Properties

Label 8281.2.a.cs.1.13
Level $8281$
Weight $2$
Character 8281.1
Self dual yes
Analytic conductor $66.124$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8281,2,Mod(1,8281)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8281, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8281.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 8281 = 7^{2} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8281.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,20,0,0,0,0,16,0,0,0,0,0,0,28,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(66.1241179138\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 42x^{14} + 641x^{12} - 4448x^{10} + 14076x^{8} - 17900x^{6} + 6960x^{4} - 416x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{5} \)
Twist minimal: no (minimal twist has level 637)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.13
Root \(3.06973\) of defining polynomial
Character \(\chi\) \(=\) 8281.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.65552 q^{2} -0.494977 q^{3} +0.740740 q^{4} -2.87389 q^{5} -0.819443 q^{6} -2.08473 q^{8} -2.75500 q^{9} -4.75778 q^{10} +2.58138 q^{11} -0.366649 q^{12} +1.42251 q^{15} -4.93278 q^{16} -2.27584 q^{17} -4.56095 q^{18} -4.39571 q^{19} -2.12881 q^{20} +4.27352 q^{22} -7.16926 q^{23} +1.03189 q^{24} +3.25926 q^{25} +2.84859 q^{27} +6.19574 q^{29} +2.35499 q^{30} -6.85404 q^{31} -3.99686 q^{32} -1.27772 q^{33} -3.76769 q^{34} -2.04074 q^{36} +5.89241 q^{37} -7.27717 q^{38} +5.99128 q^{40} -3.98014 q^{41} -1.31425 q^{43} +1.91213 q^{44} +7.91757 q^{45} -11.8688 q^{46} +1.35208 q^{47} +2.44161 q^{48} +5.39576 q^{50} +1.12649 q^{51} -8.28778 q^{53} +4.71589 q^{54} -7.41860 q^{55} +2.17577 q^{57} +10.2572 q^{58} -9.61085 q^{59} +1.05371 q^{60} -9.55301 q^{61} -11.3470 q^{62} +3.24870 q^{64} -2.11529 q^{66} +15.9095 q^{67} -1.68581 q^{68} +3.54862 q^{69} +4.79396 q^{71} +5.74342 q^{72} +5.70507 q^{73} +9.75500 q^{74} -1.61326 q^{75} -3.25607 q^{76} -2.01426 q^{79} +14.1763 q^{80} +6.85501 q^{81} -6.58920 q^{82} +3.11798 q^{83} +6.54052 q^{85} -2.17577 q^{86} -3.06675 q^{87} -5.38147 q^{88} -13.0584 q^{89} +13.1077 q^{90} -5.31056 q^{92} +3.39259 q^{93} +2.23839 q^{94} +12.6328 q^{95} +1.97835 q^{96} -14.0382 q^{97} -7.11169 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 20 q^{4} + 16 q^{9} + 28 q^{16} - 8 q^{22} + 36 q^{23} + 44 q^{25} + 36 q^{29} - 52 q^{36} + 36 q^{43} + 72 q^{51} + 12 q^{53} + 164 q^{64} + 96 q^{74} + 36 q^{79} + 16 q^{81} - 136 q^{88} + 24 q^{92}+ \cdots + 84 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.65552 1.17063 0.585314 0.810807i \(-0.300971\pi\)
0.585314 + 0.810807i \(0.300971\pi\)
\(3\) −0.494977 −0.285775 −0.142888 0.989739i \(-0.545639\pi\)
−0.142888 + 0.989739i \(0.545639\pi\)
\(4\) 0.740740 0.370370
\(5\) −2.87389 −1.28524 −0.642622 0.766183i \(-0.722153\pi\)
−0.642622 + 0.766183i \(0.722153\pi\)
\(6\) −0.819443 −0.334536
\(7\) 0 0
\(8\) −2.08473 −0.737063
\(9\) −2.75500 −0.918333
\(10\) −4.75778 −1.50454
\(11\) 2.58138 0.778315 0.389157 0.921171i \(-0.372766\pi\)
0.389157 + 0.921171i \(0.372766\pi\)
\(12\) −0.366649 −0.105842
\(13\) 0 0
\(14\) 0 0
\(15\) 1.42251 0.367291
\(16\) −4.93278 −1.23320
\(17\) −2.27584 −0.551972 −0.275986 0.961162i \(-0.589004\pi\)
−0.275986 + 0.961162i \(0.589004\pi\)
\(18\) −4.56095 −1.07503
\(19\) −4.39571 −1.00844 −0.504222 0.863574i \(-0.668221\pi\)
−0.504222 + 0.863574i \(0.668221\pi\)
\(20\) −2.12881 −0.476016
\(21\) 0 0
\(22\) 4.27352 0.911117
\(23\) −7.16926 −1.49489 −0.747447 0.664321i \(-0.768721\pi\)
−0.747447 + 0.664321i \(0.768721\pi\)
\(24\) 1.03189 0.210634
\(25\) 3.25926 0.651852
\(26\) 0 0
\(27\) 2.84859 0.548212
\(28\) 0 0
\(29\) 6.19574 1.15052 0.575260 0.817971i \(-0.304901\pi\)
0.575260 + 0.817971i \(0.304901\pi\)
\(30\) 2.35499 0.429961
\(31\) −6.85404 −1.23102 −0.615511 0.788129i \(-0.711050\pi\)
−0.615511 + 0.788129i \(0.711050\pi\)
\(32\) −3.99686 −0.706551
\(33\) −1.27772 −0.222423
\(34\) −3.76769 −0.646154
\(35\) 0 0
\(36\) −2.04074 −0.340123
\(37\) 5.89241 0.968707 0.484353 0.874872i \(-0.339055\pi\)
0.484353 + 0.874872i \(0.339055\pi\)
\(38\) −7.27717 −1.18051
\(39\) 0 0
\(40\) 5.99128 0.947305
\(41\) −3.98014 −0.621594 −0.310797 0.950476i \(-0.600596\pi\)
−0.310797 + 0.950476i \(0.600596\pi\)
\(42\) 0 0
\(43\) −1.31425 −0.200422 −0.100211 0.994966i \(-0.531952\pi\)
−0.100211 + 0.994966i \(0.531952\pi\)
\(44\) 1.91213 0.288264
\(45\) 7.91757 1.18028
\(46\) −11.8688 −1.74997
\(47\) 1.35208 0.197221 0.0986106 0.995126i \(-0.468560\pi\)
0.0986106 + 0.995126i \(0.468560\pi\)
\(48\) 2.44161 0.352417
\(49\) 0 0
\(50\) 5.39576 0.763076
\(51\) 1.12649 0.157740
\(52\) 0 0
\(53\) −8.28778 −1.13841 −0.569207 0.822194i \(-0.692750\pi\)
−0.569207 + 0.822194i \(0.692750\pi\)
\(54\) 4.71589 0.641752
\(55\) −7.41860 −1.00032
\(56\) 0 0
\(57\) 2.17577 0.288188
\(58\) 10.2572 1.34683
\(59\) −9.61085 −1.25123 −0.625613 0.780133i \(-0.715151\pi\)
