.24636 −0.410511 −0.205255 0.978708i \(-0.565803\pi\)
−0.205255 + 0.978708i \(0.565803\pi\)
\(108\) 0 0
\(109\) −3.14147 −0.300898 −0.150449 0.988618i \(-0.548072\pi\)
−0.150449 + 0.988618i \(0.548072\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −3.29345 −0.311202
\(113\) 8.26928 0.777908 0.388954 0.921257i \(-0.372836\pi\)
0.388954 + 0.921257i \(0.372836\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 8.62111 0.800450
\(117\) 0 0
\(118\) −11.2921 −1.03952
\(119\) 6.44111 0.590456
\(120\) 0 0
\(121\) −9.73762 −0.885238
\(122\) 9.47831 0.858126
\(123\) 0 0
\(124\) 10.6238 0.954043
\(125\) 0 0
\(126\) 0 0
\(127\) 6.23393 0.553171 0.276586 0.960989i \(-0.410797\pi\)
0.276586 + 0.960989i \(0.410797\pi\)
\(128\) −3.88990 −0.343822
\(129\) 0 0
\(130\) 0 0
\(131\) −5.84789 −0.510933 −0.255466 0.966818i \(-0.582229\pi\)
−0.255466 + 0.966818i \(0.582229\pi\)
\(132\) 0 0
\(133\) −17.9601 −1.55734
\(134\) −5.16218 −0.445944
\(135\) 0 0
\(136\) −4.61114 −0.395402
\(137\) 11.7743 1.00594 0.502971 0.864303i \(-0.332240\pi\)
0.502971 + 0.864303i \(0.332240\pi\)
\(138\) 0 0
\(139\) −21.8186 −1.85063 −0.925316 0.379197i \(-0.876200\pi\)
−0.925316 + 0.379197i \(0.876200\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −9.64663 −0.809527
\(143\) 0.368648 0.0308279
\(144\) 0 0
\(145\) 0 0
\(146\) 7.91977 0.655445
\(147\) 0 0
\(148\) 1.05103 0.0863941
\(149\) −8.13563 −0.666497 −0.333249 0.942839i \(-0.608145\pi\)
−0.333249 + 0.942839i \(0.608145\pi\)
\(150\) 0 0
\(151\) 6.24705 0.508377 0.254189 0.967155i \(-0.418192\pi\)
0.254189 + 0.967155i \(0.418192\pi\)
\(152\) 12.8575 1.04288
\(153\) 0 0
\(154\) 4.54409 0.366173
\(155\) 0 0
\(156\) 0 0
\(157\) 21.8540 1.74414 0.872068 0.489385i \(-0.162779\pi\)
0.872068 + 0.489385i \(0.162779\pi\)
\(158\) −0.0290942 −0.00231461
\(159\) 0 0
\(160\) 0 0
\(161\) −7.22334 −0.569279
\(162\) 0 0
\(163\) 13.1285 1.02830 0.514152 0.857699i \(-0.328107\pi\)
0.514152 + 0.857699i \(0.328107\pi\)
\(164\) −2.01511 −0.157354
\(165\) 0 0
\(166\) −13.4618 −1.04484
\(167\) −14.0706 −1.08881 −0.544407 0.838821i \(-0.683245\pi\)
−0.544407 + 0.838821i \(0.683245\pi\)
\(168\) 0 0
\(169\) −12.8923 −0.991719
\(170\) 0 0
\(171\) 0 0
\(172\) −4.43820 −0.338410
\(173\) −1.19192 −0.0906202 −0.0453101 0.998973i \(-0.514428\pi\)
−0.0453101 + 0.998973i \(0.514428\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −0.891296 −0.0671840
\(177\) 0 0
\(178\) 9.13622 0.684789
\(179\) 2.81996 0.210774 0.105387 0.994431i \(-0.466392\pi\)
0.105387 + 0.994431i \(0.466392\pi\)
\(180\) 0 0
\(181\) 11.7419 0.872772 0.436386 0.899760i \(-0.356258\pi\)
0.436386 + 0.899760i \(0.356258\pi\)
\(182\) 1.32699 0.0983632
\(183\) 0 0
\(184\) 5.17113 0.381221
\(185\) 0 0
\(186\) 0 0
\(187\) 1.74314 0.127471
\(188\) 11.2935 0.823663
\(189\) 0 0
\(190\) 0 0
\(191\) 14.9337 1.08056 0.540281 0.841485i \(-0.318318\pi\)
0.540281 + 0.841485i \(0.318318\pi\)
\(192\) 0 0
\(193\) 11.8961 0.856301 0.428150 0.903707i \(-0.359165\pi\)
0.428150 + 0.903707i \(0.359165\pi\)
\(194\) 10.0447 0.721169
\(195\) 0 0
\(196\) −10.7589 −0.768493
\(197\) 0.202721 0.0144433 0.00722163 0.999974i \(-0.497701\pi\)
0.00722163 + 0.999974i \(0.497701\pi\)
\(198\) 0 0
\(199\) 22.8466 1.61955 0.809775 0.586740i \(-0.199589\pi\)
0.809775 + 0.586740i \(0.199589\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) −14.6484 −1.03066
\(203\) −34.0544 −2.39015
\(204\) 0 0
\(205\) 0 0
\(206\) −5.46006 −0.380420
\(207\) 0 0
\(208\) −0.260281 −0.0180473
\(209\) −4.86050 −0.336207
\(210\) 0 0
\(211\) 2.18114 0.150156 0.0750781 0.997178i \(-0.476079\pi\)
0.0750781 + 0.997178i \(0.476079\pi\)
\(212\) −2.22226 −0.152626
