Properties

Label 832.4.f.l.129.9
Level $832$
Weight $4$
Character 832.129
Analytic conductor $49.090$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [832,4,Mod(129,832)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(832, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("832.129"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 832 = 2^{6} \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 832.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [10,0,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(49.0895891248\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} + 170x^{8} + 8945x^{6} + 145432x^{4} + 614160x^{2} + 20736 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{17} \)
Twist minimal: no (minimal twist has level 104)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 129.9
Root \(-8.27625i\) of defining polynomial
Character \(\chi\) \(=\) 832.129
Dual form 832.4.f.l.129.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+9.27625 q^{3} -2.27999i q^{5} -28.5449i q^{7} +59.0489 q^{9} +0.604833i q^{11} +(19.1535 + 42.7802i) q^{13} -21.1498i q^{15} -41.0109 q^{17} -129.485i q^{19} -264.790i q^{21} -73.8974 q^{23} +119.802 q^{25} +297.293 q^{27} +214.532 q^{29} +126.175i q^{31} +5.61058i q^{33} -65.0822 q^{35} -309.470i q^{37} +(177.673 + 396.840i) q^{39} -88.1488i q^{41} -245.304 q^{43} -134.631i q^{45} +68.5441i q^{47} -471.814 q^{49} -380.428 q^{51} +613.275 q^{53} +1.37901 q^{55} -1201.14i q^{57} -840.276i q^{59} -587.808 q^{61} -1685.55i q^{63} +(97.5384 - 43.6699i) q^{65} +606.554i q^{67} -685.491 q^{69} -507.627i q^{71} +177.127i q^{73} +1111.31 q^{75} +17.2649 q^{77} -143.122 q^{79} +1163.45 q^{81} -773.287i q^{83} +93.5046i q^{85} +1990.06 q^{87} +1402.90i q^{89} +(1221.16 - 546.736i) q^{91} +1170.43i q^{93} -295.226 q^{95} +468.225i q^{97} +35.7147i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q + 6 q^{3} + 72 q^{9} + 24 q^{13} + 58 q^{17} - 180 q^{23} + 28 q^{25} + 354 q^{27} + 392 q^{29} + 154 q^{35} + 532 q^{39} - 234 q^{43} - 128 q^{49} - 510 q^{51} + 1244 q^{53} + 576 q^{55} + 56 q^{61}+ \cdots + 2340 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/832\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(703\) \(769\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 9.27625 1.78522 0.892608 0.450834i \(-0.148873\pi\)
0.892608 + 0.450834i \(0.148873\pi\)
\(4\) 0 0
\(5\) 2.27999i 0.203929i −0.994788 0.101964i \(-0.967487\pi\)
0.994788 0.101964i \(-0.0325128\pi\)
\(6\) 0 0
\(7\) 28.5449i 1.54128i −0.637269 0.770641i \(-0.719936\pi\)
0.637269 0.770641i \(-0.280064\pi\)
\(8\) 0 0
\(9\) 59.0489 2.18699
\(10\) 0 0
\(11\) 0.604833i 0.0165785i 0.999966 + 0.00828927i \(0.00263859\pi\)
−0.999966 + 0.00828927i \(0.997361\pi\)
\(12\) 0 0
\(13\) 19.1535 + 42.7802i 0.408633 + 0.912699i
\(14\) 0 0
\(15\) 21.1498i 0.364057i
\(16\) 0 0
\(17\) −41.0109 −0.585095 −0.292548 0.956251i \(-0.594503\pi\)
−0.292548 + 0.956251i \(0.594503\pi\)
\(18\) 0 0
\(19\) 129.485i 1.56347i −0.623609 0.781737i \(-0.714334\pi\)
0.623609 0.781737i \(-0.285666\pi\)
\(20\) 0 0
\(21\) 264.790i 2.75152i
\(22\) 0 0
\(23\) −73.8974 −0.669943 −0.334971 0.942228i \(-0.608727\pi\)
−0.334971 + 0.942228i \(0.608727\pi\)
\(24\) 0 0
\(25\) 119.802 0.958413
\(26\) 0 0
\(27\) 297.293 2.11904
\(28\) 0 0
\(29\) 214.532 1.37371 0.686856 0.726793i \(-0.258990\pi\)
0.686856 + 0.726793i \(0.258990\pi\)
\(30\) 0 0
\(31\) 126.175i 0.731023i 0.930807 + 0.365512i \(0.119106\pi\)
−0.930807 + 0.365512i \(0.880894\pi\)
\(32\) 0 0
\(33\) 5.61058i 0.0295963i
\(34\) 0 0
\(35\) −65.0822 −0.314312
\(36\) 0 0
\(37\) 309.470i 1.37504i −0.726164 0.687522i \(-0.758699\pi\)
0.726164 0.687522i \(-0.241301\pi\)
\(38\) 0 0
\(39\) 177.673 + 396.840i 0.729498 + 1.62936i
\(40\) 0 0
\(41\) 88.1488i 0.335769i −0.985807 0.167885i \(-0.946306\pi\)
0.985807 0.167885i \(-0.0536936\pi\)
\(42\) 0 0
\(43\) −245.304 −0.869967 −0.434983 0.900438i \(-0.643246\pi\)
−0.434983 + 0.900438i \(0.643246\pi\)
\(44\) 0 0
\(45\) 134.631i 0.445991i
\(46\) 0 0
\(47\) 68.5441i 0.212727i 0.994327 + 0.106364i \(0.0339208\pi\)
−0.994327 + 0.106364i \(0.966079\pi\)
\(48\) 0 0
\(49\) −471.814 −1.37555
\(50\) 0 0
\(51\) −380.428 −1.04452
\(52\) 0 0
\(53\) 613.275 1.58943 0.794716 0.606982i \(-0.207620\pi\)
0.794716 + 0.606982i \(0.207620\pi\)
\(54\) 0 0
\(55\) 1.37901 0.00338084
\(56\) 0 0
\(57\) 1201.14i 2.79114i
\(58\) 0 0
\(59\) 840.276i 1.85415i −0.374882 0.927073i \(-0.622317\pi\)
