Properties

Label 832.4.a.bh.1.5
Level $832$
Weight $4$
Character 832.1
Self dual yes
Analytic conductor $49.090$
Analytic rank $1$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [832,4,Mod(1,832)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("832.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(832, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 832 = 2^{6} \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 832.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,0,0,-16,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(49.0895891248\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 110x^{4} + 2925x^{2} - 10400 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{7} \)
Twist minimal: no (minimal twist has level 416)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(5.92375\) of defining polynomial
Character \(\chi\) \(=\) 832.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+5.92375 q^{3} -15.5783 q^{5} +13.5605 q^{7} +8.09087 q^{9} -31.2241 q^{11} -13.0000 q^{13} -92.2823 q^{15} +123.842 q^{17} +122.040 q^{19} +80.3291 q^{21} -152.771 q^{23} +117.685 q^{25} -112.013 q^{27} -94.9172 q^{29} -130.569 q^{31} -184.964 q^{33} -211.250 q^{35} -17.3074 q^{37} -77.0088 q^{39} +58.9011 q^{41} -363.313 q^{43} -126.042 q^{45} +86.1168 q^{47} -159.113 q^{49} +733.608 q^{51} -701.656 q^{53} +486.420 q^{55} +722.934 q^{57} -847.635 q^{59} -201.895 q^{61} +109.716 q^{63} +202.519 q^{65} -40.8828 q^{67} -904.979 q^{69} -158.582 q^{71} -671.189 q^{73} +697.137 q^{75} -423.415 q^{77} +1062.14 q^{79} -881.991 q^{81} -940.585 q^{83} -1929.25 q^{85} -562.266 q^{87} +634.272 q^{89} -176.287 q^{91} -773.459 q^{93} -1901.18 q^{95} +393.387 q^{97} -252.630 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 16 q^{5} + 58 q^{9} - 78 q^{13} + 8 q^{17} - 340 q^{21} + 126 q^{25} - 252 q^{29} + 640 q^{33} - 888 q^{37} + 652 q^{41} - 1308 q^{45} + 642 q^{49} - 1780 q^{53} - 360 q^{57} - 2500 q^{61} + 208 q^{65}+ \cdots - 3180 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 5.92375 1.14003 0.570014 0.821635i \(-0.306938\pi\)
0.570014 + 0.821635i \(0.306938\pi\)
\(4\) 0 0
\(5\) −15.5783 −1.39337 −0.696685 0.717377i \(-0.745342\pi\)
−0.696685 + 0.717377i \(0.745342\pi\)
\(6\) 0 0
\(7\) 13.5605 0.732199 0.366099 0.930576i \(-0.380693\pi\)
0.366099 + 0.930576i \(0.380693\pi\)
\(8\) 0 0
\(9\) 8.09087 0.299662
\(10\) 0 0
\(11\) −31.2241 −0.855857 −0.427928 0.903813i \(-0.640756\pi\)
−0.427928 + 0.903813i \(0.640756\pi\)
\(12\) 0 0
\(13\) −13.0000 −0.277350
\(14\) 0 0
\(15\) −92.2823 −1.58848
\(16\) 0 0
\(17\) 123.842 1.76682 0.883412 0.468597i \(-0.155240\pi\)
0.883412 + 0.468597i \(0.155240\pi\)
\(18\) 0 0
\(19\) 122.040 1.47357 0.736786 0.676126i \(-0.236342\pi\)
0.736786 + 0.676126i \(0.236342\pi\)
\(20\) 0 0
\(21\) 80.3291 0.834726
\(22\) 0 0
\(23\) −152.771 −1.38500 −0.692499 0.721418i \(-0.743490\pi\)
−0.692499 + 0.721418i \(0.743490\pi\)
\(24\) 0 0
\(25\) 117.685 0.941480
\(26\) 0 0
\(27\) −112.013 −0.798404
\(28\) 0 0
\(29\) −94.9172 −0.607782 −0.303891 0.952707i \(-0.598286\pi\)
−0.303891 + 0.952707i \(0.598286\pi\)
\(30\) 0 0
\(31\) −130.569 −0.756481 −0.378240 0.925707i \(-0.623471\pi\)
−0.378240 + 0.925707i \(0.623471\pi\)
\(32\) 0 0
\(33\) −184.964 −0.975700
\(34\) 0 0
\(35\) −211.250 −1.02022
\(36\) 0 0
\(37\) −17.3074 −0.0769004 −0.0384502 0.999261i \(-0.512242\pi\)
−0.0384502 + 0.999261i \(0.512242\pi\)
\(38\) 0 0
\(39\) −77.0088 −0.316187
\(40\) 0 0
\(41\) 58.9011 0.224361 0.112180 0.993688i \(-0.464217\pi\)
0.112180 + 0.993688i \(0.464217\pi\)
\(42\) 0 0
\(43\) −363.313 −1.28848 −0.644241 0.764822i \(-0.722827\pi\)
−0.644241 + 0.764822i \(0.722827\pi\)
\(44\) 0 0
\(45\) −126.042 −0.417540
\(46\) 0 0
\(47\) 86.1168 0.267264 0.133632 0.991031i \(-0.457336\pi\)
0.133632 + 0.991031i \(0.457336\pi\)
\(48\) 0 0
\(49\) −159.113 −0.463885
\(50\) 0 0
\(51\) 733.608 2.01423
\(52\) 0 0
\(53\) −701.656 −1.81849 −0.909244 0.416263i \(-0.863340\pi\)
−0.909244 + 0.416263i \(0.863340\pi\)
\(54\) 0 0
\(55\) 486.420 1.19252
\(56\) 0 0
\(57\) 722.934 1.67991
\(58\) 0 0
\(59\) −847.635 −1.87038 −0.935192 0.354140i \(-0.884773\pi\)
−0.935192 + 0.354140i \(0.884773\pi\)
\(60\) 0 0