\(213\) 0 0
\(214\) −4.13660 −0.282772
\(215\) 0 0
\(216\) 0 0
\(217\) −41.9652 −2.84878
\(218\) −3.06026 −0.207267
\(219\) 0 0
\(220\) 0 0
\(221\) 0.509041 0.0342418
\(222\) 0 0
\(223\) −0.585984 −0.0392404 −0.0196202 0.999808i \(-0.506246\pi\)
−0.0196202 + 0.999808i \(0.506246\pi\)
\(224\) 21.4707 1.43457
\(225\) 0 0
\(226\) 8.05553 0.535846
\(227\) −9.34509 −0.620255 −0.310128 0.950695i \(-0.600372\pi\)
−0.310128 + 0.950695i \(0.600372\pi\)
\(228\) 0 0
\(229\) −7.17597 −0.474201 −0.237101 0.971485i \(-0.576197\pi\)
−0.237101 + 0.971485i \(0.576197\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 24.3793 1.60058
\(233\) −3.90299 −0.255693 −0.127847 0.991794i \(-0.540807\pi\)
−0.127847 + 0.991794i \(0.540807\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 12.1832 0.793061
\(237\) 0 0
\(238\) 6.27462 0.406723
\(239\) −19.4873 −1.26053 −0.630264 0.776381i \(-0.717053\pi\)
−0.630264 + 0.776381i \(0.717053\pi\)
\(240\) 0 0
\(241\) −17.6828 −1.13905 −0.569524 0.821975i \(-0.692872\pi\)
−0.569524 + 0.821975i \(0.692872\pi\)
\(242\) −9.48591 −0.609778
\(243\) 0 0
\(244\) −10.2263 −0.654673
\(245\) 0 0
\(246\) 0 0
\(247\) −1.41939 −0.0903136
\(248\) 30.0426 1.90770
\(249\) 0 0
\(250\) 0 0
\(251\) −20.5968 −1.30006 −0.650029 0.759910i \(-0.725243\pi\)
−0.650029 + 0.759910i \(0.725243\pi\)
\(252\) 0 0
\(253\) −1.95483 −0.122899
\(254\) 6.07279 0.381041
\(255\) 0 0
\(256\) −17.0382 −1.06489
\(257\) −4.45425 −0.277848 −0.138924 0.990303i \(-0.544364\pi\)
−0.138924 + 0.990303i \(0.544364\pi\)
\(258\) 0 0
\(259\) −4.15169 −0.257974
\(260\) 0 0
\(261\) 0 0
\(262\) −5.69673 −0.351945
\(263\) −25.8182 −1.59202 −0.796008 0.605286i \(-0.793059\pi\)
−0.796008 + 0.605286i \(0.793059\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −17.4959 −1.07274
\(267\) 0 0
\(268\) 5.56956 0.340215
\(269\) 2.98719 0.182132 0.0910660 0.995845i \(-0.470973\pi\)
0.0910660 + 0.995845i \(0.470973\pi\)
\(270\) 0 0
\(271\) 2.12040 0.128805 0.0644026 0.997924i \(-0.479486\pi\)
0.0644026 + 0.997924i \(0.479486\pi\)
\(272\) −1.23073 −0.0746239
\(273\) 0 0
\(274\) 11.4699 0.692923
\(275\) 0 0
\(276\) 0 0
\(277\) −17.7165 −1.06448 −0.532241 0.846593i \(-0.678650\pi\)
−0.532241 + 0.846593i \(0.678650\pi\)
\(278\) −21.2546 −1.27477
\(279\) 0 0
\(280\) 0 0
\(281\) 27.8120 1.65912 0.829562 0.558415i \(-0.188590\pi\)
0.829562 + 0.558415i \(0.188590\pi\)
\(282\) 0 0
\(283\) −33.2265 −1.97511 −0.987554 0.157279i \(-0.949728\pi\)
−0.987554 + 0.157279i \(0.949728\pi\)
\(284\) 10.4079 0.617596
\(285\) 0 0
\(286\) 0.359119 0.0212352
\(287\) 7.95993 0.469860
\(288\) 0 0
\(289\) −14.5930 −0.858413
\(290\) 0 0
\(291\) 0 0
\(292\) −8.54478 −0.500045
\(293\) −10.7041 −0.625338 −0.312669 0.949862i \(-0.601223\pi\)
−0.312669 + 0.949862i \(0.601223\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 2.97216 0.172754
\(297\) 0 0
\(298\) −7.92534 −0.459103
\(299\) −0.570860 −0.0330137
\(300\) 0 0
\(301\) 17.5314 1.01049
\(302\) 6.08557 0.350185
\(303\) 0 0
\(304\) 3.43172 0.196822
\(305\) 0 0
\(306\) 0 0
\(307\) −28.2376 −1.61161 −0.805803 0.592184i \(-0.798266\pi\)
−0.805803 + 0.592184i \(0.798266\pi\)
\(308\) −4.90270 −0.279357
\(309\) 0 0
\(310\) 0 0
\(311\) −2.73696 −0.155199 −0.0775994 0.996985i \(-0.524726\pi\)
−0.0775994 + 0.996985i \(0.524726\pi\)
\(312\) 0 0
\(313\) −9.88861 −0.558937 −0.279469 0.960155i \(-0.590158\pi\)
−0.279469 + 0.960155i \(0.590158\pi\)
\(314\) 21.2891 1.20141
\(315\) 0 0
\(316\) 0.0313903 0.00176584
\(317\) −16.3820 −0.920104 −0.460052 0.887892i \(-0.652169\pi\)
−0.460052 + 0.887892i \(0.652169\pi\)
\(318\) 0 0
\(319\) −9.21603 −0.515999
\(320\) 0 0
\(321\) 0 0
\(322\) −7.03662 −0.392136