−0.625613 + 0.780133i \(0.715151\pi\)
\(60\) 1.05371 0.136033
\(61\) −9.55301 −1.22314 −0.611569 0.791191i \(-0.709461\pi\)
−0.611569 + 0.791191i \(0.709461\pi\)
\(62\) −11.3470 −1.44107
\(63\) 0 0
\(64\) 3.24870 0.406087
\(65\) 0 0
\(66\) −2.11529 −0.260375
\(67\) 15.9095 1.94366 0.971830 0.235685i \(-0.0757332\pi\)
0.971830 + 0.235685i \(0.0757332\pi\)
\(68\) −1.68581 −0.204434
\(69\) 3.54862 0.427204
\(70\) 0 0
\(71\) 4.79396 0.568938 0.284469 0.958685i \(-0.408183\pi\)
0.284469 + 0.958685i \(0.408183\pi\)
\(72\) 5.74342 0.676869
\(73\) 5.70507 0.667728 0.333864 0.942621i \(-0.391647\pi\)
0.333864 + 0.942621i \(0.391647\pi\)
\(74\) 9.75500 1.13400
\(75\) −1.61326 −0.186283
\(76\) −3.25607 −0.373497
\(77\) 0 0
\(78\) 0 0
\(79\) −2.01426 −0.226622 −0.113311 0.993560i \(-0.536146\pi\)
−0.113311 + 0.993560i \(0.536146\pi\)
\(80\) 14.1763 1.58496
\(81\) 6.85501 0.761667
\(82\) −6.58920 −0.727655
\(83\) 3.11798 0.342243 0.171122 0.985250i \(-0.445261\pi\)
0.171122 + 0.985250i \(0.445261\pi\)
\(84\) 0 0
\(85\) 6.54052 0.709419
\(86\) −2.17577 −0.234620
\(87\) −3.06675 −0.328790
\(88\) −5.38147 −0.573667
\(89\) −13.0584 −1.38418 −0.692092 0.721810i \(-0.743311\pi\)
−0.692092 + 0.721810i \(0.743311\pi\)
\(90\) 13.1077 1.38167
\(91\) 0 0
\(92\) −5.31056 −0.553664
\(93\) 3.39259 0.351795
\(94\) 2.23839 0.230873
\(95\) 12.6328 1.29610
\(96\) 1.97835 0.201915
\(97\) −14.0382 −1.42536 −0.712682 0.701488i \(-0.752520\pi\)
−0.712682 + 0.701488i \(0.752520\pi\)
\(98\) 0 0
\(99\) −7.11169 −0.714752
\(100\) 2.41426 0.241426
\(101\) 17.4483 1.73617 0.868083 0.496419i \(-0.165352\pi\)
0.868083 + 0.496419i \(0.165352\pi\)
\(102\) 1.86492 0.184655
\(103\) 6.55698 0.646078 0.323039 0.946386i \(-0.395295\pi\)
0.323039 + 0.946386i \(0.395295\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) −13.7206 −1.33266
\(107\) 15.6020 1.50831 0.754153 0.656699i \(-0.228048\pi\)
0.754153 + 0.656699i \(0.228048\pi\)
\(108\) 2.11006 0.203041
\(109\) −10.0171 −0.959466 −0.479733 0.877414i \(-0.659267\pi\)
−0.479733 + 0.877414i \(0.659267\pi\)
\(110\) −12.2816 −1.17101
\(111\) −2.91661 −0.276832
\(112\) 0 0
\(113\) −3.95074 −0.371654 −0.185827 0.982582i \(-0.559496\pi\)
−0.185827 + 0.982582i \(0.559496\pi\)
\(114\) 3.60203 0.337361
\(115\) 20.6037 1.92130
\(116\) 4.58943 0.426118
\(117\) 0 0
\(118\) −15.9109 −1.46472
\(119\) 0 0
\(120\) −2.96555 −0.270716
\(121\) −4.33649 −0.394226
\(122\) −15.8152 −1.43184
\(123\) 1.97008 0.177636
\(124\) −5.07706 −0.455933
\(125\) 5.00270 0.447455
\(126\) 0 0
\(127\) 2.37353 0.210616 0.105308 0.994440i \(-0.466417\pi\)
0.105308 + 0.994440i \(0.466417\pi\)
\(128\) 13.3720 1.18193
\(129\) 0.650526 0.0572756
\(130\) 0 0
\(131\) −2.13546 −0.186576 −0.0932878 0.995639i \(-0.529738\pi\)
−0.0932878 + 0.995639i \(0.529738\pi\)
\(132\) −0.946460 −0.0823788
\(133\) 0 0
\(134\) 26.3385 2.27530
\(135\) −8.18655 −0.704586
\(136\) 4.74451 0.406838
\(137\) 0.429210 0.0366699 0.0183349 0.999832i \(-0.494163\pi\)
0.0183349 + 0.999832i \(0.494163\pi\)
\(138\) 5.87480 0.500096
\(139\) 19.4858 1.65276 0.826381 0.563112i \(-0.190396\pi\)
0.826381 + 0.563112i \(0.190396\pi\)
\(140\) 0 0
\(141\) −0.669248 −0.0563609
\(142\) 7.93648 0.666015
\(143\) 0 0
\(144\) 13.5898 1.13248
\(145\) −17.8059 −1.47870
\(146\) 9.44485 0.781661
\(147\) 0 0
\(148\) 4.36475 0.358780
\(149\) 22.9004 1.87607 0.938037 0.346534i \(-0.112642\pi\)
0.938037 + 0.346534i \(0.112642\pi\)
\(150\) −2.67078 −0.218068
\(151\) 11.2207 0.913131 0.456565 0.889690i \(-0.349079\pi\)
0.456565 + 0.889690i \(0.349079\pi\)
\(152\) 9.16385 0.743286
\(153\) 6.26993 0.506894
\(154\) 0 0
\(155\) 19.6978 1.58216
\(156\) 0 0
\(157\) 3.78799 0.302315 0.151157 0.988510i \(-0.451700\pi\)
0.151157 + 0.988510i \(0.451700\pi\)
\(158\) −3.33464 −0.265290
\(159\) 4.10226 0.325330
\(160\) 11.4865 0.908091
\(161\) 0 0
\(162\) 11.3486 0.891629
\(163\) −19.6130 −1.53621 −0.768103 0.640326i \(-0.778799\pi\)
−0.768103 + 0.640326i \(0.778799\pi\)
\(164\) −2.94825 −0.230220
\(165\) 3.67204 0.285868
\(166\) 5.16188 0.400639
\(167\) −10.2922 −0.796435 −0.398217 0.917291i \(-0.630371\pi\)
−0.398217 + 0.917291i \(0.630371\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 10.8279 0.830466
\(171\) 12.1102 0.926087
\(172\) −0.973521 −0.0742303
\(173\) −6.00439 −0.456505 −0.228253 0.973602i \(-0.573301\pi\)
−0.228253 + 0.973602i \(0.573301\pi\)
\(174\) −5.07706 −0.384891
\(175\) 0 0
\(176\) −12.7334 −0.959815
\(177\) 4.75715 0.357569
\(178\) −21.6184 −1.62036
\(179\) −7.75130 −0.579359 −0.289680 0.957124i \(-0.593549\pi\)
−0.289680 + 0.957124i \(0.593549\pi\)
\(180\) 5.86486 0.437141
\(181\) 19.9999 1.48658 0.743289 0.668970i \(-0.233265\pi\)
0.743289 + 0.668970i \(0.233265\pi\)
\(182\) 0 0
\(183\) 4.72852 0.349542
\(184\) 14.9460 1.10183
\(185\) −16.9342 −1.24502
\(186\) 5.61649 0.411821
\(187\) −5.87480 −0.429608
\(188\) 1.00154 0.0730448
