Properties

Label 1352.4.a.k.1.5
Level $1352$
Weight $4$
Character 1352.1
Self dual yes
Analytic conductor $79.771$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1352,4,Mod(1,1352)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1352, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1352.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1352 = 2^{3} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1352.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,0,3,0,-9] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(79.7705823278\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 2x^{4} - 83x^{3} + 112x^{2} + 804x + 144 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 104)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(-8.27625\) of defining polynomial
Character \(\chi\) \(=\) 1352.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+9.27625 q^{3} -2.27999 q^{5} +28.5449 q^{7} +59.0489 q^{9} +0.604833 q^{11} -21.1498 q^{15} +41.0109 q^{17} +129.485 q^{19} +264.790 q^{21} -73.8974 q^{23} -119.802 q^{25} +297.293 q^{27} -214.532 q^{29} +126.175 q^{31} +5.61058 q^{33} -65.0822 q^{35} +309.470 q^{37} +88.1488 q^{41} +245.304 q^{43} -134.631 q^{45} -68.5441 q^{47} +471.814 q^{49} +380.428 q^{51} -613.275 q^{53} -1.37901 q^{55} +1201.14 q^{57} -840.276 q^{59} +587.808 q^{61} +1685.55 q^{63} -606.554 q^{67} -685.491 q^{69} -507.627 q^{71} +177.127 q^{73} -1111.31 q^{75} +17.2649 q^{77} +143.122 q^{79} +1163.45 q^{81} +773.287 q^{83} -93.5046 q^{85} -1990.06 q^{87} +1402.90 q^{89} +1170.43 q^{93} -295.226 q^{95} -468.225 q^{97} +35.7147 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + 3 q^{3} - 9 q^{5} + 17 q^{7} + 36 q^{9} + 4 q^{11} + 19 q^{15} - 29 q^{17} + 46 q^{19} + 113 q^{21} - 90 q^{23} - 14 q^{25} + 177 q^{27} - 196 q^{29} + 84 q^{31} + 352 q^{33} + 77 q^{35} + 327 q^{37}+ \cdots - 2844 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 9.27625 1.78522 0.892608 0.450834i \(-0.148873\pi\)
0.892608 + 0.450834i \(0.148873\pi\)
\(4\) 0 0
\(5\) −2.27999 −0.203929 −0.101964 0.994788i \(-0.532513\pi\)
−0.101964 + 0.994788i \(0.532513\pi\)
\(6\) 0 0
\(7\) 28.5449 1.54128 0.770641 0.637269i \(-0.219936\pi\)
0.770641 + 0.637269i \(0.219936\pi\)
\(8\) 0 0
\(9\) 59.0489 2.18699
\(10\) 0 0
\(11\) 0.604833 0.0165785 0.00828927 0.999966i \(-0.497361\pi\)
0.00828927 + 0.999966i \(0.497361\pi\)
\(12\) 0 0
\(13\) 0 0
\(14\) 0 0
\(15\) −21.1498 −0.364057
\(16\) 0 0
\(17\) 41.0109 0.585095 0.292548 0.956251i \(-0.405497\pi\)
0.292548 + 0.956251i \(0.405497\pi\)
\(18\) 0 0
\(19\) 129.485 1.56347 0.781737 0.623609i \(-0.214334\pi\)
0.781737 + 0.623609i \(0.214334\pi\)
\(20\) 0 0
\(21\) 264.790 2.75152
\(22\) 0 0
\(23\) −73.8974 −0.669943 −0.334971 0.942228i \(-0.608727\pi\)
−0.334971 + 0.942228i \(0.608727\pi\)
\(24\) 0 0
\(25\) −119.802 −0.958413
\(26\) 0 0
\(27\) 297.293 2.11904
\(28\) 0 0
\(29\) −214.532 −1.37371 −0.686856 0.726793i \(-0.741010\pi\)
−0.686856 + 0.726793i \(0.741010\pi\)
\(30\) 0 0
\(31\) 126.175 0.731023 0.365512 0.930807i \(-0.380894\pi\)
0.365512 + 0.930807i \(0.380894\pi\)
\(32\) 0 0
\(33\) 5.61058 0.0295963
\(34\) 0 0
\(35\) −65.0822 −0.314312
\(36\) 0 0
\(37\) 309.470 1.37504 0.687522 0.726164i \(-0.258699\pi\)
0.687522 + 0.726164i \(0.258699\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 88.1488 0.335769 0.167885 0.985807i \(-0.446306\pi\)
0.167885 + 0.985807i \(0.446306\pi\)
\(42\) 0 0
\(43\) 245.304 0.869967 0.434983 0.900438i \(-0.356754\pi\)
0.434983 + 0.900438i \(0.356754\pi\)
\(44\) 0 0
\(45\) −134.631 −0.445991
\(46\) 0 0
\(47\) −68.5441 −0.212727 −0.106364 0.994327i \(-0.533921\pi\)
−0.106364 + 0.994327i \(0.533921\pi\)
\(48\) 0 0
\(49\) 471.814 1.37555
\(50\) 0 0
\(51\) 380.428 1.04452
\(52\) 0 0
\(53\) −613.275 −1.58943 −0.794716 0.606982i \(-0.792380\pi\)
−0.794716 + 0.606982i \(0.792380\pi\)
\(54\) 0 0
\(55\) −1.37901 −0.00338084
\(56\) 0 0
\(57\) 1201.14 2.79114
\(58\) 0 0
\(59\) −840.276 −1.85415 −0.927073 0.374882i \(-0.877683\pi\)
−0.927073 + 0.374882i \(0.877683\pi\)
\(60\) 0 0
\(61\) 587.808 1.23379 0.616894 0.787046i \(-0.288391\pi\)
0.616894 + 0.787046i \(0.288391\pi\)
\(62\) 0 0
\(63\) 1685.55 3.37078