\(323\) −6.71152 −0.373439
\(324\) 0 0
\(325\) 0 0
\(326\) 12.7891 0.708325
\(327\) 0 0
\(328\) −5.69845 −0.314644
\(329\) −44.6107 −2.45947
\(330\) 0 0
\(331\) 24.8361 1.36512 0.682558 0.730831i \(-0.260867\pi\)
0.682558 + 0.730831i \(0.260867\pi\)
\(332\) 14.5242 0.797118
\(333\) 0 0
\(334\) −13.7069 −0.750007
\(335\) 0 0
\(336\) 0 0
\(337\) −11.7557 −0.640374 −0.320187 0.947354i \(-0.603746\pi\)
−0.320187 + 0.947354i \(0.603746\pi\)
\(338\) −12.5591 −0.683125
\(339\) 0 0
\(340\) 0 0
\(341\) −11.3569 −0.615010
\(342\) 0 0
\(343\) 13.4371 0.725537
\(344\) −12.5506 −0.676684
\(345\) 0 0
\(346\) −1.16111 −0.0624218
\(347\) −22.4552 −1.20546 −0.602730 0.797945i \(-0.705921\pi\)
−0.602730 + 0.797945i \(0.705921\pi\)
\(348\) 0 0
\(349\) −23.4583 −1.25570 −0.627848 0.778336i \(-0.716064\pi\)
−0.627848 + 0.778336i \(0.716064\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 5.81054 0.309703
\(353\) 9.68966 0.515729 0.257864 0.966181i \(-0.416981\pi\)
0.257864 + 0.966181i \(0.416981\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −9.85723 −0.522432
\(357\) 0 0
\(358\) 2.74707 0.145187
\(359\) −1.53276 −0.0808959 −0.0404479 0.999182i \(-0.512878\pi\)
−0.0404479 + 0.999182i \(0.512878\pi\)
\(360\) 0 0
\(361\) −0.285869 −0.0150457
\(362\) 11.4384 0.601191
\(363\) 0 0
\(364\) −1.43171 −0.0750422
\(365\) 0 0
\(366\) 0 0
\(367\) 21.4479 1.11957 0.559785 0.828638i \(-0.310884\pi\)
0.559785 + 0.828638i \(0.310884\pi\)
\(368\) 1.38019 0.0719474
\(369\) 0 0
\(370\) 0 0
\(371\) 8.77820 0.455742
\(372\) 0 0
\(373\) −20.7877 −1.07635 −0.538174 0.842834i \(-0.680886\pi\)
−0.538174 + 0.842834i \(0.680886\pi\)
\(374\) 1.69808 0.0878056
\(375\) 0 0
\(376\) 31.9364 1.64700
\(377\) −2.69132 −0.138610
\(378\) 0 0
\(379\) 35.2385 1.81008 0.905039 0.425328i \(-0.139841\pi\)
0.905039 + 0.425328i \(0.139841\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 14.5477 0.744323
\(383\) −10.4709 −0.535039 −0.267520 0.963552i \(-0.586204\pi\)
−0.267520 + 0.963552i \(0.586204\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 11.5886 0.589845
\(387\) 0 0
\(388\) −10.8374 −0.550187
\(389\) −21.2760 −1.07874 −0.539369 0.842070i \(-0.681337\pi\)
−0.539369 + 0.842070i \(0.681337\pi\)
\(390\) 0 0
\(391\) −2.69928 −0.136509
\(392\) −30.4247 −1.53668
\(393\) 0 0
\(394\) 0.197481 0.00994893
\(395\) 0 0
\(396\) 0 0
\(397\) 7.65737 0.384313 0.192156 0.981364i \(-0.438452\pi\)
0.192156 + 0.981364i \(0.438452\pi\)
\(398\) 22.2560 1.11559
\(399\) 0 0
\(400\) 0 0
\(401\) 7.92690 0.395850 0.197925 0.980217i \(-0.436580\pi\)
0.197925 + 0.980217i \(0.436580\pi\)
\(402\) 0 0
\(403\) −3.31651 −0.165207
\(404\) 15.8044 0.786300
\(405\) 0 0
\(406\) −33.1742 −1.64641
\(407\) −1.12356 −0.0556927
\(408\) 0 0
\(409\) −25.1341 −1.24280 −0.621402 0.783492i \(-0.713437\pi\)
−0.621402 + 0.783492i \(0.713437\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 5.89095 0.290226
\(413\) −48.1253 −2.36809
\(414\) 0 0
\(415\) 0 0
\(416\) 1.69683 0.0831938
\(417\) 0 0
\(418\) −4.73486 −0.231589
\(419\) 32.9831 1.61133 0.805664 0.592372i \(-0.201809\pi\)
0.805664 + 0.592372i \(0.201809\pi\)
\(420\) 0 0
\(421\) 21.2137 1.03389 0.516946 0.856018i \(-0.327069\pi\)
0.516946 + 0.856018i \(0.327069\pi\)
\(422\) 2.12477 0.103432
\(423\) 0 0
\(424\) −6.28425 −0.305190
\(425\) 0 0
\(426\) 0 0
\(427\) 40.3952 1.95486
\(428\) 4.46305 0.215729
\(429\) 0 0
\(430\) 0 0
\(431\) 18.9998 0.915189 0.457595 0.889161i \(-0.348711\pi\)
0.457595 + 0.889161i \(0.348711\pi\)
\(432\) 0 0
\(433\) 14.4655 0.695168 0.347584 0.937649i \(-0.387002\pi\)
0.347584 + 0.937649i \(0.387002\pi\)
\(434\) −40.8804 −1.96232
\(435\) 0 0
