Properties

Label 8281.2.a.cs.1.4
Level $8281$
Weight $2$
Character 8281.1
Self dual yes
Analytic conductor $66.124$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8281,2,Mod(1,8281)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8281, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8281.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 8281 = 7^{2} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8281.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,20,0,0,0,0,16,0,0,0,0,0,0,28,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(66.1241179138\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 42x^{14} + 641x^{12} - 4448x^{10} + 14076x^{8} - 17900x^{6} + 6960x^{4} - 416x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{5} \)
Twist minimal: no (minimal twist has level 637)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-3.06973\) of defining polynomial
Character \(\chi\) \(=\) 8281.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.65552 q^{2} +0.494977 q^{3} +0.740740 q^{4} -2.87389 q^{5} -0.819443 q^{6} +2.08473 q^{8} -2.75500 q^{9} +4.75778 q^{10} -2.58138 q^{11} +0.366649 q^{12} -1.42251 q^{15} -4.93278 q^{16} +2.27584 q^{17} +4.56095 q^{18} -4.39571 q^{19} -2.12881 q^{20} +4.27352 q^{22} -7.16926 q^{23} +1.03189 q^{24} +3.25926 q^{25} -2.84859 q^{27} +6.19574 q^{29} +2.35499 q^{30} -6.85404 q^{31} +3.99686 q^{32} -1.27772 q^{33} -3.76769 q^{34} -2.04074 q^{36} -5.89241 q^{37} +7.27717 q^{38} -5.99128 q^{40} -3.98014 q^{41} -1.31425 q^{43} -1.91213 q^{44} +7.91757 q^{45} +11.8688 q^{46} +1.35208 q^{47} -2.44161 q^{48} -5.39576 q^{50} +1.12649 q^{51} -8.28778 q^{53} +4.71589 q^{54} +7.41860 q^{55} -2.17577 q^{57} -10.2572 q^{58} -9.61085 q^{59} -1.05371 q^{60} +9.55301 q^{61} +11.3470 q^{62} +3.24870 q^{64} +2.11529 q^{66} -15.9095 q^{67} +1.68581 q^{68} -3.54862 q^{69} -4.79396 q^{71} -5.74342 q^{72} +5.70507 q^{73} +9.75500 q^{74} +1.61326 q^{75} -3.25607 q^{76} -2.01426 q^{79} +14.1763 q^{80} +6.85501 q^{81} +6.58920 q^{82} +3.11798 q^{83} -6.54052 q^{85} +2.17577 q^{86} +3.06675 q^{87} -5.38147 q^{88} -13.0584 q^{89} -13.1077 q^{90} -5.31056 q^{92} -3.39259 q^{93} -2.23839 q^{94} +12.6328 q^{95} +1.97835 q^{96} -14.0382 q^{97} +7.11169 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 20 q^{4} + 16 q^{9} + 28 q^{16} - 8 q^{22} + 36 q^{23} + 44 q^{25} + 36 q^{29} - 52 q^{36} + 36 q^{43} + 72 q^{51} + 12 q^{53} + 164 q^{64} + 96 q^{74} + 36 q^{79} + 16 q^{81} - 136 q^{88} + 24 q^{92}+ \cdots + 84 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.65552 −1.17063 −0.585314 0.810807i \(-0.699029\pi\)
−0.585314 + 0.810807i \(0.699029\pi\)
\(3\) 0.494977 0.285775 0.142888 0.989739i \(-0.454361\pi\)
0.142888 + 0.989739i \(0.454361\pi\)
\(4\) 0.740740 0.370370
\(5\) −2.87389 −1.28524 −0.642622 0.766183i \(-0.722153\pi\)
−0.642622 + 0.766183i \(0.722153\pi\)
\(6\) −0.819443 −0.334536
\(7\) 0 0
\(8\) 2.08473 0.737063
\(9\) −2.75500 −0.918333
\(10\) 4.75778 1.50454
\(11\) −2.58138 −0.778315 −0.389157 0.921171i \(-0.627234\pi\)
−0.389157 + 0.921171i \(0.627234\pi\)
\(12\) 0.366649 0.105842
\(13\) 0 0
\(14\) 0 0
\(15\) −1.42251 −0.367291
\(16\) −4.93278 −1.23320
\(17\) 2.27584 0.551972 0.275986 0.961162i \(-0.410996\pi\)
0.275986 + 0.961162i \(0.410996\pi\)
\(18\) 4.56095 1.07503
\(19\) −4.39571 −1.00844 −0.504222 0.863574i \(-0.668221\pi\)
−0.504222 + 0.863574i \(0.668221\pi\)
\(20\) −2.12881 −0.476016
\(21\) 0 0
\(22\) 4.27352 0.911117
\(23\) −7.16926 −1.49489 −0.747447 0.664321i \(-0.768721\pi\)
−0.747447 + 0.664321i \(0.768721\pi\)
\(24\) 1.03189 0.210634
\(25\) 3.25926 0.651852
\(26\) 0 0
\(27\) −2.84859 −0.548212
\(28\) 0 0
\(29\) 6.19574 1.15052 0.575260 0.817971i \(-0.304901\pi\)
0.575260 + 0.817971i \(0.304901\pi\)
\(30\) 2.35499 0.429961
\(31\) −6.85404 −1.23102 −0.615511 0.788129i \(-0.711050\pi\)
−0.615511 + 0.788129i \(0.711050\pi\)
\(32\) 3.99686 0.706551
\(33\) −1.27772 −0.222423
\(34\) −3.76769 −0.646154
\(35\) 0 0
\(36\) −2.04074 −0.340123
\(37\) −5.89241 −0.968707 −0.484353 0.874872i \(-0.660945\pi\)
−0.484353 + 0.874872i \(0.660945\pi\)
\(38\) 7.27717 1.18051
\(39\) 0 0
\(40\) −5.99128 −0.947305
\(41\) −3.98014 −0.621594 −0.310797 0.950476i \(-0.600596\pi\)
−0.310797 + 0.950476i \(0.600596\pi\)
\(42\) 0 0
\(43\) −1.31425 −0.200422 −0.100211 0.994966i \(-0.531952\pi\)
−0.100211 + 0.994966i \(0.531952\pi\)
\(44\) −1.91213 −0.288264
\(45\) 7.91757 1.18028
\(46\) 11.8688 1.74997
\(47\) 1.35208 0.197221 0.0986106 0.995126i \(-0.468560\pi\)
0.0986106 + 0.995126i \(0.468560\pi\)
\(48\) −2.44161 −0.352417
\(49\) 0 0
\(50\) −5.39576 −0.763076
\(51\) 1.12649 0.157740
\(52\) 0 0
\(53\) −8.28778 −1.13841 −0.569207 0.822194i \(-0.692750\pi\)
−0.569207 + 0.822194i \(0.692750\pi\)
\(54\) 4.71589 0.641752
\(55\) 7.41860 1.00032
\(56\) 0 0
\(57\) −2.17577 −0.288188
\(58\) −10.2572 −1.34683
\(59\) −9.61085 −1.25123 −0.625613 0.780133i \(-0.715151\pi\)