\(61\) −201.895 −0.423772 −0.211886 0.977294i \(-0.567960\pi\)
−0.211886 + 0.977294i \(0.567960\pi\)
\(62\) 0 0
\(63\) 109.716 0.219412
\(64\) 0 0
\(65\) 202.519 0.386451
\(66\) 0 0
\(67\) −40.8828 −0.0745467 −0.0372733 0.999305i \(-0.511867\pi\)
−0.0372733 + 0.999305i \(0.511867\pi\)
\(68\) 0 0
\(69\) −904.979 −1.57894
\(70\) 0 0
\(71\) −158.582 −0.265074 −0.132537 0.991178i \(-0.542312\pi\)
−0.132537 + 0.991178i \(0.542312\pi\)
\(72\) 0 0
\(73\) −671.189 −1.07612 −0.538060 0.842907i \(-0.680843\pi\)
−0.538060 + 0.842907i \(0.680843\pi\)
\(74\) 0 0
\(75\) 697.137 1.07331
\(76\) 0 0
\(77\) −423.415 −0.626657
\(78\) 0 0
\(79\) 1062.14 1.51266 0.756331 0.654190i \(-0.226990\pi\)
0.756331 + 0.654190i \(0.226990\pi\)
\(80\) 0 0
\(81\) −881.991 −1.20986
\(82\) 0 0
\(83\) −940.585 −1.24389 −0.621943 0.783062i \(-0.713657\pi\)
−0.621943 + 0.783062i \(0.713657\pi\)
\(84\) 0 0
\(85\) −1929.25 −2.46184
\(86\) 0 0
\(87\) −562.266 −0.692888
\(88\) 0 0
\(89\) 634.272 0.755424 0.377712 0.925923i \(-0.376711\pi\)
0.377712 + 0.925923i \(0.376711\pi\)
\(90\) 0 0
\(91\) −176.287 −0.203075
\(92\) 0 0
\(93\) −773.459 −0.862408
\(94\) 0 0
\(95\) −1901.18 −2.05323
\(96\) 0 0
\(97\) 393.387 0.411777 0.205889 0.978575i \(-0.433992\pi\)
0.205889 + 0.978575i \(0.433992\pi\)
\(98\) 0 0
\(99\) −252.630 −0.256468
\(100\) 0 0
\(101\) −320.134 −0.315391 −0.157696 0.987488i \(-0.550407\pi\)
−0.157696 + 0.987488i \(0.550407\pi\)
\(102\) 0 0
\(103\) 12.8240 0.0122678 0.00613389 0.999981i \(-0.498048\pi\)
0.00613389 + 0.999981i \(0.498048\pi\)
\(104\) 0 0
\(105\) −1251.40 −1.16308
\(106\) 0 0
\(107\) 989.226 0.893758 0.446879 0.894594i \(-0.352535\pi\)
0.446879 + 0.894594i \(0.352535\pi\)
\(108\) 0 0
\(109\) 1437.12 1.26285 0.631426 0.775436i \(-0.282470\pi\)
0.631426 + 0.775436i \(0.282470\pi\)
\(110\) 0 0
\(111\) −102.525 −0.0876686
\(112\) 0 0
\(113\) −1631.15 −1.35792 −0.678961 0.734174i \(-0.737570\pi\)
−0.678961 + 0.734174i \(0.737570\pi\)
\(114\) 0 0
\(115\) 2379.92 1.92982
\(116\) 0 0
\(117\) −105.181 −0.0831113
\(118\) 0 0
\(119\) 1679.36 1.29367
\(120\) 0 0
\(121\) −356.055 −0.267509
\(122\) 0 0
\(123\) 348.915 0.255778
\(124\) 0 0
\(125\) 113.956 0.0815405
\(126\) 0 0
\(127\) −385.344 −0.269242 −0.134621 0.990897i \(-0.542982\pi\)
−0.134621 + 0.990897i \(0.542982\pi\)
\(128\) 0 0
\(129\) −2152.18 −1.46890
\(130\) 0 0
\(131\) 1985.96 1.32454 0.662269 0.749266i \(-0.269594\pi\)
0.662269 + 0.749266i \(0.269594\pi\)
\(132\) 0 0
\(133\) 1654.92 1.07895
\(134\) 0 0
\(135\) 1744.98 1.11247
\(136\) 0 0
\(137\) 1257.53 0.784217 0.392108 0.919919i \(-0.371746\pi\)
0.392108 + 0.919919i \(0.371746\pi\)
\(138\) 0 0
\(139\) −2383.62 −1.45450 −0.727252 0.686370i \(-0.759203\pi\)
−0.727252 + 0.686370i \(0.759203\pi\)
\(140\) 0 0
\(141\) 510.135 0.304689
\(142\) 0 0
\(143\) 405.913 0.237372
\(144\) 0 0
\(145\) 1478.65 0.846865
\(146\) 0 0
\(147\) −942.544 −0.528842
\(148\) 0 0
\(149\) −660.562 −0.363190 −0.181595 0.983373i \(-0.558126\pi\)
−0.181595 + 0.983373i \(0.558126\pi\)
\(150\) 0 0
\(151\) 2139.25 1.15291 0.576456 0.817128i \(-0.304435\pi\)
0.576456 + 0.817128i \(0.304435\pi\)
\(152\) 0 0
\(153\) 1001.99 0.529450
\(154\) 0 0
\(155\) 2034.05 1.05406
\(156\) 0 0
\(157\) 273.232 0.138894 0.0694468 0.997586i \(-0.477877\pi\)
0.0694468 + 0.997586i \(0.477877\pi\)
\(158\) 0 0
\(159\) −4156.44 −2.07313
\(160\) 0 0
\(161\) −2071.65 −1.01409
\(162\) 0 0
\(163\) 1729.12 0.830891 0.415445 0.909618i \(-0.363626\pi\)
0.415445 + 0.909618i \(0.363626\pi\)
\(164\) 0 0
\(165\) 2881.43 1.35951
\(166\) 0 0
\(167\) −527.939 −0.244630 −0.122315 0.992491i \(-0.539032\pi\)
−0.122315 + 0.992491i \(0.539032\pi\)
\(168\) 0 0
\(169\) 169.000 0.0769231
\(170\) 0 0
\(171\) 987.409 0.441573
\(172\) 0 0
\(173\) −4267.36 −1.87538 −0.937692 0.347467i \(-0.887042\pi\)
−0.937692 + 0.347467i \(0.887042\pi\)
\(174\) 0 0
\(175\) 1595.87 0.689350
\(176\) 0 0
\(177\) −5021.18 −2.13229
\(178\) 0 0
\(179\) −2640.88 −1.10273 −0.551366 0.834264i \(-0.685893\pi\)
−0.551366 + 0.834264i \(0.685893\pi\)
\(180\) 0 0
\(181\) 1128.14 0.463281 0.231640 0.972801i \(-0.425591\pi\)
0.231640 + 0.972801i \(0.425591\pi\)
\(182\) 0 0
\(183\) −1195.98 −0.483111
\(184\) 0 0
\(185\) 269.620 0.107151
\(186\) 0 0