\(436\) 3.30177 0.158126
\(437\) 7.52658 0.360045
\(438\) 0 0
\(439\) 7.66347 0.365758 0.182879 0.983135i \(-0.441458\pi\)
0.182879 + 0.983135i \(0.441458\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0.495883 0.0235867
\(443\) −9.40674 −0.446928 −0.223464 0.974712i \(-0.571736\pi\)
−0.223464 + 0.974712i \(0.571736\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −0.570837 −0.0270299
\(447\) 0 0
\(448\) 27.5026 1.29938
\(449\) 31.2681 1.47563 0.737817 0.675001i \(-0.235857\pi\)
0.737817 + 0.675001i \(0.235857\pi\)
\(450\) 0 0
\(451\) 2.15417 0.101436
\(452\) −8.69125 −0.408802
\(453\) 0 0
\(454\) −9.10353 −0.427250
\(455\) 0 0
\(456\) 0 0
\(457\) −30.7079 −1.43646 −0.718228 0.695807i \(-0.755047\pi\)
−0.718228 + 0.695807i \(0.755047\pi\)
\(458\) −6.99048 −0.326644
\(459\) 0 0
\(460\) 0 0
\(461\) 30.3777 1.41483 0.707414 0.706799i \(-0.249862\pi\)
0.707414 + 0.706799i \(0.249862\pi\)
\(462\) 0 0
\(463\) 23.6458 1.09892 0.549458 0.835521i \(-0.314834\pi\)
0.549458 + 0.835521i \(0.314834\pi\)
\(464\) 6.50691 0.302076
\(465\) 0 0
\(466\) −3.80210 −0.176129
\(467\) −4.40134 −0.203670 −0.101835 0.994801i \(-0.532471\pi\)
−0.101835 + 0.994801i \(0.532471\pi\)
\(468\) 0 0
\(469\) −22.0004 −1.01589
\(470\) 0 0
\(471\) 0 0
\(472\) 34.4525 1.58581
\(473\) 4.74447 0.218151
\(474\) 0 0
\(475\) 0 0
\(476\) −6.76980 −0.310293
\(477\) 0 0
\(478\) −18.9836 −0.868289
\(479\) 6.87159 0.313971 0.156985 0.987601i \(-0.449822\pi\)
0.156985 + 0.987601i \(0.449822\pi\)
\(480\) 0 0
\(481\) −0.328108 −0.0149604
\(482\) −17.2257 −0.784609
\(483\) 0 0
\(484\) 10.2345 0.465205
\(485\) 0 0
\(486\) 0 0
\(487\) −1.08477 −0.0491557 −0.0245778 0.999698i \(-0.507824\pi\)
−0.0245778 + 0.999698i \(0.507824\pi\)
\(488\) −28.9186 −1.30908
\(489\) 0 0
\(490\) 0 0
\(491\) −25.5117 −1.15133 −0.575663 0.817687i \(-0.695256\pi\)
−0.575663 + 0.817687i \(0.695256\pi\)
\(492\) 0 0
\(493\) −12.7258 −0.573140
\(494\) −1.38270 −0.0622106
\(495\) 0 0
\(496\) 8.01845 0.360039
\(497\) −41.1125 −1.84415
\(498\) 0 0
\(499\) −13.8928 −0.621927 −0.310963 0.950422i \(-0.600652\pi\)
−0.310963 + 0.950422i \(0.600652\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −20.0644 −0.895517
\(503\) 15.0199 0.669706 0.334853 0.942270i \(-0.391313\pi\)
0.334853 + 0.942270i \(0.391313\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −1.90430 −0.0846564
\(507\) 0 0
\(508\) −6.55204 −0.290700
\(509\) −23.1670 −1.02686 −0.513429 0.858132i \(-0.671625\pi\)
−0.513429 + 0.858132i \(0.671625\pi\)
\(510\) 0 0
\(511\) 33.7529 1.49314
\(512\) −8.81800 −0.389704
\(513\) 0 0
\(514\) −4.33911 −0.191390
\(515\) 0 0
\(516\) 0 0
\(517\) −12.0728 −0.530963
\(518\) −4.04438 −0.177700
\(519\) 0 0
\(520\) 0 0
\(521\) 15.6402 0.685210 0.342605 0.939480i \(-0.388691\pi\)
0.342605 + 0.939480i \(0.388691\pi\)
\(522\) 0 0
\(523\) −17.2031 −0.752239 −0.376120 0.926571i \(-0.622742\pi\)
−0.376120 + 0.926571i \(0.622742\pi\)
\(524\) 6.14630 0.268503
\(525\) 0 0
\(526\) −25.1508 −1.09663
\(527\) −15.6819 −0.683116
\(528\) 0 0
\(529\) −19.9729 −0.868387
\(530\) 0 0
\(531\) 0 0
\(532\) 18.8766 0.818406
\(533\) 0.629072 0.0272482
\(534\) 0 0
\(535\) 0 0
\(536\) 15.7500 0.680294
\(537\) 0 0
\(538\) 2.90997 0.125458
\(539\) 11.5014 0.495399
\(540\) 0 0
\(541\) 37.5079 1.61259 0.806295 0.591514i \(-0.201469\pi\)
0.806295 + 0.591514i \(0.201469\pi\)
\(542\) 2.06559 0.0887248
\(543\) 0 0
\(544\) 8.02337 0.343999
\(545\) 0 0
\(546\) 0 0
\(547\) 11.2496 0.480999 0.240500 0.970649i \(-0.422689\pi\)
0.240500 + 0.970649i \(0.422689\pi\)
\(548\) −12.3751 −0.528638
\(549\) 0 0
\(550\) 0 0
\(551\) 35.4840 1.51167
\(552\) 0 0
\(553\) −0.123995 −0.00527282