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −606.554 −1.10601 −0.553003 0.833180i \(-0.686518\pi\)
−0.553003 + 0.833180i \(0.686518\pi\)
\(68\) 0 0
\(69\) −685.491 −1.19599
\(70\) 0 0
\(71\) −507.627 −0.848510 −0.424255 0.905543i \(-0.639464\pi\)
−0.424255 + 0.905543i \(0.639464\pi\)
\(72\) 0 0
\(73\) 177.127 0.283989 0.141994 0.989867i \(-0.454649\pi\)
0.141994 + 0.989867i \(0.454649\pi\)
\(74\) 0 0
\(75\) −1111.31 −1.71097
\(76\) 0 0
\(77\) 17.2649 0.0255522
\(78\) 0 0
\(79\) 143.122 0.203829 0.101914 0.994793i \(-0.467503\pi\)
0.101914 + 0.994793i \(0.467503\pi\)
\(80\) 0 0
\(81\) 1163.45 1.59595
\(82\) 0 0
\(83\) 773.287 1.02264 0.511321 0.859390i \(-0.329156\pi\)
0.511321 + 0.859390i \(0.329156\pi\)
\(84\) 0 0
\(85\) −93.5046 −0.119318
\(86\) 0 0
\(87\) −1990.06 −2.45237
\(88\) 0 0
\(89\) 1402.90 1.67086 0.835432 0.549593i \(-0.185217\pi\)
0.835432 + 0.549593i \(0.185217\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 1170.43 1.30503
\(94\) 0 0
\(95\) −295.226 −0.318837
\(96\) 0 0
\(97\) −468.225 −0.490114 −0.245057 0.969509i \(-0.578807\pi\)
−0.245057 + 0.969509i \(0.578807\pi\)
\(98\) 0 0
\(99\) 35.7147 0.0362572
\(100\) 0 0
\(101\) 399.959 0.394033 0.197017 0.980400i \(-0.436875\pi\)
0.197017 + 0.980400i \(0.436875\pi\)
\(102\) 0 0
\(103\) −1404.11 −1.34321 −0.671607 0.740907i \(-0.734396\pi\)
−0.671607 + 0.740907i \(0.734396\pi\)
\(104\) 0 0
\(105\) −603.719 −0.561114
\(106\) 0 0
\(107\) −1596.54 −1.44246 −0.721232 0.692694i \(-0.756424\pi\)
−0.721232 + 0.692694i \(0.756424\pi\)
\(108\) 0 0
\(109\) −247.807 −0.217758 −0.108879 0.994055i \(-0.534726\pi\)
−0.108879 + 0.994055i \(0.534726\pi\)
\(110\) 0 0
\(111\) 2870.73 2.45475
\(112\) 0 0
\(113\) 423.360 0.352445 0.176223 0.984350i \(-0.443612\pi\)
0.176223 + 0.984350i \(0.443612\pi\)
\(114\) 0 0
\(115\) 168.486 0.136621
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 1170.66 0.901797
\(120\) 0 0
\(121\) −1330.63 −0.999725
\(122\) 0 0
\(123\) 817.691 0.599420
\(124\) 0 0
\(125\) 558.146 0.399377
\(126\) 0 0
\(127\) 640.855 0.447769 0.223884 0.974616i \(-0.428126\pi\)
0.223884 + 0.974616i \(0.428126\pi\)
\(128\) 0 0
\(129\) 2275.51 1.55308
\(130\) 0 0
\(131\) 809.348 0.539794 0.269897 0.962889i \(-0.413010\pi\)
0.269897 + 0.962889i \(0.413010\pi\)
\(132\) 0 0
\(133\) 3696.15 2.40975
\(134\) 0 0
\(135\) −677.826 −0.432133
\(136\) 0 0
\(137\) 1666.32 1.03915 0.519573 0.854426i \(-0.326091\pi\)
0.519573 + 0.854426i \(0.326091\pi\)
\(138\) 0 0
\(139\) 2473.29 1.50922 0.754609 0.656174i \(-0.227826\pi\)
0.754609 + 0.656174i \(0.227826\pi\)
\(140\) 0 0
\(141\) −635.833 −0.379764
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 489.132 0.280139
\(146\) 0 0
\(147\) 4376.66 2.45565
\(148\) 0 0
\(149\) 2014.63 1.10769 0.553843 0.832621i \(-0.313161\pi\)
0.553843 + 0.832621i \(0.313161\pi\)
\(150\) 0 0
\(151\) −389.182 −0.209743 −0.104872 0.994486i \(-0.533443\pi\)
−0.104872 + 0.994486i \(0.533443\pi\)
\(152\) 0 0
\(153\) 2421.65 1.27960
\(154\) 0 0
\(155\) −287.678 −0.149077
\(156\) 0 0
\(157\) −1485.77 −0.755270 −0.377635 0.925954i \(-0.623263\pi\)
−0.377635 + 0.925954i \(0.623263\pi\)
\(158\) 0 0
\(159\) −5688.90 −2.83748
\(160\) 0 0
\(161\) −2109.40 −1.03257
\(162\) 0 0
\(163\) 2345.72 1.12718 0.563591 0.826054i \(-0.309419\pi\)
0.563591 + 0.826054i \(0.309419\pi\)
\(164\) 0 0
\(165\) −12.7921 −0.00603553
\(166\) 0 0
\(167\) −1978.23 −0.916648 −0.458324 0.888785i \(-0.651550\pi\)
−0.458324 + 0.888785i \(0.651550\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 0 0
\(171\) 7645.97 3.41931
\(172\) 0 0
\(173\) 1892.71 0.831791 0.415895 0.909412i \(-0.363468\pi\)
0.415895 + 0.909412i \(0.363468\pi\)
\(174\) 0 0
\(175\) −3419.73 −1.47718
\(176\) 0 0
\(177\) −7794.61 −3.31005
\(178\) 0 0
\(179\) −4002.27 −1.67119 −0.835597 0.549343i \(-0.814878\pi\)
−0.835597 + 0.549343i \(0.814878\pi\)
\(180\) 0 0
\(181\) −1128.60 −0.463469 −0.231734 0.972779i \(-0.574440\pi\)
−0.231734 + 0.972779i \(0.574440\pi\)
\(182\) 0 0
\(183\) 5452.65 2.20258
\(184\) 0 0
\(185\) −705.590 −0.280411
\(186\) 0 0
\(187\) 24.8048 0.00970002
\(188\) 0 0
\(189\) 8486.22 3.26604
\(190\) 0 0
\(191\) −3133.94 −1.18724 −0.593622 0.804744i \(-0.702303\pi\)
−0.593622 + 0.804744i \(0.702303\pi\)
\(192\) 0 0
\(193\) 2115.69 0.789070 0.394535 0.918881i \(-0.370906\pi\)