\(187\) −3866.85 −1.51215
\(188\) 0 0
\(189\) −1518.95 −0.584591
\(190\) 0 0
\(191\) 3768.71 1.42772 0.713859 0.700290i \(-0.246946\pi\)
0.713859 + 0.700290i \(0.246946\pi\)
\(192\) 0 0
\(193\) −524.268 −0.195532 −0.0977659 0.995209i \(-0.531170\pi\)
−0.0977659 + 0.995209i \(0.531170\pi\)
\(194\) 0 0
\(195\) 1199.67 0.440565
\(196\) 0 0
\(197\) 1171.41 0.423653 0.211826 0.977307i \(-0.432059\pi\)
0.211826 + 0.977307i \(0.432059\pi\)
\(198\) 0 0
\(199\) −2087.39 −0.743574 −0.371787 0.928318i \(-0.621255\pi\)
−0.371787 + 0.928318i \(0.621255\pi\)
\(200\) 0 0
\(201\) −242.180 −0.0849852
\(202\) 0 0
\(203\) −1287.13 −0.445017
\(204\) 0 0
\(205\) −917.581 −0.312618
\(206\) 0 0
\(207\) −1236.05 −0.415031
\(208\) 0 0
\(209\) −3810.59 −1.26117
\(210\) 0 0
\(211\) 2702.18 0.881639 0.440819 0.897596i \(-0.354688\pi\)
0.440819 + 0.897596i \(0.354688\pi\)
\(212\) 0 0
\(213\) −939.403 −0.302192
\(214\) 0 0
\(215\) 5659.82 1.79533
\(216\) 0 0
\(217\) −1770.58 −0.553894
\(218\) 0 0
\(219\) −3975.96 −1.22681
\(220\) 0 0
\(221\) −1609.94 −0.490029
\(222\) 0 0
\(223\) 2997.54 0.900134 0.450067 0.892995i \(-0.351400\pi\)
0.450067 + 0.892995i \(0.351400\pi\)
\(224\) 0 0
\(225\) 952.174 0.282126
\(226\) 0 0
\(227\) −1157.59 −0.338466 −0.169233 0.985576i \(-0.554129\pi\)
−0.169233 + 0.985576i \(0.554129\pi\)
\(228\) 0 0
\(229\) 2913.12 0.840630 0.420315 0.907378i \(-0.361920\pi\)
0.420315 + 0.907378i \(0.361920\pi\)
\(230\) 0 0
\(231\) −2508.21 −0.714406
\(232\) 0 0
\(233\) −5676.59 −1.59608 −0.798038 0.602608i \(-0.794128\pi\)
−0.798038 + 0.602608i \(0.794128\pi\)
\(234\) 0 0
\(235\) −1341.56 −0.372398
\(236\) 0 0
\(237\) 6291.86 1.72447
\(238\) 0 0
\(239\) −180.549 −0.0488651 −0.0244325 0.999701i \(-0.507778\pi\)
−0.0244325 + 0.999701i \(0.507778\pi\)
\(240\) 0 0
\(241\) 3912.01 1.04562 0.522811 0.852448i \(-0.324883\pi\)
0.522811 + 0.852448i \(0.324883\pi\)
\(242\) 0 0
\(243\) −2200.35 −0.580874
\(244\) 0 0
\(245\) 2478.71 0.646364
\(246\) 0 0
\(247\) −1586.52 −0.408695
\(248\) 0 0
\(249\) −5571.79 −1.41806
\(250\) 0 0
\(251\) −5748.27 −1.44553 −0.722764 0.691094i \(-0.757129\pi\)
−0.722764 + 0.691094i \(0.757129\pi\)
\(252\) 0 0
\(253\) 4770.14 1.18536
\(254\) 0 0
\(255\) −11428.4 −2.80656
\(256\) 0 0
\(257\) −4387.90 −1.06502 −0.532509 0.846425i \(-0.678751\pi\)
−0.532509 + 0.846425i \(0.678751\pi\)
\(258\) 0 0
\(259\) −234.697 −0.0563064
\(260\) 0 0
\(261\) −767.963 −0.182129
\(262\) 0 0
\(263\) −4413.18 −1.03471 −0.517354 0.855772i \(-0.673083\pi\)
−0.517354 + 0.855772i \(0.673083\pi\)
\(264\) 0 0
\(265\) 10930.6 2.53383
\(266\) 0 0
\(267\) 3757.27 0.861203
\(268\) 0 0
\(269\) −5793.95 −1.31325 −0.656624 0.754218i \(-0.728016\pi\)
−0.656624 + 0.754218i \(0.728016\pi\)
\(270\) 0 0
\(271\) −8188.99 −1.83559 −0.917796 0.397051i \(-0.870033\pi\)
−0.917796 + 0.397051i \(0.870033\pi\)
\(272\) 0 0
\(273\) −1044.28 −0.231511
\(274\) 0 0
\(275\) −3674.61 −0.805772
\(276\) 0 0
\(277\) −54.4386 −0.0118083 −0.00590415 0.999983i \(-0.501879\pi\)
−0.00590415 + 0.999983i \(0.501879\pi\)
\(278\) 0 0
\(279\) −1056.42 −0.226688
\(280\) 0 0
\(281\) −3841.77 −0.815590 −0.407795 0.913074i \(-0.633702\pi\)
−0.407795 + 0.913074i \(0.633702\pi\)
\(282\) 0 0
\(283\) 7935.53 1.66685 0.833425 0.552632i \(-0.186377\pi\)
0.833425 + 0.552632i \(0.186377\pi\)
\(284\) 0 0
\(285\) −11262.1 −2.34074
\(286\) 0 0
\(287\) 798.728 0.164277
\(288\) 0 0
\(289\) 10423.8 2.12167
\(290\) 0 0
\(291\) 2330.33 0.469437
\(292\) 0 0
\(293\) 7776.81 1.55060 0.775301 0.631593i \(-0.217598\pi\)
0.775301 + 0.631593i \(0.217598\pi\)
\(294\) 0 0
\(295\) 13204.8 2.60614
\(296\) 0 0
\(297\) 3497.51 0.683320
\(298\) 0 0
\(299\) 1986.02 0.384130
\(300\) 0 0
\(301\) −4926.71 −0.943425
\(302\) 0 0
\(303\) −1896.40 −0.359555
\(304\) 0 0
\(305\) 3145.20 0.590470
\(306\) 0 0
\(307\) −3258.04 −0.605688 −0.302844 0.953040i \(-0.597936\pi\)
−0.302844 + 0.953040i \(0.597936\pi\)
\(308\) 0 0
\(309\) 75.9660 0.0139856
\(310\) 0 0
\(311\) −5109.12 −0.931549 −0.465775 0.884903i \(-0.654224\pi\)
−0.465775 + 0.884903i \(0.654224\pi\)
\(312\) 0 0
\(313\) 767.796 0.138653 0.0693265 0.997594i \(-0.477915\pi\)
0.0693265 + 0.997594i \(0.477915\pi\)
\(314\) 0 0
\(315\) −1709.20 −0.305722