\(554\) −17.2586 −0.733246
\(555\) 0 0
\(556\) 22.9320 0.972534
\(557\) 14.2721 0.604730 0.302365 0.953192i \(-0.402224\pi\)
0.302365 + 0.953192i \(0.402224\pi\)
\(558\) 0 0
\(559\) 1.38551 0.0586007
\(560\) 0 0
\(561\) 0 0
\(562\) 27.0931 1.14285
\(563\) −26.5150 −1.11748 −0.558738 0.829344i \(-0.688714\pi\)
−0.558738 + 0.829344i \(0.688714\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −32.3676 −1.36051
\(567\) 0 0
\(568\) 29.4321 1.23495
\(569\) 19.5570 0.819873 0.409937 0.912114i \(-0.365551\pi\)
0.409937 + 0.912114i \(0.365551\pi\)
\(570\) 0 0
\(571\) −26.6827 −1.11664 −0.558318 0.829627i \(-0.688553\pi\)
−0.558318 + 0.829627i \(0.688553\pi\)
\(572\) −0.387460 −0.0162005
\(573\) 0 0
\(574\) 7.75417 0.323653
\(575\) 0 0
\(576\) 0 0
\(577\) −44.3351 −1.84569 −0.922847 0.385167i \(-0.874144\pi\)
−0.922847 + 0.385167i \(0.874144\pi\)
\(578\) −14.2158 −0.591300
\(579\) 0 0
\(580\) 0 0
\(581\) −57.3722 −2.38020
\(582\) 0 0
\(583\) 2.37562 0.0983880
\(584\) −24.1635 −0.999891
\(585\) 0 0
\(586\) −10.4274 −0.430751
\(587\) −14.2646 −0.588764 −0.294382 0.955688i \(-0.595114\pi\)
−0.294382 + 0.955688i \(0.595114\pi\)
\(588\) 0 0
\(589\) 43.7269 1.80174
\(590\) 0 0
\(591\) 0 0
\(592\) 0.793280 0.0326036
\(593\) −35.9243 −1.47523 −0.737617 0.675220i \(-0.764049\pi\)
−0.737617 + 0.675220i \(0.764049\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 8.55079 0.350254
\(597\) 0 0
\(598\) −0.556104 −0.0227408
\(599\) −11.3383 −0.463270 −0.231635 0.972803i \(-0.574408\pi\)
−0.231635 + 0.972803i \(0.574408\pi\)
\(600\) 0 0
\(601\) −14.1352 −0.576585 −0.288293 0.957542i \(-0.593088\pi\)
−0.288293 + 0.957542i \(0.593088\pi\)
\(602\) 17.0783 0.696058
\(603\) 0 0
\(604\) −6.56583 −0.267160
\(605\) 0 0
\(606\) 0 0
\(607\) 29.9826 1.21696 0.608478 0.793570i \(-0.291780\pi\)
0.608478 + 0.793570i \(0.291780\pi\)
\(608\) −22.3721 −0.907307
\(609\) 0 0
\(610\) 0 0
\(611\) −3.52558 −0.142630
\(612\) 0 0
\(613\) −11.8163 −0.477255 −0.238627 0.971111i \(-0.576697\pi\)
−0.238627 + 0.971111i \(0.576697\pi\)
\(614\) −27.5077 −1.11012
\(615\) 0 0
\(616\) −13.8642 −0.558603
\(617\) 14.3499 0.577704 0.288852 0.957374i \(-0.406726\pi\)
0.288852 + 0.957374i \(0.406726\pi\)
\(618\) 0 0
\(619\) 42.7627 1.71878 0.859388 0.511324i \(-0.170845\pi\)
0.859388 + 0.511324i \(0.170845\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −2.66621 −0.106905
\(623\) 38.9373 1.55999
\(624\) 0 0
\(625\) 0 0
\(626\) −9.63300 −0.385012
\(627\) 0 0
\(628\) −22.9691 −0.916569
\(629\) −1.55144 −0.0618601
\(630\) 0 0
\(631\) −25.5460 −1.01697 −0.508485 0.861071i \(-0.669794\pi\)
−0.508485 + 0.861071i \(0.669794\pi\)
\(632\) 0.0887674 0.00353098
\(633\) 0 0
\(634\) −15.9585 −0.633794
\(635\) 0 0
\(636\) 0 0
\(637\) 3.35869 0.133076
\(638\) −8.97781 −0.355435
\(639\) 0 0
\(640\) 0 0
\(641\) 15.7859 0.623507 0.311753 0.950163i \(-0.399084\pi\)
0.311753 + 0.950163i \(0.399084\pi\)
\(642\) 0 0
\(643\) 9.14608 0.360686 0.180343 0.983604i \(-0.442279\pi\)
0.180343 + 0.983604i \(0.442279\pi\)
\(644\) 7.59194 0.299164
\(645\) 0 0
\(646\) −6.53803 −0.257236
\(647\) −0.954028 −0.0375067 −0.0187534 0.999824i \(-0.505970\pi\)
−0.0187534 + 0.999824i \(0.505970\pi\)
\(648\) 0 0
\(649\) −13.0240 −0.511236
\(650\) 0 0
\(651\) 0 0
\(652\) −13.7984 −0.540388
\(653\) 29.4039 1.15066 0.575332 0.817920i \(-0.304873\pi\)
0.575332 + 0.817920i \(0.304873\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −1.52093 −0.0593825
\(657\) 0 0
\(658\) −43.4575 −1.69415
\(659\) 4.70710 0.183363 0.0916813 0.995788i \(-0.470776\pi\)
0.0916813 + 0.995788i \(0.470776\pi\)
\(660\) 0 0
\(661\) 7.77234 0.302309 0.151155 0.988510i \(-0.451701\pi\)