0.394535 + 0.918881i \(0.370906\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 14.4068 0.00521038 0.00260519 0.999997i \(-0.499171\pi\)
0.00260519 + 0.999997i \(0.499171\pi\)
\(198\) 0 0
\(199\) −1412.24 −0.503072 −0.251536 0.967848i \(-0.580936\pi\)
−0.251536 + 0.967848i \(0.580936\pi\)
\(200\) 0 0
\(201\) −5626.55 −1.97446
\(202\) 0 0
\(203\) −6123.81 −2.11728
\(204\) 0 0
\(205\) −200.979 −0.0684729
\(206\) 0 0
\(207\) −4363.56 −1.46516
\(208\) 0 0
\(209\) 78.3170 0.0259201
\(210\) 0 0
\(211\) 2908.92 0.949093 0.474546 0.880231i \(-0.342612\pi\)
0.474546 + 0.880231i \(0.342612\pi\)
\(212\) 0 0
\(213\) −4708.87 −1.51477
\(214\) 0 0
\(215\) −559.292 −0.177411
\(216\) 0 0
\(217\) 3601.66 1.12671
\(218\) 0 0
\(219\) 1643.08 0.506981
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 354.193 0.106361 0.0531805 0.998585i \(-0.483064\pi\)
0.0531805 + 0.998585i \(0.483064\pi\)
\(224\) 0 0
\(225\) −7074.15 −2.09604
\(226\) 0 0
\(227\) −4122.96 −1.20551 −0.602754 0.797927i \(-0.705930\pi\)
−0.602754 + 0.797927i \(0.705930\pi\)
\(228\) 0 0
\(229\) −4250.04 −1.22642 −0.613210 0.789920i \(-0.710122\pi\)
−0.613210 + 0.789920i \(0.710122\pi\)
\(230\) 0 0
\(231\) 160.154 0.0456162
\(232\) 0 0
\(233\) 1590.88 0.447304 0.223652 0.974669i \(-0.428202\pi\)
0.223652 + 0.974669i \(0.428202\pi\)
\(234\) 0 0
\(235\) 156.280 0.0433812
\(236\) 0 0
\(237\) 1327.64 0.363879
\(238\) 0 0
\(239\) −1030.76 −0.278972 −0.139486 0.990224i \(-0.544545\pi\)
−0.139486 + 0.990224i \(0.544545\pi\)
\(240\) 0 0
\(241\) −4582.38 −1.22480 −0.612401 0.790547i \(-0.709796\pi\)
−0.612401 + 0.790547i \(0.709796\pi\)
\(242\) 0 0
\(243\) 2765.52 0.730076
\(244\) 0 0
\(245\) −1075.73 −0.280514
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 7173.20 1.82564
\(250\) 0 0
\(251\) 3084.18 0.775584 0.387792 0.921747i \(-0.373238\pi\)
0.387792 + 0.921747i \(0.373238\pi\)
\(252\) 0 0
\(253\) −44.6956 −0.0111067
\(254\) 0 0
\(255\) −867.372 −0.213008
\(256\) 0 0
\(257\) 2328.69 0.565212 0.282606 0.959236i \(-0.408801\pi\)
0.282606 + 0.959236i \(0.408801\pi\)
\(258\) 0 0
\(259\) 8833.81 2.11933
\(260\) 0 0
\(261\) −12667.9 −3.00430
\(262\) 0 0
\(263\) 3795.43 0.889873 0.444936 0.895562i \(-0.353226\pi\)
0.444936 + 0.895562i \(0.353226\pi\)
\(264\) 0 0
\(265\) 1398.26 0.324131
\(266\) 0 0
\(267\) 13013.6 2.98285
\(268\) 0 0
\(269\) −6178.54 −1.40042 −0.700209 0.713938i \(-0.746910\pi\)
−0.700209 + 0.713938i \(0.746910\pi\)
\(270\) 0 0
\(271\) −322.020 −0.0721819 −0.0360910 0.999349i \(-0.511491\pi\)
−0.0360910 + 0.999349i \(0.511491\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −72.4600 −0.0158891
\(276\) 0 0
\(277\) −4183.15 −0.907369 −0.453684 0.891162i \(-0.649891\pi\)
−0.453684 + 0.891162i \(0.649891\pi\)
\(278\) 0 0
\(279\) 7450.49 1.59874
\(280\) 0 0
\(281\) −392.013 −0.0832226 −0.0416113 0.999134i \(-0.513249\pi\)
−0.0416113 + 0.999134i \(0.513249\pi\)
\(282\) 0 0
\(283\) 4119.24 0.865241 0.432621 0.901576i \(-0.357589\pi\)
0.432621 + 0.901576i \(0.357589\pi\)
\(284\) 0 0
\(285\) −2738.59 −0.569193
\(286\) 0 0
\(287\) 2516.20 0.517515
\(288\) 0 0
\(289\) −3231.10 −0.657664
\(290\) 0 0
\(291\) −4343.37 −0.874959
\(292\) 0 0
\(293\) 4885.80 0.974169 0.487085 0.873355i \(-0.338060\pi\)
0.487085 + 0.873355i \(0.338060\pi\)
\(294\) 0 0
\(295\) 1915.82 0.378113
\(296\) 0 0
\(297\) 179.813 0.0351306
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 7002.20 1.34086
\(302\) 0 0
\(303\) 3710.12 0.703435
\(304\) 0 0
\(305\) −1340.20 −0.251605
\(306\) 0 0
\(307\) 2024.02 0.376277 0.188139 0.982142i \(-0.439755\pi\)
0.188139 + 0.982142i \(0.439755\pi\)
\(308\) 0 0
\(309\) −13024.9 −2.39793
\(310\) 0 0
\(311\) 1272.97 0.232102 0.116051 0.993243i \(-0.462976\pi\)
0.116051 + 0.993243i \(0.462976\pi\)
\(312\) 0 0
\(313\) 375.693 0.0678448 0.0339224 0.999424i \(-0.489200\pi\)
0.0339224 + 0.999424i \(0.489200\pi\)
\(314\) 0 0
\(315\) −3843.03 −0.687398
\(316\) 0 0
\(317\) 10369.7 1.83728 0.918641 0.395094i \(-0.129288\pi\)
0.918641 + 0.395094i \(0.129288\pi\)
\(318\) 0 0
\(319\) −129.756 −0.0227741
\(320\) 0 0
\(321\) −14809.9 −2.57511
\(322\) 0 0
\(323\) 5310.32 0.914780
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −2298.72 −0.388744