0.374882 0.927073i \(-0.377683\pi\)
\(60\) 0 0
\(61\) −587.808 −1.23379 −0.616894 0.787046i \(-0.711609\pi\)
−0.616894 + 0.787046i \(0.711609\pi\)
\(62\) 0 0
\(63\) 1685.55i 3.37078i
\(64\) 0 0
\(65\) 97.5384 43.6699i 0.186125 0.0833320i
\(66\) 0 0
\(67\) 606.554i 1.10601i 0.833180 + 0.553003i \(0.186518\pi\)
−0.833180 + 0.553003i \(0.813482\pi\)
\(68\) 0 0
\(69\) −685.491 −1.19599
\(70\) 0 0
\(71\) 507.627i 0.848510i −0.905543 0.424255i \(-0.860536\pi\)
0.905543 0.424255i \(-0.139464\pi\)
\(72\) 0 0
\(73\) 177.127i 0.283989i 0.989867 + 0.141994i \(0.0453515\pi\)
−0.989867 + 0.141994i \(0.954649\pi\)
\(74\) 0 0
\(75\) 1111.31 1.71097
\(76\) 0 0
\(77\) 17.2649 0.0255522
\(78\) 0 0
\(79\) −143.122 −0.203829 −0.101914 0.994793i \(-0.532497\pi\)
−0.101914 + 0.994793i \(0.532497\pi\)
\(80\) 0 0
\(81\) 1163.45 1.59595
\(82\) 0 0
\(83\) 773.287i 1.02264i −0.859390 0.511321i \(-0.829156\pi\)
0.859390 0.511321i \(-0.170844\pi\)
\(84\) 0 0
\(85\) 93.5046i 0.119318i
\(86\) 0 0
\(87\) 1990.06 2.45237
\(88\) 0 0
\(89\) 1402.90i 1.67086i 0.549593 + 0.835432i \(0.314783\pi\)
−0.549593 + 0.835432i \(0.685217\pi\)
\(90\) 0 0
\(91\) 1221.16 546.736i 1.40673 0.629819i
\(92\) 0 0
\(93\) 1170.43i 1.30503i
\(94\) 0 0
\(95\) −295.226 −0.318837
\(96\) 0 0
\(97\) 468.225i 0.490114i 0.969509 + 0.245057i \(0.0788066\pi\)
−0.969509 + 0.245057i \(0.921193\pi\)
\(98\) 0 0
\(99\) 35.7147i 0.0362572i
\(100\) 0 0
\(101\) 399.959 0.394033 0.197017 0.980400i \(-0.436875\pi\)
0.197017 + 0.980400i \(0.436875\pi\)
\(102\) 0 0
\(103\) −1404.11 −1.34321 −0.671607 0.740907i \(-0.734396\pi\)
−0.671607 + 0.740907i \(0.734396\pi\)
\(104\) 0 0
\(105\) −603.719 −0.561114
\(106\) 0 0
\(107\) −1596.54 −1.44246 −0.721232 0.692694i \(-0.756424\pi\)
−0.721232 + 0.692694i \(0.756424\pi\)
\(108\) 0 0
\(109\) 247.807i 0.217758i −0.994055 0.108879i \(-0.965274\pi\)
0.994055 0.108879i \(-0.0347261\pi\)
\(110\) 0 0
\(111\) 2870.73i 2.45475i
\(112\) 0 0
\(113\) 423.360 0.352445 0.176223 0.984350i \(-0.443612\pi\)
0.176223 + 0.984350i \(0.443612\pi\)
\(114\) 0 0
\(115\) 168.486i 0.136621i
\(116\) 0 0
\(117\) 1130.99 + 2526.12i 0.893678 + 1.99607i
\(118\) 0 0
\(119\) 1170.66i 0.901797i
\(120\) 0 0
\(121\) 1330.63 0.999725
\(122\) 0 0
\(123\) 817.691i 0.599420i
\(124\) 0 0
\(125\) 558.146i 0.399377i
\(126\) 0 0
\(127\) 640.855 0.447769 0.223884 0.974616i \(-0.428126\pi\)
0.223884 + 0.974616i \(0.428126\pi\)
\(128\) 0 0
\(129\) −2275.51 −1.55308
\(130\) 0 0
\(131\) 809.348 0.539794 0.269897 0.962889i \(-0.413010\pi\)
0.269897 + 0.962889i \(0.413010\pi\)
\(132\) 0 0
\(133\) −3696.15 −2.40975
\(134\) 0 0
\(135\) 677.826i 0.432133i
\(136\) 0 0
\(137\) 1666.32i 1.03915i 0.854426 + 0.519573i \(0.173909\pi\)
−0.854426 + 0.519573i \(0.826091\pi\)
\(138\) 0 0
\(139\) 2473.29 1.50922 0.754609 0.656174i \(-0.227826\pi\)
0.754609 + 0.656174i \(0.227826\pi\)
\(140\) 0 0
\(141\) 635.833i 0.379764i
\(142\) 0 0
\(143\) −25.8748 + 11.5847i −0.0151312 + 0.00677454i
\(144\) 0 0
\(145\) 489.132i 0.280139i
\(146\) 0 0
\(147\) −4376.66 −2.45565
\(148\) 0 0
\(149\) 2014.63i 1.10769i 0.832621 + 0.553843i \(0.186839\pi\)
−0.832621 + 0.553843i \(0.813161\pi\)
\(150\) 0 0
\(151\) 389.182i 0.209743i 0.994486 + 0.104872i \(0.0334432\pi\)
−0.994486 + 0.104872i \(0.966557\pi\)
\(152\) 0 0
\(153\) −2421.65 −1.27960
\(154\) 0 0
\(155\) 287.678 0.149077
\(156\) 0 0
\(157\) 1485.77 0.755270 0.377635 0.925954i \(-0.376737\pi\)
0.377635 + 0.925954i \(0.376737\pi\)
\(158\) 0 0
\(159\) 5688.90 2.83748
\(160\) 0 0
\(161\) 2109.40i 1.03257i
\(162\) 0 0
\(163\) 2345.72i 1.12718i 0.826054 + 0.563591i \(0.190581\pi\)
−0.826054 + 0.563591i \(0.809419\pi\)
\(164\) 0 0
\(165\) 12.7921 0.00603553
\(166\) 0 0
\(167\) 1978.23i 0.916648i 0.888785 + 0.458324i \(0.151550\pi\)
−0.888785 + 0.458324i \(0.848450\pi\)
\(168\) 0 0
\(169\) −1463.29 + 1638.78i −0.666038 + 0.745918i
\(170\) 0 0
\(171\) 7645.97i 3.41931i
\(172\) 0 0
\(173\) 1892.71 0.831791 0.415895 0.909412i \(-0.363468\pi\)
0.415895 + 0.909412i \(0.363468\pi\)
\(174\) 0 0
\(175\) 3419.73i 1.47718i
\(176\) 0 0
\(177\) 7794.61i 3.31005i
\(178\) 0 0
\(179\) 4002.27 1.67119 0.835597 0.549343i \(-0.185122\pi\)
0.835597 + 0.549343i \(0.185122\pi\)
\(180\) 0 0
\(181\) −1128.60 −0.463469 −0.231734 0.972779i \(-0.574440\pi\)
−0.231734 + 0.972779i \(0.574440\pi\)
\(182\) 0 0
\(183\) −5452.65 −2.20258
\(184\) 0 0
\(185\) −705.590 −0.280411
\(186\) 0 0
\(187\) 24.8048i 0.00970002i