−0.625613 + 0.780133i \(0.715151\pi\)
\(60\) −1.05371 −0.136033
\(61\) 9.55301 1.22314 0.611569 0.791191i \(-0.290539\pi\)
0.611569 + 0.791191i \(0.290539\pi\)
\(62\) 11.3470 1.44107
\(63\) 0 0
\(64\) 3.24870 0.406087
\(65\) 0 0
\(66\) 2.11529 0.260375
\(67\) −15.9095 −1.94366 −0.971830 0.235685i \(-0.924267\pi\)
−0.971830 + 0.235685i \(0.924267\pi\)
\(68\) 1.68581 0.204434
\(69\) −3.54862 −0.427204
\(70\) 0 0
\(71\) −4.79396 −0.568938 −0.284469 0.958685i \(-0.591817\pi\)
−0.284469 + 0.958685i \(0.591817\pi\)
\(72\) −5.74342 −0.676869
\(73\) 5.70507 0.667728 0.333864 0.942621i \(-0.391647\pi\)
0.333864 + 0.942621i \(0.391647\pi\)
\(74\) 9.75500 1.13400
\(75\) 1.61326 0.186283
\(76\) −3.25607 −0.373497
\(77\) 0 0
\(78\) 0 0
\(79\) −2.01426 −0.226622 −0.113311 0.993560i \(-0.536146\pi\)
−0.113311 + 0.993560i \(0.536146\pi\)
\(80\) 14.1763 1.58496
\(81\) 6.85501 0.761667
\(82\) 6.58920 0.727655
\(83\) 3.11798 0.342243 0.171122 0.985250i \(-0.445261\pi\)
0.171122 + 0.985250i \(0.445261\pi\)
\(84\) 0 0
\(85\) −6.54052 −0.709419
\(86\) 2.17577 0.234620
\(87\) 3.06675 0.328790
\(88\) −5.38147 −0.573667
\(89\) −13.0584 −1.38418 −0.692092 0.721810i \(-0.743311\pi\)
−0.692092 + 0.721810i \(0.743311\pi\)
\(90\) −13.1077 −1.38167
\(91\) 0 0
\(92\) −5.31056 −0.553664
\(93\) −3.39259 −0.351795
\(94\) −2.23839 −0.230873
\(95\) 12.6328 1.29610
\(96\) 1.97835 0.201915
\(97\) −14.0382 −1.42536 −0.712682 0.701488i \(-0.752520\pi\)
−0.712682 + 0.701488i \(0.752520\pi\)
\(98\) 0 0
\(99\) 7.11169 0.714752
\(100\) 2.41426 0.241426
\(101\) −17.4483 −1.73617 −0.868083 0.496419i \(-0.834648\pi\)
−0.868083 + 0.496419i \(0.834648\pi\)
\(102\) −1.86492 −0.184655
\(103\) −6.55698 −0.646078 −0.323039 0.946386i \(-0.604705\pi\)
−0.323039 + 0.946386i \(0.604705\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 13.7206 1.33266
\(107\) 15.6020 1.50831 0.754153 0.656699i \(-0.228048\pi\)
0.754153 + 0.656699i \(0.228048\pi\)
\(108\) −2.11006 −0.203041
\(109\) 10.0171 0.959466 0.479733 0.877414i \(-0.340733\pi\)
0.479733 + 0.877414i \(0.340733\pi\)
\(110\) −12.2816 −1.17101
\(111\) −2.91661 −0.276832
\(112\) 0 0
\(113\) −3.95074 −0.371654 −0.185827 0.982582i \(-0.559496\pi\)
−0.185827 + 0.982582i \(0.559496\pi\)
\(114\) 3.60203 0.337361
\(115\) 20.6037 1.92130
\(116\) 4.58943 0.426118
\(117\) 0 0
\(118\) 15.9109 1.46472
\(119\) 0 0
\(120\) −2.96555 −0.270716
\(121\) −4.33649 −0.394226
\(122\) −15.8152 −1.43184
\(123\) −1.97008 −0.177636
\(124\) −5.07706 −0.455933
\(125\) 5.00270 0.447455
\(126\) 0 0
\(127\) 2.37353 0.210616 0.105308 0.994440i \(-0.466417\pi\)
0.105308 + 0.994440i \(0.466417\pi\)
\(128\) −13.3720 −1.18193
\(129\) −0.650526 −0.0572756
\(130\) 0 0
\(131\) 2.13546 0.186576 0.0932878 0.995639i \(-0.470262\pi\)
0.0932878 + 0.995639i \(0.470262\pi\)
\(132\) −0.946460 −0.0823788
\(133\) 0 0
\(134\) 26.3385 2.27530
\(135\) 8.18655 0.704586
\(136\) 4.74451 0.406838
\(137\) −0.429210 −0.0366699 −0.0183349 0.999832i \(-0.505837\pi\)
−0.0183349 + 0.999832i \(0.505837\pi\)
\(138\) 5.87480 0.500096
\(139\) −19.4858 −1.65276 −0.826381 0.563112i \(-0.809604\pi\)
−0.826381 + 0.563112i \(0.809604\pi\)
\(140\) 0 0
\(141\) 0.669248 0.0563609
\(142\) 7.93648 0.666015
\(143\) 0 0
\(144\) 13.5898 1.13248
\(145\) −17.8059 −1.47870
\(146\) −9.44485 −0.781661
\(147\) 0 0
\(148\) −4.36475 −0.358780
\(149\) −22.9004 −1.87607 −0.938037 0.346534i \(-0.887358\pi\)
−0.938037 + 0.346534i \(0.887358\pi\)
\(150\) −2.67078 −0.218068
\(151\) −11.2207 −0.913131 −0.456565 0.889690i \(-0.650921\pi\)
−0.456565 + 0.889690i \(0.650921\pi\)
\(152\) −9.16385 −0.743286
\(153\) −6.26993 −0.506894
\(154\) 0 0
\(155\) 19.6978 1.58216
\(156\) 0 0
\(157\) −3.78799 −0.302315 −0.151157 0.988510i \(-0.548300\pi\)
−0.151157 + 0.988510i \(0.548300\pi\)
\(158\) 3.33464 0.265290
\(159\) −4.10226 −0.325330
\(160\) −11.4865 −0.908091
\(161\) 0 0
\(162\) −11.3486 −0.891629
\(163\) 19.6130 1.53621 0.768103 0.640326i \(-0.221201\pi\)
0.768103 + 0.640326i \(0.221201\pi\)
\(164\) −2.94825 −0.230220
\(165\) 3.67204 0.285868
\(166\) −5.16188 −0.400639
\(167\) −10.2922 −0.796435 −0.398217 0.917291i \(-0.630371\pi\)
−0.398217 + 0.917291i \(0.630371\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 10.8279 0.830466
\(171\) 12.1102 0.926087
\(172\) −0.973521 −0.0742303
\(173\) 6.00439 0.456505 0.228253 0.973602i \(-0.426699\pi\)
0.228253 + 0.973602i \(0.426699\pi\)
\(174\) −5.07706 −0.384891
\(175\) 0 0
\(176\) 12.7334 0.959815
\(177\) −4.75715 −0.357569
\(178\) 21.6184 1.62036
\(179\) −7.75130 −0.579359 −0.289680 0.957124i \(-0.593549\pi\)
−0.289680 + 0.957124i \(0.593549\pi\)
\(180\) 5.86486 0.437141
\(181\) −19.9999 −1.48658 −0.743289 0.668970i \(-0.766735\pi\)
−0.743289 + 0.668970i \(0.766735\pi\)
\(182\) 0 0
\(183\) 4.72852 0.349542
\(184\) −14.9460 −1.10183
\(185\) 16.9342 1.24502
\(186\) 5.61649 0.411821
\(187\) −5.87480 −0.429608