\(328\) 0 0
\(329\) −1956.59 −0.327873
\(330\) 0 0
\(331\) 2272.03 0.377287 0.188644 0.982046i \(-0.439591\pi\)
0.188644 + 0.982046i \(0.439591\pi\)
\(332\) 0 0
\(333\) 18273.9 3.00721
\(334\) 0 0
\(335\) 1382.94 0.225546
\(336\) 0 0
\(337\) 2984.47 0.482417 0.241209 0.970473i \(-0.422456\pi\)
0.241209 + 0.970473i \(0.422456\pi\)
\(338\) 0 0
\(339\) 3927.19 0.629191
\(340\) 0 0
\(341\) 76.3148 0.0121193
\(342\) 0 0
\(343\) 3676.98 0.578829
\(344\) 0 0
\(345\) 1562.91 0.243897
\(346\) 0 0
\(347\) 4329.42 0.669786 0.334893 0.942256i \(-0.391300\pi\)
0.334893 + 0.942256i \(0.391300\pi\)
\(348\) 0 0
\(349\) 4025.97 0.617494 0.308747 0.951144i \(-0.400090\pi\)
0.308747 + 0.951144i \(0.400090\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −6907.56 −1.04151 −0.520754 0.853707i \(-0.674349\pi\)
−0.520754 + 0.853707i \(0.674349\pi\)
\(354\) 0 0
\(355\) 1157.38 0.173036
\(356\) 0 0
\(357\) 10859.3 1.60990
\(358\) 0 0
\(359\) −1518.19 −0.223195 −0.111597 0.993754i \(-0.535597\pi\)
−0.111597 + 0.993754i \(0.535597\pi\)
\(360\) 0 0
\(361\) 9907.47 1.44445
\(362\) 0 0
\(363\) −12343.3 −1.78472
\(364\) 0 0
\(365\) −403.848 −0.0579134
\(366\) 0 0
\(367\) 456.984 0.0649983 0.0324992 0.999472i \(-0.489653\pi\)
0.0324992 + 0.999472i \(0.489653\pi\)
\(368\) 0 0
\(369\) 5205.09 0.734325
\(370\) 0 0
\(371\) −17505.9 −2.44976
\(372\) 0 0
\(373\) 908.186 0.126070 0.0630350 0.998011i \(-0.479922\pi\)
0.0630350 + 0.998011i \(0.479922\pi\)
\(374\) 0 0
\(375\) 5177.50 0.712973
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −9874.70 −1.33834 −0.669168 0.743111i \(-0.733349\pi\)
−0.669168 + 0.743111i \(0.733349\pi\)
\(380\) 0 0
\(381\) 5944.73 0.799364
\(382\) 0 0
\(383\) −7726.79 −1.03086 −0.515432 0.856931i \(-0.672368\pi\)
−0.515432 + 0.856931i \(0.672368\pi\)
\(384\) 0 0
\(385\) −39.3639 −0.00521083
\(386\) 0 0
\(387\) 14484.9 1.90261
\(388\) 0 0
\(389\) −6461.27 −0.842157 −0.421079 0.907024i \(-0.638348\pi\)
−0.421079 + 0.907024i \(0.638348\pi\)
\(390\) 0 0
\(391\) −3030.60 −0.391980
\(392\) 0 0
\(393\) 7507.72 0.963649
\(394\) 0 0
\(395\) −326.317 −0.0415666
\(396\) 0 0
\(397\) −9730.13 −1.23008 −0.615039 0.788497i \(-0.710860\pi\)
−0.615039 + 0.788497i \(0.710860\pi\)
\(398\) 0 0
\(399\) 34286.5 4.30193
\(400\) 0 0
\(401\) 10566.7 1.31590 0.657950 0.753061i \(-0.271424\pi\)
0.657950 + 0.753061i \(0.271424\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) −2652.65 −0.325460
\(406\) 0 0
\(407\) 187.178 0.0227962
\(408\) 0 0
\(409\) −10627.3 −1.28481 −0.642405 0.766366i \(-0.722063\pi\)
−0.642405 + 0.766366i \(0.722063\pi\)
\(410\) 0 0
\(411\) 15457.2 1.85510
\(412\) 0 0
\(413\) −23985.6 −2.85776
\(414\) 0 0
\(415\) −1763.09 −0.208546
\(416\) 0 0
\(417\) 22942.8 2.69428
\(418\) 0 0
\(419\) 1384.56 0.161433 0.0807164 0.996737i \(-0.474279\pi\)
0.0807164 + 0.996737i \(0.474279\pi\)
\(420\) 0 0
\(421\) 4777.19 0.553031 0.276515 0.961010i \(-0.410820\pi\)
0.276515 + 0.961010i \(0.410820\pi\)
\(422\) 0 0
\(423\) −4047.45 −0.465234
\(424\) 0 0
\(425\) −4913.18 −0.560763
\(426\) 0 0
\(427\) 16778.9 1.90162
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 8535.98 0.953976 0.476988 0.878910i \(-0.341729\pi\)
0.476988 + 0.878910i \(0.341729\pi\)
\(432\) 0 0
\(433\) −637.729 −0.0707789 −0.0353895 0.999374i \(-0.511267\pi\)
−0.0353895 + 0.999374i \(0.511267\pi\)
\(434\) 0 0
\(435\) 4537.31 0.500109
\(436\) 0 0
\(437\) −9568.64 −1.04744
\(438\) 0 0
\(439\) 1780.56 0.193580 0.0967901 0.995305i \(-0.469142\pi\)
0.0967901 + 0.995305i \(0.469142\pi\)
\(440\) 0 0
\(441\) 27860.1 3.00832
\(442\) 0 0
\(443\) 5257.36 0.563848 0.281924 0.959437i \(-0.409027\pi\)
0.281924 + 0.959437i \(0.409027\pi\)
\(444\) 0 0
\(445\) −3198.60 −0.340737
\(446\) 0 0
\(447\) 18688.2 1.97746
\(448\) 0 0
\(449\) −4175.11 −0.438832 −0.219416 0.975631i \(-0.570415\pi\)
−0.219416 + 0.975631i \(0.570415\pi\)
\(450\) 0 0
\(451\) 53.3153 0.00556656
\(452\) 0 0
\(453\) −3610.15 −0.374437
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −9325.52 −0.954550 −0.477275 0.878754i \(-0.658375\pi\)
−0.477275 + 0.878754i \(0.658375\pi\)
\(458\) 0 0
\(459\) 12192.3 1.23984
\(460\) 0 0
\(461\) −17815.8 −1.79993 −0.899963 0.435966i \(-0.856407\pi\)
−0.899963 + 0.435966i \(0.856407\pi\)