\(188\) 0 0
\(189\) 8486.22i 3.26604i
\(190\) 0 0
\(191\) 3133.94 1.18724 0.593622 0.804744i \(-0.297697\pi\)
0.593622 + 0.804744i \(0.297697\pi\)
\(192\) 0 0
\(193\) 2115.69i 0.789070i 0.918881 + 0.394535i \(0.129094\pi\)
−0.918881 + 0.394535i \(0.870906\pi\)
\(194\) 0 0
\(195\) 904.791 405.093i 0.332274 0.148766i
\(196\) 0 0
\(197\) 14.4068i 0.00521038i 0.999997 + 0.00260519i \(0.000829259\pi\)
−0.999997 + 0.00260519i \(0.999171\pi\)
\(198\) 0 0
\(199\) −1412.24 −0.503072 −0.251536 0.967848i \(-0.580936\pi\)
−0.251536 + 0.967848i \(0.580936\pi\)
\(200\) 0 0
\(201\) 5626.55i 1.97446i
\(202\) 0 0
\(203\) 6123.81i 2.11728i
\(204\) 0 0
\(205\) −200.979 −0.0684729
\(206\) 0 0
\(207\) −4363.56 −1.46516
\(208\) 0 0
\(209\) 78.3170 0.0259201
\(210\) 0 0
\(211\) 2908.92 0.949093 0.474546 0.880231i \(-0.342612\pi\)
0.474546 + 0.880231i \(0.342612\pi\)
\(212\) 0 0
\(213\) 4708.87i 1.51477i
\(214\) 0 0
\(215\) 559.292i 0.177411i
\(216\) 0 0
\(217\) 3601.66 1.12671
\(218\) 0 0
\(219\) 1643.08i 0.506981i
\(220\) 0 0
\(221\) −785.504 1754.46i −0.239089 0.534016i
\(222\) 0 0
\(223\) 354.193i 0.106361i 0.998585 + 0.0531805i \(0.0169359\pi\)
−0.998585 + 0.0531805i \(0.983064\pi\)
\(224\) 0 0
\(225\) 7074.15 2.09604
\(226\) 0 0
\(227\) 4122.96i 1.20551i 0.797927 + 0.602754i \(0.205930\pi\)
−0.797927 + 0.602754i \(0.794070\pi\)
\(228\) 0 0
\(229\) 4250.04i 1.22642i 0.789920 + 0.613210i \(0.210122\pi\)
−0.789920 + 0.613210i \(0.789878\pi\)
\(230\) 0 0
\(231\) 160.154 0.0456162
\(232\) 0 0
\(233\) −1590.88 −0.447304 −0.223652 0.974669i \(-0.571798\pi\)
−0.223652 + 0.974669i \(0.571798\pi\)
\(234\) 0 0
\(235\) 156.280 0.0433812
\(236\) 0 0
\(237\) −1327.64 −0.363879
\(238\) 0 0
\(239\) 1030.76i 0.278972i −0.990224 0.139486i \(-0.955455\pi\)
0.990224 0.139486i \(-0.0445451\pi\)
\(240\) 0 0
\(241\) 4582.38i 1.22480i −0.790547 0.612401i \(-0.790204\pi\)
0.790547 0.612401i \(-0.209796\pi\)
\(242\) 0 0
\(243\) 2765.52 0.730076
\(244\) 0 0
\(245\) 1075.73i 0.280514i
\(246\) 0 0
\(247\) 5539.41 2480.10i 1.42698 0.638887i
\(248\) 0 0
\(249\) 7173.20i 1.82564i
\(250\) 0 0
\(251\) −3084.18 −0.775584 −0.387792 0.921747i \(-0.626762\pi\)
−0.387792 + 0.921747i \(0.626762\pi\)
\(252\) 0 0
\(253\) 44.6956i 0.0111067i
\(254\) 0 0
\(255\) 867.372i 0.213008i
\(256\) 0 0
\(257\) −2328.69 −0.565212 −0.282606 0.959236i \(-0.591199\pi\)
−0.282606 + 0.959236i \(0.591199\pi\)
\(258\) 0 0
\(259\) −8833.81 −2.11933
\(260\) 0 0
\(261\) 12667.9 3.00430
\(262\) 0 0
\(263\) −3795.43 −0.889873 −0.444936 0.895562i \(-0.646774\pi\)
−0.444936 + 0.895562i \(0.646774\pi\)
\(264\) 0 0
\(265\) 1398.26i 0.324131i
\(266\) 0 0
\(267\) 13013.6i 2.98285i
\(268\) 0 0
\(269\) 6178.54 1.40042 0.700209 0.713938i \(-0.253090\pi\)
0.700209 + 0.713938i \(0.253090\pi\)
\(270\) 0 0
\(271\) 322.020i 0.0721819i 0.999349 + 0.0360910i \(0.0114906\pi\)
−0.999349 + 0.0360910i \(0.988509\pi\)
\(272\) 0 0
\(273\) 11327.8 5071.66i 2.51131 1.12436i
\(274\) 0 0
\(275\) 72.4600i 0.0158891i
\(276\) 0 0
\(277\) −4183.15 −0.907369 −0.453684 0.891162i \(-0.649891\pi\)
−0.453684 + 0.891162i \(0.649891\pi\)
\(278\) 0 0
\(279\) 7450.49i 1.59874i
\(280\) 0 0
\(281\) 392.013i 0.0832226i −0.999134 0.0416113i \(-0.986751\pi\)
0.999134 0.0416113i \(-0.0132491\pi\)
\(282\) 0 0
\(283\) −4119.24 −0.865241 −0.432621 0.901576i \(-0.642411\pi\)
−0.432621 + 0.901576i \(0.642411\pi\)
\(284\) 0 0
\(285\) −2738.59 −0.569193
\(286\) 0 0
\(287\) −2516.20 −0.517515
\(288\) 0 0
\(289\) −3231.10 −0.657664
\(290\) 0 0
\(291\) 4343.37i 0.874959i
\(292\) 0 0
\(293\) 4885.80i 0.974169i −0.873355 0.487085i \(-0.838060\pi\)
0.873355 0.487085i \(-0.161940\pi\)
\(294\) 0 0
\(295\) −1915.82 −0.378113
\(296\) 0 0
\(297\) 179.813i 0.0351306i
\(298\) 0 0
\(299\) −1415.40 3161.35i −0.273761 0.611456i
\(300\) 0 0
\(301\) 7002.20i 1.34086i
\(302\) 0 0
\(303\) 3710.12 0.703435
\(304\) 0 0
\(305\) 1340.20i 0.251605i
\(306\) 0 0
\(307\) 2024.02i 0.376277i 0.982142 + 0.188139i \(0.0602454\pi\)
−0.982142 + 0.188139i \(0.939755\pi\)
\(308\) 0 0
\(309\) −13024.9 −2.39793
\(310\) 0 0
\(311\) 1272.97 0.232102 0.116051 0.993243i \(-0.462976\pi\)
0.116051 + 0.993243i \(0.462976\pi\)
\(312\) 0 0
\(313\) 375.693 0.0678448 0.0339224 0.999424i \(-0.489200\pi\)
0.0339224 + 0.999424i \(0.489200\pi\)
\(314\) 0 0
\(315\) −3843.03 −0.687398
\(316\) 0 0
\(317\) 10369.7i 1.83728i 0.395094 + 0.918641i \(0.370712\pi\)
−0.395094 + 0.918641i \(0.629288\pi\)
\(318\) 0 0
