Properties

Label 832.4.a.bh
Level $832$
Weight $4$
Character orbit 832.a
Self dual yes
Analytic conductor $49.090$
Analytic rank $1$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [832,4,Mod(1,832)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("832.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(832, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 832 = 2^{6} \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 832.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,0,0,-16,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(49.0895891248\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 110x^{4} + 2925x^{2} - 10400 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{7} \)
Twist minimal: no (minimal twist has level 416)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{3} + (\beta_{5} - 3) q^{5} + ( - \beta_{4} - 2 \beta_1) q^{7} + ( - \beta_{5} + \beta_{3} + 10) q^{9} + (\beta_{4} + \beta_{2} + 3 \beta_1) q^{11} - 13 q^{13} + (2 \beta_{4} - 7 \beta_1) q^{15}+ \cdots + (15 \beta_{4} + 38 \beta_{2} + 173 \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 16 q^{5} + 58 q^{9} - 78 q^{13} + 8 q^{17} - 340 q^{21} + 126 q^{25} - 252 q^{29} + 640 q^{33} - 888 q^{37} + 652 q^{41} - 1308 q^{45} + 642 q^{49} - 1780 q^{53} - 360 q^{57} - 2500 q^{61} + 208 q^{65}+ \cdots - 3180 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - 110x^{4} + 2925x^{2} - 10400 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} - 55\nu ) / 5 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{4} - 35\nu^{2} - 800 ) / 55 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( \nu^{5} - 90\nu^{3} + 1455\nu ) / 110 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( \nu^{4} - 90\nu^{2} + 1235 ) / 55 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( -\beta_{5} + \beta_{3} + 37 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 5\beta_{2} + 55\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( -35\beta_{5} + 90\beta_{3} + 2095 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 110\beta_{4} + 450\beta_{2} + 3495\beta_1 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−8.40941
−5.92375
−2.04717
2.04717
5.92375
8.40941
0 −8.40941 0 −5.33769 0 23.8083 0 43.7182 0
1.2 0 −5.92375 0 −15.5783 0 −13.5605 0 8.09087 0
1.3 0 −2.04717 0 12.9160 0 24.4801 0 −22.8091 0
1.4 0 2.04717 0 12.9160 0 −24.4801 0 −22.8091 0
1.5 0 5.92375 0 −15.5783 0 13.5605 0 8.09087 0
1.6 0 8.40941 0 −5.33769 0 −23.8083 0 43.7182 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(13\) \( +1 \)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 832.4.a.bh 6
4.b odd 2 1 inner 832.4.a.bh 6
8.b even 2 1 416.4.a.k 6
8.d odd 2 1 416.4.a.k 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
416.4.a.k 6 8.b even 2 1
416.4.a.k 6 8.d odd 2 1
832.4.a.bh 6 1.a even 1 1 trivial
832.4.a.bh 6 4.b odd 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(832))\):

\( T_{3}^{6} - 110T_{3}^{4} + 2925T_{3}^{2} - 10400 \) Copy content Toggle raw display
\( T_{5}^{3} + 8T_{5}^{2} - 187T_{5} - 1074 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} \) Copy content Toggle raw display
$3$ \( T^{6} - 110 T^{4} + \cdots - 10400 \) Copy content Toggle raw display
$5$ \( (T^{3} + 8 T^{2} + \cdots - 1074)^{2} \) Copy content Toggle raw display
$7$ \( T^{6} - 1350 T^{4} + \cdots - 62465000 \) Copy content Toggle raw display
$11$ \( T^{6} - 4448 T^{4} + \cdots - 109905536 \) Copy content Toggle raw display
$13$ \( (T + 13)^{6} \) Copy content Toggle raw display
$17$ \( (T^{3} - 4 T^{2} + \cdots - 123642)^{2} \) Copy content Toggle raw display
$19$ \( T^{6} + \cdots - 6623929143936 \) Copy content Toggle raw display
$23$ \( T^{6} + \cdots - 11447832674304 \) Copy content Toggle raw display
$29$ \( (T^{3} + 126 T^{2} + \cdots - 6999032)^{2} \) Copy content Toggle raw display
$31$ \( T^{6} + \cdots - 145782374400 \) Copy content Toggle raw display
$37$ \( (T^{3} + 444 T^{2} + \cdots + 729542)^{2} \) Copy content Toggle raw display
$41$ \( (T^{3} - 326 T^{2} + \cdots + 1436032)^{2} \) Copy content Toggle raw display
$43$ \( T^{6} + \cdots - 102336053354496 \) Copy content Toggle raw display
$47$ \( T^{6} + \cdots - 40725552143016 \) Copy content Toggle raw display
$53$ \( (T^{3} + 890 T^{2} + \cdots - 17311680)^{2} \) Copy content Toggle raw display
$59$ \( T^{6} + \cdots - 10\!\cdots\!36 \) Copy content Toggle raw display
$61$ \( (T^{3} + 1250 T^{2} + \cdots + 42323840)^{2} \) Copy content Toggle raw display
$67$ \( T^{6} + \cdots - 115567712614016 \) Copy content Toggle raw display
$71$ \( T^{6} + \cdots - 28\!\cdots\!84 \) Copy content Toggle raw display
$73$ \( (T^{3} - 458 T^{2} + \cdots + 184823784)^{2} \) Copy content Toggle raw display
$79$ \( T^{6} + \cdots - 23\!\cdots\!00 \) Copy content Toggle raw display
$83$ \( T^{6} + \cdots - 17\!\cdots\!96 \) Copy content Toggle raw display
$89$ \( (T^{3} + 410 T^{2} + \cdots - 170348040)^{2} \) Copy content Toggle raw display
$97$ \( (T^{3} + 1590 T^{2} + \cdots - 236023960)^{2} \) Copy content Toggle raw display
show more
show less