\(188\) 1.00154 0.0730448
\(189\) 0 0
\(190\) −20.9138 −1.51725
\(191\) 20.4835 1.48214 0.741068 0.671430i \(-0.234320\pi\)
0.741068 + 0.671430i \(0.234320\pi\)
\(192\) 1.60803 0.116050
\(193\) −12.4329 −0.894942 −0.447471 0.894298i \(-0.647675\pi\)
−0.447471 + 0.894298i \(0.647675\pi\)
\(194\) 23.2405 1.66857
\(195\) 0 0
\(196\) 0 0
\(197\) −18.9805 −1.35231 −0.676154 0.736761i \(-0.736354\pi\)
−0.676154 + 0.736761i \(0.736354\pi\)
\(198\) −11.7735 −0.836709
\(199\) 12.8188 0.908701 0.454350 0.890823i \(-0.349871\pi\)
0.454350 + 0.890823i \(0.349871\pi\)
\(200\) 6.79467 0.480456
\(201\) −7.87485 −0.555449
\(202\) 28.8859 2.03241
\(203\) 0 0
\(204\) 0.834435 0.0584221
\(205\) 11.4385 0.798900
\(206\) 10.8552 0.756317
\(207\) 19.7513 1.37281
\(208\) 0 0
\(209\) 11.3470 0.784887
\(210\) 0 0
\(211\) −7.86926 −0.541743 −0.270871 0.962616i \(-0.587312\pi\)
−0.270871 + 0.962616i \(0.587312\pi\)
\(212\) −6.13909 −0.421634
\(213\) −2.37290 −0.162588
\(214\) −25.8294 −1.76566
\(215\) 3.77703 0.257591
\(216\) −5.93854 −0.404066
\(217\) 0 0
\(218\) −16.5835 −1.12318
\(219\) 2.82388 0.190820
\(220\) 5.49526 0.370490
\(221\) 0 0
\(222\) 4.82850 0.324068
\(223\) −7.77059 −0.520357 −0.260179 0.965560i \(-0.583781\pi\)
−0.260179 + 0.965560i \(0.583781\pi\)
\(224\) 0 0
\(225\) −8.97925 −0.598617
\(226\) 6.54052 0.435069
\(227\) 25.5431 1.69536 0.847678 0.530511i \(-0.178000\pi\)
0.847678 + 0.530511i \(0.178000\pi\)
\(228\) −1.61168 −0.106736
\(229\) −12.8986 −0.852362 −0.426181 0.904638i \(-0.640141\pi\)
−0.426181 + 0.904638i \(0.640141\pi\)
\(230\) −34.1098 −2.24913
\(231\) 0 0
\(232\) 12.9164 0.848005
\(233\) 8.14278 0.533451 0.266726 0.963772i \(-0.414058\pi\)
0.266726 + 0.963772i \(0.414058\pi\)
\(234\) 0 0
\(235\) −3.88573 −0.253477
\(236\) −7.11914 −0.463417
\(237\) −0.997011 −0.0647628
\(238\) 0 0
\(239\) 23.8122 1.54028 0.770140 0.637875i \(-0.220186\pi\)
0.770140 + 0.637875i \(0.220186\pi\)
\(240\) 7.01694 0.452941
\(241\) 0.288546 0.0185869 0.00929346 0.999957i \(-0.497042\pi\)
0.00929346 + 0.999957i \(0.497042\pi\)
\(242\) 7.17913 0.461492
\(243\) 11.9388 0.765877
\(244\) 7.07630 0.453013
\(245\) 0 0
\(246\) 3.26150 0.207946
\(247\) 0 0
\(248\) −14.2888 −0.907340
\(249\) 1.54333 0.0978045
\(250\) −8.28206 −0.523803
\(251\) −7.61843 −0.480871 −0.240435 0.970665i \(-0.577290\pi\)
−0.240435 + 0.970665i \(0.577290\pi\)
\(252\) 0 0
\(253\) 18.5066 1.16350
\(254\) −3.92942 −0.246554
\(255\) −3.23741 −0.202734
\(256\) 15.6402 0.977511
\(257\) −11.6560 −0.727082 −0.363541 0.931578i \(-0.618432\pi\)
−0.363541 + 0.931578i \(0.618432\pi\)
\(258\) 1.07696 0.0670484
\(259\) 0 0
\(260\) 0 0
\(261\) −17.0693 −1.05656
\(262\) −3.53529 −0.218411
\(263\) −13.5528 −0.835700 −0.417850 0.908516i \(-0.637216\pi\)
−0.417850 + 0.908516i \(0.637216\pi\)
\(264\) −2.66370 −0.163940
\(265\) 23.8182 1.46314
\(266\) 0 0
\(267\) −6.46359 −0.395565
\(268\) −11.7848 −0.719873
\(269\) −17.8332 −1.08731 −0.543656 0.839308i \(-0.682960\pi\)
−0.543656 + 0.839308i \(0.682960\pi\)
\(270\) −13.5530 −0.824808
\(271\) −30.3743 −1.84511 −0.922555 0.385866i \(-0.873903\pi\)
−0.922555 + 0.385866i \(0.873903\pi\)
\(272\) −11.2262 −0.680690
\(273\) 0 0
\(274\) 0.710564 0.0429268
\(275\) −8.41338 −0.507346
\(276\) −2.62860 −0.158223
\(277\) 5.21425 0.313294 0.156647 0.987655i \(-0.449932\pi\)
0.156647 + 0.987655i \(0.449932\pi\)
\(278\) 32.2591 1.93477
\(279\) 18.8829 1.13049
\(280\) 0 0
\(281\) 1.66255 0.0991794 0.0495897 0.998770i \(-0.484209\pi\)
0.0495897 + 0.998770i \(0.484209\pi\)
\(282\) −1.10795 −0.0659776
\(283\) −13.7957 −0.820066 −0.410033 0.912071i \(-0.634483\pi\)
−0.410033 + 0.912071i \(0.634483\pi\)
\(284\) −3.55107 −0.210718
\(285\) 6.25294 0.370392
\(286\) 0 0
\(287\) 0 0
\(288\) −11.0113 −0.648849
\(289\) −11.8206 −0.695327
\(290\) 29.4780 1.73101
\(291\) −6.94859 −0.407333
\(292\) 4.22597 0.247306
\(293\) −12.8576 −0.751149 −0.375574 0.926792i \(-0.622555\pi\)
−0.375574 + 0.926792i \(0.622555\pi\)
\(294\) 0 0
\(295\) 27.6206 1.60813
\(296\) −12.2841 −0.713998
\(297\) 7.35329 0.426681
\(298\) 37.9120 2.19619
\(299\) 0 0
\(300\) 1.19500 0.0689936
\(301\) 0 0
\(302\) 18.5761 1.06894
\(303\) −8.63648 −0.496153
\(304\) 21.6831 1.24361
\(305\) −27.4543 −1.57203
\(306\) 10.3800 0.593384
\(307\) 20.9016 1.19292 0.596458 0.802644i \(-0.296574\pi\)
0.596458 + 0.802644i \(0.296574\pi\)
\(308\) 0 0
\(309\) −3.24555 −0.184633
\(310\) −32.6100 −1.85212
\(311\) 17.1392 0.971876 0.485938 0.873993i \(-0.338478\pi\)
0.485938 + 0.873993i \(0.338478\pi\)
\(312\) 0 0
\(313\) −2.55266 −0.144285 −0.0721424 0.997394i \(-0.522984\pi\)
−0.0721424 + 0.997394i \(0.522984\pi\)
\(314\) 6.27109 0.353898
\(315\) 0 0
\(316\) −1.49204 −0.0839339
\(317\) 27.2888 1.53269 0.766345 0.642430i \(-0.222073\pi\)
0.766345 + 0.642430i \(0.222073\pi\)
\(318\) 6.79136 0.380841
\(319\) −15.9936 −0.895467
\(320\) −9.33641 −0.521921
\(321\) 7.72264 0.431036
\(322\) 0 0