\(319\) 129.756i 0.0227741i
\(320\) 0 0
\(321\) −14809.9 −2.57511
\(322\) 0 0
\(323\) 5310.32i 0.914780i
\(324\) 0 0
\(325\) 2294.62 + 5125.13i 0.391639 + 0.874742i
\(326\) 0 0
\(327\) 2298.72i 0.388744i
\(328\) 0 0
\(329\) 1956.59 0.327873
\(330\) 0 0
\(331\) 2272.03i 0.377287i −0.982046 0.188644i \(-0.939591\pi\)
0.982046 0.188644i \(-0.0604091\pi\)
\(332\) 0 0
\(333\) 18273.9i 3.00721i
\(334\) 0 0
\(335\) 1382.94 0.225546
\(336\) 0 0
\(337\) −2984.47 −0.482417 −0.241209 0.970473i \(-0.577544\pi\)
−0.241209 + 0.970473i \(0.577544\pi\)
\(338\) 0 0
\(339\) 3927.19 0.629191
\(340\) 0 0
\(341\) −76.3148 −0.0121193
\(342\) 0 0
\(343\) 3676.98i 0.578829i
\(344\) 0 0
\(345\) 1562.91i 0.243897i
\(346\) 0 0
\(347\) 4329.42 0.669786 0.334893 0.942256i \(-0.391300\pi\)
0.334893 + 0.942256i \(0.391300\pi\)
\(348\) 0 0
\(349\) 4025.97i 0.617494i −0.951144 0.308747i \(-0.900090\pi\)
0.951144 0.308747i \(-0.0999097\pi\)
\(350\) 0 0
\(351\) 5694.21 + 12718.3i 0.865910 + 1.93405i
\(352\) 0 0
\(353\) 6907.56i 1.04151i 0.853707 + 0.520754i \(0.174349\pi\)
−0.853707 + 0.520754i \(0.825651\pi\)
\(354\) 0 0
\(355\) −1157.38 −0.173036
\(356\) 0 0
\(357\) 10859.3i 1.60990i
\(358\) 0 0
\(359\) 1518.19i 0.223195i 0.993754 + 0.111597i \(0.0355967\pi\)
−0.993754 + 0.111597i \(0.964403\pi\)
\(360\) 0 0
\(361\) −9907.47 −1.44445
\(362\) 0 0
\(363\) 12343.3 1.78472
\(364\) 0 0
\(365\) 403.848 0.0579134
\(366\) 0 0
\(367\) −456.984 −0.0649983 −0.0324992 0.999472i \(-0.510347\pi\)
−0.0324992 + 0.999472i \(0.510347\pi\)
\(368\) 0 0
\(369\) 5205.09i 0.734325i
\(370\) 0 0
\(371\) 17505.9i 2.44976i
\(372\) 0 0
\(373\) −908.186 −0.126070 −0.0630350 0.998011i \(-0.520078\pi\)
−0.0630350 + 0.998011i \(0.520078\pi\)
\(374\) 0 0
\(375\) 5177.50i 0.712973i
\(376\) 0 0
\(377\) 4109.05 + 9177.73i 0.561344 + 1.25379i
\(378\) 0 0
\(379\) 9874.70i 1.33834i 0.743111 + 0.669168i \(0.233349\pi\)
−0.743111 + 0.669168i \(0.766651\pi\)
\(380\) 0 0
\(381\) 5944.73 0.799364
\(382\) 0 0
\(383\) 7726.79i 1.03086i −0.856931 0.515432i \(-0.827632\pi\)
0.856931 0.515432i \(-0.172368\pi\)
\(384\) 0 0
\(385\) 39.3639i 0.00521083i
\(386\) 0 0
\(387\) −14484.9 −1.90261
\(388\) 0 0
\(389\) −6461.27 −0.842157 −0.421079 0.907024i \(-0.638348\pi\)
−0.421079 + 0.907024i \(0.638348\pi\)
\(390\) 0 0
\(391\) 3030.60 0.391980
\(392\) 0 0
\(393\) 7507.72 0.963649
\(394\) 0 0
\(395\) 326.317i 0.0415666i
\(396\) 0 0
\(397\) 9730.13i 1.23008i 0.788497 + 0.615039i \(0.210860\pi\)
−0.788497 + 0.615039i \(0.789140\pi\)
\(398\) 0 0
\(399\) −34286.5 −4.30193
\(400\) 0 0
\(401\) 10566.7i 1.31590i 0.753061 + 0.657950i \(0.228576\pi\)
−0.753061 + 0.657950i \(0.771424\pi\)
\(402\) 0 0
\(403\) −5397.79 + 2416.70i −0.667204 + 0.298720i
\(404\) 0 0
\(405\) 2652.65i 0.325460i
\(406\) 0 0
\(407\) 187.178 0.0227962
\(408\) 0 0
\(409\) 10627.3i 1.28481i 0.766366 + 0.642405i \(0.222063\pi\)
−0.766366 + 0.642405i \(0.777937\pi\)
\(410\) 0 0
\(411\) 15457.2i 1.85510i
\(412\) 0 0
\(413\) −23985.6 −2.85776
\(414\) 0 0
\(415\) −1763.09 −0.208546
\(416\) 0 0
\(417\) 22942.8 2.69428
\(418\) 0 0
\(419\) 1384.56 0.161433 0.0807164 0.996737i \(-0.474279\pi\)
0.0807164 + 0.996737i \(0.474279\pi\)
\(420\) 0 0
\(421\) 4777.19i 0.553031i 0.961010 + 0.276515i \(0.0891796\pi\)
−0.961010 + 0.276515i \(0.910820\pi\)
\(422\) 0 0
\(423\) 4047.45i 0.465234i
\(424\) 0 0
\(425\) −4913.18 −0.560763
\(426\) 0 0
\(427\) 16778.9i 1.90162i
\(428\) 0 0
\(429\) −240.022 + 107.462i −0.0270125 + 0.0120940i
\(430\) 0 0
\(431\) 8535.98i 0.953976i 0.878910 + 0.476988i \(0.158271\pi\)
−0.878910 + 0.476988i \(0.841729\pi\)
\(432\) 0 0
\(433\) 637.729 0.0707789 0.0353895 0.999374i \(-0.488733\pi\)
0.0353895 + 0.999374i \(0.488733\pi\)
\(434\) 0 0
\(435\) 4537.31i 0.500109i
\(436\) 0 0
\(437\) 9568.64i 1.04744i
\(438\) 0 0
\(439\) 1780.56 0.193580 0.0967901 0.995305i \(-0.469142\pi\)
0.0967901 + 0.995305i \(0.469142\pi\)
\(440\) 0 0
\(441\) −27860.1 −3.00832
\(442\) 0 0
\(443\) 5257.36 0.563848 0.281924 0.959437i \(-0.409027\pi\)
0.281924 + 0.959437i \(0.409027\pi\)
\(444\) 0 0
\(445\) 3198.60 0.340737
\(446\) 0 0
\(447\) 18688.2i 1.97746i
\(448\) 0 0
\(449\) 4175.11i 0.438832i −0.975631 0.219416i \(-0.929585\pi\)
0.975631 0.219416i \(-0.0704152\pi\)
\(450\) 0 0
\(451\) 53.3153 0.00556656
\(452\) 0 0
\(453\) 3610.15i 0.374437i
\(454\) 0 0
\(455\) −1246.55 2784.23i −0.128438 0.286872i
\(456\) 0 0
\(457\) 9325.52i 0.954550i 0.878754 + 0.477275i \(0.158375\pi\)