\(189\) 0 0
\(190\) 20.9138 1.51725
\(191\) 20.4835 1.48214 0.741068 0.671430i \(-0.234320\pi\)
0.741068 + 0.671430i \(0.234320\pi\)
\(192\) −1.60803 −0.116050
\(193\) 12.4329 0.894942 0.447471 0.894298i \(-0.352325\pi\)
0.447471 + 0.894298i \(0.352325\pi\)
\(194\) −23.2405 −1.66857
\(195\) 0 0
\(196\) 0 0
\(197\) 18.9805 1.35231 0.676154 0.736761i \(-0.263646\pi\)
0.676154 + 0.736761i \(0.263646\pi\)
\(198\) −11.7735 −0.836709
\(199\) −12.8188 −0.908701 −0.454350 0.890823i \(-0.650129\pi\)
−0.454350 + 0.890823i \(0.650129\pi\)
\(200\) −6.79467 −0.480456
\(201\) −7.87485 −0.555449
\(202\) 28.8859 2.03241
\(203\) 0 0
\(204\) 0.834435 0.0584221
\(205\) 11.4385 0.798900
\(206\) 10.8552 0.756317
\(207\) 19.7513 1.37281
\(208\) 0 0
\(209\) −11.3470 −0.784887
\(210\) 0 0
\(211\) −7.86926 −0.541743 −0.270871 0.962616i \(-0.587312\pi\)
−0.270871 + 0.962616i \(0.587312\pi\)
\(212\) −6.13909 −0.421634
\(213\) −2.37290 −0.162588
\(214\) 25.8294 1.76566
\(215\) 3.77703 0.257591
\(216\) −5.93854 −0.404066
\(217\) 0 0
\(218\) −16.5835 −1.12318
\(219\) −2.82388 −0.190820
\(220\) −5.49526 −0.370490
\(221\) 0 0
\(222\) −4.82850 −0.324068
\(223\) −7.77059 −0.520357 −0.260179 0.965560i \(-0.583781\pi\)
−0.260179 + 0.965560i \(0.583781\pi\)
\(224\) 0 0
\(225\) −8.97925 −0.598617
\(226\) −6.54052 −0.435069
\(227\) 25.5431 1.69536 0.847678 0.530511i \(-0.178000\pi\)
0.847678 + 0.530511i \(0.178000\pi\)
\(228\) 1.61168 0.106736
\(229\) −12.8986 −0.852362 −0.426181 0.904638i \(-0.640141\pi\)
−0.426181 + 0.904638i \(0.640141\pi\)
\(230\) 34.1098 2.24913
\(231\) 0 0
\(232\) −12.9164 −0.848005
\(233\) 8.14278 0.533451 0.266726 0.963772i \(-0.414058\pi\)
0.266726 + 0.963772i \(0.414058\pi\)
\(234\) 0 0
\(235\) −3.88573 −0.253477
\(236\) −7.11914 −0.463417
\(237\) 0.997011 0.0647628
\(238\) 0 0
\(239\) −23.8122 −1.54028 −0.770140 0.637875i \(-0.779814\pi\)
−0.770140 + 0.637875i \(0.779814\pi\)
\(240\) −7.01694 −0.452941
\(241\) 0.288546 0.0185869 0.00929346 0.999957i \(-0.497042\pi\)
0.00929346 + 0.999957i \(0.497042\pi\)
\(242\) −7.17913 −0.461492
\(243\) −11.9388 −0.765877
\(244\) −7.07630 −0.453013
\(245\) 0 0
\(246\) 3.26150 0.207946
\(247\) 0 0
\(248\) 14.2888 0.907340
\(249\) −1.54333 −0.0978045
\(250\) 8.28206 0.523803
\(251\) 7.61843 0.480871 0.240435 0.970665i \(-0.422710\pi\)
0.240435 + 0.970665i \(0.422710\pi\)
\(252\) 0 0
\(253\) −18.5066 −1.16350
\(254\) 3.92942 0.246554
\(255\) −3.23741 −0.202734
\(256\) 15.6402 0.977511
\(257\) 11.6560 0.727082 0.363541 0.931578i \(-0.381568\pi\)
0.363541 + 0.931578i \(0.381568\pi\)
\(258\) 1.07696 0.0670484
\(259\) 0 0
\(260\) 0 0
\(261\) −17.0693 −1.05656
\(262\) −3.53529 −0.218411
\(263\) −13.5528 −0.835700 −0.417850 0.908516i \(-0.637216\pi\)
−0.417850 + 0.908516i \(0.637216\pi\)
\(264\) 2.66370 0.163940
\(265\) 23.8182 1.46314
\(266\) 0 0
\(267\) 6.46359 0.395565
\(268\) 11.7848 0.719873
\(269\) 17.8332 1.08731 0.543656 0.839308i \(-0.317040\pi\)
0.543656 + 0.839308i \(0.317040\pi\)
\(270\) −13.5530 −0.824808
\(271\) −30.3743 −1.84511 −0.922555 0.385866i \(-0.873903\pi\)
−0.922555 + 0.385866i \(0.873903\pi\)
\(272\) 11.2262 0.680690
\(273\) 0 0
\(274\) 0.710564 0.0429268
\(275\) 8.41338 0.507346
\(276\) 2.62860 0.158223
\(277\) 5.21425 0.313294 0.156647 0.987655i \(-0.449932\pi\)
0.156647 + 0.987655i \(0.449932\pi\)
\(278\) 32.2591 1.93477
\(279\) 18.8829 1.13049
\(280\) 0 0
\(281\) −1.66255 −0.0991794 −0.0495897 0.998770i \(-0.515791\pi\)
−0.0495897 + 0.998770i \(0.515791\pi\)
\(282\) −1.10795 −0.0659776
\(283\) 13.7957 0.820066 0.410033 0.912071i \(-0.365517\pi\)
0.410033 + 0.912071i \(0.365517\pi\)
\(284\) 3.55107 0.210718
\(285\) −6.25294 −0.370392
\(286\) 0 0
\(287\) 0 0
\(288\) 11.0113 0.648849
\(289\) −11.8206 −0.695327
\(290\) −29.4780 −1.73101
\(291\) 6.94859 0.407333
\(292\) 4.22597 0.247306
\(293\) −12.8576 −0.751149 −0.375574 0.926792i \(-0.622555\pi\)
−0.375574 + 0.926792i \(0.622555\pi\)
\(294\) 0 0
\(295\) 27.6206 1.60813
\(296\) −12.2841 −0.713998
\(297\) 7.35329 0.426681
\(298\) 37.9120 2.19619
\(299\) 0 0
\(300\) −1.19500 −0.0689936
\(301\) 0 0
\(302\) 18.5761 1.06894
\(303\) −8.63648 −0.496153
\(304\) 21.6831 1.24361
\(305\) 27.4543 1.57203
\(306\) 10.3800 0.593384
\(307\) 20.9016 1.19292 0.596458 0.802644i \(-0.296574\pi\)
0.596458 + 0.802644i \(0.296574\pi\)
\(308\) 0 0
\(309\) −3.24555 −0.184633
\(310\) 32.6100 1.85212
\(311\) −17.1392 −0.971876 −0.485938 0.873993i \(-0.661522\pi\)
−0.485938 + 0.873993i \(0.661522\pi\)
\(312\) 0 0
\(313\) 2.55266 0.144285 0.0721424 0.997394i \(-0.477016\pi\)
0.0721424 + 0.997394i \(0.477016\pi\)
\(314\) 6.27109 0.353898
\(315\) 0 0
\(316\) −1.49204 −0.0839339
\(317\) −27.2888 −1.53269 −0.766345 0.642430i \(-0.777927\pi\)
−0.766345 + 0.642430i \(0.777927\pi\)
\(318\) 6.79136 0.380841
\(319\) 15.9936 0.895467
\(320\) −9.33641 −0.521921
\(321\) −7.72264 −0.431036
\(322\) 0 0
\(323\) 10.0039 0.556633