\(323\) −10.0039 −0.556633
\(324\) 5.07778 0.282099
\(325\) 0 0
\(326\) −32.4696 −1.79833
\(327\) 4.95824 0.274192
\(328\) −8.29751 −0.458154
\(329\) 0 0
\(330\) −6.07912 −0.334645
\(331\) −9.69307 −0.532779 −0.266390 0.963865i \(-0.585831\pi\)
−0.266390 + 0.963865i \(0.585831\pi\)
\(332\) 2.30961 0.126757
\(333\) 16.2336 0.889595
\(334\) 17.0389 0.932329
\(335\) 45.7223 2.49808
\(336\) 0 0
\(337\) −6.31370 −0.343929 −0.171965 0.985103i \(-0.555012\pi\)
−0.171965 + 0.985103i \(0.555012\pi\)
\(338\) 0 0
\(339\) −1.95552 −0.106210
\(340\) −4.84482 −0.262747
\(341\) 17.6929 0.958122
\(342\) −20.0486 −1.08410
\(343\) 0 0
\(344\) −2.73986 −0.147724
\(345\) 10.1984 0.549061
\(346\) −9.94038 −0.534398
\(347\) 29.1200 1.56324 0.781622 0.623753i \(-0.214393\pi\)
0.781622 + 0.623753i \(0.214393\pi\)
\(348\) 2.27166 0.121774
\(349\) −20.3297 −1.08822 −0.544112 0.839013i \(-0.683133\pi\)
−0.544112 + 0.839013i \(0.683133\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −10.3174 −0.549919
\(353\) 14.1980 0.755683 0.377841 0.925870i \(-0.376666\pi\)
0.377841 + 0.925870i \(0.376666\pi\)
\(354\) 7.87555 0.418581
\(355\) 13.7773 0.731224
\(356\) −9.67285 −0.512660
\(357\) 0 0
\(358\) 12.8324 0.678214
\(359\) 7.50164 0.395921 0.197961 0.980210i \(-0.436568\pi\)
0.197961 + 0.980210i \(0.436568\pi\)
\(360\) 16.5060 0.869941
\(361\) 0.322229 0.0169594
\(362\) 33.1101 1.74023
\(363\) −2.14646 −0.112660
\(364\) 0 0
\(365\) −16.3958 −0.858193
\(366\) −7.82815 −0.409184
\(367\) −28.5883 −1.49230 −0.746149 0.665779i \(-0.768099\pi\)
−0.746149 + 0.665779i \(0.768099\pi\)
\(368\) 35.3644 1.84350
\(369\) 10.9653 0.570830
\(370\) −28.0348 −1.45746
\(371\) 0 0
\(372\) −2.51303 −0.130294
\(373\) −7.91204 −0.409670 −0.204835 0.978797i \(-0.565666\pi\)
−0.204835 + 0.978797i \(0.565666\pi\)
\(374\) 9.72584 0.502911
\(375\) 2.47622 0.127871
\(376\) 2.81872 0.145364
\(377\) 0 0
\(378\) 0 0
\(379\) −1.78091 −0.0914791 −0.0457395 0.998953i \(-0.514564\pi\)
−0.0457395 + 0.998953i \(0.514564\pi\)
\(380\) 9.35761 0.480035
\(381\) 1.17484 0.0601889
\(382\) −33.9108 −1.73503
\(383\) 14.1997 0.725572 0.362786 0.931872i \(-0.381826\pi\)
0.362786 + 0.931872i \(0.381826\pi\)
\(384\) −6.61883 −0.337766
\(385\) 0 0
\(386\) 20.5829 1.04764
\(387\) 3.62077 0.184054
\(388\) −10.3987 −0.527912
\(389\) −6.77499 −0.343506 −0.171753 0.985140i \(-0.554943\pi\)
−0.171753 + 0.985140i \(0.554943\pi\)
\(390\) 0 0
\(391\) −16.3161 −0.825140
\(392\) 0 0
\(393\) 1.05700 0.0533187
\(394\) 31.4226 1.58305
\(395\) 5.78876 0.291264
\(396\) 5.26791 0.264723
\(397\) 29.0023 1.45558 0.727792 0.685798i \(-0.240547\pi\)
0.727792 + 0.685798i \(0.240547\pi\)
\(398\) −21.2218 −1.06375
\(399\) 0 0
\(400\) −16.0772 −0.803861
\(401\) 21.9604 1.09665 0.548326 0.836265i \(-0.315265\pi\)
0.548326 + 0.836265i \(0.315265\pi\)
\(402\) 13.0370 0.650224
\(403\) 0 0
\(404\) −12.9246 −0.643024
\(405\) −19.7006 −0.978928
\(406\) 0 0
\(407\) 15.2105 0.753959
\(408\) 2.34842 0.116264
\(409\) −4.00290 −0.197931 −0.0989653 0.995091i \(-0.531553\pi\)
−0.0989653 + 0.995091i \(0.531553\pi\)
\(410\) −18.9366 −0.935214
\(411\) −0.212449 −0.0104793
\(412\) −4.85702 −0.239288
\(413\) 0 0
\(414\) −32.6986 −1.60705
\(415\) −8.96075 −0.439866
\(416\) 0 0
\(417\) −9.64501 −0.472318
\(418\) −18.7851 −0.918811
\(419\) 1.75047 0.0855162 0.0427581 0.999085i \(-0.486386\pi\)
0.0427581 + 0.999085i \(0.486386\pi\)
\(420\) 0 0
\(421\) −16.2204 −0.790533 −0.395267 0.918566i \(-0.629348\pi\)
−0.395267 + 0.918566i \(0.629348\pi\)
\(422\) 13.0277 0.634179
\(423\) −3.72498 −0.181115
\(424\) −17.2778 −0.839082
\(425\) 7.41755 0.359804
\(426\) 3.92837 0.190330
\(427\) 0 0
\(428\) 11.5570 0.558631
\(429\) 0 0
\(430\) −6.25294 −0.301543
\(431\) 11.6797 0.562590 0.281295 0.959621i \(-0.409236\pi\)
0.281295 + 0.959621i \(0.409236\pi\)
\(432\) 14.0515 0.676052
\(433\) −31.6289 −1.51999 −0.759994 0.649930i \(-0.774798\pi\)
−0.759994 + 0.649930i \(0.774798\pi\)
\(434\) 0 0
\(435\) −8.81351 −0.422575
\(436\) 7.42008 0.355357
\(437\) 31.5140 1.50752
\(438\) −4.67498 −0.223379
\(439\) 9.71539 0.463690 0.231845 0.972753i \(-0.425524\pi\)
0.231845 + 0.972753i \(0.425524\pi\)
\(440\) 15.4658 0.737302
\(441\) 0 0
\(442\) 0 0
\(443\) 21.1163 1.00327 0.501633 0.865081i \(-0.332733\pi\)
0.501633 + 0.865081i \(0.332733\pi\)
\(444\) −2.16045 −0.102530
\(445\) 37.5283 1.77901
\(446\) 12.8644 0.609145
\(447\) −11.3352 −0.536135
\(448\) 0 0
\(449\) −13.4710 −0.635735 −0.317867 0.948135i \(-0.602967\pi\)
−0.317867 + 0.948135i \(0.602967\pi\)
\(450\) 14.8653 0.700758
\(451\) 10.2743 0.483796
\(452\) −2.92647 −0.137650
\(453\) −5.55401 −0.260950
\(454\) −42.2871 −1.98463
\(455\) 0 0
\(456\) −4.53589 −0.212413
\(457\) 9.35582 0.437647 0.218823 0.975764i \(-0.429778\pi\)
0.218823 + 0.975764i \(0.429778\pi\)
\(458\) 21.3538 0.997798
\(459\) −6.48294 −0.302598
\(460\) 15.2620 0.711593
\(461\) 8.14109 0.379168 0.189584 0.981864i \(-0.439286\pi\)