−0.878754 + 0.477275i \(0.841625\pi\)
\(458\) 0 0
\(459\) −12192.3 −1.23984
\(460\) 0 0
\(461\) 17815.8i 1.79993i −0.435966 0.899963i \(-0.643593\pi\)
0.435966 0.899963i \(-0.356407\pi\)
\(462\) 0 0
\(463\) 13941.4i 1.39938i 0.714448 + 0.699689i \(0.246678\pi\)
−0.714448 + 0.699689i \(0.753322\pi\)
\(464\) 0 0
\(465\) 2668.57 0.266134
\(466\) 0 0
\(467\) 17855.6 1.76929 0.884644 0.466268i \(-0.154402\pi\)
0.884644 + 0.466268i \(0.154402\pi\)
\(468\) 0 0
\(469\) 17314.0 1.70467
\(470\) 0 0
\(471\) 13782.4 1.34832
\(472\) 0 0
\(473\) 148.368i 0.0144228i
\(474\) 0 0
\(475\) 15512.6i 1.49845i
\(476\) 0 0
\(477\) 36213.2 3.47608
\(478\) 0 0
\(479\) 5268.36i 0.502542i 0.967917 + 0.251271i \(0.0808485\pi\)
−0.967917 + 0.251271i \(0.919151\pi\)
\(480\) 0 0
\(481\) 13239.2 5927.45i 1.25500 0.561888i
\(482\) 0 0
\(483\) 19567.3i 1.84336i
\(484\) 0 0
\(485\) 1067.55 0.0999482
\(486\) 0 0
\(487\) 5676.35i 0.528172i 0.964499 + 0.264086i \(0.0850704\pi\)
−0.964499 + 0.264086i \(0.914930\pi\)
\(488\) 0 0
\(489\) 21759.5i 2.01226i
\(490\) 0 0
\(491\) −12342.0 −1.13439 −0.567197 0.823582i \(-0.691972\pi\)
−0.567197 + 0.823582i \(0.691972\pi\)
\(492\) 0 0
\(493\) −8798.18 −0.803752
\(494\) 0 0
\(495\) 81.4292 0.00739388
\(496\) 0 0
\(497\) −14490.2 −1.30779
\(498\) 0 0
\(499\) 16955.3i 1.52109i −0.649285 0.760545i \(-0.724932\pi\)
0.649285 0.760545i \(-0.275068\pi\)
\(500\) 0 0
\(501\) 18350.6i 1.63641i
\(502\) 0 0
\(503\) −10583.7 −0.938178 −0.469089 0.883151i \(-0.655418\pi\)
−0.469089 + 0.883151i \(0.655418\pi\)
\(504\) 0 0
\(505\) 911.902i 0.0803547i
\(506\) 0 0
\(507\) −13573.8 + 15201.7i −1.18902 + 1.33162i
\(508\) 0 0
\(509\) 13349.6i 1.16249i −0.813728 0.581246i \(-0.802565\pi\)
0.813728 0.581246i \(-0.197435\pi\)
\(510\) 0 0
\(511\) 5056.09 0.437707
\(512\) 0 0
\(513\) 38495.1i 3.31306i
\(514\) 0 0
\(515\) 3201.36i 0.273920i
\(516\) 0 0
\(517\) −41.4577 −0.00352671
\(518\) 0 0
\(519\) 17557.2 1.48493
\(520\) 0 0
\(521\) −7321.30 −0.615647 −0.307823 0.951443i \(-0.599601\pi\)
−0.307823 + 0.951443i \(0.599601\pi\)
\(522\) 0 0
\(523\) 6772.54 0.566238 0.283119 0.959085i \(-0.408631\pi\)
0.283119 + 0.959085i \(0.408631\pi\)
\(524\) 0 0
\(525\) 31722.3i 2.63709i
\(526\) 0 0
\(527\) 5174.56i 0.427718i
\(528\) 0 0
\(529\) −6706.17 −0.551177
\(530\) 0 0
\(531\) 49617.3i 4.05501i
\(532\) 0 0
\(533\) 3771.02 1688.36i 0.306456 0.137206i
\(534\) 0 0
\(535\) 3640.10i 0.294160i
\(536\) 0 0
\(537\) 37126.1 2.98344
\(538\) 0 0
\(539\) 285.368i 0.0228046i
\(540\) 0 0
\(541\) 2816.12i 0.223798i 0.993720 + 0.111899i \(0.0356933\pi\)
−0.993720 + 0.111899i \(0.964307\pi\)
\(542\) 0 0
\(543\) −10469.1 −0.827391
\(544\) 0 0
\(545\) −564.998 −0.0444070
\(546\) 0 0
\(547\) −946.909 −0.0740163 −0.0370082 0.999315i \(-0.511783\pi\)
−0.0370082 + 0.999315i \(0.511783\pi\)
\(548\) 0 0
\(549\) −34709.4 −2.69829
\(550\) 0 0
\(551\) 27778.8i 2.14776i
\(552\) 0 0
\(553\) 4085.41i 0.314158i
\(554\) 0 0
\(555\) −6545.23 −0.500594
\(556\) 0 0
\(557\) 6635.00i 0.504729i 0.967632 + 0.252364i \(0.0812081\pi\)
−0.967632 + 0.252364i \(0.918792\pi\)
\(558\) 0 0
\(559\) −4698.44 10494.2i −0.355497 0.794018i
\(560\) 0 0
\(561\) 230.095i 0.0173166i
\(562\) 0 0
\(563\) 14327.3 1.07251 0.536254 0.844056i \(-0.319839\pi\)
0.536254 + 0.844056i \(0.319839\pi\)
\(564\) 0 0
\(565\) 965.256i 0.0718737i
\(566\) 0 0
\(567\) 33210.6i 2.45981i
\(568\) 0 0
\(569\) −20996.9 −1.54699 −0.773493 0.633805i \(-0.781492\pi\)
−0.773493 + 0.633805i \(0.781492\pi\)
\(570\) 0 0
\(571\) 3078.19 0.225601 0.112800 0.993618i \(-0.464018\pi\)
0.112800 + 0.993618i \(0.464018\pi\)
\(572\) 0 0
\(573\) 29071.2 2.11949
\(574\) 0 0
\(575\) −8853.04 −0.642082
\(576\) 0 0
\(577\) 2220.02i 0.160174i −0.996788 0.0800871i \(-0.974480\pi\)
0.996788 0.0800871i \(-0.0255199\pi\)
\(578\) 0 0
\(579\) 19625.6i 1.40866i
\(580\) 0 0
\(581\) −22073.4 −1.57618
\(582\) 0 0
\(583\) 370.929i 0.0263504i
\(584\) 0 0
\(585\) 5759.53 2578.66i 0.407055 0.182247i
\(586\) 0 0
\(587\) 21570.1i 1.51669i −0.651855 0.758343i \(-0.726009\pi\)
0.651855 0.758343i \(-0.273991\pi\)
\(588\) 0 0
\(589\) 16337.8 1.14293
\(590\) 0 0
\(591\) 133.642i 0.00930166i
\(592\) 0 0
\(593\) 17778.7i 1.23117i −0.788071 0.615584i \(-0.788920\pi\)
0.788071 0.615584i \(-0.211080\pi\)
\(594\) 0 0
\(595\) 2669.08 0.183902
\(596\) 0 0
\(597\) −13100.3 −0.898092
\(598\) 0 0
\(599\) 6024.84 0.410965 0.205483 0.978661i \(-0.434124\pi\)
0.205483 + 0.978661i \(0.434124\pi\)