\(316\) 0 0
\(317\) 4814.85 0.853088 0.426544 0.904467i \(-0.359731\pi\)
0.426544 + 0.904467i \(0.359731\pi\)
\(318\) 0 0
\(319\) 2963.71 0.520174
\(320\) 0 0
\(321\) 5859.93 1.01891
\(322\) 0 0
\(323\) 15113.6 2.60354
\(324\) 0 0
\(325\) −1529.90 −0.261119
\(326\) 0 0
\(327\) 8513.13 1.43969
\(328\) 0 0
\(329\) 1167.79 0.195691
\(330\) 0 0
\(331\) 3866.07 0.641990 0.320995 0.947081i \(-0.395983\pi\)
0.320995 + 0.947081i \(0.395983\pi\)
\(332\) 0 0
\(333\) −140.032 −0.0230441
\(334\) 0 0
\(335\) 636.886 0.103871
\(336\) 0 0
\(337\) 8280.96 1.33855 0.669277 0.743013i \(-0.266604\pi\)
0.669277 + 0.743013i \(0.266604\pi\)
\(338\) 0 0
\(339\) −9662.50 −1.54807
\(340\) 0 0
\(341\) 4076.90 0.647439
\(342\) 0 0
\(343\) −6808.90 −1.07185
\(344\) 0 0
\(345\) 14098.1 2.20004
\(346\) 0 0
\(347\) 11445.0 1.77061 0.885304 0.465012i \(-0.153950\pi\)
0.885304 + 0.465012i \(0.153950\pi\)
\(348\) 0 0
\(349\) −6637.37 −1.01802 −0.509012 0.860759i \(-0.669989\pi\)
−0.509012 + 0.860759i \(0.669989\pi\)
\(350\) 0 0
\(351\) 1456.17 0.221438
\(352\) 0 0
\(353\) −2346.97 −0.353872 −0.176936 0.984222i \(-0.556619\pi\)
−0.176936 + 0.984222i \(0.556619\pi\)
\(354\) 0 0
\(355\) 2470.45 0.369346
\(356\) 0 0
\(357\) 9948.09 1.47481
\(358\) 0 0
\(359\) 10364.6 1.52374 0.761872 0.647728i \(-0.224281\pi\)
0.761872 + 0.647728i \(0.224281\pi\)
\(360\) 0 0
\(361\) 8034.73 1.17141
\(362\) 0 0
\(363\) −2109.18 −0.304968
\(364\) 0 0
\(365\) 10456.0 1.49943
\(366\) 0 0
\(367\) 10430.2 1.48352 0.741762 0.670663i \(-0.233990\pi\)
0.741762 + 0.670663i \(0.233990\pi\)
\(368\) 0 0
\(369\) 476.561 0.0672324
\(370\) 0 0
\(371\) −9514.81 −1.33149
\(372\) 0 0
\(373\) −9098.80 −1.26305 −0.631525 0.775355i \(-0.717571\pi\)
−0.631525 + 0.775355i \(0.717571\pi\)
\(374\) 0 0
\(375\) 675.050 0.0929584
\(376\) 0 0
\(377\) 1233.92 0.168568
\(378\) 0 0
\(379\) −5770.72 −0.782116 −0.391058 0.920366i \(-0.627891\pi\)
−0.391058 + 0.920366i \(0.627891\pi\)
\(380\) 0 0
\(381\) −2282.68 −0.306943
\(382\) 0 0
\(383\) 14.7089 0.00196238 0.000981191 1.00000i \(-0.499688\pi\)
0.000981191 1.00000i \(0.499688\pi\)
\(384\) 0 0
\(385\) 6596.10 0.873165
\(386\) 0 0
\(387\) −2939.52 −0.386109
\(388\) 0 0
\(389\) 11102.4 1.44708 0.723540 0.690283i \(-0.242514\pi\)
0.723540 + 0.690283i \(0.242514\pi\)
\(390\) 0 0
\(391\) −18919.4 −2.44705
\(392\) 0 0
\(393\) 11764.4 1.51001
\(394\) 0 0
\(395\) −16546.4 −2.10770
\(396\) 0 0
\(397\) −8594.09 −1.08646 −0.543231 0.839583i \(-0.682799\pi\)
−0.543231 + 0.839583i \(0.682799\pi\)
\(398\) 0 0
\(399\) 9803.36 1.23003
\(400\) 0 0
\(401\) −3092.92 −0.385170 −0.192585 0.981280i \(-0.561687\pi\)
−0.192585 + 0.981280i \(0.561687\pi\)
\(402\) 0 0
\(403\) 1697.40 0.209810
\(404\) 0 0
\(405\) 13740.0 1.68579
\(406\) 0 0
\(407\) 540.408 0.0658158
\(408\) 0 0
\(409\) −515.273 −0.0622949 −0.0311474 0.999515i \(-0.509916\pi\)
−0.0311474 + 0.999515i \(0.509916\pi\)
\(410\) 0 0
\(411\) 7449.27 0.894028
\(412\) 0 0
\(413\) −11494.4 −1.36949
\(414\) 0 0
\(415\) 14652.8 1.73319
\(416\) 0 0
\(417\) −14120.0 −1.65818
\(418\) 0 0
\(419\) 8422.50 0.982019 0.491009 0.871154i \(-0.336628\pi\)
0.491009 + 0.871154i \(0.336628\pi\)
\(420\) 0 0
\(421\) 12950.7 1.49924 0.749620 0.661869i \(-0.230236\pi\)
0.749620 + 0.661869i \(0.230236\pi\)
\(422\) 0 0
\(423\) 696.760 0.0800890
\(424\) 0 0
\(425\) 14574.3 1.66343
\(426\) 0 0
\(427\) −2737.80 −0.310285
\(428\) 0 0
\(429\) 2404.53 0.270610
\(430\) 0 0
\(431\) 2351.34 0.262785 0.131392 0.991330i \(-0.458055\pi\)
0.131392 + 0.991330i \(0.458055\pi\)
\(432\) 0 0
\(433\) −5506.04 −0.611093 −0.305547 0.952177i \(-0.598839\pi\)
−0.305547 + 0.952177i \(0.598839\pi\)
\(434\) 0 0
\(435\) 8759.18 0.965449
\(436\) 0 0
\(437\) −18644.2 −2.04090
\(438\) 0 0
\(439\) −16403.4 −1.78335 −0.891676 0.452674i \(-0.850470\pi\)
−0.891676 + 0.452674i \(0.850470\pi\)
\(440\) 0 0
\(441\) −1287.36 −0.139009
\(442\) 0 0
\(443\) 13759.5 1.47570 0.737848 0.674967i \(-0.235842\pi\)
0.737848 + 0.674967i \(0.235842\pi\)
\(444\) 0 0
\(445\) −9880.91 −1.05258
\(446\) 0 0
\(447\) −3913.01 −0.414047
\(448\) 0 0
\(449\) −15882.1 −1.66932 −0.834660 0.550766i \(-0.814336\pi\)
−0.834660 + 0.550766i \(0.814336\pi\)
\(450\) 0 0
\(451\) −1839.13 −0.192021