\(324\) 5.07778 0.282099
\(325\) 0 0
\(326\) −32.4696 −1.79833
\(327\) 4.95824 0.274192
\(328\) 8.29751 0.458154
\(329\) 0 0
\(330\) 6.07912 0.334645
\(331\) 9.69307 0.532779 0.266390 0.963865i \(-0.414169\pi\)
0.266390 + 0.963865i \(0.414169\pi\)
\(332\) 2.30961 0.126757
\(333\) −16.2336 −0.889595
\(334\) −17.0389 −0.932329
\(335\) −45.7223 −2.49808
\(336\) 0 0
\(337\) −6.31370 −0.343929 −0.171965 0.985103i \(-0.555012\pi\)
−0.171965 + 0.985103i \(0.555012\pi\)
\(338\) 0 0
\(339\) 1.95552 0.106210
\(340\) 4.84482 0.262747
\(341\) −17.6929 −0.958122
\(342\) 20.0486 1.08410
\(343\) 0 0
\(344\) 2.73986 0.147724
\(345\) −10.1984 −0.549061
\(346\) −9.94038 −0.534398
\(347\) 29.1200 1.56324 0.781622 0.623753i \(-0.214393\pi\)
0.781622 + 0.623753i \(0.214393\pi\)
\(348\) −2.27166 −0.121774
\(349\) −20.3297 −1.08822 −0.544112 0.839013i \(-0.683133\pi\)
−0.544112 + 0.839013i \(0.683133\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −10.3174 −0.549919
\(353\) 14.1980 0.755683 0.377841 0.925870i \(-0.376666\pi\)
0.377841 + 0.925870i \(0.376666\pi\)
\(354\) 7.87555 0.418581
\(355\) −13.7773 −0.731224
\(356\) −9.67285 −0.512660
\(357\) 0 0
\(358\) −12.8324 −0.678214
\(359\) −7.50164 −0.395921 −0.197961 0.980210i \(-0.563432\pi\)
−0.197961 + 0.980210i \(0.563432\pi\)
\(360\) −16.5060 −0.869941
\(361\) 0.322229 0.0169594
\(362\) 33.1101 1.74023
\(363\) 2.14646 0.112660
\(364\) 0 0
\(365\) −16.3958 −0.858193
\(366\) 7.82815 0.409184
\(367\) 28.5883 1.49230 0.746149 0.665779i \(-0.231901\pi\)
0.746149 + 0.665779i \(0.231901\pi\)
\(368\) 35.3644 1.84350
\(369\) 10.9653 0.570830
\(370\) −28.0348 −1.45746
\(371\) 0 0
\(372\) 2.51303 0.130294
\(373\) −7.91204 −0.409670 −0.204835 0.978797i \(-0.565666\pi\)
−0.204835 + 0.978797i \(0.565666\pi\)
\(374\) −9.72584 −0.502911
\(375\) −2.47622 −0.127871
\(376\) −2.81872 −0.145364
\(377\) 0 0
\(378\) 0 0
\(379\) 1.78091 0.0914791 0.0457395 0.998953i \(-0.485436\pi\)
0.0457395 + 0.998953i \(0.485436\pi\)
\(380\) 9.35761 0.480035
\(381\) −1.17484 −0.0601889
\(382\) 33.9108 1.73503
\(383\) 14.1997 0.725572 0.362786 0.931872i \(-0.381826\pi\)
0.362786 + 0.931872i \(0.381826\pi\)
\(384\) −6.61883 −0.337766
\(385\) 0 0
\(386\) 20.5829 1.04764
\(387\) 3.62077 0.184054
\(388\) −10.3987 −0.527912
\(389\) −6.77499 −0.343506 −0.171753 0.985140i \(-0.554943\pi\)
−0.171753 + 0.985140i \(0.554943\pi\)
\(390\) 0 0
\(391\) 16.3161 0.825140
\(392\) 0 0
\(393\) 1.05700 0.0533187
\(394\) 31.4226 1.58305
\(395\) 5.78876 0.291264
\(396\) −5.26791 −0.264723
\(397\) 29.0023 1.45558 0.727792 0.685798i \(-0.240547\pi\)
0.727792 + 0.685798i \(0.240547\pi\)
\(398\) −21.2218 −1.06375
\(399\) 0 0
\(400\) −16.0772 −0.803861
\(401\) −21.9604 −1.09665 −0.548326 0.836265i \(-0.684735\pi\)
−0.548326 + 0.836265i \(0.684735\pi\)
\(402\) −13.0370 −0.650224
\(403\) 0 0
\(404\) 12.9246 0.643024
\(405\) −19.7006 −0.978928
\(406\) 0 0
\(407\) 15.2105 0.753959
\(408\) −2.34842 −0.116264
\(409\) −4.00290 −0.197931 −0.0989653 0.995091i \(-0.531553\pi\)
−0.0989653 + 0.995091i \(0.531553\pi\)
\(410\) 18.9366 0.935214
\(411\) −0.212449 −0.0104793
\(412\) 4.85702 0.239288
\(413\) 0 0
\(414\) 32.6986 1.60705
\(415\) −8.96075 −0.439866
\(416\) 0 0
\(417\) −9.64501 −0.472318
\(418\) −18.7851 −0.918811
\(419\) −1.75047 −0.0855162 −0.0427581 0.999085i \(-0.513614\pi\)
−0.0427581 + 0.999085i \(0.513614\pi\)
\(420\) 0 0
\(421\) 16.2204 0.790533 0.395267 0.918566i \(-0.370652\pi\)
0.395267 + 0.918566i \(0.370652\pi\)
\(422\) −13.0277 −0.634179
\(423\) −3.72498 −0.181115
\(424\) 17.2778 0.839082
\(425\) −7.41755 −0.359804
\(426\) −3.92837 −0.190330
\(427\) 0 0
\(428\) 11.5570 0.558631
\(429\) 0 0
\(430\) 6.25294 0.301543
\(431\) −11.6797 −0.562590 −0.281295 0.959621i \(-0.590764\pi\)
−0.281295 + 0.959621i \(0.590764\pi\)
\(432\) −14.0515 −0.676052
\(433\) 31.6289 1.51999 0.759994 0.649930i \(-0.225202\pi\)
0.759994 + 0.649930i \(0.225202\pi\)
\(434\) 0 0
\(435\) 8.81351 0.422575
\(436\) −7.42008 −0.355357
\(437\) 31.5140 1.50752
\(438\) −4.67498 −0.223379
\(439\) −9.71539 −0.463690 −0.231845 0.972753i \(-0.574476\pi\)
−0.231845 + 0.972753i \(0.574476\pi\)
\(440\) 15.4658 0.737302
\(441\) 0 0
\(442\) 0 0
\(443\) 21.1163 1.00327 0.501633 0.865081i \(-0.332733\pi\)
0.501633 + 0.865081i \(0.332733\pi\)
\(444\) −2.16045 −0.102530
\(445\) 37.5283 1.77901
\(446\) −12.8644 −0.609145
\(447\) −11.3352 −0.536135
\(448\) 0 0
\(449\) 13.4710 0.635735 0.317867 0.948135i \(-0.397033\pi\)
0.317867 + 0.948135i \(0.397033\pi\)
\(450\) −14.8653 −0.700758
\(451\) −10.2743 −0.483796
\(452\) −2.92647 −0.137650
\(453\) −5.55401 −0.260950
\(454\) 42.2871 1.98463
\(455\) 0 0
\(456\) −4.53589 −0.212413
\(457\) −9.35582 −0.437647 −0.218823 0.975764i \(-0.570222\pi\)
−0.218823 + 0.975764i \(0.570222\pi\)
\(458\) −21.3538 −0.997798
\(459\) −6.48294 −0.302598
\(460\) 15.2620 0.711593
\(461\) 8.14109 0.379168 0.189584 0.981864i \(-0.439286\pi\)