\(462\) 0 0
\(463\) −13941.4 −1.39938 −0.699689 0.714448i \(-0.746678\pi\)
−0.699689 + 0.714448i \(0.746678\pi\)
\(464\) 0 0
\(465\) −2668.57 −0.266134
\(466\) 0 0
\(467\) −17855.6 −1.76929 −0.884644 0.466268i \(-0.845598\pi\)
−0.884644 + 0.466268i \(0.845598\pi\)
\(468\) 0 0
\(469\) −17314.0 −1.70467
\(470\) 0 0
\(471\) −13782.4 −1.34832
\(472\) 0 0
\(473\) 148.368 0.0144228
\(474\) 0 0
\(475\) −15512.6 −1.49845
\(476\) 0 0
\(477\) −36213.2 −3.47608
\(478\) 0 0
\(479\) −5268.36 −0.502542 −0.251271 0.967917i \(-0.580849\pi\)
−0.251271 + 0.967917i \(0.580849\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) −19567.3 −1.84336
\(484\) 0 0
\(485\) 1067.55 0.0999482
\(486\) 0 0
\(487\) 5676.35 0.528172 0.264086 0.964499i \(-0.414930\pi\)
0.264086 + 0.964499i \(0.414930\pi\)
\(488\) 0 0
\(489\) 21759.5 2.01226
\(490\) 0 0
\(491\) 12342.0 1.13439 0.567197 0.823582i \(-0.308028\pi\)
0.567197 + 0.823582i \(0.308028\pi\)
\(492\) 0 0
\(493\) −8798.18 −0.803752
\(494\) 0 0
\(495\) −81.4292 −0.00739388
\(496\) 0 0
\(497\) −14490.2 −1.30779
\(498\) 0 0
\(499\) 16955.3 1.52109 0.760545 0.649285i \(-0.224932\pi\)
0.760545 + 0.649285i \(0.224932\pi\)
\(500\) 0 0
\(501\) −18350.6 −1.63641
\(502\) 0 0
\(503\) 10583.7 0.938178 0.469089 0.883151i \(-0.344582\pi\)
0.469089 + 0.883151i \(0.344582\pi\)
\(504\) 0 0
\(505\) −911.902 −0.0803547
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −13349.6 −1.16249 −0.581246 0.813728i \(-0.697435\pi\)
−0.581246 + 0.813728i \(0.697435\pi\)
\(510\) 0 0
\(511\) 5056.09 0.437707
\(512\) 0 0
\(513\) 38495.1 3.31306
\(514\) 0 0
\(515\) 3201.36 0.273920
\(516\) 0 0
\(517\) −41.4577 −0.00352671
\(518\) 0 0
\(519\) 17557.2 1.48493
\(520\) 0 0
\(521\) −7321.30 −0.615647 −0.307823 0.951443i \(-0.599601\pi\)
−0.307823 + 0.951443i \(0.599601\pi\)
\(522\) 0 0
\(523\) 6772.54 0.566238 0.283119 0.959085i \(-0.408631\pi\)
0.283119 + 0.959085i \(0.408631\pi\)
\(524\) 0 0
\(525\) −31722.3 −2.63709
\(526\) 0 0
\(527\) 5174.56 0.427718
\(528\) 0 0
\(529\) −6706.17 −0.551177
\(530\) 0 0
\(531\) −49617.3 −4.05501
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 3640.10 0.294160
\(536\) 0 0
\(537\) −37126.1 −2.98344
\(538\) 0 0
\(539\) 285.368 0.0228046
\(540\) 0 0
\(541\) −2816.12 −0.223798 −0.111899 0.993720i \(-0.535693\pi\)
−0.111899 + 0.993720i \(0.535693\pi\)
\(542\) 0 0
\(543\) −10469.1 −0.827391
\(544\) 0 0
\(545\) 564.998 0.0444070
\(546\) 0 0
\(547\) −946.909 −0.0740163 −0.0370082 0.999315i \(-0.511783\pi\)
−0.0370082 + 0.999315i \(0.511783\pi\)
\(548\) 0 0
\(549\) 34709.4 2.69829
\(550\) 0 0
\(551\) −27778.8 −2.14776
\(552\) 0 0
\(553\) 4085.41 0.314158
\(554\) 0 0
\(555\) −6545.23 −0.500594
\(556\) 0 0
\(557\) −6635.00 −0.504729 −0.252364 0.967632i \(-0.581208\pi\)
−0.252364 + 0.967632i \(0.581208\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 230.095 0.0173166
\(562\) 0 0
\(563\) −14327.3 −1.07251 −0.536254 0.844056i \(-0.680161\pi\)
−0.536254 + 0.844056i \(0.680161\pi\)
\(564\) 0 0
\(565\) −965.256 −0.0718737
\(566\) 0 0
\(567\) 33210.6 2.45981
\(568\) 0 0
\(569\) 20996.9 1.54699 0.773493 0.633805i \(-0.218508\pi\)
0.773493 + 0.633805i \(0.218508\pi\)
\(570\) 0 0
\(571\) −3078.19 −0.225601 −0.112800 0.993618i \(-0.535982\pi\)
−0.112800 + 0.993618i \(0.535982\pi\)
\(572\) 0 0
\(573\) −29071.2 −2.11949
\(574\) 0 0
\(575\) 8853.04 0.642082
\(576\) 0 0
\(577\) 2220.02 0.160174 0.0800871 0.996788i \(-0.474480\pi\)
0.0800871 + 0.996788i \(0.474480\pi\)
\(578\) 0 0
\(579\) 19625.6 1.40866
\(580\) 0 0
\(581\) 22073.4 1.57618
\(582\) 0 0
\(583\) −370.929 −0.0263504
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 21570.1 1.51669 0.758343 0.651855i \(-0.226009\pi\)
0.758343 + 0.651855i \(0.226009\pi\)
\(588\) 0 0
\(589\) 16337.8 1.14293
\(590\) 0 0
\(591\) 133.642 0.00930166
\(592\) 0 0
\(593\) −17778.7 −1.23117 −0.615584 0.788071i \(-0.711080\pi\)
−0.615584 + 0.788071i \(0.711080\pi\)
\(594\) 0 0
\(595\) −2669.08 −0.183902
\(596\) 0 0
\(597\) −13100.3 −0.898092
\(598\) 0 0
\(599\) −6024.84 −0.410965 −0.205483 0.978661i \(-0.565876\pi\)
−0.205483 + 0.978661i \(0.565876\pi\)
\(600\) 0 0
\(601\) −14058.2 −0.954153 −0.477077 0.878862i \(-0.658304\pi\)
−0.477077 + 0.878862i \(0.658304\pi\)
\(602\) 0 0