\(600\) 0 0
\(601\) −14058.2 −0.954153 −0.477077 0.878862i \(-0.658304\pi\)
−0.477077 + 0.878862i \(0.658304\pi\)
\(602\) 0 0
\(603\) 35816.3i 2.41883i
\(604\) 0 0
\(605\) 3033.83i 0.203873i
\(606\) 0 0
\(607\) 16830.7 1.12543 0.562716 0.826650i \(-0.309757\pi\)
0.562716 + 0.826650i \(0.309757\pi\)
\(608\) 0 0
\(609\) 56806.1i 3.77980i
\(610\) 0 0
\(611\) −2932.33 + 1312.86i −0.194156 + 0.0869274i
\(612\) 0 0
\(613\) 9954.11i 0.655861i −0.944702 0.327931i \(-0.893649\pi\)
0.944702 0.327931i \(-0.106351\pi\)
\(614\) 0 0
\(615\) −1864.33 −0.122239
\(616\) 0 0
\(617\) 19391.0i 1.26524i −0.774462 0.632621i \(-0.781979\pi\)
0.774462 0.632621i \(-0.218021\pi\)
\(618\) 0 0
\(619\) 60.1151i 0.00390344i 0.999998 + 0.00195172i \(0.000621253\pi\)
−0.999998 + 0.00195172i \(0.999379\pi\)
\(620\) 0 0
\(621\) −21969.2 −1.41964
\(622\) 0 0
\(623\) 40045.7 2.57527
\(624\) 0 0
\(625\) 13702.6 0.876969
\(626\) 0 0
\(627\) 726.488 0.0462730
\(628\) 0 0
\(629\) 12691.7i 0.804531i
\(630\) 0 0
\(631\) 15910.7i 1.00379i 0.864928 + 0.501896i \(0.167364\pi\)
−0.864928 + 0.501896i \(0.832636\pi\)
\(632\) 0 0
\(633\) 26983.9 1.69434
\(634\) 0 0
\(635\) 1461.14i 0.0913129i
\(636\) 0 0
\(637\) −9036.89 20184.3i −0.562095 1.25546i
\(638\) 0 0
\(639\) 29974.8i 1.85569i
\(640\) 0 0
\(641\) 10812.8 0.666271 0.333135 0.942879i \(-0.391893\pi\)
0.333135 + 0.942879i \(0.391893\pi\)
\(642\) 0 0
\(643\) 15062.1i 0.923783i 0.886937 + 0.461891i \(0.152829\pi\)
−0.886937 + 0.461891i \(0.847171\pi\)
\(644\) 0 0
\(645\) 5188.13i 0.316717i
\(646\) 0 0
\(647\) −21953.9 −1.33400 −0.667001 0.745057i \(-0.732422\pi\)
−0.667001 + 0.745057i \(0.732422\pi\)
\(648\) 0 0
\(649\) 508.226 0.0307390
\(650\) 0 0
\(651\) 33409.9 2.01143
\(652\) 0 0
\(653\) 9906.28 0.593664 0.296832 0.954930i \(-0.404070\pi\)
0.296832 + 0.954930i \(0.404070\pi\)
\(654\) 0 0
\(655\) 1845.31i 0.110080i
\(656\) 0 0
\(657\) 10459.2i 0.621082i
\(658\) 0 0
\(659\) −17156.6 −1.01415 −0.507077 0.861901i \(-0.669274\pi\)
−0.507077 + 0.861901i \(0.669274\pi\)
\(660\) 0 0
\(661\) 1654.70i 0.0973681i −0.998814 0.0486840i \(-0.984497\pi\)
0.998814 0.0486840i \(-0.0155027\pi\)
\(662\) 0 0
\(663\) −7286.53 16274.8i −0.426826 0.953333i
\(664\) 0 0
\(665\) 8427.20i 0.491418i
\(666\) 0 0
\(667\) −15853.4 −0.920309
\(668\) 0 0
\(669\) 3285.58i 0.189877i
\(670\) 0 0
\(671\) 355.525i 0.0204544i
\(672\) 0 0
\(673\) −1227.71 −0.0703190 −0.0351595 0.999382i \(-0.511194\pi\)
−0.0351595 + 0.999382i \(0.511194\pi\)
\(674\) 0 0
\(675\) 35616.2 2.03092
\(676\) 0 0
\(677\) 16939.3 0.961638 0.480819 0.876820i \(-0.340340\pi\)
0.480819 + 0.876820i \(0.340340\pi\)
\(678\) 0 0
\(679\) 13365.5 0.755404
\(680\) 0 0
\(681\) 38245.6i 2.15209i
\(682\) 0 0
\(683\) 16572.3i 0.928434i −0.885721 0.464217i \(-0.846336\pi\)
0.885721 0.464217i \(-0.153664\pi\)
\(684\) 0 0
\(685\) 3799.19 0.211912
\(686\) 0 0
\(687\) 39424.4i 2.18942i
\(688\) 0 0
\(689\) 11746.4 + 26236.0i 0.649494 + 1.45067i
\(690\) 0 0
\(691\) 3836.25i 0.211198i −0.994409 0.105599i \(-0.966324\pi\)
0.994409 0.105599i \(-0.0336760\pi\)
\(692\) 0 0
\(693\) 1019.47 0.0558825
\(694\) 0 0
\(695\) 5639.07i 0.307773i
\(696\) 0 0
\(697\) 3615.07i 0.196457i
\(698\) 0 0
\(699\) −14757.4 −0.798533
\(700\) 0 0
\(701\) −16178.6 −0.871692 −0.435846 0.900021i \(-0.643551\pi\)
−0.435846 + 0.900021i \(0.643551\pi\)
\(702\) 0 0
\(703\) −40071.9 −2.14984
\(704\) 0 0
\(705\) 1449.69 0.0774448
\(706\) 0 0
\(707\) 11416.8i 0.607317i
\(708\) 0 0
\(709\) 26689.0i 1.41372i 0.707354 + 0.706859i \(0.249888\pi\)
−0.707354 + 0.706859i \(0.750112\pi\)
\(710\) 0 0
\(711\) −8451.19 −0.445773
\(712\) 0 0
\(713\) 9324.02i 0.489744i
\(714\) 0 0
\(715\) 26.4130 + 58.9944i 0.00138152 + 0.00308569i
\(716\) 0 0
\(717\) 9561.60i 0.498026i
\(718\) 0 0
\(719\) 25906.0 1.34371 0.671857 0.740681i \(-0.265497\pi\)
0.671857 + 0.740681i \(0.265497\pi\)
\(720\) 0 0
\(721\) 40080.3i 2.07027i
\(722\) 0 0
\(723\) 42507.3i 2.18654i
\(724\) 0 0
\(725\) 25701.3 1.31658
\(726\) 0 0
\(727\) −8386.29 −0.427827 −0.213914 0.976853i \(-0.568621\pi\)
−0.213914 + 0.976853i \(0.568621\pi\)
\(728\) 0 0
\(729\) −5759.42 −0.292609
\(730\) 0 0
\(731\) 10060.2 0.509013
\(732\) 0 0
\(733\) 289.490i 0.0145874i −0.999973 0.00729371i \(-0.997678\pi\)
0.999973 0.00729371i \(-0.00232168\pi\)
\(734\) 0 0
\(735\) 9978.76i 0.500778i
\(736\) 0 0
\(737\) −366.864 −0.0183359
\(738\) 0 0
\(739\) 17933.9i 0.892705i 0.894857 + 0.446352i \(0.147277\pi\)