0.189584 + 0.981864i \(0.439286\pi\)
\(462\) 0 0
\(463\) −24.3018 −1.12940 −0.564700 0.825296i \(-0.691008\pi\)
−0.564700 + 0.825296i \(0.691008\pi\)
\(464\) −30.5623 −1.41882
\(465\) −9.74994 −0.452143
\(466\) 13.4805 0.624473
\(467\) −32.7935 −1.51750 −0.758751 0.651381i \(-0.774190\pi\)
−0.758751 + 0.651381i \(0.774190\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) −6.43290 −0.296728
\(471\) −1.87497 −0.0863940
\(472\) 20.0360 0.922232
\(473\) −3.39259 −0.155991
\(474\) 1.65057 0.0758132
\(475\) −14.3267 −0.657356
\(476\) 0 0
\(477\) 22.8328 1.04544
\(478\) −39.4215 −1.80310
\(479\) 2.48109 0.113364 0.0566819 0.998392i \(-0.481948\pi\)
0.0566819 + 0.998392i \(0.481948\pi\)
\(480\) −5.68557 −0.259510
\(481\) 0 0
\(482\) 0.477694 0.0217584
\(483\) 0 0
\(484\) −3.21221 −0.146009
\(485\) 40.3443 1.83194
\(486\) −19.7650 −0.896557
\(487\) −22.9216 −1.03867 −0.519337 0.854569i \(-0.673821\pi\)
−0.519337 + 0.854569i \(0.673821\pi\)
\(488\) 19.9154 0.901529
\(489\) 9.70797 0.439010
\(490\) 0 0
\(491\) 22.8735 1.03227 0.516134 0.856508i \(-0.327371\pi\)
0.516134 + 0.856508i \(0.327371\pi\)
\(492\) 1.45932 0.0657910
\(493\) −14.1005 −0.635055
\(494\) 0 0
\(495\) 20.4382 0.918631
\(496\) 33.8095 1.51809
\(497\) 0 0
\(498\) −2.55501 −0.114493
\(499\) 8.48087 0.379656 0.189828 0.981817i \(-0.439207\pi\)
0.189828 + 0.981817i \(0.439207\pi\)
\(500\) 3.70570 0.165724
\(501\) 5.09440 0.227601
\(502\) 12.6124 0.562921
\(503\) 9.36890 0.417739 0.208869 0.977944i \(-0.433022\pi\)
0.208869 + 0.977944i \(0.433022\pi\)
\(504\) 0 0
\(505\) −50.1444 −2.23140
\(506\) −30.6380 −1.36202
\(507\) 0 0
\(508\) 1.75817 0.0780060
\(509\) 21.5402 0.954753 0.477376 0.878699i \(-0.341588\pi\)
0.477376 + 0.878699i \(0.341588\pi\)
\(510\) −5.35958 −0.237326
\(511\) 0 0
\(512\) −0.851388 −0.0376264
\(513\) −12.5216 −0.552841
\(514\) 19.2967 0.851143
\(515\) −18.8441 −0.830368
\(516\) 0.481870 0.0212132
\(517\) 3.49023 0.153500
\(518\) 0 0
\(519\) 2.97203 0.130458
\(520\) 0 0
\(521\) −15.7470 −0.689889 −0.344944 0.938623i \(-0.612102\pi\)
−0.344944 + 0.938623i \(0.612102\pi\)
\(522\) −28.2585 −1.23684
\(523\) −17.9404 −0.784477 −0.392238 0.919864i \(-0.628299\pi\)
−0.392238 + 0.919864i \(0.628299\pi\)
\(524\) −1.58182 −0.0691020
\(525\) 0 0
\(526\) −22.4369 −0.978293
\(527\) 15.5987 0.679489
\(528\) 6.30273 0.274291
\(529\) 28.3983 1.23471
\(530\) 39.4314 1.71279
\(531\) 26.4779 1.14904
\(532\) 0 0
\(533\) 0 0
\(534\) 10.7006 0.463060
\(535\) −44.8386 −1.93854
\(536\) −33.1671 −1.43260
\(537\) 3.83672 0.165566
\(538\) 29.5232 1.27284
\(539\) 0 0
\(540\) −6.06410 −0.260957
\(541\) 9.35582 0.402238 0.201119 0.979567i \(-0.435542\pi\)
0.201119 + 0.979567i \(0.435542\pi\)
\(542\) −50.2853 −2.15994
\(543\) −9.89947 −0.424827
\(544\) 9.09621 0.389997
\(545\) 28.7881 1.23315
\(546\) 0 0
\(547\) −33.1634 −1.41796 −0.708981 0.705227i \(-0.750845\pi\)
−0.708981 + 0.705227i \(0.750845\pi\)
\(548\) 0.317933 0.0135814
\(549\) 26.3185 1.12325
\(550\) 13.9285 0.593914
\(551\) −27.2347 −1.16024
\(552\) −7.39790 −0.314876
\(553\) 0 0
\(554\) 8.63228 0.366750
\(555\) 8.38202 0.355797
\(556\) 14.4339 0.612133
\(557\) −11.1532 −0.472578 −0.236289 0.971683i \(-0.575931\pi\)
−0.236289 + 0.971683i \(0.575931\pi\)
\(558\) 31.2609 1.32338
\(559\) 0 0
\(560\) 0 0
\(561\) 2.90789 0.122771
\(562\) −2.75238 −0.116102
\(563\) 19.1778 0.808247 0.404124 0.914704i \(-0.367577\pi\)
0.404124 + 0.914704i \(0.367577\pi\)
\(564\) −0.495739 −0.0208744
\(565\) 11.3540 0.477666
\(566\) 22.8389 0.959993
\(567\) 0 0
\(568\) −9.99409 −0.419343
\(569\) 13.4672 0.564575 0.282288 0.959330i \(-0.408907\pi\)
0.282288 + 0.959330i \(0.408907\pi\)
\(570\) −10.3519 −0.433591
\(571\) 25.1608 1.05295 0.526473 0.850192i \(-0.323514\pi\)
0.526473 + 0.850192i \(0.323514\pi\)
\(572\) 0 0
\(573\) −10.1389 −0.423557
\(574\) 0 0
\(575\) −23.3665 −0.974450
\(576\) −8.95016 −0.372923
\(577\) 21.6484 0.901235 0.450617 0.892717i \(-0.351204\pi\)
0.450617 + 0.892717i \(0.351204\pi\)
\(578\) −19.5691 −0.813969
\(579\) −6.15401 −0.255752
\(580\) −13.1895 −0.547666
\(581\) 0 0
\(582\) 11.5035 0.476836
\(583\) −21.3939 −0.886044
\(584\) −11.8935 −0.492157
\(585\) 0 0
\(586\) −21.2860 −0.879316
\(587\) −34.5576 −1.42634 −0.713172 0.700989i \(-0.752742\pi\)
−0.713172 + 0.700989i \(0.752742\pi\)
\(588\) 0 0
\(589\) 30.1283 1.24142
\(590\) 45.7263 1.88252
\(591\) −9.39493 −0.386456
\(592\) −29.0660 −1.19461
\(593\) 1.26839 0.0520865 0.0260432 0.999661i \(-0.491709\pi\)
0.0260432 + 0.999661i \(0.491709\pi\)
\(594\) 12.1735 0.499485
\(595\) 0 0
\(596\) 16.9632 0.694842
\(597\) 6.34501 0.259684
\(598\) 0 0
\(599\) 17.5143 0.715614 0.357807 0.933796i \(-0.383525\pi\)
0.357807 + 0.933796i \(0.383525\pi\)
\(600\) 3.36320 0.137302
\(601\) 9.02164 0.368000 0.184000 0.982926i \(-0.441095\pi\)
0.184000 + 0.982926i \(0.441095\pi\)
\(602\) 0 0
\(603\) −43.8307 −1.78493