\(603\) −35816.3 −2.41883
\(604\) 0 0
\(605\) 3033.83 0.203873
\(606\) 0 0
\(607\) −16830.7 −1.12543 −0.562716 0.826650i \(-0.690243\pi\)
−0.562716 + 0.826650i \(0.690243\pi\)
\(608\) 0 0
\(609\) −56806.1 −3.77980
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −9954.11 −0.655861 −0.327931 0.944702i \(-0.606351\pi\)
−0.327931 + 0.944702i \(0.606351\pi\)
\(614\) 0 0
\(615\) −1864.33 −0.122239
\(616\) 0 0
\(617\) 19391.0 1.26524 0.632621 0.774462i \(-0.281979\pi\)
0.632621 + 0.774462i \(0.281979\pi\)
\(618\) 0 0
\(619\) 60.1151 0.00390344 0.00195172 0.999998i \(-0.499379\pi\)
0.00195172 + 0.999998i \(0.499379\pi\)
\(620\) 0 0
\(621\) −21969.2 −1.41964
\(622\) 0 0
\(623\) 40045.7 2.57527
\(624\) 0 0
\(625\) 13702.6 0.876969
\(626\) 0 0
\(627\) 726.488 0.0462730
\(628\) 0 0
\(629\) 12691.7 0.804531
\(630\) 0 0
\(631\) −15910.7 −1.00379 −0.501896 0.864928i \(-0.667364\pi\)
−0.501896 + 0.864928i \(0.667364\pi\)
\(632\) 0 0
\(633\) 26983.9 1.69434
\(634\) 0 0
\(635\) −1461.14 −0.0913129
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −29974.8 −1.85569
\(640\) 0 0
\(641\) −10812.8 −0.666271 −0.333135 0.942879i \(-0.608107\pi\)
−0.333135 + 0.942879i \(0.608107\pi\)
\(642\) 0 0
\(643\) −15062.1 −0.923783 −0.461891 0.886937i \(-0.652829\pi\)
−0.461891 + 0.886937i \(0.652829\pi\)
\(644\) 0 0
\(645\) −5188.13 −0.316717
\(646\) 0 0
\(647\) −21953.9 −1.33400 −0.667001 0.745057i \(-0.732422\pi\)
−0.667001 + 0.745057i \(0.732422\pi\)
\(648\) 0 0
\(649\) −508.226 −0.0307390
\(650\) 0 0
\(651\) 33409.9 2.01143
\(652\) 0 0
\(653\) −9906.28 −0.593664 −0.296832 0.954930i \(-0.595930\pi\)
−0.296832 + 0.954930i \(0.595930\pi\)
\(654\) 0 0
\(655\) −1845.31 −0.110080
\(656\) 0 0
\(657\) 10459.2 0.621082
\(658\) 0 0
\(659\) −17156.6 −1.01415 −0.507077 0.861901i \(-0.669274\pi\)
−0.507077 + 0.861901i \(0.669274\pi\)
\(660\) 0 0
\(661\) 1654.70 0.0973681 0.0486840 0.998814i \(-0.484497\pi\)
0.0486840 + 0.998814i \(0.484497\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −8427.20 −0.491418
\(666\) 0 0
\(667\) 15853.4 0.920309
\(668\) 0 0
\(669\) 3285.58 0.189877
\(670\) 0 0
\(671\) 355.525 0.0204544
\(672\) 0 0
\(673\) 1227.71 0.0703190 0.0351595 0.999382i \(-0.488806\pi\)
0.0351595 + 0.999382i \(0.488806\pi\)
\(674\) 0 0
\(675\) −35616.2 −2.03092
\(676\) 0 0
\(677\) −16939.3 −0.961638 −0.480819 0.876820i \(-0.659660\pi\)
−0.480819 + 0.876820i \(0.659660\pi\)
\(678\) 0 0
\(679\) −13365.5 −0.755404
\(680\) 0 0
\(681\) −38245.6 −2.15209
\(682\) 0 0
\(683\) −16572.3 −0.928434 −0.464217 0.885721i \(-0.653664\pi\)
−0.464217 + 0.885721i \(0.653664\pi\)
\(684\) 0 0
\(685\) −3799.19 −0.211912
\(686\) 0 0
\(687\) −39424.4 −2.18942
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 3836.25 0.211198 0.105599 0.994409i \(-0.466324\pi\)
0.105599 + 0.994409i \(0.466324\pi\)
\(692\) 0 0
\(693\) 1019.47 0.0558825
\(694\) 0 0
\(695\) −5639.07 −0.307773
\(696\) 0 0
\(697\) 3615.07 0.196457
\(698\) 0 0
\(699\) 14757.4 0.798533
\(700\) 0 0
\(701\) −16178.6 −0.871692 −0.435846 0.900021i \(-0.643551\pi\)
−0.435846 + 0.900021i \(0.643551\pi\)
\(702\) 0 0
\(703\) 40071.9 2.14984
\(704\) 0 0
\(705\) 1449.69 0.0774448
\(706\) 0 0
\(707\) 11416.8 0.607317
\(708\) 0 0
\(709\) −26689.0 −1.41372 −0.706859 0.707354i \(-0.749888\pi\)
−0.706859 + 0.707354i \(0.749888\pi\)
\(710\) 0 0
\(711\) 8451.19 0.445773
\(712\) 0 0
\(713\) −9324.02 −0.489744
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −9561.60 −0.498026
\(718\) 0 0
\(719\) 25906.0 1.34371 0.671857 0.740681i \(-0.265497\pi\)
0.671857 + 0.740681i \(0.265497\pi\)
\(720\) 0 0
\(721\) −40080.3 −2.07027
\(722\) 0 0
\(723\) −42507.3 −2.18654
\(724\) 0 0
\(725\) 25701.3 1.31658
\(726\) 0 0
\(727\) −8386.29 −0.427827 −0.213914 0.976853i \(-0.568621\pi\)
−0.213914 + 0.976853i \(0.568621\pi\)
\(728\) 0 0
\(729\) −5759.42 −0.292609
\(730\) 0 0
\(731\) 10060.2 0.509013
\(732\) 0 0
\(733\) −289.490 −0.0145874 −0.00729371 0.999973i \(-0.502322\pi\)
−0.00729371 + 0.999973i \(0.502322\pi\)
\(734\) 0 0
\(735\) −9978.76 −0.500778
\(736\) 0 0
\(737\) −366.864 −0.0183359
\(738\) 0 0
\(739\) 17933.9 0.892705 0.446352 0.894857i \(-0.352723\pi\)
0.446352 + 0.894857i \(0.352723\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −22954.9 −1.13342 −0.566711 0.823917i \(-0.691784\pi\)