−0.894857 + 0.446352i \(0.852723\pi\)
\(740\) 0 0
\(741\) 51384.9 23006.0i 2.54747 1.14055i
\(742\) 0 0
\(743\) 22954.9i 1.13342i −0.823917 0.566711i \(-0.808216\pi\)
0.823917 0.566711i \(-0.191784\pi\)
\(744\) 0 0
\(745\) 4593.35 0.225889
\(746\) 0 0
\(747\) 45661.7i 2.23651i
\(748\) 0 0
\(749\) 45573.2i 2.22324i
\(750\) 0 0
\(751\) −29914.5 −1.45352 −0.726761 0.686890i \(-0.758975\pi\)
−0.726761 + 0.686890i \(0.758975\pi\)
\(752\) 0 0
\(753\) −28609.6 −1.38459
\(754\) 0 0
\(755\) 887.333 0.0427726
\(756\) 0 0
\(757\) −9422.87 −0.452417 −0.226209 0.974079i \(-0.572633\pi\)
−0.226209 + 0.974079i \(0.572633\pi\)
\(758\) 0 0
\(759\) 414.608i 0.0198278i
\(760\) 0 0
\(761\) 16008.9i 0.762577i −0.924456 0.381288i \(-0.875480\pi\)
0.924456 0.381288i \(-0.124520\pi\)
\(762\) 0 0
\(763\) −7073.63 −0.335626
\(764\) 0 0
\(765\) 5521.34i 0.260947i
\(766\) 0 0
\(767\) 35947.1 16094.2i 1.69228 0.757665i
\(768\) 0 0
\(769\) 23058.4i 1.08128i −0.841253 0.540642i \(-0.818182\pi\)
0.841253 0.540642i \(-0.181818\pi\)
\(770\) 0 0
\(771\) −21601.5 −1.00903
\(772\) 0 0
\(773\) 17638.7i 0.820726i −0.911922 0.410363i \(-0.865402\pi\)
0.911922 0.410363i \(-0.134598\pi\)
\(774\) 0 0
\(775\) 15116.0i 0.700622i
\(776\) 0 0
\(777\) −81944.7 −3.78346
\(778\) 0 0
\(779\) −11414.0 −0.524966
\(780\) 0 0
\(781\) 307.029 0.0140671
\(782\) 0 0
\(783\) 63779.0 2.91095
\(784\) 0 0
\(785\) 3387.55i 0.154021i
\(786\) 0 0
\(787\) 2401.87i 0.108789i 0.998520 + 0.0543947i \(0.0173229\pi\)
−0.998520 + 0.0543947i \(0.982677\pi\)
\(788\) 0 0
\(789\) −35207.4 −1.58861
\(790\) 0 0
\(791\) 12084.8i 0.543218i
\(792\) 0 0
\(793\) −11258.6 25146.5i −0.504167 1.12608i
\(794\) 0 0
\(795\) 12970.6i 0.578643i
\(796\) 0 0
\(797\) 3281.78 0.145855 0.0729276 0.997337i \(-0.476766\pi\)
0.0729276 + 0.997337i \(0.476766\pi\)
\(798\) 0 0
\(799\) 2811.06i 0.124466i
\(800\) 0 0
\(801\) 82839.6i 3.65417i
\(802\) 0 0
\(803\) −107.132 −0.00470812
\(804\) 0 0
\(805\) 4809.41 0.210571
\(806\) 0 0
\(807\) 57313.7 2.50005
\(808\) 0 0
\(809\) 36413.5 1.58249 0.791243 0.611501i \(-0.209434\pi\)
0.791243 + 0.611501i \(0.209434\pi\)
\(810\) 0 0
\(811\) 31898.2i 1.38113i −0.723269 0.690566i \(-0.757361\pi\)
0.723269 0.690566i \(-0.242639\pi\)
\(812\) 0 0
\(813\) 2987.14i 0.128860i
\(814\) 0 0
\(815\) 5348.22 0.229865
\(816\) 0 0
\(817\) 31763.3i 1.36017i
\(818\) 0 0
\(819\) 72108.0 32284.1i 3.07650 1.37741i
\(820\) 0 0
\(821\) 29162.8i 1.23970i 0.784722 + 0.619848i \(0.212806\pi\)
−0.784722 + 0.619848i \(0.787194\pi\)
\(822\) 0 0
\(823\) −30040.6 −1.27236 −0.636179 0.771541i \(-0.719486\pi\)
−0.636179 + 0.771541i \(0.719486\pi\)
\(824\) 0 0
\(825\) 672.157i 0.0283655i
\(826\) 0 0
\(827\) 6175.43i 0.259662i −0.991536 0.129831i \(-0.958556\pi\)
0.991536 0.129831i \(-0.0414435\pi\)
\(828\) 0 0
\(829\) −46596.2 −1.95217 −0.976087 0.217381i \(-0.930249\pi\)
−0.976087 + 0.217381i \(0.930249\pi\)
\(830\) 0 0
\(831\) −38804.0 −1.61985
\(832\) 0 0
\(833\) 19349.5 0.804828
\(834\) 0 0
\(835\) 4510.35 0.186931
\(836\) 0 0
\(837\) 37511.0i 1.54907i
\(838\) 0 0
\(839\) 124.642i 0.00512887i −0.999997 0.00256443i \(-0.999184\pi\)
0.999997 0.00256443i \(-0.000816286\pi\)
\(840\) 0 0
\(841\) 21635.1 0.887086
\(842\) 0 0
\(843\) 3636.41i 0.148570i
\(844\) 0 0
\(845\) 3736.41 + 3336.28i 0.152114 + 0.135824i
\(846\) 0 0
\(847\) 37982.9i 1.54086i
\(848\) 0 0
\(849\) −38211.1 −1.54464
\(850\) 0 0
\(851\) 22869.1i 0.921200i
\(852\) 0 0
\(853\) 33839.8i 1.35833i −0.733988 0.679163i \(-0.762343\pi\)
0.733988 0.679163i \(-0.237657\pi\)
\(854\) 0 0
\(855\) −17432.7 −0.697295
\(856\) 0 0
\(857\) −585.021 −0.0233185 −0.0116592 0.999932i \(-0.503711\pi\)
−0.0116592 + 0.999932i \(0.503711\pi\)
\(858\) 0 0
\(859\) 21226.5 0.843120 0.421560 0.906800i \(-0.361483\pi\)
0.421560 + 0.906800i \(0.361483\pi\)
\(860\) 0 0
\(861\) −23340.9 −0.923876
\(862\) 0 0
\(863\) 38443.2i 1.51636i −0.652044 0.758181i \(-0.726088\pi\)
0.652044 0.758181i \(-0.273912\pi\)
\(864\) 0 0
\(865\) 4315.35i 0.169626i
\(866\) 0 0
\(867\) −29972.5 −1.17407
\(868\) 0 0
\(869\) 86.5649i 0.00337919i
\(870\) 0 0
\(871\) −25948.5 + 11617.6i −1.00945 + 0.451950i
\(872\) 0 0
\(873\) 27648.1i 1.07188i
\(874\) 0 0
\(875\) −15932.2 −0.615552
\(876\) 0 0
\(877\) 15392.1i 0.592652i 0.955087 + 0.296326i \(0.0957614\pi\)
−0.955087 + 0.296326i \(0.904239\pi\)
\(878\) 0 0
\(879\) 45321.9i 1.73910i
\(880\) 0 0
\(881\) 16605.9 0.635037 0.317518 0.948252i \(-0.397150\pi\)
0.317518 + 0.948252i \(0.397150\pi\)