0.151155 + 0.988510i \(0.451701\pi\)
\(662\) 24.1941 0.940332
\(663\) 0 0
\(664\) 41.0723 1.59392
\(665\) 0 0
\(666\) 0 0
\(667\) 14.2712 0.552584
\(668\) 14.7886 0.572188
\(669\) 0 0
\(670\) 0 0
\(671\) 10.9320 0.422026
\(672\) 0 0
\(673\) −6.61462 −0.254975 −0.127487 0.991840i \(-0.540691\pi\)
−0.127487 + 0.991840i \(0.540691\pi\)
\(674\) −11.4518 −0.441109
\(675\) 0 0
\(676\) 13.5502 0.521163
\(677\) 43.0362 1.65402 0.827008 0.562190i \(-0.190041\pi\)
0.827008 + 0.562190i \(0.190041\pi\)
\(678\) 0 0
\(679\) 42.8092 1.64286
\(680\) 0 0
\(681\) 0 0
\(682\) −11.0633 −0.423637
\(683\) 37.4802 1.43414 0.717070 0.697001i \(-0.245483\pi\)
0.717070 + 0.697001i \(0.245483\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 13.0898 0.499771
\(687\) 0 0
\(688\) −3.34980 −0.127710
\(689\) 0.693741 0.0264294
\(690\) 0 0
\(691\) −23.8817 −0.908501 −0.454251 0.890874i \(-0.650093\pi\)
−0.454251 + 0.890874i \(0.650093\pi\)
\(692\) 1.25274 0.0476222
\(693\) 0 0
\(694\) −21.8748 −0.830356
\(695\) 0 0
\(696\) 0 0
\(697\) 2.97454 0.112669
\(698\) −22.8520 −0.864960
\(699\) 0 0
\(700\) 0 0
\(701\) 19.1253 0.722354 0.361177 0.932497i \(-0.382375\pi\)
0.361177 + 0.932497i \(0.382375\pi\)
\(702\) 0 0
\(703\) 4.32598 0.163158
\(704\) 7.44294 0.280516
\(705\) 0 0
\(706\) 9.43920 0.355249
\(707\) −62.4295 −2.34790
\(708\) 0 0
\(709\) 2.67026 0.100284 0.0501419 0.998742i \(-0.484033\pi\)
0.0501419 + 0.998742i \(0.484033\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −27.8749 −1.04466
\(713\) 17.5864 0.658615
\(714\) 0 0
\(715\) 0 0
\(716\) −2.96386 −0.110765
\(717\) 0 0
\(718\) −1.49314 −0.0557234
\(719\) 9.55937 0.356504 0.178252 0.983985i \(-0.442956\pi\)
0.178252 + 0.983985i \(0.442956\pi\)
\(720\) 0 0
\(721\) −23.2700 −0.866619
\(722\) −0.278479 −0.0103639
\(723\) 0 0
\(724\) −12.3411 −0.458654
\(725\) 0 0
\(726\) 0 0
\(727\) 24.7692 0.918639 0.459319 0.888271i \(-0.348093\pi\)
0.459319 + 0.888271i \(0.348093\pi\)
\(728\) −4.04869 −0.150054
\(729\) 0 0
\(730\) 0 0
\(731\) 6.55131 0.242309
\(732\) 0 0
\(733\) 31.1904 1.15204 0.576022 0.817434i \(-0.304604\pi\)
0.576022 + 0.817434i \(0.304604\pi\)
\(734\) 20.8935 0.771192
\(735\) 0 0
\(736\) −8.99775 −0.331661
\(737\) −5.95391 −0.219315
\(738\) 0 0
\(739\) 8.25351 0.303610 0.151805 0.988410i \(-0.451491\pi\)
0.151805 + 0.988410i \(0.451491\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 8.55130 0.313928
\(743\) −13.6459 −0.500620 −0.250310 0.968166i \(-0.580532\pi\)
−0.250310 + 0.968166i \(0.580532\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −20.2504 −0.741420
\(747\) 0 0
\(748\) −1.83209 −0.0669878
\(749\) −17.6296 −0.644171
\(750\) 0 0
\(751\) −7.48601 −0.273168 −0.136584 0.990628i \(-0.543612\pi\)
−0.136584 + 0.990628i \(0.543612\pi\)
\(752\) 8.52393 0.310836
\(753\) 0 0
\(754\) −2.62175 −0.0954785
\(755\) 0 0
\(756\) 0 0
\(757\) −2.13112 −0.0774568 −0.0387284 0.999250i \(-0.512331\pi\)
−0.0387284 + 0.999250i \(0.512331\pi\)
\(758\) 34.3276 1.24683
\(759\) 0 0
\(760\) 0 0
\(761\) −6.44482 −0.233625 −0.116812 0.993154i \(-0.537268\pi\)
−0.116812 + 0.993154i \(0.537268\pi\)
\(762\) 0 0
\(763\) −13.0424 −0.472167
\(764\) −15.6957 −0.567851
\(765\) 0 0
\(766\) −10.2003 −0.368551
\(767\) −3.80334 −0.137331
\(768\) 0 0
\(769\) 1.48402 0.0535153 0.0267577 0.999642i \(-0.491482\pi\)
0.0267577 + 0.999642i \(0.491482\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −12.5032 −0.449999
\(773\) 35.2452 1.26768 0.633842 0.773463i \(-0.281477\pi\)
0.633842 + 0.773463i \(0.281477\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −30.6467 −1.10015
\(777\) 0 0
\(778\) −20.7261 −0.743066
\(779\) −8.29409 −0.297167
\(780\) 0 0