−0.566711 + 0.823917i \(0.691784\pi\)
\(744\) 0 0
\(745\) −4593.35 −0.225889
\(746\) 0 0
\(747\) 45661.7 2.23651
\(748\) 0 0
\(749\) −45573.2 −2.22324
\(750\) 0 0
\(751\) −29914.5 −1.45352 −0.726761 0.686890i \(-0.758975\pi\)
−0.726761 + 0.686890i \(0.758975\pi\)
\(752\) 0 0
\(753\) 28609.6 1.38459
\(754\) 0 0
\(755\) 887.333 0.0427726
\(756\) 0 0
\(757\) 9422.87 0.452417 0.226209 0.974079i \(-0.427367\pi\)
0.226209 + 0.974079i \(0.427367\pi\)
\(758\) 0 0
\(759\) −414.608 −0.0198278
\(760\) 0 0
\(761\) −16008.9 −0.762577 −0.381288 0.924456i \(-0.624520\pi\)
−0.381288 + 0.924456i \(0.624520\pi\)
\(762\) 0 0
\(763\) −7073.63 −0.335626
\(764\) 0 0
\(765\) −5521.34 −0.260947
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 23058.4 1.08128 0.540642 0.841253i \(-0.318182\pi\)
0.540642 + 0.841253i \(0.318182\pi\)
\(770\) 0 0
\(771\) 21601.5 1.00903
\(772\) 0 0
\(773\) −17638.7 −0.820726 −0.410363 0.911922i \(-0.634598\pi\)
−0.410363 + 0.911922i \(0.634598\pi\)
\(774\) 0 0
\(775\) −15116.0 −0.700622
\(776\) 0 0
\(777\) 81944.7 3.78346
\(778\) 0 0
\(779\) 11414.0 0.524966
\(780\) 0 0
\(781\) −307.029 −0.0140671
\(782\) 0 0
\(783\) −63779.0 −2.91095
\(784\) 0 0
\(785\) 3387.55 0.154021
\(786\) 0 0
\(787\) 2401.87 0.108789 0.0543947 0.998520i \(-0.482677\pi\)
0.0543947 + 0.998520i \(0.482677\pi\)
\(788\) 0 0
\(789\) 35207.4 1.58861
\(790\) 0 0
\(791\) 12084.8 0.543218
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 12970.6 0.578643
\(796\) 0 0
\(797\) 3281.78 0.145855 0.0729276 0.997337i \(-0.476766\pi\)
0.0729276 + 0.997337i \(0.476766\pi\)
\(798\) 0 0
\(799\) −2811.06 −0.124466
\(800\) 0 0
\(801\) 82839.6 3.65417
\(802\) 0 0
\(803\) 107.132 0.00470812
\(804\) 0 0
\(805\) 4809.41 0.210571
\(806\) 0 0
\(807\) −57313.7 −2.50005
\(808\) 0 0
\(809\) 36413.5 1.58249 0.791243 0.611501i \(-0.209434\pi\)
0.791243 + 0.611501i \(0.209434\pi\)
\(810\) 0 0
\(811\) 31898.2 1.38113 0.690566 0.723269i \(-0.257361\pi\)
0.690566 + 0.723269i \(0.257361\pi\)
\(812\) 0 0
\(813\) −2987.14 −0.128860
\(814\) 0 0
\(815\) −5348.22 −0.229865
\(816\) 0 0
\(817\) 31763.3 1.36017
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 29162.8 1.23970 0.619848 0.784722i \(-0.287194\pi\)
0.619848 + 0.784722i \(0.287194\pi\)
\(822\) 0 0
\(823\) −30040.6 −1.27236 −0.636179 0.771541i \(-0.719486\pi\)
−0.636179 + 0.771541i \(0.719486\pi\)
\(824\) 0 0
\(825\) −672.157 −0.0283655
\(826\) 0 0
\(827\) −6175.43 −0.259662 −0.129831 0.991536i \(-0.541444\pi\)
−0.129831 + 0.991536i \(0.541444\pi\)
\(828\) 0 0
\(829\) −46596.2 −1.95217 −0.976087 0.217381i \(-0.930249\pi\)
−0.976087 + 0.217381i \(0.930249\pi\)
\(830\) 0 0
\(831\) −38804.0 −1.61985
\(832\) 0 0
\(833\) 19349.5 0.804828
\(834\) 0 0
\(835\) 4510.35 0.186931
\(836\) 0 0
\(837\) 37511.0 1.54907
\(838\) 0 0
\(839\) 124.642 0.00512887 0.00256443 0.999997i \(-0.499184\pi\)
0.00256443 + 0.999997i \(0.499184\pi\)
\(840\) 0 0
\(841\) 21635.1 0.887086
\(842\) 0 0
\(843\) −3636.41 −0.148570
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −37982.9 −1.54086
\(848\) 0 0
\(849\) 38211.1 1.54464
\(850\) 0 0
\(851\) −22869.1 −0.921200
\(852\) 0 0
\(853\) 33839.8 1.35833 0.679163 0.733988i \(-0.262343\pi\)
0.679163 + 0.733988i \(0.262343\pi\)
\(854\) 0 0
\(855\) −17432.7 −0.697295
\(856\) 0 0
\(857\) 585.021 0.0233185 0.0116592 0.999932i \(-0.496289\pi\)
0.0116592 + 0.999932i \(0.496289\pi\)
\(858\) 0 0
\(859\) 21226.5 0.843120 0.421560 0.906800i \(-0.361483\pi\)
0.421560 + 0.906800i \(0.361483\pi\)
\(860\) 0 0
\(861\) 23340.9 0.923876
\(862\) 0 0
\(863\) −38443.2 −1.51636 −0.758181 0.652044i \(-0.773912\pi\)
−0.758181 + 0.652044i \(0.773912\pi\)
\(864\) 0 0
\(865\) −4315.35 −0.169626
\(866\) 0 0
\(867\) −29972.5 −1.17407
\(868\) 0 0
\(869\) 86.5649 0.00337919
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) −27648.1 −1.07188
\(874\) 0 0
\(875\) 15932.2 0.615552
\(876\) 0 0
\(877\) 15392.1 0.592652 0.296326 0.955087i \(-0.404239\pi\)
0.296326 + 0.955087i \(0.404239\pi\)
\(878\) 0 0
\(879\) 45321.9 1.73910
\(880\) 0 0
\(881\) −16605.9 −0.635037 −0.317518 0.948252i \(-0.602850\pi\)
−0.317518 + 0.948252i \(0.602850\pi\)
\(882\) 0 0
\(883\) 20909.9 0.796913 0.398456 0.917187i \(-0.369546\pi\)