0.189584 + 0.981864i \(0.439286\pi\)
\(462\) 0 0
\(463\) 24.3018 1.12940 0.564700 0.825296i \(-0.308992\pi\)
0.564700 + 0.825296i \(0.308992\pi\)
\(464\) −30.5623 −1.41882
\(465\) 9.74994 0.452143
\(466\) −13.4805 −0.624473
\(467\) 32.7935 1.51750 0.758751 0.651381i \(-0.225810\pi\)
0.758751 + 0.651381i \(0.225810\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 6.43290 0.296728
\(471\) −1.87497 −0.0863940
\(472\) −20.0360 −0.922232
\(473\) 3.39259 0.155991
\(474\) 1.65057 0.0758132
\(475\) −14.3267 −0.657356
\(476\) 0 0
\(477\) 22.8328 1.04544
\(478\) −39.4215 −1.80310
\(479\) 2.48109 0.113364 0.0566819 0.998392i \(-0.481948\pi\)
0.0566819 + 0.998392i \(0.481948\pi\)
\(480\) −5.68557 −0.259510
\(481\) 0 0
\(482\) −0.477694 −0.0217584
\(483\) 0 0
\(484\) −3.21221 −0.146009
\(485\) 40.3443 1.83194
\(486\) −19.7650 −0.896557
\(487\) 22.9216 1.03867 0.519337 0.854569i \(-0.326179\pi\)
0.519337 + 0.854569i \(0.326179\pi\)
\(488\) 19.9154 0.901529
\(489\) 9.70797 0.439010
\(490\) 0 0
\(491\) 22.8735 1.03227 0.516134 0.856508i \(-0.327371\pi\)
0.516134 + 0.856508i \(0.327371\pi\)
\(492\) −1.45932 −0.0657910
\(493\) 14.1005 0.635055
\(494\) 0 0
\(495\) −20.4382 −0.918631
\(496\) 33.8095 1.51809
\(497\) 0 0
\(498\) −2.55501 −0.114493
\(499\) −8.48087 −0.379656 −0.189828 0.981817i \(-0.560793\pi\)
−0.189828 + 0.981817i \(0.560793\pi\)
\(500\) 3.70570 0.165724
\(501\) −5.09440 −0.227601
\(502\) 12.6124 0.562921
\(503\) −9.36890 −0.417739 −0.208869 0.977944i \(-0.566978\pi\)
−0.208869 + 0.977944i \(0.566978\pi\)
\(504\) 0 0
\(505\) 50.1444 2.23140
\(506\) −30.6380 −1.36202
\(507\) 0 0
\(508\) 1.75817 0.0780060
\(509\) 21.5402 0.954753 0.477376 0.878699i \(-0.341588\pi\)
0.477376 + 0.878699i \(0.341588\pi\)
\(510\) 5.35958 0.237326
\(511\) 0 0
\(512\) 0.851388 0.0376264
\(513\) 12.5216 0.552841
\(514\) 19.2967 0.851143
\(515\) 18.8441 0.830368
\(516\) −0.481870 −0.0212132
\(517\) −3.49023 −0.153500
\(518\) 0 0
\(519\) 2.97203 0.130458
\(520\) 0 0
\(521\) 15.7470 0.689889 0.344944 0.938623i \(-0.387898\pi\)
0.344944 + 0.938623i \(0.387898\pi\)
\(522\) 28.2585 1.23684
\(523\) 17.9404 0.784477 0.392238 0.919864i \(-0.371701\pi\)
0.392238 + 0.919864i \(0.371701\pi\)
\(524\) 1.58182 0.0691020
\(525\) 0 0
\(526\) 22.4369 0.978293
\(527\) −15.5987 −0.679489
\(528\) 6.30273 0.274291
\(529\) 28.3983 1.23471
\(530\) −39.4314 −1.71279
\(531\) 26.4779 1.14904
\(532\) 0 0
\(533\) 0 0
\(534\) 10.7006 0.463060
\(535\) −44.8386 −1.93854
\(536\) −33.1671 −1.43260
\(537\) −3.83672 −0.165566
\(538\) 29.5232 1.27284
\(539\) 0 0
\(540\) 6.06410 0.260957
\(541\) −9.35582 −0.402238 −0.201119 0.979567i \(-0.564458\pi\)
−0.201119 + 0.979567i \(0.564458\pi\)
\(542\) 50.2853 2.15994
\(543\) −9.89947 −0.424827
\(544\) 9.09621 0.389997
\(545\) −28.7881 −1.23315
\(546\) 0 0
\(547\) −33.1634 −1.41796 −0.708981 0.705227i \(-0.750845\pi\)
−0.708981 + 0.705227i \(0.750845\pi\)
\(548\) −0.317933 −0.0135814
\(549\) −26.3185 −1.12325
\(550\) 13.9285 0.593914
\(551\) −27.2347 −1.16024
\(552\) −7.39790 −0.314876
\(553\) 0 0
\(554\) −8.63228 −0.366750
\(555\) 8.38202 0.355797
\(556\) −14.4339 −0.612133
\(557\) 11.1532 0.472578 0.236289 0.971683i \(-0.424069\pi\)
0.236289 + 0.971683i \(0.424069\pi\)
\(558\) −31.2609 −1.32338
\(559\) 0 0
\(560\) 0 0
\(561\) −2.90789 −0.122771
\(562\) −2.75238 −0.116102
\(563\) −19.1778 −0.808247 −0.404124 0.914704i \(-0.632423\pi\)
−0.404124 + 0.914704i \(0.632423\pi\)
\(564\) 0.495739 0.0208744
\(565\) 11.3540 0.477666
\(566\) 22.8389 0.959993
\(567\) 0 0
\(568\) −9.99409 −0.419343
\(569\) 13.4672 0.564575 0.282288 0.959330i \(-0.408907\pi\)
0.282288 + 0.959330i \(0.408907\pi\)
\(570\) −10.3519 −0.433591
\(571\) 25.1608 1.05295 0.526473 0.850192i \(-0.323514\pi\)
0.526473 + 0.850192i \(0.323514\pi\)
\(572\) 0 0
\(573\) 10.1389 0.423557
\(574\) 0 0
\(575\) −23.3665 −0.974450
\(576\) −8.95016 −0.372923
\(577\) 21.6484 0.901235 0.450617 0.892717i \(-0.351204\pi\)
0.450617 + 0.892717i \(0.351204\pi\)
\(578\) 19.5691 0.813969
\(579\) −6.15401 −0.255752
\(580\) −13.1895 −0.547666
\(581\) 0 0
\(582\) 11.5035 0.476836
\(583\) 21.3939 0.886044
\(584\) 11.8935 0.492157
\(585\) 0 0
\(586\) 21.2860 0.879316
\(587\) −34.5576 −1.42634 −0.713172 0.700989i \(-0.752742\pi\)
−0.713172 + 0.700989i \(0.752742\pi\)
\(588\) 0 0
\(589\) 30.1283 1.24142
\(590\) −45.7263 −1.88252
\(591\) −9.39493 −0.386456
\(592\) 29.0660 1.19461
\(593\) 1.26839 0.0520865 0.0260432 0.999661i \(-0.491709\pi\)
0.0260432 + 0.999661i \(0.491709\pi\)
\(594\) −12.1735 −0.499485
\(595\) 0 0
\(596\) −16.9632 −0.694842
\(597\) 6.34501 0.259684
\(598\) 0 0
\(599\) 17.5143 0.715614 0.357807 0.933796i \(-0.383525\pi\)
0.357807 + 0.933796i \(0.383525\pi\)
\(600\) 3.36320 0.137302
\(601\) −9.02164 −0.368000 −0.184000 0.982926i \(-0.558905\pi\)
−0.184000 + 0.982926i \(0.558905\pi\)
\(602\) 0 0
\(603\) 43.8307 1.78493