\(781\) −11.1261 −0.398125
\(782\) −2.62951 −0.0940311
\(783\) 0 0
\(784\) −8.12044 −0.290016
\(785\) 0 0
\(786\) 0 0
\(787\) −34.4009 −1.22626 −0.613130 0.789982i \(-0.710090\pi\)
−0.613130 + 0.789982i \(0.710090\pi\)
\(788\) −0.213065 −0.00759014
\(789\) 0 0
\(790\) 0 0
\(791\) 34.3315 1.22069
\(792\) 0 0
\(793\) 3.19243 0.113366
\(794\) 7.45944 0.264726
\(795\) 0 0
\(796\) −24.0124 −0.851097
\(797\) 35.2214 1.24761 0.623804 0.781581i \(-0.285586\pi\)
0.623804 + 0.781581i \(0.285586\pi\)
\(798\) 0 0
\(799\) −16.6705 −0.589761
\(800\) 0 0
\(801\) 0 0
\(802\) 7.72200 0.272673
\(803\) 9.13444 0.322347
\(804\) 0 0
\(805\) 0 0
\(806\) −3.23078 −0.113799
\(807\) 0 0
\(808\) 44.6928 1.57229
\(809\) 41.4435 1.45707 0.728537 0.685006i \(-0.240201\pi\)
0.728537 + 0.685006i \(0.240201\pi\)
\(810\) 0 0
\(811\) −15.0206 −0.527443 −0.263722 0.964599i \(-0.584950\pi\)
−0.263722 + 0.964599i \(0.584950\pi\)
\(812\) 35.7922 1.25606
\(813\) 0 0
\(814\) −1.09452 −0.0383628
\(815\) 0 0
\(816\) 0 0
\(817\) −18.2674 −0.639096
\(818\) −24.4845 −0.856079
\(819\) 0 0
\(820\) 0 0
\(821\) −13.1002 −0.457202 −0.228601 0.973520i \(-0.573415\pi\)
−0.228601 + 0.973520i \(0.573415\pi\)
\(822\) 0 0
\(823\) −52.6530 −1.83537 −0.917683 0.397313i \(-0.869943\pi\)
−0.917683 + 0.397313i \(0.869943\pi\)
\(824\) 16.6588 0.580337
\(825\) 0 0
\(826\) −46.8813 −1.63121
\(827\) −5.83378 −0.202860 −0.101430 0.994843i \(-0.532342\pi\)
−0.101430 + 0.994843i \(0.532342\pi\)
\(828\) 0 0
\(829\) 46.2971 1.60796 0.803982 0.594654i \(-0.202711\pi\)
0.803982 + 0.594654i \(0.202711\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 2.17353 0.0753536
\(833\) 15.8814 0.550258
\(834\) 0 0
\(835\) 0 0
\(836\) 5.10852 0.176682
\(837\) 0 0
\(838\) 32.1305 1.10993
\(839\) −35.6818 −1.23187 −0.615937 0.787795i \(-0.711222\pi\)
−0.615937 + 0.787795i \(0.711222\pi\)
\(840\) 0 0
\(841\) 38.2816 1.32006
\(842\) 20.6654 0.712175
\(843\) 0 0
\(844\) −2.29245 −0.0789093
\(845\) 0 0
\(846\) 0 0
\(847\) −40.4276 −1.38911
\(848\) −1.67729 −0.0575982
\(849\) 0 0
\(850\) 0 0
\(851\) 1.73985 0.0596414
\(852\) 0 0
\(853\) 34.6928 1.18786 0.593929 0.804517i \(-0.297576\pi\)
0.593929 + 0.804517i \(0.297576\pi\)
\(854\) 39.3510 1.34656
\(855\) 0 0
\(856\) 12.6209 0.431373
\(857\) −39.2348 −1.34024 −0.670118 0.742254i \(-0.733757\pi\)
−0.670118 + 0.742254i \(0.733757\pi\)
\(858\) 0 0
\(859\) −2.59802 −0.0886434 −0.0443217 0.999017i \(-0.514113\pi\)
−0.0443217 + 0.999017i \(0.514113\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 18.5087 0.630409
\(863\) 28.2848 0.962826 0.481413 0.876494i \(-0.340124\pi\)
0.481413 + 0.876494i \(0.340124\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 14.0916 0.478852
\(867\) 0 0
\(868\) 44.1066 1.49708
\(869\) −0.0335565 −0.00113833
\(870\) 0 0
\(871\) −1.73869 −0.0589134
\(872\) 9.33695 0.316189
\(873\) 0 0
\(874\) 7.33203 0.248009
\(875\) 0 0
\(876\) 0 0
\(877\) −37.7220 −1.27378 −0.636890 0.770954i \(-0.719780\pi\)
−0.636890 + 0.770954i \(0.719780\pi\)
\(878\) 7.46538 0.251944
\(879\) 0 0
\(880\) 0 0
\(881\) −28.5497 −0.961863 −0.480931 0.876758i \(-0.659701\pi\)
−0.480931 + 0.876758i \(0.659701\pi\)
\(882\) 0 0
\(883\) −6.33313 −0.213127 −0.106563 0.994306i \(-0.533985\pi\)
−0.106563 + 0.994306i \(0.533985\pi\)
\(884\) −0.535017 −0.0179946
\(885\) 0 0
\(886\) −9.16359 −0.307857
\(887\) 29.7029 0.997326 0.498663 0.866796i \(-0.333825\pi\)
0.498663 + 0.866796i \(0.333825\pi\)
\(888\) 0 0
\(889\) 25.8813 0.868032
\(890\) 0 0
\(891\) 0 0
\(892\) 0.615886 0.0206214
\(893\) 46.4835 1.55551
\(894\) 0 0
\(895\) 0 0
\(896\) −16.1497 −0.539523
\(897\) 0 0
\(898\) 30.4599 1.01646
\(899\) 82.9110 2.76524