\(604\) 8.31165 0.338196
\(605\) 12.4626 0.506677
\(606\) −14.2979 −0.580811
\(607\) 15.8290 0.642479 0.321239 0.946998i \(-0.395901\pi\)
0.321239 + 0.946998i \(0.395901\pi\)
\(608\) 17.5690 0.712517
\(609\) 0 0
\(610\) 45.4511 1.84026
\(611\) 0 0
\(612\) 4.64439 0.187738
\(613\) 17.5344 0.708209 0.354104 0.935206i \(-0.384786\pi\)
0.354104 + 0.935206i \(0.384786\pi\)
\(614\) 34.6029 1.39646
\(615\) −5.66179 −0.228306
\(616\) 0 0
\(617\) −7.01448 −0.282392 −0.141196 0.989982i \(-0.545095\pi\)
−0.141196 + 0.989982i \(0.545095\pi\)
\(618\) −5.37307 −0.216137
\(619\) −38.8263 −1.56056 −0.780280 0.625430i \(-0.784923\pi\)
−0.780280 + 0.625430i \(0.784923\pi\)
\(620\) 14.5909 0.585985
\(621\) −20.4223 −0.819518
\(622\) −28.3743 −1.13771
\(623\) 0 0
\(624\) 0 0
\(625\) −30.6735 −1.22694
\(626\) 4.22597 0.168904
\(627\) 5.61649 0.224301
\(628\) 2.80592 0.111968
\(629\) −13.4102 −0.534699
\(630\) 0 0
\(631\) −12.7484 −0.507506 −0.253753 0.967269i \(-0.581665\pi\)
−0.253753 + 0.967269i \(0.581665\pi\)
\(632\) 4.19918 0.167034
\(633\) 3.89510 0.154816
\(634\) −45.1770 −1.79421
\(635\) −6.82126 −0.270694
\(636\) 3.03871 0.120493
\(637\) 0 0
\(638\) 26.4776 1.04826
\(639\) −13.2073 −0.522474
\(640\) −38.4297 −1.51907
\(641\) −9.71429 −0.383691 −0.191846 0.981425i \(-0.561447\pi\)
−0.191846 + 0.981425i \(0.561447\pi\)
\(642\) −12.7850 −0.504583
\(643\) −0.458279 −0.0180728 −0.00903639 0.999959i \(-0.502876\pi\)
−0.00903639 + 0.999959i \(0.502876\pi\)
\(644\) 0 0
\(645\) −1.86954 −0.0736131
\(646\) 16.5617 0.651610
\(647\) 6.17722 0.242852 0.121426 0.992601i \(-0.461253\pi\)
0.121426 + 0.992601i \(0.461253\pi\)
\(648\) −14.2908 −0.561397
\(649\) −24.8093 −0.973848
\(650\) 0 0
\(651\) 0 0
\(652\) −14.5281 −0.568965
\(653\) 28.4385 1.11289 0.556443 0.830886i \(-0.312166\pi\)
0.556443 + 0.830886i \(0.312166\pi\)
\(654\) 8.20846 0.320976
\(655\) 6.13707 0.239795
\(656\) 19.6332 0.766547
\(657\) −15.7175 −0.613196
\(658\) 0 0
\(659\) −25.9818 −1.01211 −0.506054 0.862502i \(-0.668897\pi\)
−0.506054 + 0.862502i \(0.668897\pi\)
\(660\) 2.72002 0.105877
\(661\) −37.2752 −1.44984 −0.724918 0.688835i \(-0.758122\pi\)
−0.724918 + 0.688835i \(0.758122\pi\)
\(662\) 16.0471 0.623686
\(663\) 0 0
\(664\) −6.50015 −0.252255
\(665\) 0 0
\(666\) −26.8750 −1.04139
\(667\) −44.4189 −1.71991
\(668\) −7.62385 −0.294976
\(669\) 3.84626 0.148705
\(670\) −75.6941 −2.92432
\(671\) −24.6599 −0.951986
\(672\) 0 0
\(673\) −41.7078 −1.60772 −0.803859 0.594820i \(-0.797223\pi\)
−0.803859 + 0.594820i \(0.797223\pi\)
\(674\) −10.4525 −0.402613
\(675\) 9.28430 0.357353
\(676\) 0 0
\(677\) −18.2069 −0.699750 −0.349875 0.936796i \(-0.613776\pi\)
−0.349875 + 0.936796i \(0.613776\pi\)
\(678\) 3.23741 0.124332
\(679\) 0 0
\(680\) −13.6352 −0.522886
\(681\) −12.6432 −0.484490
\(682\) −29.2908 −1.12160
\(683\) −27.3360 −1.04598 −0.522991 0.852338i \(-0.675184\pi\)
−0.522991 + 0.852338i \(0.675184\pi\)
\(684\) 8.97048 0.342995
\(685\) −1.23350 −0.0471297
\(686\) 0 0
\(687\) 6.38449 0.243584
\(688\) 6.48294 0.247160
\(689\) 0 0
\(690\) −16.8836 −0.642746
\(691\) −8.39581 −0.319392 −0.159696 0.987166i \(-0.551051\pi\)
−0.159696 + 0.987166i \(0.551051\pi\)
\(692\) −4.44769 −0.169076
\(693\) 0 0
\(694\) 48.2087 1.82998
\(695\) −56.0000 −2.12420
\(696\) 6.39334 0.242339
\(697\) 9.05817 0.343102
\(698\) −33.6562 −1.27391
\(699\) −4.03049 −0.152447
\(700\) 0 0
\(701\) −27.4998 −1.03865 −0.519327 0.854576i \(-0.673817\pi\)
−0.519327 + 0.854576i \(0.673817\pi\)
\(702\) 0 0
\(703\) −25.9013 −0.976887
\(704\) 8.38612 0.316064
\(705\) 1.92335 0.0724375
\(706\) 23.5050 0.884623
\(707\) 0 0
\(708\) 3.52381 0.132433
\(709\) 28.9820 1.08844 0.544221 0.838942i \(-0.316825\pi\)
0.544221 + 0.838942i \(0.316825\pi\)
\(710\) −22.8086 −0.855991
\(711\) 5.54928 0.208114
\(712\) 27.2231 1.02023
\(713\) 49.1384 1.84025
\(714\) 0 0
\(715\) 0 0
\(716\) −5.74170 −0.214577
\(717\) 11.7865 0.440174
\(718\) −12.4191 −0.463476
\(719\) 17.5522 0.654588 0.327294 0.944923i \(-0.393863\pi\)
0.327294 + 0.944923i \(0.393863\pi\)
\(720\) −39.0557 −1.45552
\(721\) 0 0
\(722\) 0.533456 0.0198532
\(723\) −0.142824 −0.00531168
\(724\) 14.8147 0.550584
\(725\) 20.1935 0.749969
\(726\) 3.55350 0.131883
\(727\) −22.1403 −0.821139 −0.410569 0.911829i \(-0.634670\pi\)
−0.410569 + 0.911829i \(0.634670\pi\)
\(728\) 0 0
\(729\) −14.6556 −0.542799
\(730\) −27.1435 −1.00463
\(731\) 2.99103 0.110627
\(732\) 3.50260 0.129460
\(733\) −51.3414 −1.89634 −0.948169 0.317768i \(-0.897067\pi\)
−0.948169 + 0.317768i \(0.897067\pi\)
\(734\) 47.3285 1.74693
\(735\) 0 0
\(736\) 28.6545 1.05622
\(737\) 41.0685 1.51278
\(738\) 18.1532 0.668229
\(739\) −22.7787 −0.837929 −0.418965 0.908003i \(-0.637607\pi\)
−0.418965 + 0.908003i \(0.637607\pi\)
\(740\) −12.5438 −0.461120
\(741\) 0 0
\(742\) 0 0
\(743\) −27.6199 −1.01328 −0.506638 0.862159i \(-0.669112\pi\)
−0.506638 + 0.862159i \(0.669112\pi\)
\(744\) −7.07262 −0.259295