\(604\) −8.31165 −0.338196
\(605\) 12.4626 0.506677
\(606\) 14.2979 0.580811
\(607\) −15.8290 −0.642479 −0.321239 0.946998i \(-0.604099\pi\)
−0.321239 + 0.946998i \(0.604099\pi\)
\(608\) −17.5690 −0.712517
\(609\) 0 0
\(610\) 45.4511 1.84026
\(611\) 0 0
\(612\) −4.64439 −0.187738
\(613\) −17.5344 −0.708209 −0.354104 0.935206i \(-0.615214\pi\)
−0.354104 + 0.935206i \(0.615214\pi\)
\(614\) −34.6029 −1.39646
\(615\) 5.66179 0.228306
\(616\) 0 0
\(617\) 7.01448 0.282392 0.141196 0.989982i \(-0.454905\pi\)
0.141196 + 0.989982i \(0.454905\pi\)
\(618\) 5.37307 0.216137
\(619\) −38.8263 −1.56056 −0.780280 0.625430i \(-0.784923\pi\)
−0.780280 + 0.625430i \(0.784923\pi\)
\(620\) 14.5909 0.585985
\(621\) 20.4223 0.819518
\(622\) −28.3743 −1.13771
\(623\) 0 0
\(624\) 0 0
\(625\) −30.6735 −1.22694
\(626\) 4.22597 0.168904
\(627\) 5.61649 0.224301
\(628\) −2.80592 −0.111968
\(629\) −13.4102 −0.534699
\(630\) 0 0
\(631\) 12.7484 0.507506 0.253753 0.967269i \(-0.418335\pi\)
0.253753 + 0.967269i \(0.418335\pi\)
\(632\) −4.19918 −0.167034
\(633\) −3.89510 −0.154816
\(634\) −45.1770 −1.79421
\(635\) −6.82126 −0.270694
\(636\) −3.03871 −0.120493
\(637\) 0 0
\(638\) 26.4776 1.04826
\(639\) 13.2073 0.522474
\(640\) 38.4297 1.51907
\(641\) −9.71429 −0.383691 −0.191846 0.981425i \(-0.561447\pi\)
−0.191846 + 0.981425i \(0.561447\pi\)
\(642\) −12.7850 −0.504583
\(643\) −0.458279 −0.0180728 −0.00903639 0.999959i \(-0.502876\pi\)
−0.00903639 + 0.999959i \(0.502876\pi\)
\(644\) 0 0
\(645\) 1.86954 0.0736131
\(646\) 16.5617 0.651610
\(647\) −6.17722 −0.242852 −0.121426 0.992601i \(-0.538747\pi\)
−0.121426 + 0.992601i \(0.538747\pi\)
\(648\) 14.2908 0.561397
\(649\) 24.8093 0.973848
\(650\) 0 0
\(651\) 0 0
\(652\) 14.5281 0.568965
\(653\) 28.4385 1.11289 0.556443 0.830886i \(-0.312166\pi\)
0.556443 + 0.830886i \(0.312166\pi\)
\(654\) −8.20846 −0.320976
\(655\) −6.13707 −0.239795
\(656\) 19.6332 0.766547
\(657\) −15.7175 −0.613196
\(658\) 0 0
\(659\) −25.9818 −1.01211 −0.506054 0.862502i \(-0.668897\pi\)
−0.506054 + 0.862502i \(0.668897\pi\)
\(660\) 2.72002 0.105877
\(661\) −37.2752 −1.44984 −0.724918 0.688835i \(-0.758122\pi\)
−0.724918 + 0.688835i \(0.758122\pi\)
\(662\) 16.0471 0.623686
\(663\) 0 0
\(664\) 6.50015 0.252255
\(665\) 0 0
\(666\) −26.8750 −1.04139
\(667\) −44.4189 −1.71991
\(668\) −7.62385 −0.294976
\(669\) −3.84626 −0.148705
\(670\) −75.6941 −2.92432
\(671\) −24.6599 −0.951986
\(672\) 0 0
\(673\) −41.7078 −1.60772 −0.803859 0.594820i \(-0.797223\pi\)
−0.803859 + 0.594820i \(0.797223\pi\)
\(674\) 10.4525 0.402613
\(675\) −9.28430 −0.357353
\(676\) 0 0
\(677\) 18.2069 0.699750 0.349875 0.936796i \(-0.386224\pi\)
0.349875 + 0.936796i \(0.386224\pi\)
\(678\) 3.23741 0.124332
\(679\) 0 0
\(680\) −13.6352 −0.522886
\(681\) 12.6432 0.484490
\(682\) −29.2908 −1.12160
\(683\) 27.3360 1.04598 0.522991 0.852338i \(-0.324816\pi\)
0.522991 + 0.852338i \(0.324816\pi\)
\(684\) 8.97048 0.342995
\(685\) 1.23350 0.0471297
\(686\) 0 0
\(687\) −6.38449 −0.243584
\(688\) 6.48294 0.247160
\(689\) 0 0
\(690\) −16.8836 −0.642746
\(691\) −8.39581 −0.319392 −0.159696 0.987166i \(-0.551051\pi\)
−0.159696 + 0.987166i \(0.551051\pi\)
\(692\) 4.44769 0.169076
\(693\) 0 0
\(694\) −48.2087 −1.82998
\(695\) 56.0000 2.12420
\(696\) 6.39334 0.242339
\(697\) −9.05817 −0.343102
\(698\) 33.6562 1.27391
\(699\) 4.03049 0.152447
\(700\) 0 0
\(701\) −27.4998 −1.03865 −0.519327 0.854576i \(-0.673817\pi\)
−0.519327 + 0.854576i \(0.673817\pi\)
\(702\) 0 0
\(703\) 25.9013 0.976887
\(704\) −8.38612 −0.316064
\(705\) −1.92335 −0.0724375
\(706\) −23.5050 −0.884623
\(707\) 0 0
\(708\) −3.52381 −0.132433
\(709\) −28.9820 −1.08844 −0.544221 0.838942i \(-0.683175\pi\)
−0.544221 + 0.838942i \(0.683175\pi\)
\(710\) −22.8086 −0.855991
\(711\) 5.54928 0.208114
\(712\) −27.2231 −1.02023
\(713\) 49.1384 1.84025
\(714\) 0 0
\(715\) 0 0
\(716\) −5.74170 −0.214577
\(717\) 11.7865 0.440174
\(718\) −12.4191 −0.463476
\(719\) −17.5522 −0.654588 −0.327294 0.944923i \(-0.606137\pi\)
−0.327294 + 0.944923i \(0.606137\pi\)
\(720\) −39.0557 −1.45552
\(721\) 0 0
\(722\) −0.533456 −0.0198532
\(723\) 0.142824 0.00531168
\(724\) −14.8147 −0.550584
\(725\) 20.1935 0.749969
\(726\) 3.55350 0.131883
\(727\) 22.1403 0.821139 0.410569 0.911829i \(-0.365330\pi\)
0.410569 + 0.911829i \(0.365330\pi\)
\(728\) 0 0
\(729\) −14.6556 −0.542799
\(730\) 27.1435 1.00463
\(731\) −2.99103 −0.110627
\(732\) 3.50260 0.129460
\(733\) −51.3414 −1.89634 −0.948169 0.317768i \(-0.897067\pi\)
−0.948169 + 0.317768i \(0.897067\pi\)
\(734\) 47.3285 1.74693
\(735\) 0 0
\(736\) −28.6545 −1.05622
\(737\) 41.0685 1.51278
\(738\) −18.1532 −0.668229
\(739\) 22.7787 0.837929 0.418965 0.908003i \(-0.362393\pi\)
0.418965 + 0.908003i \(0.362393\pi\)
\(740\) 12.5438 0.461120
\(741\) 0 0
\(742\) 0 0
\(743\) 27.6199 1.01328 0.506638 0.862159i \(-0.330888\pi\)
0.506638 + 0.862159i \(0.330888\pi\)