\(452\) 0 0
\(453\) 12672.4 1.31435
\(454\) 0 0
\(455\) 2746.25 0.282959
\(456\) 0 0
\(457\) −9542.58 −0.976768 −0.488384 0.872629i \(-0.662414\pi\)
−0.488384 + 0.872629i \(0.662414\pi\)
\(458\) 0 0
\(459\) −13871.9 −1.41064
\(460\) 0 0
\(461\) 12978.8 1.31124 0.655619 0.755092i \(-0.272408\pi\)
0.655619 + 0.755092i \(0.272408\pi\)
\(462\) 0 0
\(463\) 9196.97 0.923152 0.461576 0.887101i \(-0.347284\pi\)
0.461576 + 0.887101i \(0.347284\pi\)
\(464\) 0 0
\(465\) 12049.2 1.20165
\(466\) 0 0
\(467\) 8635.66 0.855698 0.427849 0.903850i \(-0.359272\pi\)
0.427849 + 0.903850i \(0.359272\pi\)
\(468\) 0 0
\(469\) −554.391 −0.0545830
\(470\) 0 0
\(471\) 1618.56 0.158343
\(472\) 0 0
\(473\) 11344.1 1.10276
\(474\) 0 0
\(475\) 14362.3 1.38734
\(476\) 0 0
\(477\) −5677.01 −0.544932
\(478\) 0 0
\(479\) 9568.41 0.912717 0.456359 0.889796i \(-0.349153\pi\)
0.456359 + 0.889796i \(0.349153\pi\)
\(480\) 0 0
\(481\) 224.996 0.0213283
\(482\) 0 0
\(483\) −12272.0 −1.15610
\(484\) 0 0
\(485\) −6128.32 −0.573758
\(486\) 0 0
\(487\) 12663.1 1.17827 0.589135 0.808034i \(-0.299468\pi\)
0.589135 + 0.808034i \(0.299468\pi\)
\(488\) 0 0
\(489\) 10242.9 0.947238
\(490\) 0 0
\(491\) −1316.49 −0.121002 −0.0605012 0.998168i \(-0.519270\pi\)
−0.0605012 + 0.998168i \(0.519270\pi\)
\(492\) 0 0
\(493\) −11754.7 −1.07384
\(494\) 0 0
\(495\) 3935.56 0.357354
\(496\) 0 0
\(497\) −2150.46 −0.194087
\(498\) 0 0
\(499\) −12781.2 −1.14663 −0.573314 0.819336i \(-0.694342\pi\)
−0.573314 + 0.819336i \(0.694342\pi\)
\(500\) 0 0
\(501\) −3127.38 −0.278884
\(502\) 0 0
\(503\) −8283.67 −0.734295 −0.367148 0.930163i \(-0.619666\pi\)
−0.367148 + 0.930163i \(0.619666\pi\)
\(504\) 0 0
\(505\) 4987.16 0.439457
\(506\) 0 0
\(507\) 1001.11 0.0876944
\(508\) 0 0
\(509\) 856.974 0.0746261 0.0373131 0.999304i \(-0.488120\pi\)
0.0373131 + 0.999304i \(0.488120\pi\)
\(510\) 0 0
\(511\) −9101.67 −0.787934
\(512\) 0 0
\(513\) −13670.1 −1.17651
\(514\) 0 0
\(515\) −199.776 −0.0170936
\(516\) 0 0
\(517\) −2688.92 −0.228740
\(518\) 0 0
\(519\) −25278.8 −2.13799
\(520\) 0 0
\(521\) −8750.87 −0.735859 −0.367930 0.929854i \(-0.619933\pi\)
−0.367930 + 0.929854i \(0.619933\pi\)
\(522\) 0 0
\(523\) 9938.29 0.830920 0.415460 0.909612i \(-0.363621\pi\)
0.415460 + 0.909612i \(0.363621\pi\)
\(524\) 0 0
\(525\) 9453.53 0.785878
\(526\) 0 0
\(527\) −16169.9 −1.33657
\(528\) 0 0
\(529\) 11172.0 0.918222
\(530\) 0 0
\(531\) −6858.11 −0.560483
\(532\) 0 0
\(533\) −765.714 −0.0622265
\(534\) 0 0
\(535\) −15410.5 −1.24534
\(536\) 0 0
\(537\) −15644.0 −1.25714
\(538\) 0 0
\(539\) 4968.15 0.397019
\(540\) 0 0
\(541\) −3470.03 −0.275764 −0.137882 0.990449i \(-0.544029\pi\)
−0.137882 + 0.990449i \(0.544029\pi\)
\(542\) 0 0
\(543\) 6682.81 0.528153
\(544\) 0 0
\(545\) −22387.9 −1.75962
\(546\) 0 0
\(547\) −2147.82 −0.167887 −0.0839435 0.996471i \(-0.526752\pi\)
−0.0839435 + 0.996471i \(0.526752\pi\)
\(548\) 0 0
\(549\) −1633.51 −0.126988
\(550\) 0 0
\(551\) −11583.7 −0.895611
\(552\) 0 0
\(553\) 14403.2 1.10757
\(554\) 0 0
\(555\) 1597.17 0.122155
\(556\) 0 0
\(557\) 13751.3 1.04607 0.523037 0.852310i \(-0.324799\pi\)
0.523037 + 0.852310i \(0.324799\pi\)
\(558\) 0 0
\(559\) 4723.07 0.357361
\(560\) 0 0
\(561\) −22906.2 −1.72389
\(562\) 0 0
\(563\) 1077.51 0.0806598 0.0403299 0.999186i \(-0.487159\pi\)
0.0403299 + 0.999186i \(0.487159\pi\)
\(564\) 0 0
\(565\) 25410.5 1.89209
\(566\) 0 0
\(567\) −11960.3 −0.885861
\(568\) 0 0
\(569\) 11538.5 0.850120 0.425060 0.905165i \(-0.360253\pi\)
0.425060 + 0.905165i \(0.360253\pi\)
\(570\) 0 0
\(571\) −6799.09 −0.498306 −0.249153 0.968464i \(-0.580152\pi\)
−0.249153 + 0.968464i \(0.580152\pi\)
\(572\) 0 0
\(573\) 22324.9 1.62764
\(574\) 0 0
\(575\) −17978.9 −1.30395
\(576\) 0 0
\(577\) 5900.94 0.425753 0.212876 0.977079i \(-0.431717\pi\)
0.212876 + 0.977079i \(0.431717\pi\)
\(578\) 0 0
\(579\) −3105.64 −0.222912
\(580\) 0 0
\(581\) −12754.8 −0.910772
\(582\) 0 0
\(583\) 21908.6 1.55637
\(584\) 0 0
\(585\) 1638.55 0.115805
\(586\) 0 0
\(587\) 20703.8 1.45577 0.727884 0.685700i \(-0.240504\pi\)
0.727884 + 0.685700i \(0.240504\pi\)
\(588\) 0 0
\(589\) −15934.6 −1.11473
\(590\) 0 0
\(591\) 6939.16 0.482976
\(592\) 0 0
\(593\) −19600.4 −1.35732 −0.678662 0.734451i \(-0.737440\pi\)