\(900\) 0 0
\(901\) 3.28032 0.109283
\(902\) 2.09849 0.0698720
\(903\) 0 0
\(904\) −24.5776 −0.817440
\(905\) 0 0
\(906\) 0 0
\(907\) −51.0940 −1.69655 −0.848274 0.529558i \(-0.822358\pi\)
−0.848274 + 0.529558i \(0.822358\pi\)
\(908\) 9.82196 0.325953
\(909\) 0 0
\(910\) 0 0
\(911\) −0.652657 −0.0216235 −0.0108117 0.999942i \(-0.503442\pi\)
−0.0108117 + 0.999942i \(0.503442\pi\)
\(912\) 0 0
\(913\) −15.5265 −0.513851
\(914\) −29.9142 −0.989473
\(915\) 0 0
\(916\) 7.54215 0.249200
\(917\) −24.2786 −0.801751
\(918\) 0 0
\(919\) −14.7727 −0.487307 −0.243654 0.969862i \(-0.578346\pi\)
−0.243654 + 0.969862i \(0.578346\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 29.5924 0.974575
\(923\) −3.24912 −0.106946
\(924\) 0 0
\(925\) 0 0
\(926\) 23.0346 0.756965
\(927\) 0 0
\(928\) −42.4199 −1.39250
\(929\) −34.8843 −1.14452 −0.572259 0.820073i \(-0.693933\pi\)
−0.572259 + 0.820073i \(0.693933\pi\)
\(930\) 0 0
\(931\) −44.2831 −1.45132
\(932\) 4.10216 0.134371
\(933\) 0 0
\(934\) −4.28757 −0.140294
\(935\) 0 0
\(936\) 0 0
\(937\) −4.40483 −0.143900 −0.0719498 0.997408i \(-0.522922\pi\)
−0.0719498 + 0.997408i \(0.522922\pi\)
\(938\) −21.4318 −0.699772
\(939\) 0 0
\(940\) 0 0
\(941\) −30.2905 −0.987443 −0.493721 0.869620i \(-0.664364\pi\)
−0.493721 + 0.869620i \(0.664364\pi\)
\(942\) 0 0
\(943\) −3.33577 −0.108628
\(944\) 9.19548 0.299287
\(945\) 0 0
\(946\) 4.62183 0.150269
\(947\) 48.0223 1.56052 0.780258 0.625458i \(-0.215088\pi\)
0.780258 + 0.625458i \(0.215088\pi\)
\(948\) 0 0
\(949\) 2.66749 0.0865904
\(950\) 0 0
\(951\) 0 0
\(952\) −19.1440 −0.620462
\(953\) −20.3929 −0.660592 −0.330296 0.943877i \(-0.607149\pi\)
−0.330296 + 0.943877i \(0.607149\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 20.4817 0.662426
\(957\) 0 0
\(958\) 6.69397 0.216272
\(959\) 48.8831 1.57852
\(960\) 0 0
\(961\) 71.1711 2.29584
\(962\) −0.319627 −0.0103052
\(963\) 0 0
\(964\) 18.5851 0.598586
\(965\) 0 0
\(966\) 0 0
\(967\) −9.28548 −0.298601 −0.149300 0.988792i \(-0.547702\pi\)
−0.149300 + 0.988792i \(0.547702\pi\)
\(968\) 28.9418 0.930225
\(969\) 0 0
\(970\) 0 0
\(971\) −17.7722 −0.570338 −0.285169 0.958477i \(-0.592050\pi\)
−0.285169 + 0.958477i \(0.592050\pi\)
\(972\) 0 0
\(973\) −90.5842 −2.90400
\(974\) −1.05673 −0.0338599
\(975\) 0 0
\(976\) −7.71847 −0.247062
\(977\) −15.5526 −0.497572 −0.248786 0.968559i \(-0.580032\pi\)
−0.248786 + 0.968559i \(0.580032\pi\)
\(978\) 0 0
\(979\) 10.5375 0.336779
\(980\) 0 0
\(981\) 0 0
\(982\) −24.8522 −0.793067
\(983\) −52.6734 −1.68002 −0.840010 0.542570i \(-0.817451\pi\)
−0.840010 + 0.542570i \(0.817451\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −12.3968 −0.394795
\(987\) 0 0
\(988\) 1.49182 0.0474611
\(989\) −7.34691 −0.233618
\(990\) 0 0
\(991\) 13.9043 0.441686 0.220843 0.975309i \(-0.429119\pi\)
0.220843 + 0.975309i \(0.429119\pi\)
\(992\) −52.2739 −1.65970
\(993\) 0 0
\(994\) −40.0498 −1.27030
\(995\) 0 0
\(996\) 0 0
\(997\) 16.3165 0.516749 0.258375 0.966045i \(-0.416813\pi\)
0.258375 + 0.966045i \(0.416813\pi\)
\(998\) −13.5337 −0.428401
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8325.2.a.cq.1.7 9
3.2 odd 2 925.2.a.m.1.3 9
5.2 odd 4 1665.2.c.e.334.12 18
5.3 odd 4 1665.2.c.e.334.7 18
5.4 even 2 8325.2.a.cr.1.3 9
15.2 even 4 185.2.b.a.149.7 18
15.8 even 4 185.2.b.a.149.12 yes 18
15.14 odd 2 925.2.a.l.1.7 9
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
185.2.b.a.149.7 18 15.2 even 4
185.2.b.a.149.12 yes 18 15.8 even 4
925.2.a.l.1.7 9 15.14 odd 2
925.2.a.m.1.3 9 3.2 odd 2
1665.2.c.e.334.7 18 5.3 odd 4
1665.2.c.e.334.12 18 5.2 odd 4
8325.2.a.cq.1.7 9 1.1 even 1 trivial
8325.2.a.cr.1.3 9 5.4 even 2