\(744\) −7.07262 −0.259295
\(745\) 65.8133 2.41121
\(746\) 13.0985 0.479571
\(747\) −8.59004 −0.314293
\(748\) −4.35170 −0.159114
\(749\) 0 0
\(750\) −4.09943 −0.149690
\(751\) 41.1172 1.50039 0.750194 0.661218i \(-0.229960\pi\)
0.750194 + 0.661218i \(0.229960\pi\)
\(752\) −6.66952 −0.243212
\(753\) −3.77095 −0.137421
\(754\) 0 0
\(755\) 32.2472 1.17360
\(756\) 0 0
\(757\) 14.0143 0.509357 0.254678 0.967026i \(-0.418030\pi\)
0.254678 + 0.967026i \(0.418030\pi\)
\(758\) 2.94832 0.107088
\(759\) 9.16033 0.332499
\(760\) 26.3359 0.955304
\(761\) −34.1648 −1.23847 −0.619236 0.785205i \(-0.712558\pi\)
−0.619236 + 0.785205i \(0.712558\pi\)
\(762\) −1.94497 −0.0704588
\(763\) 0 0
\(764\) 15.1730 0.548938
\(765\) 18.0191 0.651483
\(766\) −23.5079 −0.849375
\(767\) 0 0
\(768\) 7.74153 0.279348
\(769\) 52.9061 1.90784 0.953921 0.300059i \(-0.0970062\pi\)
0.953921 + 0.300059i \(0.0970062\pi\)
\(770\) 0 0
\(771\) −5.76946 −0.207782
\(772\) −9.20957 −0.331460
\(773\) −45.9133 −1.65139 −0.825694 0.564118i \(-0.809216\pi\)
−0.825694 + 0.564118i \(0.809216\pi\)
\(774\) −5.99425 −0.215459
\(775\) −22.3391 −0.802444
\(776\) −29.2658 −1.05058
\(777\) 0 0
\(778\) 11.2161 0.402117
\(779\) 17.4955 0.626843
\(780\) 0 0
\(781\) 12.3750 0.442813
\(782\) 27.0116 0.965932
\(783\) −17.6491 −0.630728
\(784\) 0 0
\(785\) 10.8863 0.388548
\(786\) −1.74989 −0.0624163
\(787\) −15.1872 −0.541364 −0.270682 0.962669i \(-0.587249\pi\)
−0.270682 + 0.962669i \(0.587249\pi\)
\(788\) −14.0596 −0.500854
\(789\) −6.70831 −0.238822
\(790\) −9.58340 −0.340962
\(791\) 0 0
\(792\) 14.8259 0.526817
\(793\) 0 0
\(794\) −48.0138 −1.70395
\(795\) 11.7894 0.418129
\(796\) 9.49540 0.336555
\(797\) −16.3006 −0.577398 −0.288699 0.957420i \(-0.593223\pi\)
−0.288699 + 0.957420i \(0.593223\pi\)
\(798\) 0 0
\(799\) 3.07712 0.108861
\(800\) 13.0268 0.460567
\(801\) 35.9758 1.27114
\(802\) −36.3559 −1.28377
\(803\) −14.7269 −0.519703
\(804\) −5.83322 −0.205722
\(805\) 0 0
\(806\) 0 0
\(807\) −8.82704 −0.310727
\(808\) −36.3749 −1.27966
\(809\) 10.3857 0.365142 0.182571 0.983193i \(-0.441558\pi\)
0.182571 + 0.983193i \(0.441558\pi\)
\(810\) 32.6146 1.14596
\(811\) 10.9705 0.385227 0.192614 0.981275i \(-0.438304\pi\)
0.192614 + 0.981275i \(0.438304\pi\)
\(812\) 0 0
\(813\) −15.0346 −0.527286
\(814\) −25.1813 −0.882605
\(815\) −56.3656 −1.97440
\(816\) −5.55672 −0.194524
\(817\) 5.77708 0.202114
\(818\) 6.62687 0.231703
\(819\) 0 0
\(820\) 8.47296 0.295888
\(821\) 40.2325 1.40412 0.702061 0.712117i \(-0.252263\pi\)
0.702061 + 0.712117i \(0.252263\pi\)
\(822\) 0.351713 0.0122674
\(823\) −3.26499 −0.113811 −0.0569053 0.998380i \(-0.518123\pi\)
−0.0569053 + 0.998380i \(0.518123\pi\)
\(824\) −13.6695 −0.476200
\(825\) −4.16443 −0.144987
\(826\) 0 0
\(827\) 46.0118 1.59999 0.799993 0.600009i \(-0.204836\pi\)
0.799993 + 0.600009i \(0.204836\pi\)
\(828\) 14.6306 0.508448
\(829\) −30.3865 −1.05537 −0.527683 0.849441i \(-0.676939\pi\)
−0.527683 + 0.849441i \(0.676939\pi\)
\(830\) 14.8347 0.514919
\(831\) 2.58093 0.0895315
\(832\) 0 0
\(833\) 0 0
\(834\) 15.9675 0.552909
\(835\) 29.5787 1.02361
\(836\) 8.40516 0.290699
\(837\) 19.5243 0.674860
\(838\) −2.89794 −0.100108
\(839\) −1.52007 −0.0524787 −0.0262394 0.999656i \(-0.508353\pi\)
−0.0262394 + 0.999656i \(0.508353\pi\)
\(840\) 0 0
\(841\) 9.38720 0.323697
\(842\) 26.8531 0.925420
\(843\) 0.822923 0.0283430
\(844\) −5.82908 −0.200645
\(845\) 0 0
\(846\) 6.16677 0.212018
\(847\) 0 0
\(848\) 40.8818 1.40389
\(849\) −6.82853 −0.234354
\(850\) −12.2799 −0.421197
\(851\) 42.2443 1.44811
\(852\) −1.75770 −0.0602178
\(853\) 43.7939 1.49947 0.749737 0.661736i \(-0.230180\pi\)
0.749737 + 0.661736i \(0.230180\pi\)
\(854\) 0 0
\(855\) −34.8033 −1.19025
\(856\) 32.5260 1.11172
\(857\) −14.8521 −0.507338 −0.253669 0.967291i \(-0.581637\pi\)
−0.253669 + 0.967291i \(0.581637\pi\)
\(858\) 0 0
\(859\) −44.3568 −1.51343 −0.756717 0.653742i \(-0.773198\pi\)
−0.756717 + 0.653742i \(0.773198\pi\)
\(860\) 2.79780 0.0954040
\(861\) 0 0
\(862\) −19.3359 −0.658584
\(863\) −25.8451 −0.879778 −0.439889 0.898052i \(-0.644982\pi\)
−0.439889 + 0.898052i \(0.644982\pi\)
\(864\) −11.3854 −0.387340
\(865\) −17.2560 −0.586721
\(866\) 52.3622 1.77934
\(867\) −5.85090 −0.198707
\(868\) 0 0
\(869\) 5.19956 0.176383
\(870\) 14.5909 0.494678
\(871\) 0 0
\(872\) 20.8830 0.707187
\(873\) 38.6752 1.30896
\(874\) −52.1719 −1.76474
\(875\) 0 0
\(876\) 2.09176 0.0706740
\(877\) 1.37284 0.0463575 0.0231788 0.999731i \(-0.492621\pi\)
0.0231788 + 0.999731i \(0.492621\pi\)
\(878\) −16.0840 −0.542809
\(879\) −6.36421 −0.214660
\(880\) −36.5944 −1.23360
\(881\) −16.2514 −0.547524 −0.273762 0.961797i \(-0.588268\pi\)
−0.273762 + 0.961797i \(0.588268\pi\)
\(882\) 0 0
\(883\) −0.619110 −0.0208347 −0.0104174 0.999946i \(-0.503316\pi\)
−0.0104174 + 0.999946i \(0.503316\pi\)
\(884\) 0 0
\(885\) 13.6715 0.459564
\(886\) −34.9584 −1.17445