\(745\) −65.8133 −2.41121
\(746\) −13.0985 −0.479571
\(747\) −8.59004 −0.314293
\(748\) −4.35170 −0.159114
\(749\) 0 0
\(750\) −4.09943 −0.149690
\(751\) 41.1172 1.50039 0.750194 0.661218i \(-0.229960\pi\)
0.750194 + 0.661218i \(0.229960\pi\)
\(752\) −6.66952 −0.243212
\(753\) −3.77095 −0.137421
\(754\) 0 0
\(755\) −32.2472 −1.17360
\(756\) 0 0
\(757\) 14.0143 0.509357 0.254678 0.967026i \(-0.418030\pi\)
0.254678 + 0.967026i \(0.418030\pi\)
\(758\) 2.94832 0.107088
\(759\) 9.16033 0.332499
\(760\) −26.3359 −0.955304
\(761\) −34.1648 −1.23847 −0.619236 0.785205i \(-0.712558\pi\)
−0.619236 + 0.785205i \(0.712558\pi\)
\(762\) −1.94497 −0.0704588
\(763\) 0 0
\(764\) 15.1730 0.548938
\(765\) −18.0191 −0.651483
\(766\) 23.5079 0.849375
\(767\) 0 0
\(768\) −7.74153 −0.279348
\(769\) 52.9061 1.90784 0.953921 0.300059i \(-0.0970062\pi\)
0.953921 + 0.300059i \(0.0970062\pi\)
\(770\) 0 0
\(771\) −5.76946 −0.207782
\(772\) 9.20957 0.331460
\(773\) −45.9133 −1.65139 −0.825694 0.564118i \(-0.809216\pi\)
−0.825694 + 0.564118i \(0.809216\pi\)
\(774\) 5.99425 0.215459
\(775\) −22.3391 −0.802444
\(776\) 29.2658 1.05058
\(777\) 0 0
\(778\) −11.2161 −0.402117
\(779\) 17.4955 0.626843
\(780\) 0 0
\(781\) 12.3750 0.442813
\(782\) 27.0116 0.965932
\(783\) 17.6491 0.630728
\(784\) 0 0
\(785\) −10.8863 −0.388548
\(786\) 1.74989 0.0624163
\(787\) −15.1872 −0.541364 −0.270682 0.962669i \(-0.587249\pi\)
−0.270682 + 0.962669i \(0.587249\pi\)
\(788\) 14.0596 0.500854
\(789\) 6.70831 0.238822
\(790\) 9.58340 0.340962
\(791\) 0 0
\(792\) 14.8259 0.526817
\(793\) 0 0
\(794\) 48.0138 1.70395
\(795\) −11.7894 −0.418129
\(796\) −9.49540 −0.336555
\(797\) 16.3006 0.577398 0.288699 0.957420i \(-0.406777\pi\)
0.288699 + 0.957420i \(0.406777\pi\)
\(798\) 0 0
\(799\) −3.07712 −0.108861
\(800\) −13.0268 −0.460567
\(801\) 35.9758 1.27114
\(802\) −36.3559 −1.28377
\(803\) 14.7269 0.519703
\(804\) −5.83322 −0.205722
\(805\) 0 0
\(806\) 0 0
\(807\) −8.82704 −0.310727
\(808\) −36.3749 −1.27966
\(809\) 10.3857 0.365142 0.182571 0.983193i \(-0.441558\pi\)
0.182571 + 0.983193i \(0.441558\pi\)
\(810\) −32.6146 −1.14596
\(811\) 10.9705 0.385227 0.192614 0.981275i \(-0.438304\pi\)
0.192614 + 0.981275i \(0.438304\pi\)
\(812\) 0 0
\(813\) 15.0346 0.527286
\(814\) 25.1813 0.882605
\(815\) 56.3656 1.97440
\(816\) −5.55672 −0.194524
\(817\) 5.77708 0.202114
\(818\) −6.62687 −0.231703
\(819\) 0 0
\(820\) 8.47296 0.295888
\(821\) −40.2325 −1.40412 −0.702061 0.712117i \(-0.747737\pi\)
−0.702061 + 0.712117i \(0.747737\pi\)
\(822\) −0.351713 −0.0122674
\(823\) −3.26499 −0.113811 −0.0569053 0.998380i \(-0.518123\pi\)
−0.0569053 + 0.998380i \(0.518123\pi\)
\(824\) −13.6695 −0.476200
\(825\) −4.16443 −0.144987
\(826\) 0 0
\(827\) −46.0118 −1.59999 −0.799993 0.600009i \(-0.795164\pi\)
−0.799993 + 0.600009i \(0.795164\pi\)
\(828\) 14.6306 0.508448
\(829\) 30.3865 1.05537 0.527683 0.849441i \(-0.323061\pi\)
0.527683 + 0.849441i \(0.323061\pi\)
\(830\) −14.8347 −0.514919
\(831\) −2.58093 −0.0895315
\(832\) 0 0
\(833\) 0 0
\(834\) −15.9675 −0.552909
\(835\) 29.5787 1.02361
\(836\) −8.40516 −0.290699
\(837\) −19.5243 −0.674860
\(838\) −2.89794 −0.100108
\(839\) −1.52007 −0.0524787 −0.0262394 0.999656i \(-0.508353\pi\)
−0.0262394 + 0.999656i \(0.508353\pi\)
\(840\) 0 0
\(841\) 9.38720 0.323697
\(842\) 26.8531 0.925420
\(843\) 0.822923 0.0283430
\(844\) −5.82908 −0.200645
\(845\) 0 0
\(846\) −6.16677 −0.212018
\(847\) 0 0
\(848\) 40.8818 1.40389
\(849\) −6.82853 −0.234354
\(850\) −12.2799 −0.421197
\(851\) −42.2443 −1.44811
\(852\) −1.75770 −0.0602178
\(853\) 43.7939 1.49947 0.749737 0.661736i \(-0.230180\pi\)
0.749737 + 0.661736i \(0.230180\pi\)
\(854\) 0 0
\(855\) −34.8033 −1.19025
\(856\) −32.5260 −1.11172
\(857\) 14.8521 0.507338 0.253669 0.967291i \(-0.418363\pi\)
0.253669 + 0.967291i \(0.418363\pi\)
\(858\) 0 0
\(859\) 44.3568 1.51343 0.756717 0.653742i \(-0.226802\pi\)
0.756717 + 0.653742i \(0.226802\pi\)
\(860\) 2.79780 0.0954040
\(861\) 0 0
\(862\) −19.3359 −0.658584
\(863\) 25.8451 0.879778 0.439889 0.898052i \(-0.355018\pi\)
0.439889 + 0.898052i \(0.355018\pi\)
\(864\) −11.3854 −0.387340
\(865\) 17.2560 0.586721
\(866\) 52.3622 1.77934
\(867\) 5.85090 0.198707
\(868\) 0 0
\(869\) −5.19956 −0.176383
\(870\) 14.5909 0.494678
\(871\) 0 0
\(872\) 20.8830 0.707187
\(873\) 38.6752 1.30896
\(874\) 52.1719 1.76474
\(875\) 0 0
\(876\) −2.09176 −0.0706740
\(877\) −1.37284 −0.0463575 −0.0231788 0.999731i \(-0.507379\pi\)
−0.0231788 + 0.999731i \(0.507379\pi\)
\(878\) −16.0840 −0.542809
\(879\) 6.36421 0.214660
\(880\) 36.5944 1.23360
\(881\) 16.2514 0.547524 0.273762 0.961797i \(-0.411732\pi\)
0.273762 + 0.961797i \(0.411732\pi\)
\(882\) 0 0
\(883\) −0.619110 −0.0208347 −0.0104174 0.999946i \(-0.503316\pi\)
−0.0104174 + 0.999946i \(0.503316\pi\)
\(884\) 0 0
\(885\) −13.6715 −0.459564
\(886\) 34.9584 1.17445
\(887\) 31.9379 1.07237 0.536185 0.844100i \(-0.319865\pi\)