−0.678662 + 0.734451i \(0.737440\pi\)
\(594\) 0 0
\(595\) −26161.6 −1.80256
\(596\) 0 0
\(597\) −12365.2 −0.847695
\(598\) 0 0
\(599\) 27794.2 1.89589 0.947946 0.318431i \(-0.103156\pi\)
0.947946 + 0.318431i \(0.103156\pi\)
\(600\) 0 0
\(601\) −14969.0 −1.01597 −0.507985 0.861366i \(-0.669609\pi\)
−0.507985 + 0.861366i \(0.669609\pi\)
\(602\) 0 0
\(603\) −330.777 −0.0223388
\(604\) 0 0
\(605\) 5546.75 0.372739
\(606\) 0 0
\(607\) −11670.7 −0.780394 −0.390197 0.920731i \(-0.627593\pi\)
−0.390197 + 0.920731i \(0.627593\pi\)
\(608\) 0 0
\(609\) −7624.62 −0.507332
\(610\) 0 0
\(611\) −1119.52 −0.0741258
\(612\) 0 0
\(613\) 10167.0 0.669889 0.334944 0.942238i \(-0.391283\pi\)
0.334944 + 0.942238i \(0.391283\pi\)
\(614\) 0 0
\(615\) −5435.53 −0.356393
\(616\) 0 0
\(617\) −29642.7 −1.93415 −0.967075 0.254493i \(-0.918091\pi\)
−0.967075 + 0.254493i \(0.918091\pi\)
\(618\) 0 0
\(619\) −7708.29 −0.500521 −0.250260 0.968179i \(-0.580516\pi\)
−0.250260 + 0.968179i \(0.580516\pi\)
\(620\) 0 0
\(621\) 17112.4 1.10579
\(622\) 0 0
\(623\) 8601.05 0.553120
\(624\) 0 0
\(625\) −16485.9 −1.05510
\(626\) 0 0
\(627\) −22573.0 −1.43776
\(628\) 0 0
\(629\) −2143.37 −0.135870
\(630\) 0 0
\(631\) 11781.1 0.743261 0.371631 0.928381i \(-0.378799\pi\)
0.371631 + 0.928381i \(0.378799\pi\)
\(632\) 0 0
\(633\) 16007.1 1.00509
\(634\) 0 0
\(635\) 6003.02 0.375154
\(636\) 0 0
\(637\) 2068.46 0.128659
\(638\) 0 0
\(639\) −1283.07 −0.0794326
\(640\) 0 0
\(641\) 5136.98 0.316534 0.158267 0.987396i \(-0.449409\pi\)
0.158267 + 0.987396i \(0.449409\pi\)
\(642\) 0 0
\(643\) 28455.1 1.74520 0.872598 0.488440i \(-0.162434\pi\)
0.872598 + 0.488440i \(0.162434\pi\)
\(644\) 0 0
\(645\) 33527.4 2.04673
\(646\) 0 0
\(647\) −2529.14 −0.153680 −0.0768398 0.997043i \(-0.524483\pi\)
−0.0768398 + 0.997043i \(0.524483\pi\)
\(648\) 0 0
\(649\) 26466.7 1.60078
\(650\) 0 0
\(651\) −10488.5 −0.631454
\(652\) 0 0
\(653\) −23415.6 −1.40325 −0.701625 0.712546i \(-0.747542\pi\)
−0.701625 + 0.712546i \(0.747542\pi\)
\(654\) 0 0
\(655\) −30938.0 −1.84557
\(656\) 0 0
\(657\) −5430.51 −0.322472
\(658\) 0 0
\(659\) 3586.47 0.212002 0.106001 0.994366i \(-0.466195\pi\)
0.106001 + 0.994366i \(0.466195\pi\)
\(660\) 0 0
\(661\) −2012.65 −0.118431 −0.0592155 0.998245i \(-0.518860\pi\)
−0.0592155 + 0.998245i \(0.518860\pi\)
\(662\) 0 0
\(663\) −9536.90 −0.558646
\(664\) 0 0
\(665\) −25781.0 −1.50337
\(666\) 0 0
\(667\) 14500.6 0.841778
\(668\) 0 0
\(669\) 17756.7 1.02618
\(670\) 0 0
\(671\) 6304.01 0.362688
\(672\) 0 0
\(673\) −6742.06 −0.386163 −0.193081 0.981183i \(-0.561848\pi\)
−0.193081 + 0.981183i \(0.561848\pi\)
\(674\) 0 0
\(675\) −13182.2 −0.751681
\(676\) 0 0
\(677\) 28466.9 1.61606 0.808030 0.589141i \(-0.200534\pi\)
0.808030 + 0.589141i \(0.200534\pi\)
\(678\) 0 0
\(679\) 5334.53 0.301503
\(680\) 0 0
\(681\) −6857.27 −0.385861
\(682\) 0 0
\(683\) −435.701 −0.0244094 −0.0122047 0.999926i \(-0.503885\pi\)
−0.0122047 + 0.999926i \(0.503885\pi\)
\(684\) 0 0
\(685\) −19590.2 −1.09270
\(686\) 0 0
\(687\) 17256.6 0.958341
\(688\) 0 0
\(689\) 9121.53 0.504358
\(690\) 0 0
\(691\) 9418.40 0.518513 0.259257 0.965808i \(-0.416522\pi\)
0.259257 + 0.965808i \(0.416522\pi\)
\(692\) 0 0
\(693\) −3425.80 −0.187785
\(694\) 0 0
\(695\) 37132.9 2.02666
\(696\) 0 0
\(697\) 7294.40 0.396406
\(698\) 0 0
\(699\) −33626.7 −1.81957
\(700\) 0 0
\(701\) −31304.2 −1.68665 −0.843325 0.537403i \(-0.819405\pi\)
−0.843325 + 0.537403i \(0.819405\pi\)
\(702\) 0 0
\(703\) −2112.19 −0.113318
\(704\) 0 0
\(705\) −7947.06 −0.424544
\(706\) 0 0
\(707\) −4341.18 −0.230929
\(708\) 0 0
\(709\) −14314.5 −0.758243 −0.379121 0.925347i \(-0.623774\pi\)
−0.379121 + 0.925347i \(0.623774\pi\)
\(710\) 0 0
\(711\) 8593.65 0.453287
\(712\) 0 0
\(713\) 19947.2 1.04772
\(714\) 0 0
\(715\) −6323.46 −0.330747
\(716\) 0 0
\(717\) −1069.53 −0.0557075
\(718\) 0 0
\(719\) −17747.3 −0.920531 −0.460265 0.887781i \(-0.652246\pi\)
−0.460265 + 0.887781i \(0.652246\pi\)
\(720\) 0 0
\(721\) 173.899 0.00898246
\(722\) 0 0
\(723\) 23173.8 1.19204
\(724\) 0 0
\(725\) −11170.3 −0.572214
\(726\) 0 0
\(727\) 17528.1 0.894195 0.447097 0.894485i \(-0.352458\pi\)
0.447097 + 0.894485i \(0.352458\pi\)
\(728\) 0 0