\(887\) −31.9379 −1.07237 −0.536185 0.844100i \(-0.680135\pi\)
−0.536185 + 0.844100i \(0.680135\pi\)
\(888\) −6.08034 −0.204043
\(889\) 0 0
\(890\) −62.1288 −2.08256
\(891\) −17.6954 −0.592817
\(892\) −5.75599 −0.192725
\(893\) −5.94335 −0.198886
\(894\) 18.7656 0.627615
\(895\) 22.2764 0.744618
\(896\) 0 0
\(897\) 0 0
\(898\) 22.3015 0.744209
\(899\) −42.4658 −1.41631
\(900\) −6.65129 −0.221710
\(901\) −18.8616 −0.628373
\(902\) −17.0092 −0.566345
\(903\) 0 0
\(904\) −8.23621 −0.273932
\(905\) 57.4775 1.91062
\(906\) 9.19476 0.305475
\(907\) 20.7037 0.687455 0.343728 0.939069i \(-0.388310\pi\)
0.343728 + 0.939069i \(0.388310\pi\)
\(908\) 18.9208 0.627909
\(909\) 48.0699 1.59438
\(910\) 0 0
\(911\) 39.4143 1.30585 0.652926 0.757421i \(-0.273541\pi\)
0.652926 + 0.757421i \(0.273541\pi\)
\(912\) 10.7326 0.355392
\(913\) −8.04869 −0.266373
\(914\) −15.4887 −0.512321
\(915\) −13.5893 −0.449247
\(916\) −9.55449 −0.315689
\(917\) 0 0
\(918\) 10.7326 0.354229
\(919\) 14.2185 0.469025 0.234512 0.972113i \(-0.424651\pi\)
0.234512 + 0.972113i \(0.424651\pi\)
\(920\) 42.9531 1.41612
\(921\) 10.3458 0.340906
\(922\) −13.4777 −0.443865
\(923\) 0 0
\(924\) 0 0
\(925\) −19.2049 −0.631454
\(926\) −40.2320 −1.32211
\(927\) 18.0645 0.593315
\(928\) 24.7635 0.812902
\(929\) −28.7478 −0.943185 −0.471593 0.881817i \(-0.656321\pi\)
−0.471593 + 0.881817i \(0.656321\pi\)
\(930\) −16.1412 −0.529291
\(931\) 0 0
\(932\) 6.03168 0.197574
\(933\) 8.48352 0.277738
\(934\) −54.2902 −1.77643
\(935\) 16.8836 0.552151
\(936\) 0 0
\(937\) −19.8495 −0.648456 −0.324228 0.945979i \(-0.605105\pi\)
−0.324228 + 0.945979i \(0.605105\pi\)
\(938\) 0 0
\(939\) −1.26351 −0.0412330
\(940\) −2.87832 −0.0938804
\(941\) 45.2320 1.47452 0.737260 0.675609i \(-0.236119\pi\)
0.737260 + 0.675609i \(0.236119\pi\)
\(942\) 3.10404 0.101135
\(943\) 28.5347 0.929217
\(944\) 47.4083 1.54301
\(945\) 0 0
\(946\) −5.61649 −0.182608
\(947\) 22.1095 0.718462 0.359231 0.933249i \(-0.383039\pi\)
0.359231 + 0.933249i \(0.383039\pi\)
\(948\) −0.738526 −0.0239862
\(949\) 0 0
\(950\) 23.7182 0.769520
\(951\) 13.5073 0.438004
\(952\) 0 0
\(953\) 34.3502 1.11271 0.556356 0.830944i \(-0.312199\pi\)
0.556356 + 0.830944i \(0.312199\pi\)
\(954\) −37.8001 −1.22382
\(955\) −58.8674 −1.90491
\(956\) 17.6386 0.570474
\(957\) −7.91644 −0.255902
\(958\) −4.10749 −0.132707
\(959\) 0 0
\(960\) −4.62131 −0.149152
\(961\) 15.9778 0.515413
\(962\) 0 0
\(963\) −42.9836 −1.38513
\(964\) 0.213738 0.00688403
\(965\) 35.7309 1.15022
\(966\) 0 0
\(967\) −23.8805 −0.767945 −0.383973 0.923344i \(-0.625444\pi\)
−0.383973 + 0.923344i \(0.625444\pi\)
\(968\) −9.04039 −0.290569
\(969\) −4.95171 −0.159072
\(970\) −66.7907 −2.14452
\(971\) 25.9377 0.832381 0.416190 0.909277i \(-0.363365\pi\)
0.416190 + 0.909277i \(0.363365\pi\)
\(972\) 8.84358 0.283658
\(973\) 0 0
\(974\) −37.9470 −1.21590
\(975\) 0 0
\(976\) −47.1229 −1.50837
\(977\) 45.2971 1.44918 0.724592 0.689178i \(-0.242028\pi\)
0.724592 + 0.689178i \(0.242028\pi\)
\(978\) −16.0717 −0.513917
\(979\) 33.7086 1.07733
\(980\) 0 0
\(981\) −27.5971 −0.881109
\(982\) −37.8675 −1.20840
\(983\) 2.03101 0.0647792 0.0323896 0.999475i \(-0.489688\pi\)
0.0323896 + 0.999475i \(0.489688\pi\)
\(984\) −4.10708 −0.130929
\(985\) 54.5480 1.73804
\(986\) −23.3437 −0.743413
\(987\) 0 0
\(988\) 0 0
\(989\) 9.42224 0.299610
\(990\) 33.8359 1.07537
\(991\) −26.9665 −0.856618 −0.428309 0.903632i \(-0.640890\pi\)
−0.428309 + 0.903632i \(0.640890\pi\)
\(992\) −27.3946 −0.869780
\(993\) −4.79785 −0.152255
\(994\) 0 0
\(995\) −36.8399 −1.16790
\(996\) 1.14321 0.0362239
\(997\) 6.65574 0.210789 0.105395 0.994430i \(-0.466389\pi\)
0.105395 + 0.994430i \(0.466389\pi\)
\(998\) 14.0402 0.444436
\(999\) 16.7851 0.531056
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8281.2.a.cs.1.4 16
7.6 odd 2 inner 8281.2.a.cs.1.3 16
13.5 odd 4 637.2.c.g.246.14 yes 16
13.8 odd 4 637.2.c.g.246.4 yes 16
13.12 even 2 inner 8281.2.a.cs.1.14 16
91.5 even 12 637.2.r.g.116.14 32
91.18 odd 12 637.2.r.g.324.3 32
91.31 even 12 637.2.r.g.324.4 32
91.34 even 4 637.2.c.g.246.3 16
91.44 odd 12 637.2.r.g.116.13 32
91.47 even 12 637.2.r.g.116.4 32
91.60 odd 12 637.2.r.g.324.13 32
91.73 even 12 637.2.r.g.324.14 32
91.83 even 4 637.2.c.g.246.13 yes 16
91.86 odd 12 637.2.r.g.116.3 32
91.90 odd 2 inner 8281.2.a.cs.1.13 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
637.2.c.g.246.3 16 91.34 even 4
637.2.c.g.246.4 yes 16 13.8 odd 4
637.2.c.g.246.13 yes 16 91.83 even 4
637.2.c.g.246.14 yes 16 13.5 odd 4
637.2.r.g.116.3 32 91.86 odd 12
637.2.r.g.116.4 32 91.47 even 12
637.2.r.g.116.13 32 91.44 odd 12
637.2.r.g.116.14 32 91.5 even 12
637.2.r.g.324.3 32 91.18 odd 12
637.2.r.g.324.4 32 91.31 even 12
637.2.r.g.324.13 32 91.60 odd 12
637.2.r.g.324.14 32 91.73 even 12
8281.2.a.cs.1.3 16 7.6 odd 2 inner
8281.2.a.cs.1.4 16 1.1 even 1 trivial
8281.2.a.cs.1.13 16 91.90 odd 2 inner
8281.2.a.cs.1.14 16 13.12 even 2 inner