\(882\) 0 0
\(883\) −20909.9 −0.796913 −0.398456 0.917187i \(-0.630454\pi\)
−0.398456 + 0.917187i \(0.630454\pi\)
\(884\) 0 0
\(885\) −17771.6 −0.675014
\(886\) 0 0
\(887\) 266.852 0.0101015 0.00505074 0.999987i \(-0.498392\pi\)
0.00505074 + 0.999987i \(0.498392\pi\)
\(888\) 0 0
\(889\) 18293.2i 0.690138i
\(890\) 0 0
\(891\) 703.692i 0.0264585i
\(892\) 0 0
\(893\) 8875.46 0.332594
\(894\) 0 0
\(895\) 9125.14i 0.340804i
\(896\) 0 0
\(897\) −13129.6 29325.4i −0.488722 1.09158i
\(898\) 0 0
\(899\) 27068.6i 1.00422i
\(900\) 0 0
\(901\) −25151.0 −0.929968
\(902\) 0 0
\(903\) 64954.2i 2.39373i
\(904\) 0 0
\(905\) 2573.19i 0.0945145i
\(906\) 0 0
\(907\) 43847.3 1.60521 0.802606 0.596510i \(-0.203446\pi\)
0.802606 + 0.596510i \(0.203446\pi\)
\(908\) 0 0
\(909\) 23617.1 0.861749
\(910\) 0 0
\(911\) −9417.62 −0.342502 −0.171251 0.985227i \(-0.554781\pi\)
−0.171251 + 0.985227i \(0.554781\pi\)
\(912\) 0 0
\(913\) 467.709 0.0169539
\(914\) 0 0
\(915\) 12432.0i 0.449169i
\(916\) 0 0
\(917\) 23102.8i 0.831976i
\(918\) 0 0
\(919\) 43296.8 1.55411 0.777056 0.629431i \(-0.216712\pi\)
0.777056 + 0.629431i \(0.216712\pi\)
\(920\) 0 0
\(921\) 18775.3i 0.671736i
\(922\) 0 0
\(923\) 21716.4 9722.84i 0.774434 0.346729i
\(924\) 0 0
\(925\) 37075.1i 1.31786i
\(926\) 0 0
\(927\) −82911.1 −2.93760
\(928\) 0 0
\(929\) 31999.6i 1.13011i −0.825053 0.565055i \(-0.808855\pi\)
0.825053 0.565055i \(-0.191145\pi\)
\(930\) 0 0
\(931\) 61093.0i 2.15064i
\(932\) 0 0
\(933\) 11808.4 0.414352
\(934\) 0 0
\(935\) −56.5547 −0.00197811
\(936\) 0 0
\(937\) 1997.33 0.0696371 0.0348186 0.999394i \(-0.488915\pi\)
0.0348186 + 0.999394i \(0.488915\pi\)
\(938\) 0 0
\(939\) 3485.02 0.121118
\(940\) 0 0
\(941\) 31241.0i 1.08228i 0.840932 + 0.541141i \(0.182007\pi\)
−0.840932 + 0.541141i \(0.817993\pi\)
\(942\) 0 0
\(943\) 6513.97i 0.224946i
\(944\) 0 0
\(945\) −19348.5 −0.666039
\(946\) 0 0
\(947\) 2759.74i 0.0946986i 0.998878 + 0.0473493i \(0.0150774\pi\)
−0.998878 + 0.0473493i \(0.984923\pi\)
\(948\) 0 0
\(949\) −7577.53 + 3392.61i −0.259196 + 0.116047i
\(950\) 0 0
\(951\) 96191.6i 3.27994i
\(952\) 0 0
\(953\) 11233.8 0.381846 0.190923 0.981605i \(-0.438852\pi\)
0.190923 + 0.981605i \(0.438852\pi\)
\(954\) 0 0
\(955\) 7145.35i 0.242113i
\(956\) 0 0
\(957\) 1203.65i 0.0406568i
\(958\) 0 0
\(959\) 47564.9 1.60162
\(960\) 0 0
\(961\) 13870.8 0.465605
\(962\) 0 0
\(963\) −94274.1 −3.15466
\(964\) 0 0
\(965\) 4823.75 0.160914
\(966\) 0 0
\(967\) 32213.3i 1.07126i 0.844453 + 0.535630i \(0.179926\pi\)
−0.844453 + 0.535630i \(0.820074\pi\)
\(968\) 0 0
\(969\) 49259.9i 1.63308i
\(970\) 0 0
\(971\) 24606.5 0.813245 0.406622 0.913596i \(-0.366706\pi\)
0.406622 + 0.913596i \(0.366706\pi\)
\(972\) 0 0
\(973\) 70599.8i 2.32613i
\(974\) 0 0
\(975\) 21285.5 + 47542.0i 0.699161 + 1.56160i
\(976\) 0 0
\(977\) 32852.8i 1.07580i −0.843010 0.537898i \(-0.819218\pi\)
0.843010 0.537898i \(-0.180782\pi\)
\(978\) 0 0
\(979\) −848.519 −0.0277005
\(980\) 0 0
\(981\) 14632.7i 0.476235i
\(982\) 0 0
\(983\) 29422.7i 0.954666i 0.878722 + 0.477333i \(0.158396\pi\)
−0.878722 + 0.477333i \(0.841604\pi\)
\(984\) 0 0
\(985\) 32.8475 0.00106255
\(986\) 0 0
\(987\) 18149.8 0.585324
\(988\) 0 0
\(989\) 18127.4 0.582828
\(990\) 0 0
\(991\) 1107.84 0.0355113 0.0177557 0.999842i \(-0.494348\pi\)
0.0177557 + 0.999842i \(0.494348\pi\)
\(992\) 0 0
\(993\) 21075.9i 0.673539i
\(994\) 0 0
\(995\) 3219.90i 0.102591i
\(996\) 0 0
\(997\) −15369.7 −0.488227 −0.244114 0.969747i \(-0.578497\pi\)
−0.244114 + 0.969747i \(0.578497\pi\)
\(998\) 0 0
\(999\) 92003.5i 2.91377i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 832.4.f.l.129.9 10
4.3 odd 2 832.4.f.k.129.1 10
8.3 odd 2 104.4.f.a.25.10 yes 10
8.5 even 2 208.4.f.e.129.2 10
13.12 even 2 inner 832.4.f.l.129.10 10
24.11 even 2 936.4.c.a.649.5 10
52.51 odd 2 832.4.f.k.129.2 10
104.51 odd 2 104.4.f.a.25.9 10
104.77 even 2 208.4.f.e.129.1 10
104.83 even 4 1352.4.a.l.1.5 5
104.99 even 4 1352.4.a.k.1.5 5
312.155 even 2 936.4.c.a.649.6 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
104.4.f.a.25.9 10 104.51 odd 2
104.4.f.a.25.10 yes 10 8.3 odd 2
208.4.f.e.129.1 10 104.77 even 2
208.4.f.e.129.2 10 8.5 even 2
832.4.f.k.129.1 10 4.3 odd 2
832.4.f.k.129.2 10 52.51 odd 2
832.4.f.l.129.9 10 1.1 even 1 trivial
832.4.f.l.129.10 10 13.12 even 2 inner
936.4.c.a.649.5 10 24.11 even 2
936.4.c.a.649.6 10 312.155 even 2
1352.4.a.k.1.5 5 104.99 even 4
1352.4.a.l.1.5 5 104.83 even 4