\(729\) 10779.4 0.547652
\(730\) 0 0
\(731\) −44993.3 −2.27652
\(732\) 0 0
\(733\) −26782.4 −1.34956 −0.674781 0.738018i \(-0.735762\pi\)
−0.674781 + 0.738018i \(0.735762\pi\)
\(734\) 0 0
\(735\) 14683.3 0.736872
\(736\) 0 0
\(737\) 1276.53 0.0638013
\(738\) 0 0
\(739\) 38218.8 1.90244 0.951219 0.308515i \(-0.0998321\pi\)
0.951219 + 0.308515i \(0.0998321\pi\)
\(740\) 0 0
\(741\) −9398.15 −0.465924
\(742\) 0 0
\(743\) −26630.3 −1.31490 −0.657450 0.753498i \(-0.728365\pi\)
−0.657450 + 0.753498i \(0.728365\pi\)
\(744\) 0 0
\(745\) 10290.5 0.506058
\(746\) 0 0
\(747\) −7610.15 −0.372746
\(748\) 0 0
\(749\) 13414.4 0.654408
\(750\) 0 0
\(751\) −14713.7 −0.714928 −0.357464 0.933927i \(-0.616359\pi\)
−0.357464 + 0.933927i \(0.616359\pi\)
\(752\) 0 0
\(753\) −34051.4 −1.64794
\(754\) 0 0
\(755\) −33326.0 −1.60643
\(756\) 0 0
\(757\) −23212.4 −1.11449 −0.557245 0.830348i \(-0.688141\pi\)
−0.557245 + 0.830348i \(0.688141\pi\)
\(758\) 0 0
\(759\) 28257.2 1.35134
\(760\) 0 0
\(761\) 23159.6 1.10320 0.551600 0.834109i \(-0.314018\pi\)
0.551600 + 0.834109i \(0.314018\pi\)
\(762\) 0 0
\(763\) 19488.0 0.924658
\(764\) 0 0
\(765\) −15609.3 −0.737720
\(766\) 0 0
\(767\) 11019.3 0.518751
\(768\) 0 0
\(769\) −25390.7 −1.19065 −0.595327 0.803483i \(-0.702978\pi\)
−0.595327 + 0.803483i \(0.702978\pi\)
\(770\) 0 0
\(771\) −25992.8 −1.21415
\(772\) 0 0
\(773\) −40500.2 −1.88446 −0.942232 0.334961i \(-0.891277\pi\)
−0.942232 + 0.334961i \(0.891277\pi\)
\(774\) 0 0
\(775\) −15366.0 −0.712211
\(776\) 0 0
\(777\) −1390.29 −0.0641908
\(778\) 0 0
\(779\) 7188.28 0.330612
\(780\) 0 0
\(781\) 4951.59 0.226865
\(782\) 0 0
\(783\) 10632.0 0.485256
\(784\) 0 0
\(785\) −4256.51 −0.193530
\(786\) 0 0
\(787\) 2207.54 0.0999875 0.0499937 0.998750i \(-0.484080\pi\)
0.0499937 + 0.998750i \(0.484080\pi\)
\(788\) 0 0
\(789\) −26142.6 −1.17960
\(790\) 0 0
\(791\) −22119.2 −0.994269
\(792\) 0 0
\(793\) 2624.64 0.117533
\(794\) 0 0
\(795\) 64750.5 2.88863
\(796\) 0 0
\(797\) 3762.68 0.167228 0.0836141 0.996498i \(-0.473354\pi\)
0.0836141 + 0.996498i \(0.473354\pi\)
\(798\) 0 0
\(799\) 10664.8 0.472209
\(800\) 0 0
\(801\) 5131.81 0.226372
\(802\) 0 0
\(803\) 20957.3 0.921004
\(804\) 0 0
\(805\) 32272.9 1.41301
\(806\) 0 0
\(807\) −34322.0 −1.49714
\(808\) 0 0
\(809\) −33126.0 −1.43961 −0.719806 0.694175i \(-0.755769\pi\)
−0.719806 + 0.694175i \(0.755769\pi\)
\(810\) 0 0
\(811\) 32188.4 1.39370 0.696849 0.717218i \(-0.254585\pi\)
0.696849 + 0.717218i \(0.254585\pi\)
\(812\) 0 0
\(813\) −48509.6 −2.09263
\(814\) 0 0
\(815\) −26936.9 −1.15774
\(816\) 0 0
\(817\) −44338.7 −1.89867
\(818\) 0 0
\(819\) −1426.31 −0.0608540
\(820\) 0 0
\(821\) −32238.4 −1.37044 −0.685218 0.728338i \(-0.740293\pi\)
−0.685218 + 0.728338i \(0.740293\pi\)
\(822\) 0 0
\(823\) 16481.8 0.698079 0.349040 0.937108i \(-0.386508\pi\)
0.349040 + 0.937108i \(0.386508\pi\)
\(824\) 0 0
\(825\) −21767.5 −0.918602
\(826\) 0 0
\(827\) −3735.08 −0.157052 −0.0785258 0.996912i \(-0.525021\pi\)
−0.0785258 + 0.996912i \(0.525021\pi\)
\(828\) 0 0
\(829\) −36792.9 −1.54146 −0.770729 0.637163i \(-0.780108\pi\)
−0.770729 + 0.637163i \(0.780108\pi\)
\(830\) 0 0
\(831\) −322.481 −0.0134618
\(832\) 0 0
\(833\) −19704.8 −0.819604
\(834\) 0 0
\(835\) 8224.42 0.340860
\(836\) 0 0
\(837\) 14625.4 0.603977
\(838\) 0 0
\(839\) 19594.5 0.806291 0.403145 0.915136i \(-0.367917\pi\)
0.403145 + 0.915136i \(0.367917\pi\)
\(840\) 0 0
\(841\) −15379.7 −0.630601
\(842\) 0 0
\(843\) −22757.7 −0.929794
\(844\) 0 0
\(845\) −2632.74 −0.107182
\(846\) 0 0
\(847\) −4828.28 −0.195870
\(848\) 0 0
\(849\) 47008.2 1.90025
\(850\) 0 0
\(851\) 2644.07 0.106507
\(852\) 0 0
\(853\) 44842.5 1.79997 0.899987 0.435917i \(-0.143576\pi\)
0.899987 + 0.435917i \(0.143576\pi\)
\(854\) 0 0
\(855\) −15382.2 −0.615275
\(856\) 0 0
\(857\) −14503.6 −0.578102 −0.289051 0.957314i \(-0.593340\pi\)
−0.289051 + 0.957314i \(0.593340\pi\)
\(858\) 0 0
\(859\) 15305.4 0.607932 0.303966 0.952683i \(-0.401689\pi\)
0.303966 + 0.952683i \(0.401689\pi\)
\(860\) 0 0
\(861\) 4731.47 0.187280
\(862\) 0 0
\(863\) −13818.6 −0.545066 −0.272533 0.962146i \(-0.587861\pi\)
−0.272533 + 0.962146i \(0.587861\pi\)
\(864\) 0 0
\(865\) 66478.4 2.61310
\(866\) 0 0
\(867\) 61747.8 2.41876