0.398456 + 0.917187i \(0.369546\pi\)
\(884\) 0 0
\(885\) 17771.6 0.675014
\(886\) 0 0
\(887\) −266.852 −0.0101015 −0.00505074 0.999987i \(-0.501608\pi\)
−0.00505074 + 0.999987i \(0.501608\pi\)
\(888\) 0 0
\(889\) 18293.2 0.690138
\(890\) 0 0
\(891\) 703.692 0.0264585
\(892\) 0 0
\(893\) −8875.46 −0.332594
\(894\) 0 0
\(895\) 9125.14 0.340804
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −27068.6 −1.00422
\(900\) 0 0
\(901\) −25151.0 −0.929968
\(902\) 0 0
\(903\) 64954.2 2.39373
\(904\) 0 0
\(905\) 2573.19 0.0945145
\(906\) 0 0
\(907\) −43847.3 −1.60521 −0.802606 0.596510i \(-0.796554\pi\)
−0.802606 + 0.596510i \(0.796554\pi\)
\(908\) 0 0
\(909\) 23617.1 0.861749
\(910\) 0 0
\(911\) 9417.62 0.342502 0.171251 0.985227i \(-0.445219\pi\)
0.171251 + 0.985227i \(0.445219\pi\)
\(912\) 0 0
\(913\) 467.709 0.0169539
\(914\) 0 0
\(915\) −12432.0 −0.449169
\(916\) 0 0
\(917\) 23102.8 0.831976
\(918\) 0 0
\(919\) −43296.8 −1.55411 −0.777056 0.629431i \(-0.783288\pi\)
−0.777056 + 0.629431i \(0.783288\pi\)
\(920\) 0 0
\(921\) 18775.3 0.671736
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) −37075.1 −1.31786
\(926\) 0 0
\(927\) −82911.1 −2.93760
\(928\) 0 0
\(929\) 31999.6 1.13011 0.565055 0.825053i \(-0.308855\pi\)
0.565055 + 0.825053i \(0.308855\pi\)
\(930\) 0 0
\(931\) 61093.0 2.15064
\(932\) 0 0
\(933\) 11808.4 0.414352
\(934\) 0 0
\(935\) −56.5547 −0.00197811
\(936\) 0 0
\(937\) 1997.33 0.0696371 0.0348186 0.999394i \(-0.488915\pi\)
0.0348186 + 0.999394i \(0.488915\pi\)
\(938\) 0 0
\(939\) 3485.02 0.121118
\(940\) 0 0
\(941\) 31241.0 1.08228 0.541141 0.840932i \(-0.317993\pi\)
0.541141 + 0.840932i \(0.317993\pi\)
\(942\) 0 0
\(943\) −6513.97 −0.224946
\(944\) 0 0
\(945\) −19348.5 −0.666039
\(946\) 0 0
\(947\) 2759.74 0.0946986 0.0473493 0.998878i \(-0.484923\pi\)
0.0473493 + 0.998878i \(0.484923\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 96191.6 3.27994
\(952\) 0 0
\(953\) −11233.8 −0.381846 −0.190923 0.981605i \(-0.561148\pi\)
−0.190923 + 0.981605i \(0.561148\pi\)
\(954\) 0 0
\(955\) 7145.35 0.242113
\(956\) 0 0
\(957\) −1203.65 −0.0406568
\(958\) 0 0
\(959\) 47564.9 1.60162
\(960\) 0 0
\(961\) −13870.8 −0.465605
\(962\) 0 0
\(963\) −94274.1 −3.15466
\(964\) 0 0
\(965\) −4823.75 −0.160914
\(966\) 0 0
\(967\) 32213.3 1.07126 0.535630 0.844453i \(-0.320074\pi\)
0.535630 + 0.844453i \(0.320074\pi\)
\(968\) 0 0
\(969\) 49259.9 1.63308
\(970\) 0 0
\(971\) 24606.5 0.813245 0.406622 0.913596i \(-0.366706\pi\)
0.406622 + 0.913596i \(0.366706\pi\)
\(972\) 0 0
\(973\) 70599.8 2.32613
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 32852.8 1.07580 0.537898 0.843010i \(-0.319218\pi\)
0.537898 + 0.843010i \(0.319218\pi\)
\(978\) 0 0
\(979\) 848.519 0.0277005
\(980\) 0 0
\(981\) −14632.7 −0.476235
\(982\) 0 0
\(983\) −29422.7 −0.954666 −0.477333 0.878722i \(-0.658396\pi\)
−0.477333 + 0.878722i \(0.658396\pi\)
\(984\) 0 0
\(985\) −32.8475 −0.00106255
\(986\) 0 0
\(987\) −18149.8 −0.585324
\(988\) 0 0
\(989\) −18127.4 −0.582828
\(990\) 0 0
\(991\) −1107.84 −0.0355113 −0.0177557 0.999842i \(-0.505652\pi\)
−0.0177557 + 0.999842i \(0.505652\pi\)
\(992\) 0 0
\(993\) 21075.9 0.673539
\(994\) 0 0
\(995\) 3219.90 0.102591
\(996\) 0 0
\(997\) 15369.7 0.488227 0.244114 0.969747i \(-0.421503\pi\)
0.244114 + 0.969747i \(0.421503\pi\)
\(998\) 0 0
\(999\) 92003.5 2.91377
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1352.4.a.k.1.5 5
13.5 odd 4 104.4.f.a.25.10 yes 10
13.8 odd 4 104.4.f.a.25.9 10
13.12 even 2 1352.4.a.l.1.5 5
39.5 even 4 936.4.c.a.649.5 10
39.8 even 4 936.4.c.a.649.6 10
52.31 even 4 208.4.f.e.129.2 10
52.47 even 4 208.4.f.e.129.1 10
104.5 odd 4 832.4.f.k.129.1 10
104.21 odd 4 832.4.f.k.129.2 10
104.83 even 4 832.4.f.l.129.9 10
104.99 even 4 832.4.f.l.129.10 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
104.4.f.a.25.9 10 13.8 odd 4
104.4.f.a.25.10 yes 10 13.5 odd 4
208.4.f.e.129.1 10 52.47 even 4
208.4.f.e.129.2 10 52.31 even 4
832.4.f.k.129.1 10 104.5 odd 4
832.4.f.k.129.2 10 104.21 odd 4
832.4.f.l.129.9 10 104.83 even 4
832.4.f.l.129.10 10 104.99 even 4
936.4.c.a.649.5 10 39.5 even 4
936.4.c.a.649.6 10 39.8 even 4
1352.4.a.k.1.5 5 1.1 even 1 trivial
1352.4.a.l.1.5 5 13.12 even 2