0.536185 + 0.844100i \(0.319865\pi\)
\(888\) 6.08034 0.204043
\(889\) 0 0
\(890\) 62.1288 2.08256
\(891\) 17.6954 0.592817
\(892\) −5.75599 −0.192725
\(893\) −5.94335 −0.198886
\(894\) −18.7656 −0.627615
\(895\) 22.2764 0.744618
\(896\) 0 0
\(897\) 0 0
\(898\) 22.3015 0.744209
\(899\) −42.4658 −1.41631
\(900\) −6.65129 −0.221710
\(901\) 18.8616 0.628373
\(902\) −17.0092 −0.566345
\(903\) 0 0
\(904\) 8.23621 0.273932
\(905\) −57.4775 −1.91062
\(906\) −9.19476 −0.305475
\(907\) 20.7037 0.687455 0.343728 0.939069i \(-0.388310\pi\)
0.343728 + 0.939069i \(0.388310\pi\)
\(908\) 18.9208 0.627909
\(909\) −48.0699 −1.59438
\(910\) 0 0
\(911\) 39.4143 1.30585 0.652926 0.757421i \(-0.273541\pi\)
0.652926 + 0.757421i \(0.273541\pi\)
\(912\) −10.7326 −0.355392
\(913\) 8.04869 0.266373
\(914\) −15.4887 −0.512321
\(915\) −13.5893 −0.449247
\(916\) −9.55449 −0.315689
\(917\) 0 0
\(918\) −10.7326 −0.354229
\(919\) 14.2185 0.469025 0.234512 0.972113i \(-0.424651\pi\)
0.234512 + 0.972113i \(0.424651\pi\)
\(920\) −42.9531 −1.41612
\(921\) −10.3458 −0.340906
\(922\) 13.4777 0.443865
\(923\) 0 0
\(924\) 0 0
\(925\) 19.2049 0.631454
\(926\) −40.2320 −1.32211
\(927\) −18.0645 −0.593315
\(928\) −24.7635 −0.812902
\(929\) −28.7478 −0.943185 −0.471593 0.881817i \(-0.656321\pi\)
−0.471593 + 0.881817i \(0.656321\pi\)
\(930\) −16.1412 −0.529291
\(931\) 0 0
\(932\) 6.03168 0.197574
\(933\) 8.48352 0.277738
\(934\) −54.2902 −1.77643
\(935\) 16.8836 0.552151
\(936\) 0 0
\(937\) 19.8495 0.648456 0.324228 0.945979i \(-0.394895\pi\)
0.324228 + 0.945979i \(0.394895\pi\)
\(938\) 0 0
\(939\) −1.26351 −0.0412330
\(940\) −2.87832 −0.0938804
\(941\) 45.2320 1.47452 0.737260 0.675609i \(-0.236119\pi\)
0.737260 + 0.675609i \(0.236119\pi\)
\(942\) −3.10404 −0.101135
\(943\) 28.5347 0.929217
\(944\) 47.4083 1.54301
\(945\) 0 0
\(946\) −5.61649 −0.182608
\(947\) −22.1095 −0.718462 −0.359231 0.933249i \(-0.616961\pi\)
−0.359231 + 0.933249i \(0.616961\pi\)
\(948\) 0.738526 0.0239862
\(949\) 0 0
\(950\) −23.7182 −0.769520
\(951\) 13.5073 0.438004
\(952\) 0 0
\(953\) 34.3502 1.11271 0.556356 0.830944i \(-0.312199\pi\)
0.556356 + 0.830944i \(0.312199\pi\)
\(954\) 37.8001 1.22382
\(955\) −58.8674 −1.90491
\(956\) −17.6386 −0.570474
\(957\) −7.91644 −0.255902
\(958\) 4.10749 0.132707
\(959\) 0 0
\(960\) 4.62131 0.149152
\(961\) 15.9778 0.515413
\(962\) 0 0
\(963\) −42.9836 −1.38513
\(964\) 0.213738 0.00688403
\(965\) −35.7309 −1.15022
\(966\) 0 0
\(967\) 23.8805 0.767945 0.383973 0.923344i \(-0.374556\pi\)
0.383973 + 0.923344i \(0.374556\pi\)
\(968\) 9.04039 0.290569
\(969\) −4.95171 −0.159072
\(970\) 66.7907 2.14452
\(971\) −25.9377 −0.832381 −0.416190 0.909277i \(-0.636635\pi\)
−0.416190 + 0.909277i \(0.636635\pi\)
\(972\) −8.84358 −0.283658
\(973\) 0 0
\(974\) −37.9470 −1.21590
\(975\) 0 0
\(976\) 47.1229 1.50837
\(977\) −45.2971 −1.44918 −0.724592 0.689178i \(-0.757972\pi\)
−0.724592 + 0.689178i \(0.757972\pi\)
\(978\) 16.0717 0.513917
\(979\) −33.7086 −1.07733
\(980\) 0 0
\(981\) 27.5971 0.881109
\(982\) 37.8675 1.20840
\(983\) 2.03101 0.0647792 0.0323896 0.999475i \(-0.489688\pi\)
0.0323896 + 0.999475i \(0.489688\pi\)
\(984\) −4.10708 −0.130929
\(985\) −54.5480 −1.73804
\(986\) −23.3437 −0.743413
\(987\) 0 0
\(988\) 0 0
\(989\) 9.42224 0.299610
\(990\) 33.8359 1.07537
\(991\) −26.9665 −0.856618 −0.428309 0.903632i \(-0.640890\pi\)
−0.428309 + 0.903632i \(0.640890\pi\)
\(992\) 27.3946 0.869780
\(993\) −4.79785 −0.152255
\(994\) 0 0
\(995\) 36.8399 1.16790
\(996\) −1.14321 −0.0362239
\(997\) −6.65574 −0.210789 −0.105395 0.994430i \(-0.533611\pi\)
−0.105395 + 0.994430i \(0.533611\pi\)
\(998\) 14.0402 0.444436
\(999\) 16.7851 0.531056
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8281.2.a.cs.1.13 16
7.6 odd 2 inner 8281.2.a.cs.1.14 16
13.5 odd 4 637.2.c.g.246.3 16
13.8 odd 4 637.2.c.g.246.13 yes 16
13.12 even 2 inner 8281.2.a.cs.1.3 16
91.5 even 12 637.2.r.g.116.3 32
91.18 odd 12 637.2.r.g.324.14 32
91.31 even 12 637.2.r.g.324.13 32
91.34 even 4 637.2.c.g.246.14 yes 16
91.44 odd 12 637.2.r.g.116.4 32
91.47 even 12 637.2.r.g.116.13 32
91.60 odd 12 637.2.r.g.324.4 32
91.73 even 12 637.2.r.g.324.3 32
91.83 even 4 637.2.c.g.246.4 yes 16
91.86 odd 12 637.2.r.g.116.14 32
91.90 odd 2 inner 8281.2.a.cs.1.4 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
637.2.c.g.246.3 16 13.5 odd 4
637.2.c.g.246.4 yes 16 91.83 even 4
637.2.c.g.246.13 yes 16 13.8 odd 4
637.2.c.g.246.14 yes 16 91.34 even 4
637.2.r.g.116.3 32 91.5 even 12
637.2.r.g.116.4 32 91.44 odd 12
637.2.r.g.116.13 32 91.47 even 12
637.2.r.g.116.14 32 91.86 odd 12
637.2.r.g.324.3 32 91.73 even 12
637.2.r.g.324.4 32 91.60 odd 12
637.2.r.g.324.13 32 91.31 even 12
637.2.r.g.324.14 32 91.18 odd 12
8281.2.a.cs.1.3 16 13.12 even 2 inner
8281.2.a.cs.1.4 16 91.90 odd 2 inner
8281.2.a.cs.1.13 16 1.1 even 1 trivial
8281.2.a.cs.1.14 16 7.6 odd 2 inner