\(868\) 0 0
\(869\) −33164.4 −1.29462
\(870\) 0 0
\(871\) 531.476 0.0206755
\(872\) 0 0
\(873\) 3182.84 0.123394
\(874\) 0 0
\(875\) 1545.31 0.0597039
\(876\) 0 0
\(877\) 6929.88 0.266825 0.133413 0.991061i \(-0.457406\pi\)
0.133413 + 0.991061i \(0.457406\pi\)
\(878\) 0 0
\(879\) 46067.9 1.76773
\(880\) 0 0
\(881\) 49020.5 1.87462 0.937312 0.348491i \(-0.113306\pi\)
0.937312 + 0.348491i \(0.113306\pi\)
\(882\) 0 0
\(883\) −10612.9 −0.404474 −0.202237 0.979337i \(-0.564821\pi\)
−0.202237 + 0.979337i \(0.564821\pi\)
\(884\) 0 0
\(885\) 78221.7 2.97107
\(886\) 0 0
\(887\) 9294.89 0.351851 0.175926 0.984403i \(-0.443708\pi\)
0.175926 + 0.984403i \(0.443708\pi\)
\(888\) 0 0
\(889\) −5225.46 −0.197139
\(890\) 0 0
\(891\) 27539.4 1.03547
\(892\) 0 0
\(893\) 10509.7 0.393833
\(894\) 0 0
\(895\) 41140.6 1.53651
\(896\) 0 0
\(897\) 11764.7 0.437918
\(898\) 0 0
\(899\) 12393.2 0.459775
\(900\) 0 0
\(901\) −86894.3 −3.21295
\(902\) 0 0
\(903\) −29184.6 −1.07553
\(904\) 0 0
\(905\) −17574.5 −0.645522
\(906\) 0 0
\(907\) −39128.3 −1.43245 −0.716226 0.697868i \(-0.754132\pi\)
−0.716226 + 0.697868i \(0.754132\pi\)
\(908\) 0 0
\(909\) −2590.16 −0.0945108
\(910\) 0 0
\(911\) −2556.70 −0.0929828 −0.0464914 0.998919i \(-0.514804\pi\)
−0.0464914 + 0.998919i \(0.514804\pi\)
\(912\) 0 0
\(913\) 29368.9 1.06459
\(914\) 0 0
\(915\) 18631.4 0.673152
\(916\) 0 0
\(917\) 26930.7 0.969824
\(918\) 0 0
\(919\) −5774.65 −0.207278 −0.103639 0.994615i \(-0.533049\pi\)
−0.103639 + 0.994615i \(0.533049\pi\)
\(920\) 0 0
\(921\) −19299.8 −0.690501
\(922\) 0 0
\(923\) 2061.57 0.0735183
\(924\) 0 0
\(925\) −2036.82 −0.0724002
\(926\) 0 0
\(927\) 103.757 0.00367619
\(928\) 0 0
\(929\) −21935.8 −0.774694 −0.387347 0.921934i \(-0.626608\pi\)
−0.387347 + 0.921934i \(0.626608\pi\)
\(930\) 0 0
\(931\) −19418.1 −0.683568
\(932\) 0 0
\(933\) −30265.2 −1.06199
\(934\) 0 0
\(935\) 60239.1 2.10698
\(936\) 0 0
\(937\) 16455.4 0.573718 0.286859 0.957973i \(-0.407389\pi\)
0.286859 + 0.957973i \(0.407389\pi\)
\(938\) 0 0
\(939\) 4548.23 0.158068
\(940\) 0 0
\(941\) −37160.8 −1.28736 −0.643681 0.765294i \(-0.722594\pi\)
−0.643681 + 0.765294i \(0.722594\pi\)
\(942\) 0 0
\(943\) −8998.38 −0.310740
\(944\) 0 0
\(945\) 23662.8 0.814551
\(946\) 0 0
\(947\) −39560.5 −1.35749 −0.678746 0.734373i \(-0.737476\pi\)
−0.678746 + 0.734373i \(0.737476\pi\)
\(948\) 0 0
\(949\) 8725.46 0.298462
\(950\) 0 0
\(951\) 28522.0 0.972544
\(952\) 0 0
\(953\) −16999.1 −0.577813 −0.288907 0.957357i \(-0.593292\pi\)
−0.288907 + 0.957357i \(0.593292\pi\)
\(954\) 0 0
\(955\) −58710.2 −1.98934
\(956\) 0 0
\(957\) 17556.3 0.593013
\(958\) 0 0
\(959\) 17052.7 0.574202
\(960\) 0 0
\(961\) −12742.7 −0.427737
\(962\) 0 0
\(963\) 8003.70 0.267825
\(964\) 0 0
\(965\) 8167.23 0.272448
\(966\) 0 0
\(967\) −38502.5 −1.28041 −0.640206 0.768204i \(-0.721151\pi\)
−0.640206 + 0.768204i \(0.721151\pi\)
\(968\) 0 0
\(969\) 89529.4 2.96811
\(970\) 0 0
\(971\) 12104.1 0.400041 0.200020 0.979792i \(-0.435899\pi\)
0.200020 + 0.979792i \(0.435899\pi\)
\(972\) 0 0
\(973\) −32323.1 −1.06499
\(974\) 0 0
\(975\) −9062.78 −0.297683
\(976\) 0 0
\(977\) −24134.7 −0.790315 −0.395157 0.918613i \(-0.629310\pi\)
−0.395157 + 0.918613i \(0.629310\pi\)
\(978\) 0 0
\(979\) −19804.6 −0.646534
\(980\) 0 0
\(981\) 11627.5 0.378429
\(982\) 0 0
\(983\) −16208.1 −0.525897 −0.262949 0.964810i \(-0.584695\pi\)
−0.262949 + 0.964810i \(0.584695\pi\)
\(984\) 0 0
\(985\) −18248.7 −0.590305
\(986\) 0 0
\(987\) 6917.69 0.223093
\(988\) 0 0
\(989\) 55503.8 1.78455
\(990\) 0 0
\(991\) −7719.43 −0.247443 −0.123721 0.992317i \(-0.539483\pi\)
−0.123721 + 0.992317i \(0.539483\pi\)
\(992\) 0 0
\(993\) 22901.7 0.731886
\(994\) 0 0
\(995\) 32518.1 1.03607
\(996\) 0 0
\(997\) −791.172 −0.0251321 −0.0125660 0.999921i \(-0.504000\pi\)
−0.0125660 + 0.999921i \(0.504000\pi\)
\(998\) 0 0
\(999\) 1938.65 0.0613977
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 832.4.a.bh.1.5 6
4.3 odd 2 inner 832.4.a.bh.1.2 6
8.3 odd 2 416.4.a.k.1.5 yes 6
8.5 even 2 416.4.a.k.1.2 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
416.4.a.k.1.2 6 8.5 even 2
416.4.a.k.1.5 yes 6 8.3 odd 2
832.4.a.bh.1.2 6 4.3 odd 2 inner
832.4.a.bh.1.5 6 1.1 even 1 trivial